2,688 research outputs found

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Overlay networks for smart grids

    Get PDF

    Methods to enhance content distribution for very large scale online communities

    Get PDF
    The Internet has experienced an exponential growth in the last years, and its number of users far from decay keeps on growing. Popular Web 2.0 services such as Facebook, YouTube or Twitter among others sum millions of users and employ vast infrastructures deployed worldwide. The size of these infrastructures is getting huge in order to support such a massive number of users. This increment of the infrastructure size has brought new problems regarding scalability, power consumption, cooling, hardware lifetime, underutilization, investment recovery, etc. Owning this kind of infrastructures is not always affordable nor convenient. This could be a major handicap for starting projects with a humble budget whose success is based on reaching a large audience. However, current technologies might permit to deploy vast infrastructures reducing their cost. We refer to peer-to-peer networks and cloud computing. Peer-to-peer systems permit users to yield their own resources to distributed infrastructures. These systems have demonstrated to be a valuable choice capable of distributing vast amounts of data to large audiences with a minimal starting infrastructure. Nevertheless, aspects such as content availability cannot be controlled in these systems, whereas classic server infrastructures can improve this aspect. In the recent time, the cloud has been revealed as a promising paradigm for hosting horizontally scalable Web systems. The cloud offers elastic capabilities that permit to save costs by adapting the number of resources to the incoming demand. Additionally, the cloud makes accessible a vast amount of resources that may be employed on peak workloads. However, how to determine the amount of resources to use remains a challenge. In this thesis, we describe a hierarchical architecture that combines both: peer-to-peer and elastic server infrastructures in order to enhance content distribution. The peer-topeer infrastructure brings a scalable solution that reduces the workload in the servers, while the server infrastructure assures availability and reduces costs varying its size when necessary. We propose a distributed collaborative caching infrastructure that employs a clusterbased locality-aware self-organizing P2P system. This system, leverages collaborative data classification in order to improve content locality. Our evaluation demonstrates that incrementing data locality permits to improve data search while reducing traffic. We explore the utilization of elastic server infrastructures addressing three issues: system sizing, data grouping and content distribution. We propose novel multi-model techniques for hierarchical workload prediction. These predictions are employed to determine the system size and request distribution policies. Additionally, we propose novel techniques for adaptive control that permit to identify inaccurate models and redefine them. Our evaluation using traces extracted from real systems indicate that the utilization of a hierarchy of multiple models increases prediction accuracy. This hierarchy in conjunction with our adaptive control techniques increments the accuracy during unexpected workload variations. Finally, we demonstrate that locality-aware request distribution policies can take advantage of prediction models to adequate content distribution independently of the system size

    A survey on cost-effective context-aware distribution of social data streams over energy-efficient data centres

    Get PDF
    Social media have emerged in the last decade as a viable and ubiquitous means of communication. The ease of user content generation within these platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges, including derivation of real-time meaningful insights from effectively gathered social information, as well as a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general. In this article we present a comprehensive survey that outlines the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centres supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. We systematize the existing literature and proceed to identify and analyse the main research points and industrial efforts in the area as far as modelling, simulation and performance evaluation are concerned

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin
    • …
    corecore