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A B S T R A C T

The Internet has experienced an exponential growth in the last years, and its number
of users far from decay keeps on growing. Popular Web 2.0 services such as Facebook,
YouTube or Twitter among others sum millions of users and employ vast infrastructures
deployed worldwide. The size of these infrastructures is getting huge in order to support
such a massive number of users. This increment of the infrastructure size has brought
new problems regarding scalability, power consumption, cooling, hardware lifetime, un-
derutilization, investment recovery, etc. Owning this kind of infrastructures is not always
affordable nor convenient. This could be a major handicap for starting projects with a
humble budget whose success is based on reaching a large audience. However, current
technologies might permit to deploy vast infrastructures reducing their cost. We refer to
peer-to-peer networks and cloud computing.

Peer-to-peer systems permit users to yield their own resources to distributed infrastruc-
tures. These systems have demonstrated to be a valuable choice capable of distributing
vast amounts of data to large audiences with a minimal starting infrastructure. Neverthe-
less, aspects such as content availability cannot be controlled in these systems, whereas
classic server infrastructures can improve this aspect.

In the recent time, the cloud has been revealed as a promising paradigm for hosting
horizontally scalable Web systems. The cloud offers elastic capabilities that permit to
save costs by adapting the number of resources to the incoming demand. Additionally,
the cloud makes accessible a vast amount of resources that may be employed on peak
workloads. However, how to determine the amount of resources to use remains a chal-
lenge.

In this thesis, we describe a hierarchical architecture that combines both: peer-to-peer
and elastic server infrastructures in order to enhance content distribution. The peer-to-
peer infrastructure brings a scalable solution that reduces the workload in the servers,
while the server infrastructure assures availability and reduces costs varying its size
when necessary.

We propose a distributed collaborative caching infrastructure that employs a cluster-
based locality-aware self-organizing P2P system. This system, leverages collaborative
data classification in order to improve content locality. Our evaluation demonstrates that
incrementing data locality permits to improve data search while reducing traffic.

We explore the utilization of elastic server infrastructures addressing three issues: sys-
tem sizing, data grouping and content distribution. We propose novel multi-model tech-
niques for hierarchical workload prediction. These predictions are employed to deter-
mine the system size and request distribution policies. Additionally, we propose novel
techniques for adaptive control that permit to identify inaccurate models and redefine
them. Our evaluation using traces extracted from real systems indicate that the utiliza-
tion of a hierarchy of multiple models increases prediction accuracy. This hierarchy in
conjunction with our adaptive control techniques increments the accuracy during unex-
pected workload variations. Finally, we demonstrate that locality-aware request distribu-
tion policies can take advantage of prediction models to adequate content distribution
independently of the system size.
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1
I N T R O D U C T I O N

Last years have shown an unprecedented increase in the Internet traffic, boosted by the
emergence of Web 2.0 sites such as social networking, wikis and blogs. Applications such
as Twitter, YouTube, Flickr or Facebook facilitate the publishing of user-generated content
and the creation of social networks of people sharing common interests. This continuous
creation of contents has tremendously incremented the amount of information to be
stored and processed in data centers. Data management has become one of the most
important topics due to its direct impact on performance, elastic scalability, resource
sharing, availability, and energy-efficiency. Controlling the data layout has become critical
for making feasibility the processing of large data amounts, as the reorganization of large
data sets is severely limited by the I/O infrastructure capabilities and must not negatively
impact the quality of service [95].

Peer-to-peer (P2P) architectures have been classically used for the design of large scale
content-sharing systems. These architectures offer a scalable platform for applications
such as file sharing or video streaming with a low cost. The success of these architectures
have made P2P solutions very popular. Napster got 26.4 million users [20] before its
closure. File-sharing solutions employing the BitTorrent protocol [14] were the second
traffic source in Europe during 2011 [78]. Nevertheless, these solutions manage sets of
users that join and leave the system unceasingly. This makes difficult to guarantee aspects
such as content availability.

In the last years, the advent of cloud computing has been revealed as a suitable match
for the variable demand of Internet Web 2.0 applications. Cloud computing enables elas-
tic horizontal scalability of server infrastructures, which allows to dynamically allocate
resources depending on demand and to pay only for their utilization. However, effi-
ciently exploiting these dynamic resource allocation mechanisms strongly depends on
understanding and controlling the dynamics of workloads and on reducing the data
traffic inside the infrastructure. Increasing scale and demand variations poses huge chal-
lenges on developing, deploying, and evaluating control mechanisms and policies for an
efficient resource allocation.

Current Web platforms require novel approaches to manage highly variable and grow-
ing workloads. The economy of scale promise of cloud computing is a great approach
to reduce the total cost of ownership of existing infrastructures. However, proactively
adapting the resources to the incoming workload requires the utilization of prediction
models and control theory. On the other hand, the utilization of P2P architectures might
reduce the number of employed resources while providing a scalable content distribution
solution. In this thesis, we address the utilization of both P2P and cloud architectures in
the development of content distribution applications for very large scale on-line commu-
nities.

1
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1.1 motivation

The popularity of user-generated content systems such as YouTube, Twitter or Facebook
among others have demonstrated the capability of users to generate new content. Zhou
et al. [103] estimate YouTube to store up to 500 million videos summing up around
5 Petabytes of storage. Twitter claims to have 140 million active users, receiving 340

million tweets per day [90]. The amount of resources employed by these infrastructures
has become a major problem in multiple aspects such as hardware, power, cooling or
networking. According to Greenberg et al. [42], in a state of the art data center 59% of the
energy goes to equipment, 8% is lost in the distribution, and 33% goes to cooling. If we
add the problem of highly variable demand we have that the server utilization is between
10% and 50% of the total capacity [11]. This means that 59% of the total energy consumed
by the infrastructure is employed to run underutilized machines. Several approaches
have been proposed to achieve a more efficient utilization of the resources through power-
proportional solutions [11], data center design, more efficient hardware, etc.

The utilization of the cloud relives system designers from the burdens of owning phys-
ical infrastructures. The cloud offers access to virtual infinite resources on-demand. How-
ever, the demander of resources may not be aware of the underlying hardware, nor the
network, but she has to find fulfilled a set of restrictions hired in a service agreement with
the cloud provider. One of the most valuable advantages of the cloud is the capability to
dynamically modify the amount of employed resources only paying for their utilization.
The demand in web systems is known to have variations from periods of intense activity
followed by low activity [102, 38, 37]. These variations are even more dramatic under
the presence of unexpected events that may exceed the capacity of provisioned resources.
However, this should not be a problem for cloud-based solutions that can rapidly scale
up and down the employed resources. Scaling resources to the incoming workload per-
mits to have an infrastructure whose cost approximates an ideal demand-proportional
solution.

The cloud is a promising approach to provide a robust infrastructure for content dis-
tribution systems. However, adding more resources to satisfy users demand increases
the cost. Collaborative distributed systems based on P2P systems have been demon-
strated to be highly scalable and fault-tolerant solutions to distribute massive amounts of
data [43, 28, 59] among large audiences. In an abstract sense, decentralized architectures
are similar to social networks, where users try to solve a task using their social links.
This suggests that P2P architectures might be employed as a feasible scalable solution
for Web content based systems [24, 25, 12, 23].

The cloud and P2P systems are interesting solutions for the problem of content delivery
to large communities of users. Both solutions have complimentary facets. The cloud
permits to build elastic infrastructures only paying for the employed resources. On the
other hand, P2P systems are highly scalable solutions with a low cost. P2P networks do
not assure content availability, but can be employed as a distributed cache to reduce the
pressure under cloud-based Web solutions. The combination of both architectures can
reduce the number of employed resources, and therefore the cost.

In the present thesis, we address the idea of combining both approaches (cloud and
decentralized architectures) in the design of a content distribution architecture for large
communities of users. In particular, we propose a hierarchical architecture for content dis-
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tribution that combines both approaches. Afterwards, we explore the design challenges
of this architecture and explore possible solutions.

1.2 objectives

The major goal of this thesis is to propose and study a hierarchical content distribution
architecture for large scale on-line communities that combines decentralized systems
and cloud-based infrastructures. Additionally, this thesis targets the following objec-
tives:

O1 Explore a decentralized content distribution solution that leverages users prefer-
ences and community knowledge, in order to reduce pressure on the back-end
infrastructures by improving content locality.

O2 Study the data access patterns of Internet applications, analyze the limits of work-
load predictability, and investigate solutions that adapt to workload variability.

O3 Propose and study methods of prediction and control theory to enhance data dis-
tribution on elastic server infrastructures.

1.3 contributions

The study and analysis of the aforementioned objectives has generated the following
contributions:

C1 We design a cluster-based locality-aware self-organizing P2P system leveraging
collaborative classification and demonstrate that it improves content locality and
search latency.

C2 We propose a novel multi-model technique for improving hierarchical workload
prediction accuracy at aggregate and group levels and demonstrate their suitability
with real workloads.

C3 We propose novel locality-aware data management policies based on predictive
models for elastic server infrastructures and demonstrate that they improve content
locality.

C4 We propose novel techniques for adaptive control of elastic server infrastructures
and explore the under- and over-provisioning of resources simulating a real work-
load.

Structure of the document
This document is structured as follows:

• Chapter 2 describes the state of the art in data distribution, elastic systems and
workload forecasting.

• Chapter 3 overviews the design of a hierarchical architecture that combines P2P
networks and cloud infrastructures for content distribution solutions.
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• Chapter 4 presents a decentralized collaborative caching infrastructure that em-
ploys user information to efficiently allocate and access users data.

• Chapter 5 describes the utilization of automatic models generation for the problem
of workload forecasting. In this Chapter, we describe three datasets extracted from
real systems and evaluate the proposed prediction solutions using these datasets.

• Chapter 6 presents the methods employed in the design of a system controller for
elastic server infrastructures. In this Chapter, we explore the vast design space of
elastic Web infrastructures and propose some solutions for adaptive system sizing,
data grouping and content distribution.

• Chapter 7 presents the conclusions, describes the future research lines, and the
contributions of this thesis.



2
S TAT E O F T H E A RT

This Chapter presents the state of the art and the background concepts used in this thesis.
This Chapter is organized into four Sections. First, we overview user-generated content
distribution systems. Second, we describe the state of the art of decentralized distribution
systems. Third, we describe solutions for elastic content distribution systems. Finally,
we present various works addressing the problem of workload forecasting for elastic
systems.

2.1 user-generated content distribution systems

Web 2.0 users have been revealed to be powerful content creators. Popular Web 2.0 ap-
plications such as YouTube, Flickr, Twitter, Wikipedia, or Vimeo among others continue
adding more users and contents. For example, YouTube is known to serve daily more
than 4,000 million videos [101], with 60 hours of new videos each day. Similarly, Face-
book has impressive statistics with more than 159 million users only in the USA [32].

The infrastructures supporting these applications are composed of hundreds of thou-
sands of machines that aim at delivering content items to users on demand. From the
multiple architectures these machines can be organized into, the three-layers architec-
ture is the most common choice [19]. These three layers are: dispatchers, content servers,
and storage backend as shown in Figure 2.1. These layers are composed of several ma-
chines with homogeneous or heterogeneous features. The dispatcher layer is in charge
of redistributing the user requests among the content servers. The content servers act
as intermediaries between the storage backend and the final user. Finally, the storage
backend stores the available contents.

Figure 2.1: Dataflow in a three layers server architecture. First, (1) a user accesses the system
dispatcher requesting an item, this (2) redirects the request to a content server. In the
case the server does not contain the requested item, (3) it requests a copy to the storage
backend. In the case the server does not contain the requested item, (4) it requests a
copy to the storage backend. Finally, the request is returned to the user (5, 6).

5
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2.2 decentralized distribution systems

Decentralized distribution systems can be conceptually designed as multilayer solutions.
These layers are combined depending on the application domain. A common approach
is to consider two layers: network and semantic or clustering (Figure 2.2). The network
layer is in charge of connecting users across the network. The semantic or clustering layer
organizes the nodes into semantic clusters regarding the capacity of the nodes to serve
requests. A large variety of systems is based on the idea of connecting users with the
same tastes into the same cluster. This dichotomy between network and semantic layer
makes possible to distinguish between network nodes and neighbors with similar tastes.
For example, in Figure 2.2 user 5 knows users 2 and 3 using the network layer, but they
are not connected in the semantic layer as they are not relevant.

Semantic layer

Network layer

User 1

User 2
User 3

User 4

User 5

Figure 2.2: Components of a decentralized distribution system.

The network layer is oblivious to the content distributed by the application. This layer
only provides methods to maintain the network coherence and the users allocation. The
semantic layer may use the operations provided by the network layer to allocate and lo-
cate users, or search for content. In the next subSections we present examples of solutions
for network and semantic layers.

2.2.1 Network layers

According to Androutsellis and Theotokis [4] we can distinguish two major kinds of peer-
to-peer network infrastructures: unstructured and structured. In this Section, we briefly
describe relevant solutions for both kinds.

2.2.1.1 Structured networks

Structured networks are organized into graph topologies such as trees, rings, d-dimen-
sional spaces, etc. These topologies are controlled by using distributed control protocols.
These protocols ensure the correctness of the network under users joins and departures.
Contents are allocated to the network using an identifier. The identifier permits to locate
the content inside the network. Maintaining a structure makes possible to reduce the
number of hops when searching content. Below we describe four typical examples of
structured networks.

chord Chord [83] is a DHT that uses consistent hashing to assign keys to nodes. When
a node joins the network, it is assigned a unique identifier and it is placed into a ring
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topology. The node immediately becomes responsible for the items in the range that
goes from the identifier of its previous neighbor to its own identifier. Each content
allocated in the network has a unique identifier. This allows the nodes to send
requests to the nodes whose identifier is closer to the one of the requested item.
This is done by checking the identifier of the neighbors. Chord’s search method
is demonstrated to locate content in O(logN) hops, where N is the number of
nodes in the network for a steady state. Chord may have load balance issues when
resources are not homogeneously distributed throughout the ring, or when some
resources are more requested than others.

pastry Pastry [77] is a distributed object location and routing schema that uses a tree
topology. An object with identifier id is replicated into the k nodes whose identi-
fiers are numerically closer to id. When a node requests an object with identifier
id, it sends a message to k nodes. This policy assures load balance by distributing
the object request among several nodes and a location complexity of O(log2bN)

with b the branches of the tree and N the total number of nodes. Nodes in pastry
participating in the search of content automatically replicate the searched content.
This permits to increase the availability of the most popular content. However, this
replication does not take into account the probability of the nodes to be asked for
a given content generating unnecessary replicas.

can CAN (Content Addressable Network) [74] is designed as a distributed network
that uses cartesian coordinates to place and search data in a multidimensional
torus. Every node is assigned a portion of the space that is identified by a set
of virtual coordinates. When a node is inserted and it falls into a portion of the
space already occupied by another node, this space is partitioned and assigned to
both nodes. CAN permits searching using several parameters by mapping every
parameter onto a space coordinate. The search is done using a greedy approach
that looks for the closest node to the desired resource. The search method has an
upper bound of O(dN

1
d ) hops, where d is the number of dimensions and N the to-

tal number of nodes in the network. One of the main disadvantages of CAN is the
possibility of deep partitioning of the search space by continuously inserting nodes
in the same space. This can result in poor load balancing and cannot be controlled
by the network.

kademlia Kademlia [62] is a decentralized binary tree overlay. Each Kademlia node is
assigned a unique identifier. This identifier is used to place the node in a binary
tree topology. Kademlia uses the idea of distances to determine the minimal path to
search resources. Content search in Kademlia is unidirectional in a such a way that
the requests for the same key follow the same path in the network. This is done to
permit the utilization of cache techniques, that may reduce the number of hops by
replicating popular content. The problem is that the replication is only done in the
nodes that are supposed to participate in the search which can lead to load balance
problems.

2.2.1.2 Unstructured networks

Unstructured topologies are organized into random graphs. Communication between
network nodes is typically done by flooding or random walking. These networks are
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widely used, in part due to the simplicity of their design, and their low cost for self-
maintenance. The main disadvantage of these topologies is the lack of scalability of the
search methods. The most typical example of unstructured network is Gnutella.

gnutella Gnutella [18] is a fully-decentralized peer-to-peer network whose users are
placed in a flat hierarchy. The nodes exchange messages using a flooding commu-
nication protocol in order to find resources. Each request is associated with a time
to live (TTL) attribute. When a node receives a request message it forwards it to
its neighbors until the TTL reaches 0. This flooding mechanism generates redun-
dant messages, as the same node can receive several times the same request. The
utilization of a TTL creates a virtual horizon that delimits the search [75]. This
phenomenon limits the scalability of Gnutella.

2.2.1.3 Comparison of network topologies

Table 2.1 shows a summary table comparing the main features of the aforementioned
topologies. All the approaches except CAN use a single identifier in order to locate
content. This simplifies the design, but it also reduces the possibility of creating complex
queries. The lowest search complexities are obtained by Chord and Kademlia. In the
case of Pastry, the search complexity can be tuned by setting the number of branches
of the tree (parameter b), and in the case of CAN the complexity varies according to
the number of dimensions (parameter d). As expected, the worst value is obtained by
Gnutella and its exponential complexity. Nevertheless, the simplicity of its design makes
it a good candidate for a wide number of applications.

Chord Pastry CAN Kademlia Gnutella

Overlay Structured Structured Structured Structured Unstructured

Topology Ring Tree d-dimensions Binary tree Random

Content replication No No No Yes Yes

Search mechanism Logarithmic key Logarithmic key Greedy XOR Flooding

Search complexity O(logN) O(log2bN) O(dN1/d) O(logN) N|TTL|

Table 2.1: Comparison of fully-decentralized network topologies.

One of the major limitations of structured networks is that they are designed to support
exact match lookups and group-based organizations such as clusters. This reduces their
applicability to scenarios with complex queries. Furthermore, the utilization of keys for
distributing content destroys content locality. Content should be allocated to enhance
browsing or searching contents. Additionally, the application level information is lost.
The data used in the supported applications is discarded by these networks.

2.2.2 Semantic P2P networks

The absence of centralized knowledge indicating where the content can be found, makes
necessary to develop alternative methods to access and find content. The semantic layer
offers search capabilities which can also include solutions to improve system perfor-
mance. How a semantic layer works depends on the application domain and the em-
ployed network layer, thus we can find several examples of different semantic layers. In



2.2 decentralized distribution systems 9

the case of solutions with semantic layers deployed on top of on unstructured network,
a generalized approach is to apply similarity metrics that permit to identify groups of
similar nodes. The nodes are placed together increasing the probabilities of finding the
content inside the group a node belongs to, and therefore diminishing the number of
hops.

In [30], Crespo and García propose a semantic cluster-based overlay network that based
on a classifier determines how to reorganize users in clusters in order to maximize the
resources they share. For instance, users share music files that are classified following a
predefined hierarchy of music types. Users are clustered according to the number of re-
sources they own in a certain category, and can belong to several clusters. Finally, when
a cluster contains a small number of nodes it is consolidated with other clusters. The
experiments carried out in this work reveal that placing the users in clusters of interests
reduces the number of hops. However, the results may significantly vary depending on
the employed classification hierarchy. The reorganization of the users and the consolida-
tion of clusters is done off-line using a third entity that identifies the best configuration
of clusters. P2PDating [68] extends the ideas presented by Crespo and García enhanc-
ing the overlay network by providing full autonomy to the nodes. The nodes decide
autonomously which cluster to join according to different metrics such as the degree of
overlapping between the documents they own, the history, level of trust, etc. Raftopolou
et al. [72] propose iClusters, a method to connect similar nodes with different interests
in a system that support text search. In iCluster, the nodes are clustered according to the
type of documents they store, and create additional links to connect with other clusters
they might be interested in. The search process is done by forwarding a query containing
one or several words to the nodes with the highest similarity. Finally, the node with the
similarity beyond a certain threshold computes a list of possible documents that may
answer the query. Iamnitchi et al. propose the utilization of data sharing graphs [47] to
capture common user interest. These graphs can be used to dynamically organize files
into clusters of interest [45].

The previous approaches suppose that the data a node owns is representative for the
kind of requests the node will do in the short term. Other solutions differentiate between
the nature of the stored data and the nature of the performed queries. REMINDIN’ [86]
proposes nodes to store the address of those nodes that answered correctly previous
queries. This permits to improve the efficiency of future queries by adaptive semantic-
based routing. Similarly, Rostami et al. [76] propose to employ ontologies to identify
the most relevant nodes to answer a query. Their evaluation on top of Chord shows a
relevant reduction of the generated traffic.

The aforementioned solutions employed metrics based on documents and shared ele-
ments. However, the recent interest in social networks has extended the definition of simi-
larity metrics to include social aspects such as personal interests, relationships, tastes, etc.
Anwar et al. [5] propose to leverage common user interests to reduce latency in group
communication. Pouwelse et al. [69] propose a social P2P network in which communi-
ties are built based on similar peers interests. Voulgaris et al. [96] propose a proactive
gossip-based management network that uses a semantic proximity function to define
the semantically closest neighbors of a node. Nodes periodically try to find new neigh-
bors that may improve this function in order to increase the similarity between nodes.
Isaacman et al. [48] propose a fully distributed recommendation system that uses the
content-rating of other neighbors to identify contents of interests. Bertier et al. [13] pro-
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pose Gossple, a fully decentralized anonymous collaborative network that employs simi-
larity metrics to identify clusters of users "socially close". Their solution works on top of
an unstructured network that employs gossiping protocols to explore the neighbors of a
user. Afterwards, the collected information is employed to determine which users have
a higher similarity. Linking users with a higher similarity increments the probabilities of
finding relevant content.

2.3 elastic distribution systems

By elastic system we mean an infrastructure that can dynamically vary the number of
employed resources. This can be achieved by server infrastructures turning on and off
machines. However, cloud-based solutions facilitate this task. According to Armbrust
et al. [9] cloud computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the data centers that provide those
services. Foster et al. [34] provide four key points to define what is cloud computing. The
cloud is massively scalable (1), can be encapsulated as an abstract entity that delivers
different levels of services to customers (2), it is driven by economies of scale (3), and the
services can be dynamically configured and delivered on demand (4).

The cloud itself enables elastic horizontal scalability, which allows to provision re-
sources in order to adapt the system size to the incoming demand. This permits to reduce
the costs of the infrastructure modeling the system regarding the system demand. Ad-
ditionally, the possibility of adding a virtually infinite amount of resources from public
clouds makes possible to deal with large peaks of demand.

2.3.1 System sizing techniques

The utilization of servers in current data centers is known to be between 10% and 50%
of their total capacity [11], while workload peaks may incur in poor performance [42]
due to the lack of available resources. This problem has led some authors to propose
enhancements and extensions to address the problems of under- and overutilization by
dynamically modifying the system size. Control theory has been recognized to be a good
fit addressing changes in resource allocations [51]. Nevertheless, many system designers
still employ ad-hoc solutions of feedback control loops [104]. Furthermore, the fact that
many subsystems are not designed from scratch to be controllable complicates the de-
velopment of scalable controllable systems. Patikirikorala and Colman [85] describe four
types of standard controlling techniques relevant for computing systems: fixed gain con-
trol, model predictive control, adaptive control, and reconfiguring control. Fixed gain
control (FCG) is based on off-line tuning of control model parameters, which remain
fixed during the controller life. FCG is not considered appropriate for highly changing
workload conditions. Model predictive control (MPC) allows for proactive decisions, as
it employs predictive models for forecasting the future system behavior. As in the case of
FGC, the off-line estimation of parameters makes MPC inappropriate for highly chang-
ing workload conditions. Adaptive control addresses the limitations of FGC and MPC
by allowing for on-line modification of control model parameters based on well-studied
methods such as recursive least squares [52]. Reconfiguring control allows for on-line
changing of both models and model parameters.
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The system sizing solutions we present below are based on the utilization of a control
loop. However, there are significant differences among the presented solutions. We group
them according to the utilization of reactive and proactive solutions. Proactive solutions
are generally more complex than reactive solutions as they work with analytical models
to estimate the future state of the system. This permits to take mid-term and long-term
decisions. On the other hand, reactive solutions permit to take fast decisions by observing
the current system state.

2.3.1.1 Reactive system sizing

Reactive system solutions monitor the system status and compare it with a reference
model. This model indicates the upper and lower bounds for a set of observable sys-
tem variables. When the observations fall out of the defined bounds, the system reacts
to correct the deviation in the variable. Below we describe some examples of reactive
solutions.

• Zhang et al. [102] present a hybrid cloud solution for content distribution. During
normal traffic periods, requests are served from a private cloud (base zone), while
traffic peaks are redirected to instances deployed in an external cloud (trespassing
zone). They employ a predefined workload model that indicates the normal num-
ber of requests to be served per unit of time. They compare the current requests
with the requests indicated by the model. If the current requests are larger than the
requests in the model, then the exceeding requests are redirected to the trespassing
zone.

• Maurer et al. [61] propose a system that automatically identifies the thresholds
used by the control loop in order to trigger system size modifications. They use
three sets: variables observations, thresholds and actions (adding resources, remov-
ing resources...). A control system stores the result of performing an action for a
given set of observations. This information is employed to identify how the service
quality changes after modifying the system size. And therefore, determining the
thresholds to use. This approach is case-based which implies that in order to iden-
tify a situation and to act accordingly, the same situation must have been observed
before.

• In [73] Rao et al. propose to employ a distributed reinforcement learning algorithm
for provisioning virtual machines. Each virtual machine runs an agent that deter-
mines if the machine needs more resources, if so it will request these resources
(CPU, memory, bandwidth and disk) to a central entity. Their approach analyzes
the CPU, bandwidth and memory in order to determine the machine performance.
This approach is oriented to the consolidation of applications in virtual machines,
by modifying features such as memory size, CPU and bandwidth. This solution
may be appropriate in a private cloud, but in a public one this would imply addi-
tional costs because the resources employed by running instances cannot be modi-
fied. In public clouds where the payment is done by hours this would imply addi-
tional costs.

• Amazon auto-scaling [3] is a service provided by Amazon to automatically vary
the number of running instances deployed in their public cloud. This service is a
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clear example of FCG where a set of metrics is defined in a monitor system with
their minimum and maximum values. When the maximum threshold is exceeded
the controller launches a new instance.

The utilization of FCG solutions is a common practice. Examples are found in [102, 3].
Nevertheless, this static approach is not recommended for highly variable workloads, as
pre-defined scenarios might not correctly adapt to unexpected situations. The solution
presented by Maurer et al. [61] could be considered as an MPC solution, but future
system states are not identified. The solution presented by Rao et al. [73] employs models
that could provide the system with a proactive solution. Nevertheless, their approach
only considers normal traffic and exceeding traffic.

2.3.1.2 Proactive system sizing

Proactive techniques are based on the capacity to take decisions speculating about the fu-
ture of the system after observing it. The idea is to provide the system with the resources
it will need before they are demanded. These approaches rely on the utilization of pre-
diction models for estimating the incoming workload, or what the system size should be
during the next period of time.

• MUSE [27] uses a control strategy that adds, removes, shuts down or reassigns
servers to maximize energy efficiency subject to SLA constraints and quality of
service for each application. At pre-defined points in time, an allocator module
determines what resources can be added or removed for an application. In order to
do this, MUSE assumes that each application has a utility function that identifies
the monetary value of adding or removing resources. Each node is expected to
have a determined load. If the load is lower than a defined threshold the resources
can be released, otherwise an estimation of the future workload is done using an
exponential filter.

• Kusic et al. [54] address the problem of maximizing the revenue of virtual clusters
by minimizing the amount of employed resources while maintaining the quality
of service. The authors differentiate between two different levels of quality (silver
and gold) and try to reduce the number of machines while maintaining the service
quality for each level. They monitor different variables of the virtual machines in
the system such as CPU, memory, queue length, etc. The authors propose a two
layer control infrastructure, one to identify the ratio of CPU to use by the virtual
machine, and a second layer that identifies the number of machines to allocate the
application into. This solution is oriented to infrastructures that rent their resources
while maximizing the revenue. However, the possibility of switching on and off
machines is not explored.

• Bodík et al. [16] propose to dynamically modify the number of instances in a private
cloud by using a machine learning algorithm to estimate workload models. The
solution is composed of a controller that firstly collects a dataset that contains the
number of machines, workload and response time of the system. This dataset is
used to define a correlation model that identifies the number of machines to use
for a given workload in order to not exceed a defined response time. In particular,
the authors use a curve smoothing model to predict the workload during the next
5 minutes based on the previous 15 observations.
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• Santana et al. [79] propose the utilization of a proactive workload prediction model
to dynamically modify the CPU frequency and voltage of machines. Their solution
forecast decays in the number of incoming requests to first reduce the CPU voltage,
and second to shutdown the machine. Nevertheless, this approach is not valid for
private clouds where the user does not have direct control of the infrastructure as
the CPU voltage cannot be modified.

• Krioukov et al. [53] present the design of a power-proportional cluster, in which a
cluster manager runs a knapsack algorithm in order to provision an optimal num-
ber of servers. This approach employs a statically parametrized prediction model
that addresses the number of requests to be served. A scheduler uses the energy
consumption profile of the servers to distribute traffic among the available servers.
This solution is oriented to private clouds, and it assumes that the energy profiles
are known.

All the presented works employ MPC control. Chase et al. employ off-line defined
models [27], while the remainder works use models whose parameters may vary through
time [54, 16, 79, 53]. Nevertheless, the mentioned solutions only employ a single kind
of models. These works do not explore how the results may vary depending on the
employed prediction model. Furthermore, it remains uncertain how would these models
work in the case of sudden workload variations or unexpected workloads.

2.4 workload modeling

Events taking place in the real world are mapped into the workload of web applica-
tions [100, 89]. From the sociological point of view, this fact converts web systems into a
niche for studies that may help us to understand the habits of users, their interests, ex-
plore commercial utilities, etc. From the system point of view, the comprehension of the
workload in a web application is particularly relevant for two reasons. First, it permits to
understand how the users interact with the system. Second, a better comprehension of
workload dynamics makes possible to offer a better service while reducing costs.

In 1997 Arlitt an Williamson [8] analyzed the workload of six different web servers.
Ten years later in [98] they repeated the analysis finding that their earlier conclusions
still were valid. Bodik et al. [17] provide a detailed comparison of workloads taking into
account the dynamics of content popularity. These three studies have common claims.
Below we enumerate the most relevant ideas for this thesis.

• Web systems demand is highly volatile. The workload presents periods of low
activity, followed by periods of intense activity that may multiply several times the
workload during low activity periods during the same day. This pattern repeats
daily with a lower amount of traffic on certain days, typically weekends.

• Content popularity follows a power-law distribution. The busiest 10% of files ac-
count for 80-90% of the requests.

• Unexpected workload peaks are due to variations in the popularity of a small num-
ber of items.
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The ideas above have also been found in analysis of large Internet applications. Studies
of YouTube traffic workloads [23, 37, 29, 28, 65] show that 10% of the top popular videos
account for 80% of the total requests. However, some videos in the long tail of the popu-
larity distribution seem to be active and are periodically requested. Similar results can be
found in Wikipedia [91]. This study suggests that independently of the popularity of the
item, this will be requested. Studied popularity distributions have demonstrated to show
temporal patterns [41, 103]. A study of the video on demand system deployed during
the 2008 Beijing Olympics [100] shows that popularity changes occur frequently. Further-
more, this study claims that unexpected events may dramatically modify the popularity
distribution, redirecting the traffic to a small number of items.
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(a) Example of a generic daily workload pattern
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(b) Example of a one week workload pattern

Figure 2.3: Examples of basic workload patterns.

Some of the aforementioned studies indicate that Web systems workloads follow a
predictable pattern. In Figure 2.3a we present the workload per hour observed in [37]
after the analysis of the requests to YouTube in a university campus. In the same day, the
workload significantly varies from a valley of low activity to progressively grow until
the maximum load is reached and then decreases again. This pattern can be observed
during the week with variations in the total number of requests achieved as shown in
Figure 2.3b. This phenomenon can also be found in traces extracted from Wikipedia [91],
1998 World Cup [7] or LastFM [58].

2.4.1 Events and peaks

We define an event as a situation that modifies what we can consider the normal system
workload. The effects produced by an event may impact the system for a large period
of time or not. These events, expected or unexpected may exceed the available system
resources. In the case of expected events, the system can be previously prepared. Never-
theless, in the case of unexpected events the system must react to overcome the situation
without any previous preparation. For example, after Michael Jacksons’ 22% of all the
content generated in Twitter mentioned him [88]. Similarly, 5% of the whole traffic in the
Wikipedia was redirected to the Michael Jackson’s article [35]. Another significant case
was the inauguration of president Obama where the number of tweets per second was
five times higher than a regular day in Twitter [89]. From these examples, we can distin-
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(b) Workload after and event generates a spike.

Figure 2.4: Example of how an event generates a spike for a regular workload.

guish the case of Michael Jackson as an unexpected event, while Obama’s inauguration
was an expected event.

During an event, the system workload can be modified in two ways: varying the vol-
ume of requests, or modifying the popularity distribution. Both of them can be combined
in the same event. For example, in the video on demand application studied in [100] cer-
tain events reduced the traffic of the top ten videos from 80% to 10%. Events analyzed
during the World Cup 1998 [16] reveal that 5% of the items multiplied by 5 the total
number of requests during events.

Some works have studied the nature of unexpected events. Parikh and Sundaresan [67]
analyze events occurred in queries inside the EBay system. They propose a method
to identify events based on analyzing changes in the volume of queries. Lassnig et
al. [56] study the events in a scientific infrastructure and propose a method to identify
them. Eriksson et al. [31] propose a framework to detect network events that may result
in anomalies based on previous network variables using experts knowledge. Similarly,
Carter et al. [21] propose to analyze unexpected events with a set of clusters defined by
experts to identify possible events. Nevertheless, none of the previous studies address
the problem of how to deal with these events or even how to predict them.

We find the work done by Bodík et al. [17] the most complete workload events analysis
in Web systems. The authors study several workloads from real systems and propose a
methodology to characterize events and how they impact the system. This permits to syn-
thetically generate events based on predefined parameters. According to their methodol-
ogy an event can be defined by the tuple (t0, t1, t2, t3, M, V , H). The values t0, t1, t2,
and t3 indicate the times when the event starts, when it reaches its peak of demand, the
end of the peak period, and the end of the event, respectively. M is the magnitude of
the peak compared with the baseline workload. V is the variability of the popularity of
the hotspot items during the spike compared to regular workload. This value is defined
by the statistical distribution of the popularities for the hotspot items. Finally, H is the
number of hotspot items that are responsible for the workload increment.

Figure 2.4 shows how according to the previous methodology, a regular workload
can be modified to include a synthetically generated spike. This figure only shows the
variations in the volume of requests. The shadowed area in Figure 2.4b indicates the
duration of the spike, which goes from t0 to t3.
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2.4.2 Workload forecasting

We have mentioned that several studies have observed periodic patterns in server work-
loads. This means that using past observations it would be possible to predict the future
workload. The workload forecasting problem can be addressed as a time series forecast-
ing. The time series forecasting problem has been studied during the last 25 years [40]
developing a wide theoretical background. The main advances in this area include the
development of generic prediction models that can be applied to several scenarios. Never-
theless, not all the existing solutions address the problem of workload forecasting using
already designed generic models nor from the perspective of time series forecasting. Be-
low we briefly describe a selected sample of proposed solutions.

• In [26] the authors propose a system to efficiently place applications in a servers
infrastructure. Their solution contains a predictor module that addresses the prob-
lem of proactively identifying the resources demanded by applications, in order to
allocate them in servers while improving the performance.

The authors address the problem employing two models: the arrival rate model and
the service demand model. The arrival rate model identifies the rate of incoming re-
quests per unit of time. The authors model the arrival rate using a statically defined
model for the time series of previous arrival rates. This model returns the expected
arrival times for a predefined time window. The service demand is calculated by
computing the probability of demanding resources such as CPU or memory per
request. Their model is designed to assure a minimal utilization of those CPUs
shared among applications, while avoiding overload. The experimental evaluation
is conducted with synthetic traces and traces from the World Cup 1998 [7]. The
results, indicate that the solution is able to model the workload in order to avoid
overloads. The utilization of a single statically defined forecasting model, does not
permit to modify the predictions in the case the workload includes modifiers such
as trends or bursts.

• Gmach et al. [38] propose a workload prediction model based on access patterns
and trend analysis. Their approach assumes that the same workload patterns repeat
over time. Based on this assumption, they analyze the workload in the system
and look for periods of time with similar workloads. Repeating this process, they
gather a set of possible workload patterns in the system. Then, they try to identify
the current workload pattern among one of the observed patterns. If they find a
similar pattern in the past, they identify the amount of resources that should have
been provisioned in the past. Their experimental evaluation using synthetic traces
demonstrates that employing a 5 weeks dataset can be enough to plan the capacity
during 1 week. However, the authors do not mention how the pattern recognition
system would react in case of unexpected events.

• Gong et al. [39] propose a light-weight online resource demand prediction scheme
for cyclic and non-cyclic workloads. The solution looks for similar workload pat-
terns over time and compare them using the Pearson coefficient. This process is
called signature analysis. This signature analysis is combined with a state analysis,
which is employed in a transition probability matrix among states. A state is a dis-
crete interval of the resources employed in the system. In summary the prediction



2.4 workload modeling 17

is done analyzing workload signatures and identifying the next state (or number of
resources needed) the system will be in. This work has some similarities with [38].
As in [38] there is no evaluation of what would happen the first time a workload
pattern is detected.

• The work presented in [16] proposes to use statistical machine learning techniques
for modeling the workload of Internet applications. The predictions are done using
two models. One is a simple autoregressive model that predicts the number of
requests for the next five minutes. The second model indicates the service time
according to the system size. The system stores tuples containing the workload, the
system size, and the system performance. The system performance is measured
as the time needed to satisfy 95% of the incoming requests. This table serves as
input for a linear regression model that estimates the system size according to the
predicted workload in order to get a certain performance. Additionally, the authors
propose to redefine the models by analyzing the error distribution. Experimental
evaluations indicate that only 0.52% of the requests violated a pre-defined SLA. The
authors do not clarify what would happen in the case that the predictions where
incorrect during one of the 5 minutes prediction intervals. Another interesting issue
would be to address the problem of employing linear regression to identify the
number of machines when unexpected events require the utilization of a larger
number of machines for a short time.

• Urgaonkar et al. [92] design an analytical method based on queuing theory for web
infrastructures composed of multiple tiers. Their model permits to estimate the rate
of incoming requests for each of the tiers, and the time needed to answer these re-
quests. The experimental evaluation does not describe the employed workload and
thus there is not a clear idea of what kind of workloads this solution is oriented to.
However, the utilization of different queuing models between layers might permit
to identify bottlenecks between them.

• Lassnig et al. [56] evaluate the behavior of several prediction methods under the
presence of non-expected events. These events are translated into an increment of
the workload during a short period of time, but they do not present any periodic
component to be detected. The employed datasets are taken from real scientific com-
puting applications, but the evaluation of several prediction models demonstrate
their lack of adaptability to non expected events. The authors propose a method to
identify the bursts produced by non expected events. However, this method does
not predict bursts and it only detects them when they have already occurred.

• Casolari and Colajanni [22] propose a short-term prediction algorithm in conjunc-
tion with signal filtering for web-based systems. This approach does not exploit
periodic elements in the workload nor use any knowledge base. Actually, in the
evaluation the authors bring reasonably good predictions employing a few num-
ber of observations. This would make this solution feasible to address unexpected
workload variations. However, no predictions are given for mid-term predictions.

• Vercauteren et al. [94] follow a hierarchical approach that divides the prediction
in long term and short term components. The long-term component is modeled
using frequency analysis capturing seasonal effects, while the residual short-term
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process is an autoregressive model. Their experimental evaluation shows an im-
provement of previously proposed approaches. However, the dataset used during
the evaluation shows strong periodic patterns, and no evaluation of the behavior
under workload variations is proposed.

• In [6] the authors propose an architecture to improve data placement in geographi-
cally distributed cloud environments. In order to provision resources with enough
anticipation, they employ long-term and short-term predictions simultaneously. For
the long-term they use exponential smoothing solution. In the case of the short-
term, they combine EWMA (Exponential Weighted Moving Average) with signal
filtering claiming that this solution is particularly appropriate for spiky signals.
Their evaluation does not directly indicate the accuracy of the prediction meth-
ods. However, we can extract that the accuracy must be appropriated taking into
account that the methods based on their predictions work properly.

The presented works address the workload prediction problem from significantly dif-
ferent points of view. The lack of a common workload for evaluating the accuracy of the
prediction models makes difficult the comparison of the obtained results. The utilization
of previous knowledge methods that look for matching patterns seems to have a lack of
adaptability to new situations. In this sense, other solutions such as exponential models
seem more suitable as they can extrapolate information from a set of past observations.
Additionally, these models are general solutions which simplifies their utilization.

2.5 summary

This Chapter presents the state of the art and background concepts used in this thesis.
First, we introduce the concept of user-generated content distribution systems. After-
wards, we describe solutions for content distribution based on decentralized and elastic
server infrastructures. Finally, we present some works dealing with workload modeling
and forecasting.

In decentralized distribution systems we observe an effort to develop solutions that
leverage user data to improve content search and network configuration. However, most
of the presented solutions are based on unstructured network topologies. Solutions based
on these networks are easy to implement and flexible but have a limited scalability.

There is a vast work in elastic server infrastructures. However, there is not a com-
mon evaluation framework that permits to compare different infrastructures. We classify
these infrastructures according to the manner they determine the system size: reactively
or proactively. Reactive approaches are a common solution as they are easy to design.
However, they have to employ security margins in order to have enough time to config-
ure the system. In this sense, proactive solutions permit to anticipate the configuration
to be employed. However, the described infrastructures do not emphasize the analysis
of different prediction models and how these models work under unexpected workload
variations.

Finally, we enumerate works in workload forecasting that propose methods to forecast
the incoming workload of the system. As it happens with elastic server infrastructures,
there is a wide variety of solutions. It exists a trend to design ad-hoc methods adapting
or modifying queue-theory models, autoregressive models, etc. However, it is difficult to
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compare this ad hoc solutions with general purpose ones as there is no common dataset
used in the evaluation. In general, we can conclude that employing methods leveraging
exponential equations obtain a better accuracy in short term predictions. The described
works do not explore the behavior of their methods during unexpected workloads, al-
though some of them try to identify unexpected workloads after they occur.





3
H I E R A R C H I C A L C O N T E N T D I S T R I B U T I O N
A R C H I T E C T U R E

3.1 introduction

The major goal of this thesis is to propose and study a hierarchical content distribution
architecture for large scale on-line communities that combines decentralized systems and
cloud-based infrastructures. This hierarchical approach permits to combine two highly
scalable solutions for content distribution: P2P file-sharing systems and cloud-based in-
frastructures. Our goal is to integrate these two solutions into a complementary approach,
in order to reduce the cost and increase scalability.

Figure 3.1: Proposed hierarchical architecture for content distribution.

In this Chapter, we overview the components of this architecture: a distributed collab-
orative caching system based on a P2P file-sharing solution and an elastic server infras-
tructure as shown in Figure 3.1. We structure this Chapter as follows. First, we describe
the steps carried out to join the system and retrieve content. Second, we describe the dis-
tributed collaborative caching and their design challenges. Third, we describe the elastic
server infrastructure and the challenges of designing an efficient system controller.

3.2 data flow

In this Section we present an overview of the actions occurring in our hierarchical ar-
chitecture when a user accesses one item. This process is shown in Figure 3.2. In this
figure we assume that the user is going to join the decentralized system. First the red
user joins the distributed collaborative caching infrastructure (1). Once the user is part

21
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of the network, she needs to retrieve the content object oi. The user starts a search em-
ploying the methods provided by the distributed infrastructure. This method returns a
list of potential candidates storing oi (2) and then the user can retrieve oi from these
candidates (3).

It is possible that the requested content is not found in the P2P system. In this case, the
request is redirected to one of the available dispatchers (4). The dispatcher redirects the
request to one server according to its requests distribution policy (5). The content server
checks whether oi is available in its local memory. If it is available, then the request is
answered (8, 5), otherwise the content server requests oi to the storage backend (6, 7)
and finally returns the content (8, 9). Now the object is available at one of the users of
the P2P system, and therefore can be accessed by the other users. In the case that a user
does not join the decentralized system, she can directly send a request to the dispatchers
following the data flow (from 4 to 9).

Figure 3.2: Steps to follow in order to retrieve content from our proposed hierarchical content
distribution architecture.

3.3 distributed collaborative caching

P2P file-sharing solutions have been employed to support large infrastructures with a low
cost [18, 43, 59]. This is possible because users yield their resources to the community
in a self-organizing network. In this manner P2P solutions can serve large amounts of
content for a large number of users. Having a scalable solution with a low cost fulfill our
idea of what a distributive collaborative caching infrastructure shall be.

The distributed collaborative caching infrastructure is designed to mitigate the pres-
sure in the elastic server infrastructure. When a user requests content from the servers
infrastructure, she makes this content available to other users. The more popular is the
content, the higher probability to be found in the caching infrastructure exists. This can
significantly reduce the traffic redirected to the server infrastructure as popular elements
consume most of the traffic of the server infrastructure. In the case of elements with low
popularity they will probably be requested to the servers infrastructure.
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The design of this decentralized collaborative caching infrastructure involves several
challenges to be addressed. Nodes join and departure constantly. The time a user remains
in the infrastructure depends on the application domain. For the video on demand appli-
cation described in [100] 70% of the user sessions take less than 5 minutes, for Facebook
this percentage rises up to 90% [80]. This volatility of the user sessions makes neces-
sary to employ robust self-organizing network topologies. In this sense, unstructured
network topologies (Section 2.2.1) can deal with bursts of users joining or leaving the
network. However, they do not seem to be the most appropriate solution as they are
known to limit the scalability. On contrary, structured topologies have demonstrated to
be scalable solutions.

The utilization of structured topologies may permit to have a scalable and self-organizing
solution. However, employing a structure reduces their flexibility. In particular, queries
have to be simple typically employing a single identifier. There is not support for content
replicas as the content identifier is unique. And the classification of users into clusters
is not usually supported. These limitations make structured network based solutions to
be extremely dependent on how these topologies perform queries. One of the keys for
the success of our caching infrastructure is to offer an efficient content search mecha-
nism in terms of latency and recall. In this sense, previous works have demonstrated
the benefits of employing clusters or groups of interests to increase content locality in
P2P solutions [30, 70, 13]. Incrementing content locality reduces the search latency while
improving content recall. However, these works only present solutions employing un-
structured topologies as clusters and complex queries are not supported by structured
topologies.

The design of our distributed collaborative caching infrastructure has to be based on
a P2P file-sharing solution. This would permit to have a scalable infrastructure with a
low cost. However, we have to additionally facilitate content search to make it attractive
to users. One approach is to combine structured network topologies with the utilization
of clusters of interests. However, as we have mentioned before this structured networks
limit the search of content to simple solutions. We particularly focus our design on the
modification of existing structured topologies in order to support clusters of interesting.

3.4 elastic server infrastructure

The elastic server infrastructure follows a classic three-layers architecture. The cloud fa-
cilitates to dynamically scale the number of employed system resources. This is partic-
ularly suitable for horizontally scalable architectures such as the one we use. However,
efficiently exploiting the dynamic resources allocation mechanisms offered by clouds
strongly depends on understanding and controlling the dynamics of workloads and on
reducing the data traffic inside the infrastructure. Increasing scale and demand variations
pose huge challenges on developing, deploying, and evaluating control mechanisms and
policies for efficient resources allocation.

The three tiers of our architecture are managed by a system controller. This controller
monitors and configures the three tiers in order to adequate the system to the incom-
ing demand. This configuration has to guarantee enough resources in order to serve the
incoming demand. Additionally, the configuration has to reduce the traffic generated be-
tween the content servers and the storage backend in order to avoid bottlenecks. Then,
this configuration has to indicate the number of machines to employ, the content distri-
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bution among the servers and the redirection of requests to these servers. Defining the
content distribution among the servers has to be done in order the employ the machines
independently of system size variations. Additionally, an intelligent distribution of the
requests among the servers might improve the content locality reducing the accesses to
the storage backend. This aspect is particularly important as accessing to the storage
backend increases the time to serve a request.

The design space for the system controller is vast and difficult to explore. Although
the three tiers of the architecture are scalable, we focus on the scalability of the content
server tiers. We understand that this is the most important layer in terms of applying
elastic methods. The storage backend can also be elastically scaled but it implies to take
into account how data is stored, the different existing file systems and how they work,
etc. These aspects are outside the scope of this thesis. On the other hand, the pressure in
the content dispatchers is small compared with the traffic moved by the content servers.
For these reasons, we study and explore the applicability of elastic solutions for the
content servers layer. In order to do this, we propose a modular system controller that
permits the combination of different methods and strategies facilitating the exploration of
several solutions. Content distribution is a complex problem that involves the definition
of several policies. We consider necessary to explore combinations of these policies as
components of a complete solution.

Our system controller is designed to analyze the interplay of the techniques mentioned
below:

• First, building prediction models of workload variations at various granularities.
Prediction models can provide the system with an anticipated vision of its fu-
ture status permitting to have an adequate configuration. However, defining these
models requires a background knowledge of fields such as statistics or time series
analysis. We assume that the users of any elastic server infrastructure do not have
enough background in these areas. For this reason, we address the utilization of au-
tomatically generated prediction models to abstract the user away from the model
definition process.

• Second, the system has to adapt to both permanent changes in workload patterns
and unexpected workload spikes. Prediction models has to provide accurate pre-
dictions while adapting to unexpected workload changes. Unexpected workload
spikes are impossible to predict. For this reason, we propose to employ adaptive
mechanisms that redefine inaccurate models based on the obtained accuracy.

• Third, determine the system size based on demand variations. This can be done by
employing prediction models and calculating the amount of resources needed to
serve the predicted demand.

• Fourth, employ techniques for grouping data. Using data groups has been demon-
strated to be more efficient that employing single items [46]. By defining groups
which members are highly probable to be accessed in a short time, we can improve
content locality. Additionally, defining groups can reduce the overhead of control
structures that may have to manage millions of single elements.

• Fifth, defining content distribution policies to reduce the number of accesses to the
storage backend. Redirecting user requests to servers trying to maximize the hit
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rate in the content servers reduces the accesses to the storage backend. However,
in an elastic system the variations in the number of available servers needs of
additional techniques in order to maintain content locality independently of the
system size.

3.4.1 Summary

In this Section, we describe a hierarchical content distribution architecture aimed at pro-
viding high scalability while reducing costs. This architecture combines a P2P file-sharing
and cloud-based infrastructures. We employ the P2P file-sharing system as a distributed
collaborative caching infrastructure to reduce the pressure in the server infrastructures.
Additionally, we propose to employ an elastic server infrastructure that configures ac-
cordingly to the incoming demand. This configuration varies the number of employed
resources and the data distribution policies in order to maximize the resources utiliza-
tion while reducing the traffic in the storage backend. Finally, we overview some of the
design challenges to address for each of the components of this proposed hierarchy.
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D I S T R I B U T E D C O L L A B O R AT I V E C A C H I N G

One of the three main objectives of this thesis is to explore a decentralized content dis-
tribution solution that leverages users preferences and community knowledge. In the
previous Chapter we have presented our hierarchical content distribution architecture
and their components. One of these components is a distributed collaborative caching
solution designed to reduce the pressure in backend infrastructures while improving
content locality.

We base the distributed collaborative caching design on a P2P file-sharing solution.
P2P solutions have been used for designing large scale content-sharing systems [45, 18,
30, 83, 64]. However, classic P2P solutions do not leverage for the exhaustive metadata
provided by Web 2.0 applications, nor take into account the capabilities of users to cat-
egorize and distribute data. As mentioned in the previous Chapter existing structured
network topologies provide solutions with high scalability. However, their structure lim-
its the design of solutions employing social-oriented features that might be an important
improvement in terms of content locality, search latency and recall.

Figure 4.1: Decentralized collaborative caching infrastructure inside the hierarchical architecture.

In this Chapter, we describe our distributed collaborative caching solution as part of
our proposed hierarchical architecture for content distribution (Figure 4.1). The remain-
der of this Chapter is organized as follows. First, we overview the P2P file-sharing solu-
tion our caching infrastructure is based on which is called AP2P (Affinity P2P). Second,
we present the AP2P architecture. Third, we describe the mechanisms offered by AP2P.
Finally, we present an experimental evaluation.

27



28 distributed collaborative caching

4.1 ap2p overview

Our distributed collaborative caching solution is based on AP2P. AP2P is a distributed
file-sharing cluster-based locally-aware self-organizing system that leverages collabora-
tive classifications in order to self-organize. We propose self-organization to increase
content locality to achieve a high data recall with low latency and low network traf-
fic through the utilization of clusters of interest. Furthermore, we define methods for
efficient content retrieval and determine the most adequate clusters for users. Our dis-
tributed collaborative has the following major features:

• We employ a Chord-like [83] overlay with three main differences when compared
to Chord. First, our logical nodes correspond to Chord nodes, with the difference
that Chord identifiers are generated through uniform hashing, while our identifiers
are a concatenation of a cluster identifier and a node identifier generated through
uniform hashing. While Chord generates a global uniform distribution of node
identifiers, we locally distribute node identifiers uniformly inside each cluster. Sec-
ond, resource placement is not done based on node identifiers: each peer stores
the resources it shares, as in many real applications scenarios. Third, interest-based
clusters of peers are supported by extending the identifier space with a cluster iden-
tifier field. All the other overlay maintenance operations of Chord are preserved
with the same functionality.

• We use labeled clusters of interests. Each cluster is labeled with a category. Labeling
a cluster with a category does not mean that all the resources of its peers are
classified into the same category, but that the peers have a sufficient number of
resources classified in that category. This permits users to join clusters when their
interest in that category is growing.

• Each peer joins at least one primary cluster, corresponding to the category to which
the highest number of its resources are classified. Additionally, a peer may join one
or several secondary clusters, if a sufficiently large number of its resources are clas-
sified in the category corresponding to the secondary clusters. Peers automatically
change their primary and secondary clusters over time, adapting to changes in the
resources they make available.

• The semantic closeness between any two clusters is estimated by an affinity ma-
trix. The affinity matrix is leveraged in order to place clusters with close semantic
content close to each other in the overlay. The affinity matrix is not an exact global
measure of content distribution, but rather an approximation periodically updated.

• Our lookup algorithm localizes first the cluster of interest for the search and, subse-
quently, performs a fast parallel logarithmic flooding based on a recursive doubling
strategy. The parallelism of the algorithm assures that if a node fails, the search can
continue on alternative parallel branches.

• Periodically, clusters are reorganized in the overlay based on the changing affinities
of the peers. This approach ensures that affine clusters are placed close to each
other, thus increasing the locality of related content.
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We offer a general solution in several respects. First, content can be classified into more
than one category. Second, the classification is not limited to Web 2.0 based collaborative
classifications: any clustering algorithm can be used in order to classify resources. Third,
the categories can be split into subcategories without affecting the correctness of the
proposed methods.

4.2 ap2p architecture

The AP2P architecture is composed of a network layer and a semantic layer [1, 13] as
shown in Figure 4.2. The network layer offers basic interconnection services such as
joining or leaving a cluster. The semantic layer provides the management of content-
based information and offers high level services to the applications such as strategic
node joins and efficient content-based searches.

sem_join sem_leave sem_insert sem_remove sem_search sem_reorder

cluster_join cluster_leave cluster_locate stabilize cluster_reorder

Semantic Layer

Network Layer

Figure 4.2: Distributed collaborative caching architecture description.

Figure 4.3 shows an example of the connections inside AP2P. Users are identified
by a number e.g. in this case n42, n1 and n27. This number identifies a physical node.
A physical node is a user contributing with a collection of contents to the network. We
define a content item or resource as a persistent object that can be stored by any user
characterized by a set of attributes, including a unique identifier. In the general case, one
physical node shares resources that belong to different clusters. These clusters group users
with affine interests. Clusters are denoted by Ck, where k = 0, 1, ..., (c− 1), where c is the
total number of clusters. In the figure above, clusters are denoted by identifiers C3, C5

and C9 and correspond to contents classified into Music, Movies and Games respectively.
Users may join several clusters at the same time as logical nodes. A logical node has an
identifier denoted nkj, whose value is the concatenation of the cluster identifier and the
node identifier nkj = [Ck|nj]. Using this nomenclature, the physical node n1 joins clusters
C3, C5 and C9 with logical nodes n1,3, n1,5 and n1,9 respectively.

A node nj can contribute with resources to a cluster k associated to a certain category.
The number of resources user nj contributes to cluster Ck is denoted by rkj. Conse-
quently, a cluster Ck can be formally defined as a set of nodes {nkj} such that nj is
a physical node sharing rkj resources with rkj > 0. In AP2P a node can join several
clusters. However, we distinguish between primary and secondary clusters. The primary
cluster corresponds to the category to which the user contributes with more resources.
Secondary clusters are determined according to Algorithm 1 using the affinity matrix.
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Figure 4.3: Example of AP2P two-layers architecture.

4.2.1 Affinity matrix

One goal of AP2P is to achieve high locality for related resources. In a real world scenario
a node may share resources classified into different categories, given that a user may have
different interests. The affinity matrix approximates the level of interest sharing among all
pairs of clusters in the network and therefore, the probability that a user from a cluster
may share content classified in the category of another cluster. This global approximation
of the network content can be used to dynamically adapt the system configuration to
maximize the content locality. More formally, the affinity matrix (A) is a square (c− 1)×
(c− 1) matrix of the form:

A =


a00 . . . a0(c−1)

...
. . .

...

a(c−1)0 . . . a(c−1)(c−1)

 (4.1)

where each element akt is computed as:

akt =
Rkt + Rtk∑c−1

s=0(Rks + Rsk)
(4.2)

where Rkt is the number of resources accessible through cluster Ck and classified in
the category of cluster Ct. The akt values represent the sum of the resources stored by
the nodes with primary cluster Ck and classified in the category of cluster Ct and the
resources stored in nodes with primary cluster Ct and classified in the category of cluster
Ck divided by the total number of resources accessible on cluster Ck. The affinity matrix
is used to determine the placement of the clusters in the overlay: affine clusters should
be placed near each other in order to improve cross-cluster locality. This algorithm is
described in Section 4.4.4. Placing clusters with affine content close to each other is a
heuristic to minimize the distance between them. Searches from one cluster to another
are with high probability targeted to affine clusters; in this situation the latency to locate
the target cluster is reduced.
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The affinity matrix does not accurately reflect the system state at each instant. Actually,
it works as an approximation of the current system state. In order to calculate Rkt we
employ the monitoring services used by the elastic server infrastructure. However, it
is possible to get these values in a distributed manner by spawning agents as proposed
in [33]. The agents are spawn periodically from nodes bordering the clusters in clockwise
directions. Each agent travels using the successor links and sums up the contribution of
each node to all clusters (Rkt) values. These values are an approximation, as nodes may
leave and join the network, while the agent traverses the overlay. In the second pass, the
agent distributes the Rkt values to all nodes, which can compute the new affinity matrix.
New nodes joining the system receive the current affinity matrix from their neighbors.

4.2.2 Chord-based network structure

Users allocated in clusters together with other users sharing similar interests increases
the probability to find relevant content. Additionally, this reduces the search space im-
proving search performance. However, structured P2P networks are not designed to work
with clusters nor replicated content. For this reason, we propose a modified version of
the Chord [83] DHT that supports clusters. This DHT is employed to locate clusters in-
side the network rapidly. Once a cluster has been found, the semantic layer can search
the requested content.

Each logical node maintains one finger table of size 2 ×m, where m is the number
of table entries. The entry i in the finger table points to the logical node at distance
2i in both clockwise and counterclockwise directions, where distance is the path length
between two nodes following exclusively ring edges. Unlike in Chord where the ith entry
in the finger table of node identified by n points to the first node that succeeds n+ 2i, in
AP2P the ith entry points to the logical node at distance 2i. Figure 4.4 shows an example
of a clockwise finger table with 4 entries. Entry i in the finger table points to the node
at distance 2i. Note that fingers are cluster-agnostic. For instance, the last finger of node
n3,4 from cluster C3 points to a node in cluster C5.

Figure 4.4: Example of a finger table with 4 entries.
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4.3 network layer

The network layer provides mechanisms for the construction and maintenance of the
overlay network. This layer is not semantics-aware. Below we describe the main opera-
tions of this layer:

• cluster_join(nkj,ni) receives as parameters a logical node nkj and an arbitrary phys-
ical node ni and attaches the physical node nj to the cluster Ck through the inter-
mediation of ni. Subsequently, the successor and predecessor nodes are informed
and the Chord-like stabilize method is called in order to update the corresponding
finger tables. This operation is called by the upper content-aware join operation
after deciding the primary and secondary clusters of a physical node.

• cluster_leave(nkj) receives as parameter a logical node nkj and removes the physical
node nj from the cluster Ck. When leaving, the successor and predecessor nodes
are informed and the Chord-like stabilize function is called in order to update the
finger tables of all involved nodes.

• cluster_locate(Ck) locates and returns an arbitrary node from the cluster Ck. This
operation works similarly to the key retrieve algorithm from Chord. The invoking
node looks at its finger table for an entry from the target cluster. If the node does
not find the target cluster, the locate operation consults the cluster placement order
table and delegates the locate operation to a logical node closer to the target cluster.
This operation is used by join and stabilize operations from the network layer and
the search operation from the semantic layer.

• cluster_reorder(C0, C1, C2,..., Cc−1) is called by the upper layer for changing the or-
der of cluster placement on the overlay. The parameter is an ordered list of clusters.
If the parameter order is different from the current order, each involved cluster is
cut from the present location and reinserted to the new location. This is an expen-
sive operation, as it may involve a substantial stabilization process. However, it is
not expected to be invoked frequently, as cluster cross-locality evolves slowly, given
that the interests of users do not change fast. Additionally, when a new placement
is necessary, it likely involves a small number of cluster reorderings.

• stabilize() is similar to the method with the same name from Chord: brings the
finger table of invoking nodes to a coherent state, i.e., the entries point clockwise
and counterclockwise to 2i hops away.

4.4 semantic layer

The semantic layer contains operations that leverage collaborative classifications in order
to improve content locality via a self-configuring topology. These operations may use the
support offered by the network layer.

4.4.1 Node join

The sem_join(nj,ni) operation connects the physical node nj to the network through the
intermediation of an arbitrary physical node ni, as described in Algorithm 1. First, nj



4.4 semantic layer 33

contacts a known node ni and receives the affinity matrix A. Second, the node computes
and joins its primary cluster. Finally, the node joins its secondary clusters. The intuition
behind the algorithm for choosing secondary clusters can be summarized as follows: a
node is replicated in secondary clusters only if it stores enough resources classified in
the category of the secondary clusters. The number of such resources should be larger
than an absolute and a relative thresholds. Both thresholds are necessary in order to
avoid nodes with a negligible number of relevant resources, increasing the overhead
with practically no benefit. The absolute threshold is computed as the multiplication of
an absolute factor of logical node presence (α) and an estimation of the total number of
resources classified to the category corresponding to cluster Ck, denoted Tk. The relative
threshold is given by the affinity matrix values (akt) multiplied by a relative factor of
logical node presence (β). Both α and β values are network wide constant parameters
and can be chosen empirically based on application requirements.

Algorithm 1 sem_join(nj,ni)
1: Request and receive affinity matrix A from ni

2: pj = t such that rtj = maxc−1
k=0(rkj) /* Determine the primary cluster */

3: cluster_join(npjj,ni) /* Join the primary cluster */
4: for k ∈ {0, 1, ..., c− 1} do
5: /* Tk: total number of resources classified in
6: the category of cluster Ck */
7: Tk =

∑c−1
s=0 Rks

8: if rjk > α× Tk then
9: /* rjk documents stored in the node nj and

10: classified to the category of cluster Ck */
11: ratio← rjk/

∑c−1
t=0 rtk

12: if ratio > β× apk then
13: /* Join secondary clusters */
14: cluster_join(nkj,ni)
15: end if
16: end if
17: end for

4.4.2 Resource insertion

The sem_insert(resource) function adds a resource to the local library of a physical node.
Given that the physical node can have several points of logical presence in the network,
the inserted resource becomes visible in the primary and all secondary clusters. Before
insertion, a resource must be classified in at least one category.

The insertion of resources may cause changes in the relative contribution of a node
to different clusters. The node decides autonomously to join a new secondary cluster,
to leave a secondary cluster or to choose a different primary cluster, by using the same
procedure described in Algorithm 1.
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4.4.3 Resource search

The sem_search(search terms, Ck) operation (Algorithm 2) receives a set of terms and
the cluster a resource is classified into. The set of terms can contain wildcards, exact
filenames, etc. The search consists of two phases. First, a node initiates the search, using
the network layer operation cluster_locate to find any node in the target cluster Ck.
Second, a parallel flooding algorithm is used in the target cluster Ck in order to locate
the nodes that store the searched resources.

Algorithm 2 sem_search(search terms, Ck)
1: /* Locate the target cluster */
2: nkj ← cluster_locate(Ck)
3: /* Initiate parallel flooding */
4: r← 0

5: while r < max_relaunches and insufficient results returned do
6: flooding(nkj, search terms)
7: nkj ← last node of the previous flooding
8: r← r+ 1

9: end while

Figure 4.5 shows a simplified search operation in five steps. In step 1 node n9,10 in-
vokes cluster_locate for finding a node in cluster C5. A pointer to node n5,6 is found
in cluster C1 and is returned to n9,10 in step 2. In step 3, n9,10 contacts n5,6 which starts
the flooding search (step 4). Finally, the nodes with matching resources answer directly
to the source node n9,10 (step 5).

(a) Node n9,10 locates a node (n5,6) in clus-
ter C5 using cluster_locate operation. The
cluster_locate identifies in the finger table of
node n9,10 a node in a cluster closer to desti-
nation according to the cluster order table. The
operation is repeated in subsequent nodes un-
til cluster C5 is reached.

(b) Node n5,6 starts flooding search in cluster C5.
Those nodes having the requested resource re-
ply to n9,10. In case the flooding is not success-
ful, the negative answer is returned by the last
node reached by flooding.

Figure 4.5: Different phases involved in the search process.

Unstructured network systems such as Gnutella [75], use flooding for content location.
One of the main disadvantages of Gnutella flooding is the generated redundant commu-
nication, which reduces the scalability of the system. AP2P employs a parallel flooding
algorithm based on a recursive doubling strategy. We define the flooding horizon (FH) as
the maximum distance from the source to the farthest node reached by a flooding mes-
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sage. In our algorithm, at step i, all the peers that have received a search message forward
it in parallel to peers at distance 2i. Therefore, the flooding horizon is reached in log2FH
parallel steps. Each node that receives a search message and has a match replies to the
source. Negative responses are reported to the source only from the nodes reaching the
boundary of the flooding horizon. The source can subsequently decide to relaunch the
search beyond the current flooding horizon in order to locate more replicas.

(a) Flooding step 0.

(b) Flooding step 1.

(c) Flooding step 2.

Figure 4.6: Example of a flooding search with FH = 8 on 8 neighbors on the ring.

Figure 4.6 shows an example of a flooding search for FH=8. For clarity, the figure
does not show replies from visited nodes. In the initial step (Figure 4.6a) node 0 sends a
message to node 1 (finger table entry 0th). In step 1 (Figure 4.6b), 0 and 1 send messages
in parallel to nodes 2 and 3 (finger table entry 1). In step 2 (Figure 4.6c) nodes 0, 1, 2 and 3

send messages in parallel to 4, 5, 6 and 7 (finger table entry 2). Nodes 4, 5, 6 and 7 reach
the flooding horizon and the search is stopped. This flooding generates no redundant
messages, visiting 7 nodes and requiring 7 messages.

For reaching the flooding horizon, the flooding algorithm needs s = log2FH steps and
generates 1+ 2+ 22+ ...+ 2s−1 = FH− 1 requests followed either by a maximum number
of FH− 1 replies or FH/2 negative acknowledgements. Therefore, assuming that FH > 1,
the upper bound on number of messages involved in the search can be calculated in the
following way:

Nmax = FH− 1+max

(
FH− 1,

FH

2

)
= 2× FH− 2 (4.3)

Given that the search is started simultaneously clockwise and counterclockwise, the
upper bound is 4× FH− 4. Equation (4.4) gives the total number of messages generated
in the worst case for AP2P. We assume a limited FH, therefore relaunching searches is
needed to cover the whole cluster.

msgAP2P = effective msg+ relaunch msg = |Ck|+
|Ck|

FH
(4.4)

o o 01---0 
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4.4.4 Cluster reordering

AP2P self-organizes the placement of the clusters on the ring topology in order to im-
prove the inter-cluster locality. The reorganization of clusters is infrequent, as it is not
likely that the interests of users change very quickly. The function sem_reorder() is au-
tomatically invoked by any node of the system at regular intervals in order to check if
cluster reorderings may improve locality and to effectively perform the reordering.

Algorithm 3 sem_reorder()
1: /* Greedy */
2: cluster_order_table← greedy_order(A)
3: /* Reorder clusters */
4: cluster_reorder(cluster_order_table)

The reorder operation consists of two steps. In the first step, the greedy algorithm
described below is used for computing a new cluster placement order table. The second
step reorders the clusters based on the result of the greedy algorithm.

The greedy algorithm (Algorithm 4) works as follows. First, it computes the maximum
non-diagonal element of the affinity matrix arow,col. The row and col values are used
for placing the first cluster Crow and the second cluster Ccol to the right of Crow. Sec-
ond, the value of the column col becomes the new row; the next cluster is decided by
choosing the maximum value of the affinity matrix on the row, given that the column
does not correspond to a cluster, which has already been chosen. The second step of the
Algorithm 4 is repeated until all the clusters are placed. We call this algorithm GREEDY-
MAX, as it greedily targets to maximize the total affinity as a sum of affinities of all pairs
of neighbors.

Algorithm 4 greedy_order(A)
1: for k← 0 to c− 1 do
2: cluster_order_table[k]← not_assigned
3: end for
4: (row, col)← (k,t) such that akt = maxaij, where 0 6 i, j < c and i 6= j
5: cluster_order_table[0]← row
6: for k← 1 to c− 1 do
7: cluster_order_table[k]← col
8: row← col
9: col ← j such that arow,col = maxarow,j, where 0 6 j < c and j /∈

cluster_order_table[h] for h = 0, 1, ...,k
10: end for
11: return cluster_order_table

For instance, for the affinity matrix in Figure 4.7, the GREEDY-MAX algorithm returns
the following cluster order: 0, 3, 1, 4, 2. The total affinity is 0.25 + 0.20 + 0.20 + 0.15 +0.15

= 0.95. If we apply the same greedy algorithm, but choose the minimum affinity between
pairs of clusters (GREEDY-MIN), a possible cluster order is 3, 4, 2, 0, 1 with a total affinity
of 0.75, representing 78% of the total affinity returned by GREEDY-MAX.
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A =



0.30 0.10 0.15 0.25 0.20

0.10 0.35 0.15 0.20 0.20

0.15 0.15 0.35 0.20 0.15

0.25 0.20 0.20 0.30 0.05

0.20 0.20 0.15 0.05 0.40


(4.5)

Figure 4.7: Example of affinity matrix for 5 clusters.

Finally, in the second step of the reordering algorithm (Algorithm 3), the solution of
the GREEDY-MAX algorithm is used in order to update the cluster placement order in
the overlay network.

As a final observation, the accuracy of affinity matrix and the placement order of the
clusters on the ring do not affect the correctness of the search, but only its performance
in terms of latency reaching the target cluster. Therefore, the update of the affinity matrix
and the reorder frequency can be relaxed, trading off reorganization overhead for search
efficiency.

4.4.5 Other operations

Apart from the operations previously described, there are other two operations worth
mentioning: sem_leave(nj) and sem_remove(resource_id). The sem_leave(nj) operation dis-
connects the logical node from the primary and secondary clusters by using cluster_leave
operation. The sem_remove(resource_id) operation removes the resource identified by
resource_id from the node. As in the case of insert, this operation may cause a node to
change its primary cluster, or to leave or join secondary clusters.

4.5 experimental results

We experimentally evaluate the performance of AP2P using real traces complemented
with information extracted from YouTube. First, we present the methodology used for
data collection and workload characterization. Second, we describe our evaluation setup.
Third, we evaluate the small world properties presented in the clusters defined in AP2P.
Fourth, we analyze the sensitivity of clusters placement. Fifth, we evaluate the effects of
replication on search latency. Sixth, we analyze the sensitivity of AP2P to the network
size. Finally, we evaluate content locality.

4.5.1 Workload characterization

AP2P experimental results are based on a set of real traces collected in [87], that contain
information about YouTube traffic captured from June 2007 to March 2008 on a campus
network. Using the video identifiers and the YouTube public API, we collect information
about the user who uploaded each video, and all the videos uploaded by that user until
June 2008. We also extract the number of views per video and the category of each
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video. The videos appearing in [87] but not available at the moment of harvesting were
discarded. The obtained traces contain 23,076 users sharing a total of 952,718 distinct
videos.
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Figure 4.8: YouTube videos rank ordered by number of views.

Figure 4.8 shows the video popularity distribution of the YouTube trace. First we note
that this distribution is similar to those obtained in other studies [28, 23]. From our trace,
only 0.08% of the videos have more than a million views, and 50% of the videos have
less than 2300 views. We try to model the resulting distribution using a Zipf distribution,
but this distribution overestimates the number of views for 98% of the videos and under-
estimates the remaining 2%. This situation is also discussed in [28], where the authors
note that the Zipf distribution does not predict the existence of many popular videos.
Additionally, we observe that the top 2% most popular videos aggregate 35,603 million
views, which represent 70% of the total number of views.
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(a) Distribution of videos per category. For instance,
37% of videos from the trace are classified in the
music category.
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(b) Classification of nodes based on their maximum con-
tribution. For instance, 20% of the node have the ma-
jority of their videos classified in the Entertainment
category.

Figure 4.9: Distribution of users and videos according to YouTube categories.

YouTube predefines a set of 15 existing categories. In our trace each video was classi-
fied by the user who uploaded it into exactly one of the 15 video categories. Figure 4.9a
shows the percentage of videos classified in each category. Videos classified in Music and
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Entertainment represent more than 50% of the sample. Other categories such as Educa-
tion, Gaming or Nonprofits & Activism have a small representation. These values confirm
the recreational character of YouTube, as shown in other studies [28, 23] where we find
similar distributions.

Figure 4.9b shows the primary cluster distribution calculated for the YouTube trace.
We note that the distribution of videos per category does not directly correspond to
the distribution of primary clusters: e.g., music videos represents 37% of the videos
in the system, but only 18% of the users joined Music as their primary cluster. This
phenomenon corresponds to the fact that the Music videos are popular to the large
majority of users, including users having their primary interests in other clusters.
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Figure 4.10: Number of categories a user is interested in. For instance, 15% of the users have
videos classified only in one category.

Users may be interested in one or several categories. Figure 4.10 shows the percentage
of nodes that share videos in one or more categories. We notice that most users are
interested in more than three categories, with an average of 3.3. Interest in more than 5

categories is unusual, whereas users interested in just one category represent 15% of the
total.

4.5.2 Experimental setup

We experimentally evaluate AP2P simulating the network and user behaviors using the
aforementioned YouTube workload. We simulate different networks composed of physi-
cal nodes that correspond to one of the 23,076 users contained by the traces. These nodes
join primary and secondary clusters as explained in Section 4.4.1, and then search for dif-
ferent contents. The simulations are carried out in a Java multi-threaded discrete event
simulator. The simulations were performed on two Sun SPARC Enterprise T1000 with 8

GB of RAM and 8 multi-threaded cores.
We use three metrics in this evaluation: the rate of successful searches, latency and

recall. The rate of successful searches measures the ratio of searches returning at least
one resource. Latency is defined as the number of hops until the first replica of a resource
is encountered. Recall is the number of replicas returned by the search divided by the
total number of replicas in the network.

A summary of parameter values used in the experiment is shown in Table 4.1.
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Parameter Values

Physical network size 3000-5000 nodes

Logical network size 8897-14718 nodes

Number of clusters (c) 15

Finger table size (m) 6

α 0

β 0.5

FH 64

Table 4.1: Parameter values used in the experiments

We set the flooding horizon value with value FH = 64, i.e., 6 entries from the finger
table were utilized. The search was performed simultaneously in clockwise and counter-
clockwise directions, without relaunches. The number of logical nodes in the network
depends on the number of secondary clusters the nodes decide to use. We control how
the nodes join to secondary clusters with the parameters α and β used in the join opera-
tion described in Algorithm 1. In particular, we set α = 0 (no restriction) and β = 0.5.

The construction of the simulated network consists of the following steps. First, n
users and their shared resources are read from the trace. Each user corresponds to a
new physical node. Second, each video is replicated on the physical nodes according to
one of the popularity distributions shown in Figure 4.8. The nodes on which replicas
are placed, are chosen randomly with a uniform distribution from the nodes already
sharing resources in the same category as the candidate video. The number of replicas
is proportional with video popularity as depicted in Figure 4.11 for the three replica
distributions used for evaluation: rd1, rd2 and rd3. The shape of these distributions is
similar to the popularity distribution depending on the video age showed by Cha et
al. [23]. Third, the affinity matrix is computed according to Equation 4.2. Fourth, the
physical nodes are inserted one by one as logical nodes in the AP2P network by calling
Algorithm 1. Fifth, the affinity matrix is updated to reflect the new network state.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000  10000  100000  1e+06

P
e
rc

e
n
ta

g
e
 o

f 
re

p
lic

a
ti
o
n

Rank

rd1
rd2
rd3

Figure 4.11: The three replica distributions used in the simulation.
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For each simulation we run 100,000 search events. The number of generated search
events for a particular video is proportional to its popularity (the number of views). The
origin node of the search is chosen randomly with a uniform distribution.

4.5.3 Small World Analysis

A small world is a kind of graph defined by Watts [97] based on two metrics: clustering
coefficient (γ) and characteristic path length (L). The clustering coefficient represents the
probability that the neighbors of a vertex are connected. It is calculated as the average of
the number of connections among the neighbors of all vertices of a graph. The character-
istic path length is the mean of the path lengths between all pairs of vertices of a graph.
A graph is a small world if, compared with a random graph with the same number of
vertices and edges, it has roughly the same characteristic path length and a significantly
larger (orders of magnitude) clustering coefficient. Formerly a graph is a small world if
satisfies L0 ≈ Lrandom and γ0 � γrandom.

It is known that small world graphs present certain properties such a high degree con-
nectivity, which in large networks permit to reduce the total number of hops between
distant nodes. The analysis presented in this Section targets to highlight network char-
acteristics related to the potential efficiency of content lookup both at local level (AP2P
cluster) and global level (AP2P network). Locally, a small world with a low average path
length inside a cluster will indicate that a flooding search is more likely to reach all nodes
storing relevant content in an efficient way. Globally, the small world property suggests
that cluster lookup is likely to be quickly directed to the target cluster.

L Lrandom γ γrandom

AP2Plogical 14.06 3.57 0.16 0.003

AP2Pphysical 2.57 2.48 0.15 0.0262

Gnutella 0.6 [84] 4.17-4.23 3.75 0.018 0.00038

Gnutella 0.4 [50] 3.30-4.42 3.66 0.02 0.002

MovieActors [97] 3.65 2.99 0.79 0.00027

PowerGrid [97] 18.7 12.4 0.08 0.005

C. Elegans [97] 2.65 2.25 0.28 0.05

Table 4.2: Comparison of clustering coefficient and characteristic path length for various real net-
works.

Previous studies [50, 84, 97] demonstrate that Gnutella and many real networks (e.g.,
actors, power grid and C. Elegans) exhibit small-world properties. Table 4.2 shows γ
and L computed in these studies along with the values for AP2P logical and physical
networks corresponding to our YouTube dataset. We note that the characteristic path
length for AP2Plogical network is 14.06 which is roughly log(n), corresponding to the
characteristic path length of a Chord-like ring. However, in AP2P each physical node
has several logical presences in the network. The γ and L values for the AP2Pphysical

show that AP2P satisfies the small world conditions. This fact shows that by using logical
nodes, two physical nodes can be connected with less hops acting like shortcuts.
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AP2P is structured as a collection of interconnected clusters. In order to investigate the
local characteristics of each cluster, we computed the values for local characteristic path
length of a cluster Llocal and clustering coefficient of a cluster γlocal. This approach was
inspired by the Watts’ model [97] used for analyzing the local and global length scale of
a small world graph.
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(c) Cluster size (number of logical nodes)

Figure 4.12: γlocal, Llocal and cluster size for AP2Plogical

Figure 4.12 shows the values for γlocal, Llocal and the number of logical nodes of each
cluster. The clustering coefficients of all clusters are between 0.16 and 0.26. Nevertheless,
the clustering coefficients of popular clusters are within a small range, i.e., 0.16 and 0.18

and do not appear to depend on the cluster size; for instance, the difference between sizes
of clusters Music and Auto & Vehicles is one order of magnitude. Llocal values appear
to depend on the cluster size. Figure 4.13 shows that this dependence is sublogarithmic.
These characteristics show that the content is highly clustered inside each AP2P cluster
with a low average path among nodes. Consequently, the flooding inside each cluster is
highly probable to reach relevant content with a low latency (number of hops).

4.5.4 Cluster placement sensitivity analysis

In this subSection we evaluate the benefits that can be achieved from a proper order of
cluster placement on the AP2P ring. A good order translates into a high content locality



4.5 experimental results 43

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  500  1000  1500  2000  2500

C
h
a
ra

c
te

ri
s
ti
c
 P

a
th

 L
e
n
g
th

Cluster Size

Llocal
Log2(Cluster size)

Figure 4.13: Variation of cluster-local characteristic path length (Llocal) with the cluster size.

across clusters. For the evaluation we have computed two possible orders by applying
the GREEDY-MAX and GREEDY-MIN algorithms on the same network.

Figure 4.14 compares search latency and recall for 4,000 nodes. We note that the order
produced by GREEDY-MAX results in significant improvements in both latency and re-
call. In terms of latency, for GREEDY-MAX order more than 80% of the searches return
the first replica in 40 hops. For the same number of hops GREEDY-MIN order finds the
first replica only for less than 20% of the searches. The recall scales almost linearly with
the number of messages for both orders. However, for GREEDY-MAX the slope is signifi-
cantly greater. For instance, for 300 messages the recall is almost 17% for GREEDY-MAX
and approximately 6% for GREEDY-MIN. GREEDY-MAX and GREEDY-MIN can be seen
as an approximation of the upper bound and a lower bound on a spectrum of different
possible cluster orders. The locality of content is improved by GREEDY-MAX, as affine
clusters are placed near each other.
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Figure 4.14: Comparisons of GREEDY-MIN and GREEDY-MAX algorithms in a 4,000 nodes net-
work using replica distribution rd2.
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4.5.5 Effects of replication

In this subSection we present an evaluation of the effect of replication on the search
latency. We have used the three replication distributions introduced in Section 4.5.1 for
a network composed of 4,000 physical nodes after applying GREEDY-MAX reordering
algorithm. Figure 4.15 shows the latency results obtained from simulations.
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Figure 4.15: Latency comparison for a 4,000 nodes network using different replica distributions.

We note that a higher replication implies a lower latency. For instance, for rd1 more
than 95% of the searches find the first replica in at most 20 hops. For comparison, in the
same number of hops 65% and 40% of the searches return the first result for rd2 and rd3,
respectively.

4.5.6 Sensitivity to network size

In this Section we evaluate the sensitivity of latency and recall to the AP2P network size.
Figures 4.16a and 4.16b show the results when the network size increases from 3,000

to 5,000 physical nodes, while maintaining unchanged all the other parameters. The
replication distribution used in this experiment was rd2. The sizes of AP2P network in
terms of logical nodes were 8,897, 11,732 and 14,718, for 3,000, 4,000 and 5,000 physical
nodes, respectively.

It can be noticed that the variation of both latency and recall are small, when increas-
ing the number of nodes by 66% (from 3,000 to 5,000 physical nodes). For instance, in
numerical terms, for 20 hops, 17% more searches return the first replica for 3,000 nodes
than for 5,000 nodes.

The recall (Figure 4.16b) also decreases with the increase in the number of nodes.
These results are intuitive, as the distance between replicas is expected to increase with
the number of nodes and the FH is unmodified. Recall can be improved by increasing the
FH as a function of the network size. AP2P recall results are good compared with other
solutions. For example, the efficient search algorithm from [49] shows a recall value of
14% for a 5,000 nodes network, whereas AP2P obtains a recall value of 16%.

Table 4.3 shows a comparison of the search success rate for different network con-
figurations. As expected, the success rate increases with the degree of replication. The
success rate decreases slowly with the number of nodes showing good scalability with
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Figure 4.16: Evaluation of scalability for different network sizes using replica distribution rd2.

Number of nodes

3000 4000 5000

Replica distribution
rd1 0.9968 0.9884 0.9910

rd2 0.9783 0.9553 0.9520

rd3 0.9134 0.8624 0.8014

Table 4.3: Rate of successful searches for different number of nodes and different replica distribu-
tions.

network size. For instance, increasing by 66% the number of physical nodes (from 3,000

to 5,000), the success rate is reduced by 0.5%, 2.7%, and 11.2% for the three replication
distributions. It can also be noticed that the decreasing of the success rate is slower for
higher degrees of replication. However, in our simulations the flooding horizon (FH) was
kept constant at 64. The success rate directly depends on FH and, it can be increased by
choosing a higher FH.

4.5.7 Locality evaluation

In order to estimate the global locality we compute the average inter-node affinity for
all the connected nodes in AP2P and Chord. For each node n, we compute the vector v
of size k, where vk is the percentage of resources of node n classified in the category of
cluster Ck. Given two nodes n1 and n2 with vectors u and v, we define inter-node affinity
as MAX(MIN(ui, vi))∀i ∈ {0, 1, ..., c− 1}. Intuitively, MIN operation computes the taste
overlap per category for two users, while MAX computes the category with highest taste
overlap. For instance, the inter-node locality is 1 for two nodes storing resources only in
Music category, and 0 if one node stores exclusively resources classified in Music and
another one exclusively resources classified in Movies.

In order to compare Chord and AP2P locality we build both networks using the same
number of physical nodes and finger table size. Then, we insert the same documents
in the network. Finally, we compute the average internode affinity for both Chord and
AP2P networks.
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Figure 4.17 plots (a) the average inter-node affinity and (b) logical node size for phys-
ical network size ranging from 3,000 to 5,000 nodes and for β from algorithm 1 ranging
from 0 to 1. If β = 0 a node is added to secondary clusters if it has at least one re-
source in that cluster. This value is expected to reduce the affinity and to increase the
logical network size. If β = 1 a node is added to secondary clusters if the number of
its resources classified in that cluster is larger than the affinity between node’s primary
cluster and target cluster. This value is expected to increase global affinity and decrease
logical network size (as nodes are added to secondary clusters selectively based on a
high affinity). The value of α was fixed to 0, meaning that a node is considered to be
added in secondary clusters based only on the relative number of resources classified in
the respective category.
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Figure 4.17: Locality evaluation of AP2P network.

The average inter-node affinity for Chord represents less than half of the minimum
value for AP2P and less than a third of the maximum value. As expected, the highest
locality is obtained in all cases for β = 1, that is when secondary clusters are joined
selectively. In this case the affinity in each cluster is increased, minimizing the probability
of finding less affine resources. When decreasing β, the global locality decreases, the
logical network size increases (Figure 4.17(b)), while the probability of finding resources
with the lower degree of affinity faster increases.

4.6 summary

In this Chapter, we have explored a P2P file-sharing solution that is the base of the
distributed collaborative caching infrastructure of our hierarchical architecture. This file
solution, called AP2P (Affinity P2P), leverages users preferences and community knowl-
edge in order to improve content locality and search latency. AP2P employs a cluster-
based locality-aware self-organizing peer-to-peer network that leverages collaborative
classifications in order to self-organize for a higher content locality. AP2P self organizes
at two levels: node and cluster level. Each node may decide autonomously to join or leave



4.6 summary 47

clusters based on the own composition of content or interests. Clusters may change their
positions in order to achieve a high inter-cluster improving search latency.

Based on analytical and experimental results, we make the following claims. AP2P
shows small world characteristics, and, therefore, facilitates the localization of content. By
joining the network at different points as logical nodes, physical nodes offer high content
locality in different clusters, substantially improving the search performance. Addition-
ally, the dynamic reorganization at cluster level provides an improvement in both search
latency and recall. In particular, we find that cluster reorganization can improve latency
100% and multiply by three recall compared with inadequate cluster organizations. We
also demonstrate empirically that replication of content according to popularity may be
leveraged for achieving a lower latency with a relative small amount of replication. Fi-
nally, we show that the search latency, recall and rate of success scale smoothly with the
number of nodes.





5
W O R K L O A D M O D E L I N G

In the previous Chapter we presented a distributed collaborative caching infrastructure
designed to mitigate the pressure in the elastic server infrastructure. When a requested
content is not found inside this caching infrastructure, the request is forwarded to the
elastic server infrastructure. This is highly probable to occur in the case of newly avail-
able and unpopular contents. Additionally, we can expect a portion of users to access the
server infrastructure without joining the decentralized caching infrastructure. This decen-
tralized infrastructure is not elastic in the sense that we cannot control its size. However,
our elastic infrastructure must adapt its size to the incoming workload in order to save
costs.

In order to determine the system size we need to understand the dynamics of the
workload to be served. As is described in the related work of this thesis (Chapter 2) the
workload of web applications is known to have periodic patterns. Additionally, several
studies [7, 23, 37, 29, 28, 65, 91, 100, 56, 26] have revealed the workload of web systems
to be highly variable depending on seasonal factors (time of the day, day of the week),
trends, expected and unexpected events. While the periodicity of the workload makes
easy to determine the amount of resources to employ, the variability makes necessary to
overprovision resources to avoid the incoming workload to exceed the available resources.
However, this incurs in a waste of resources during low workload periods [42, 11]. Antic-
ipating the incoming workload may permit to adequate the system size increasing ma-
chine utilization and reducing costs. This problem can be done using several techniques.
However, we particularly focus on the utilization of automatically defined autoregressive
models.

This Chapter covers the second objective of this thesis by investigating the data ac-
cess patterns of Internet applications and analyzing the limits of workload predictability.
We explore the automatic generation of time series models in the prediction of web
systems workloads. First, we overview the automatic generation of prediction models.
Afterwards, we describe three workload datasets extracted from real systems and finally
we provide an experimental evaluation based on these datasets.

5.1 forecasting overview

The workload of a system can be modeled as a time series Xt with values (xt−k, xt−k−1,
· · · , xt−2, xt−1) where t is the current time. Further, the workload can be represented as
the addition of four different time series:

Xt = Tt +Ct + St + Rt (5.1)

where Tt, Ct, St and Rt are the trend, cycle, seasonality and random components of
the time series. The trend Tt describes the long term movement of the time series. The
cyclic component Ct describes cyclic behaviors with a constant level in the long term.
Seasonality consists of patterns with fixed length influenced by seasonal factors (e.g., the

49
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month, the day of the week). Finally, the random component Rt is an irregular component
to be described in terms of random noise. Additionally, the time series may have outliers.
The outliers are observations of the time series that are unlikely to be a result of the
observed process. These exceptional situations are particularly difficult to detect and are
manually included inside the models.

Modeling Xt can be described as the addition of its components. These models are
generated based on the observations of past Xt values. In this thesis, we only focus on
approaches that can automatically identify and generate these models for a set of past
observations (xt−k, ..., xt−1) with length k. These observations are enough to define a
model M(Xt|xt−k, ..., xt−1) for Xt. In this way, we can employ a model generator whose
input is a set of observations and the output is the generated model (Figure 5.1). This
process abstracts the user from the details of the model generation.

MODEL 
GENERATORPast observations Output model

Figure 5.1: Generation of time series models.

Finally, a model can generate a set of predictions (x̃t+1, x̃t+2, ..., x̃t+h) for a prediction
window h using a set of observations (Figure 5.2).

M(Xt)Past observations

Forecast values
Prediction window

Figure 5.2: Model predictions based on past observations.

In this thesis, we focus on the utilization of autoregressive models. These models pre-
dict future values of the time series by weighting past observations. The general formu-
lation of these models is:

im∑
z=i1

αt−zxt−z +ωt−z (5.2)

where z is the time lag in the set (i1, ..., im), α is the parameter that weights the observa-
tion at time t− z, and ω is the observation modifier. The weights, lags, and modifiers of
the formula above are determined during the model definition. The model definition fol-
lows three stages according to the Box-Jenkins methodology [36]: (1) identification and
selection, (2) estimation, and (3) diagnostics. The first stage determines the configuration
of the model. The second, adjusts the weights of the model. Finally, the diagnostics stage
identifies the errors generated during the model definition.

identification and selection. Autoregressive methods are designed to work with
stationary series. This means that it must exist temporal correlation between lagged
observations. To identify stationarity it may be necessary to employ additional anal-
ysis such as detrending or differencing the time series. When large correlations
are found at defined lags, this indicates observations that particularly capture rel-
evant information. This permits to define the lags (i1, ..., im) to be used in the
equation 5.2.
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parameter estimation. Once the observations to be used are chosen, the parameter
estimation sets α values from equation 5.2. These values are calculated by selecting
the best values that approximate the model equation to a given set of past obser-
vations. These values are typically calculated using an estimation method such as
OLS (Ordinary Least Squares) or ML (Maximum Likelihood).

diagnostics . The diagnostics stage analyzes the errors obtained by the model. In par-
ticular, this stage analyzes the residuals and identifies temporal correlation between
them. In the case that the residuals are detected to have temporal patterns, we re-
turn to stage one and repeat the process until a better solution is found.

The general approach is to generate simultaneously several models that pass the di-
agnostics stage and compare them using a comparison criterion. Models comparison
criteria such as AIC or BIC select the model with the lowest error. Additionally, in the
case of BIC the number of observations is also taken into account.

These three stages permit to automatically define a model given a set of past obser-
vations. Depending on the idiosyncrasy of each model, it may exist differences in the
implementation on the stages. However, this is the most common methodology to follow
in order to identify and define an autoregressive model.

5.1.1 Autoregressive forecasting models

Although the prediction methodology used in this thesis is independent of the employed
time series model, we focus on three family models: ARIMA, ARz and Holt-Winters.
We choose these family models for their utilization in heterogeneous problem domains,
their inclusion in several tools and the implementation of automatic model generation
methods. Below we briefly describe the main features of these models.

arima . ARIMA models define a wide family of linear autoregressive functions denoted
by ARIMA(p,d,q), where p, d, and q are called orders. The parameter d identifies
the order of differences applied to eliminate trends, i.e.,: d = 1 removes linear
trends, d = 2 quadratic trends, etc.

ARIMA models are a combination of AR (AutoRegressive) and MA (Moving Aver-
age) models with orders p and q respectively. In this way an ARIMA model can be
an AR model with order p denoted by ARIMA(p, 0, 0). Similarly, MA models are
denoted by ARIMA(0, 0,q). The identification of the model parameters follows the
Box-Jenkins methodology through the observation of ACF and PACF values. These
criteria are summarized in the table below:

ARIMA(p, 0, 0) ARIMA(0, 0,q) ARIMA(p, 0,q)

ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tails off

Table 5.1: AR and MA models selections based on ACF and PACF according to Box-Jenkins
methodology [82].

ARIMA models offer prediction capabilities in non-stationary scenarios using de-
trending indicated by the order d. Several extensions of ARIMA models exist, be-
ing particularly useful the seasonal ARIMA models. These models improve the
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forecast of time series adding seasonal patterns. These models are denoted by
ARIMA(p,d,q)× (p,d,q)s where the second component is an additional ARIMA
model that employs the observations with lag s.

arz . ARIMA models are defined using consecutive observations ((it , it+1 , · · · , it+m)

according to Equation 5.2). For some time series it is usual to find an order p such
as 100 or greater. This means that an ARIMA model has to use a linear equation
employing at least the 100 previous observations. This incurs in an increment of
the time needed to define the model, adds noise to the predictions, and reduces the
score obtained in AIC or BIC criteria. In order to mitigate this problem, McLeod
and Zhang [63] propose a subfamily of ARIMA models (actually AR models)
called ARz which uses non consecutive observations. While the observations of an
ARIMA model are xt−1 , xt−2 , . . . , xt−p, ARz uses (i1 , . . . , im) observations not
being mandatory these values to be consecutive.

McLeod and Zhang propose a novel autocorrelation function [63] to identify the
weights to employ in the ARz models. They claim this autocorrelation to bring fast
automatic identification and estimation for large and complex time series. Addi-
tionally, they describe a complete set of tools for automatic model identification
following the Box-Jenkins methodology.

holt-winters . Holt-Winters models are an extended version of the exponential smooth-
ing equation [82] that adds trending and seasonal components. Holt-Winter mod-
els assume predictions to fluctuate around a reasonably stable mean. For this rea-
son, Holt-Winters models have been proposed as a solution for short-range predic-
tions [15]. These models do not determine what lags to use. The parameters are
estimated by recursively setting the equation weights to the given set of observa-
tions. This reduces the elapsed time for the generation of models.

The three autoregressive family models above permit to model a wide spectrum of
time series. ARIMA itself permits to model seasonality, trending and periodicity. ARz is
indicated for models defined using a large number of observations. Finally, Holt-Winters
is a versatile and simple predictive model with a simplified identification and selection
stage.

5.2 datasets

In this Chapter we evaluate different facets of workload prediction. Our evaluations have
been done with real datasets taken from real systems. Prior to presenting our evaluation
results, we present the datasets employed in our evaluations. In particular, we use traces
extracted from the 1998 World Cup [7], Last.FM [58] and Wikipedia [91].

5.2.1 Last.FM

Last.FM is one of the largest music portals with social networking features. Last.FM
community has currently more than 30 million users from more than 200 countries [57].
Labels and authors can freely share music on the portal. Users can listen to radio stations
or to previews in either full-length or as 30 second samples. A radio station is created by
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Last.FM based on different criteria: user library, recommendation, loved tracks, similar
artists, tracks sharing the same tag, etc. Track order play in radio cannot be controlled by
the users. Previews are generally free, while radio is a subscriber feature in most coun-
tries. Users have the possibility of connecting each other through friendship relationships.
Last.FM records play counts on a daily base in order to generate charts for artists and
tracks.

We crawled Last.FM through its public API by using a distributed crawler deployed
in a cluster over 20 machines. We traversed the friendship graph in a breadth-first search
manner and extracted the profiles of a set of 250,000 users including the listened artists,
daily for the period between January 1st to May 22nd, 2009 (142 days). The extracted
social graph has an average degree of 14.9, a diameter of 8, an average path length of
4.37, and an average clustering coefficient of 0.17 [97]. The total number of artists users
listened to was 2,390,970, amounting to a total play count of 780,579,318.
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Figure 5.3: LastFM dataset characterization summary.

Figure 5.3a shows the load evolution for the 142 days of our data trace. The first days
coincide with the beginning of the year (starting January 1st), when the system load was
apparently lower. The long-term evolution shows a clear periodic pattern with slightly
increasing and decreasing trends. The ACF analysis confirms a weekly seasonal pattern
with decreasing activity during week-ends and maximum traffic in the middle of the
week. Around the day 110 we observe an unexpected variation in the workload. We
believe this was due to the fact that Last.FM become a pay per use service in that date.

Figure 5.3b shows the popularity distribution of the artists for the whole trace duration.
The distribution has a long tail, with a small number of very popular artists and the major
part of the artists in the long tail. This type of distribution is commonly found on social
networks referred to different characteristics, as shown in previous works [24, 23, 55].

A limitation of the trace is the fact that we can reconstruct only the aggregate daily load
of the system. Therefore, the trace does not contain load variation at minute and hour
granularities. In order to synthetically extend our trace at minute granularity we leverage
patterns of workload observed for other traces. In particular Gill et al. [37] plotted the
hourly patterns of video accesses of a large community of YouTube users as shown in
Figure 5.4. We synthetically model the hourly LastFM accesses based on the probability
distribution of YouTube accesses. While this distribution is particular for YouTube (video
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sharing), we understand that the shape is representative for several workloads. Inside
each hour, we consider a Poisson distribution of user arrivals at minute granularity.
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Figure 5.4: Probability of user arrivals in Last.FM dataset.

5.2.2 Wikipedia

The wikipedia dataset contains 10% of all the requests directed to Wikipedia proxy caches
from September 19th 2007 to January 2nd, 2008 accounting for 20.6 billion requests. Each
request in the trace contains a unique identifier, a time stamp and the URL of the request.
For evaluation purposes, we only use requests to articles of the English Wikipedia during
the first two weeks of trace. After filtering and cleaning the original trace, these two
weeks account for 145 million requests and about 6 million available items.
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Figure 5.5: Wikipedia dataset characterization summary

Figure 5.5a shows the number of requests per minute for the first two weeks. The
workload is clearly periodic and similar to the one shown in [91]. There is a weekly
pattern according to which the workload diminishes on weekends. During a single day,
the number of requests doubles and decreases again. This daily pattern is also found in
other systems [38, 37], confirming the existence of a low activity period, followed by a
large peak of load and then a workload decrement. The popularity distribution of the
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Name t0 t1 t2 t3 M V H

w1 100 160 1360 1439 1.05 0.01 64

w2 900 1005 1065 1095 4.97 0.06 159

w3 400 455 1255 1400 2.43 0.01 50

Table 5.2: Characterization of the Wikipedia synthetically generated spikes according to the
methodology defined in [17].

items shown in Figure 5.5b follows a long tail distribution, where the first 4 items account
for 80% of the total requests.

5.2.3 Synthetic generation of workload peaks

The Wikipedia dataset contains a large number of objects during a large period of time.
The popularity of the items in the dataset is known to vary [91]. However, the total
workload does not present any unexpected variation. For this reason, we synthetically
modify this dataset to include three workload spikes using the methodology provided by
Bodík et al. in [17]. From that work we select three significant spikes based on real traces.
These are the requests served by Wikipedia after Michael Jackson’s death (w1), server
demand variations during the World Cup 1998 [7] (w2), and, finally a peak demand to
Ebates.com servers [15] (w3).

According to this methodology, a spike is identified by a tuple (t0, t1, t2, t3, M, V , H).
The values t0, t1, t2, and t3 indicate the times when the spike starts, when it reaches
its peak, the end of the peak period, and the end of the spike, respectively. M is the
magnitude of the peak compared with the baseline workload. V is the variability of the
popularity of the hotspot items during the spike compared to the baseline workload.
This value has to satisfy 0 < V < H−1

H2 as defined in the methodology. In the three
scenarios we select the largest two decimals value that satisfies the mentioned condition,
this results in an exponential distribution. Finally, H is the number of hotspot items
that are responsible for the increment of traffic. Table 5.2 indicates the values of these
parameters used in w1, w2, and w3 and Figure 5.6 shows the resulting global workloads.
The shadowed area indicates the duration of the spike. For w1 there is no significant
change in the magnitude of the spike, only the popularity distribution of items varies,
w2 is characterized by a fast growth and fast decay, and finally, w3 is characterized by a
steady growth followed by a moderately fast decay.

5.2.4 1998 World Cup

This dataset [7] contains the requests between April 30
th, and July 26

th, 1998 from the
infrastructure serving the 1998 World Cup videos. The workload shows the number of
requests to web pages containing the videos of the event. From the original dataset we
focus on the set of five consecutive days with the largest demand. This set starts from
June 14

th. Figure 5.7a shows the workload per hour during the five days. We observe a
periodic component that repeats daily. The workload during the first two days is lower
than the observed during the remaining three days. However, we still observe a similar
pattern with two peaks in the morning and in the evening.
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Figure 5.6: Wikipedia original workload compared to the synthetically generated scenarios.

The original dataset shows the demand for 89,997 different available items. The trace
excerpt we use only shows the demand for 24,933 items which accounts for 27% of the
content in the original dataset. Figure 5.7b shows the popularity distribution of the items
for our dataset. We estimate that 233 items (0.9% of the total) account for 80% of the total
demand during the studied five days.

5.3 workload forecasting

Following the time series automatic modeling approach depicted in Figures 5.1 and 5.2,
three parameters have to be defined prior to get workload predictions: time granularity,
prediction horizon (h), and number of observations (k). The time granularity and the
prediction horizon depends on the application domain. For example, an application in-
terested on calculating workload per hour would employ the observations per hour. The
prediction horizon depends on the employed granularity and the utilization of short or
long-term predictions. Finally, the number of observations to employ typically matches
the number of observations needed to cover a workload pattern. In this manner, we
can simplify the model identification stage by introducing time correlated observations.
As a rule of thumb, the more information employed in the model generation the better.
Nevertheless, many observations or a wrong selection of them might bring inaccurate
models.
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Figure 5.7: 1998 World Cup dataset popularity distribution.

In our approach to the problem of the workload prediction, we consider that the people
interested in the utilization of these models are not experts in the field of time series
forecasting. This assumption is directly related with the utilization of automatic model
generation, where a model is expected to provide proper predictions with a minimal
human intervention. Other approaches [26, 56], assume the utilization of a model defined
by an expert. By using the Last.FM and 1998 World Cup datasets we illustrate how even
when a workload seems easily predictable or a model seems to be working properly the
utilization of manually defined models can lead to inaccurate results.

First, we show an example of how to manually define a prediction model for the
Last.FM dataset. All the models and predictions are generated employing the R statistical
suite [71] using the Forecast [99] and FitAR [63] packages. These packages offer a suite of
methods that permit to automatically generate ARIMA, Holt-Winters and ARz models.
In a first attempt to come out with an accurate model we just apply an ARIMA(1,0,0)
model with k = 14 for parameter estimation. The granularity of the time series is daily,
therefore with h = 1 we predict the total workload for the next day. Figure 5.8a shows
in black the predictions and in grey the observations. The model obtains a reasonable
accuracy with a maximum ±8% of relative error. However, the periodic signal of the
error in Figure 5.8b indicates the existence of temporal correlation of the errors. This,
means that the model is not working properly.

A temporal correlation in the error indicates that the model is not the correct one.
In this case, there are two options: the manipulation of the time series to remove the
weekly factor or to attach a seasonal factor to the model employed above. In particular,
we extend the ARIMA model above to include the weekly seasonality. This model is an
ARIMA(1, 0, 0)× (1, 0, 0)7 that results from adding to the previous ARIMA(1, 0, 0) the
same model with the observations of the previous week.

Figure 5.9 shows the predictions and errors after using the seasonal ARIMA model.
The accuracy has been increased reducing the maximum relative error to ±6% instead of
±8% and eliminating the temporal correlation between the errors. This manual process of
analysis and correction can be difficultly carried out by a person without a background in
time series forecasting. Moreover, the first analysis we have carried out, although correct
would have generated significant errors. This approximation might not be a challenge in
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Figure 5.8: Prediction and error obtained using ARIMA(1,0,0) models in Last.FM dataset for k =

14.
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Figure 5.9: Prediction and error obtained using ARIMA(1,0,0)x(1,0,0)7 models in Last.FM dataset
for k = 14.

scenarios with regular and stable workload patterns like in the Last.FM dataset. In the
case of scenarios with spontaneous peak loads like the 1998 World Cup, the utilization
of fixed models not suitable.

Second, we consider the World Cup dataset using 5 minutes granularity observations
to demonstrate that fixed prediction models are not suitable. In order to identify the
orders of the ARIMA model, we follow the Table 5.1. The analysis of ACF and PACF
indicates ARIMA(1, 0, 1) to be an appropriate model. The workload is expected to be
periodic with a daily pattern. For that reason we use k = 288 (12 observations per hour
× 24 hours) to employ a whole day of observations in the model definition. The model
works properly with an acceptable error until we try to define the model at time 661. At
this point, the parameter estimation method does not converge. This lack of convergence,
indicates that the weights of the model ARIMA(1, 0, 1) cannot be calculated (Figure 5.10).
The model is no longer valid.

This situation is known as the model change point [10]. Suitable models become
inaccurate due to the dynamics of time series. In this case, we can easily note that
ARIMA(1, 0, 1) stops being accurate, as the parameter estimation does not converge.

1\ 1\ 1\ \ 
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Figure 5.10: Predictions obtained using ARIMA(1,0,1) with k = 288 in the 1998 World Cup dataset
for intervals of five minutes. The vertical line indicates the time where the model
weights cannot be calculated. This indicates that the model is no longer valid.

Other prediction methods can be used to obtain working models. We employ the predic-
tions generated using Holt-Winters without seasonal components and ARz(1) as shown
in Figures 5.11 and 5.12. Both kinds of models come up with accurate predictions with
±1% average relative error, which is a reasonable accuracy.
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Figure 5.11: Prediction and error obtained using Holt-Winters models with k = 288 in the 1998

World Cup dataset for intervals of five minutes.

5.3.1 Multimodel prediction approach

We have demonstrated in the previous Section the complexity of manually determining
the most appropriate prediction model given a set of past observations. Additionally, we
demonstrate that the automatic generation of prediction methods can be used to address
variations of the expected workload. Based on automatic model generation tools for each
model family, we propose the simultaneous generation of multiple prediction models
for the same set of past observations. Afterwards, a model selection criterion selects a
candidate to generate the predictions as depicted on Figure 5.13.
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Figure 5.12: Prediction and error obtained using ARz(1) models with k = 288 in the 1998 World
Cup dataset for intervals of five minutes.
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Figure 5.13: Generation and selection of multiple models.

Several model selection criteria can be employed in our multimodel approach. We
particularly propose two methods based on the analysis of fitting errors (minFE) and
prediction errors (minPE). The minFE criterion selects the model that obtained the mini-
mum fitting error during its generation. On the other hand, minPE selects the model that
obtained the smallest prediction error in the last predictions.

5.4 experimental evaluation

For a deeper comprehension of the benefits and limitations of the multiple model ap-
proach, the following subSections present an evaluation of modeling overhead, predic-
tion horizon sensitivity, accuracy depending on the number of observations, accuracy
under unexpected events, and accuracy combining several models. In order to evaluate
the error we employ the metrics shown in Table 5.3. The mean average error (MAE), the
root mean square error (RMSE), and the mean absolute percentage error (MAPE). The
MAE calculates the average absolute magnitude of the errors, while the RMSE measures
the quadratic average magnitude of the error. The RMSE is particularly affected by out-
liers, while MAE weights all the residuals equally [56]. Situations where RMSE>>MAE
are highly undesirable. MAE and RMSE are both scale-dependent measures, for relative
comparisons we employ the MAPE as it measures the accuracy in percentage.
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Error Definition

MAE 1
n

∑n
i=1 |Xi − X̃i|

RMSE
√

1
n

∑n
i=1(Xi − X̃i)2

MAPE 100
n

∑n
i=1

∣∣∣Xi−X̃i

Xi

∣∣∣
Table 5.3: Definition of employed error metrics.

Package Version Provided methods

Forecast [99] 3.24 ARIMA and Holt-Winter models

FitAR [63] 1.92 ARz models

R [71] 2.15 General statistical functions

Table 5.4: R packages versions used in the experiments run in an Intel Xeon with four cores at 2

GHz and 4 GBytes of memory.

5.4.1 Modeling overhead

In order to have a better comprehension of the modeling overhead, we automatically gen-
erate the predictions for our datasets using ARIMA, Holt-Winters and ARz models for
different k observations. Figure 5.14 shows the time elapsed to generate the models (iden-
tification and parameter estimation stages) for the Last.FM dataset. We use a granularity
of days, computing for each k value one different model each time we require a new
prediction. The showed values are the mean of 5 executions. ARz models are discarded
from this comparison as these models can only be computed when the model order p
is larger than the number of observations, requirement not fulfilled in this dataset. We
highlight two results. First, it exists a significant difference in the time elapsed between
ARIMA and Holt-Winters. This is due to the exhaustive search of temporal correlations
done by ARIMA. This fact permits Holt-Winters to spend less time in the identification
stage. Second, a larger number of observations incur in a larger overhead.
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Figure 5.14: Model generation overhead for the Last.FM dataset.

We repeat the same experiment for the 1998 World Cup dataset using intervals of 5 and
1 minutes as shown in Figures 5.15a and 5.15b respectively. We know that the workload
has a daily pattern, thus we employ a set of observations that captures this daily pattern.
In particular for the 5 minutes intervals we use 6, 12, 24, 36 and 48 hours that correspond
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Figure 5.15: Model generation overhead for the 1998 World Cup dataset.

with k values 72, 144, 288, 432 and 576 observations respectively. A similar approach is
followed in the case of one minute observations.

We observe similar elapsed times for k 6 360 using 1 minute granularity and k 6 432

in 5 minutes granularity. However, we note a dramatic increment when k > 720 for a
granularity of 1 minute when using ARIMA and ARz. For k > 720 (half day) ARIMA
requires more than 1.5 seconds, whereas ARz only needs around 1 second. The time
reduction in ARz for k > 720 is due to the utilization of the McLeod and Zhang functions
that improve the convergence time. This results in 33% lower overhead when using ARz

for k > 720.
In the case of the Wikipedia dataset using intervals of five minutes (Figure 5.16a) the

elapsed time is always smaller than one second. When we employ one minute intervals
(Figure 5.15b), we find that even though we use the same k values as in the World Cup,
the required time is larger. Using k < 1440 the elapsed time is lower than 1.5 second for
all the methods. In particular for ARIMA the elapsed time is even smaller than in the
World Cup dataset. We observe a significant increment of the elapsed time for k > 1440,
particularly for ARz.
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Figure 5.16: Model definition overhead in the Wikipedia dataset.
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These experiments indicate the different overheads of automatic definition of ARIMA,
ARz and Holt-Winters models. We have observed how the overhead depends on the kind
of models, the granularity of the observations and the selected k value. However, we can
make general observations. Holt-Winters has the fastest model generation independently
of the time series and k value. For k > 1440 the elapsed time increases dramatically
particularly for ARz. However, using k 6 1440 requires around one second for both
ARIMA and ARz.

The modeling overhead showed in our experiments indicate that the utilization of these
automatic model generation methods may be feasible under certain restrictions. In par-
ticular, the most important restriction is the minimum elapsed time between consecutive
predictions. The implementations we have used could be improved by employing stan-
dard programming techniques such as multithreading or reducing the utilization of R
functions that are slower than native methods. Nevertheless, in the worst case 3 seconds
are enough to generate a prediction model. This overhead makes feasible the utilization
of these methods in scenarios where the prediction have to be done in intervals larger
than 3 seconds. Even with this restriction, these prediction models could have been used
in solutions such as [17, 27, 60, 79] where the predictions use a granularity of minutes.

5.4.2 Accuracy analysis varying the prediction horizon

Intuitively, the larger the prediction horizon h is, the larger is the prediction uncertainty.
We evaluate the prediction accuracy for various prediction horizons. Figures 5.17 and 5.18

show the error analysis for the Wikipedia and World Cup datasets for a fixed k = 1440

when varying h. In the Wikipedia dataset we observe that RMSE≈MAE independently of
h showing a stable error distribution. As expected, the MAPE increases with h for all the
methods. The values obtained for ARz and Holt-Winters are almost the same. ARIMA
provides the most accurate predictions with an error lower than 2%. This accuracy and
high stability is a result of the steady periodicity of the signal and the lack of unexpected
variations.

For the World Cup dataset (Figure 5.18) MAE and RMSE are significantly different.
For h = 1 the RMSE almost doubles the obtained MAE. This difference gets even larger
as h increases. The methods get similar errors with the exception of ARz that slightly
improves the RMSE for h > 10. We consider the obtained MAPE under 6% to be ac-
ceptable for all the prediction horizons. The World Cup dataset presents large variations
between the first two days and the remaining dataset. This change in the workload makes
challenging to identify suitable models.

5.4.3 Accuracy analysis varying the number of observations

Intuitively, using large k values must bring the model generators a better vision of the
workload than using small values. Generally, the number of observations to employ in
the model generation should capture at least one period. In our particular case capturing
one or two days of observations should be enough as the signal is periodic with a daily
pattern. However, it exists a trade-off among the number of employed observations, the
model accuracy and the definition overhead. For example, in the case of very long peri-
ods using all the observations in the model definition may result in a large overhead. In
order to evaluate how the selection of k may affect the generated models, we calculate
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Figure 5.17: Wikipedia dataset error analysis varying h for k = 1440.

MAE, RMSE and MAPE measures for the Wikipedia and World Cup datasets. In this
case we fix the prediction horizon to h = 5 and vary the k value.

Figures 5.19 and 5.20 show the obtained results for the Wikipedia and World Cup
datasets respectively. In the Wikipedia case we do not find any relevant variation in terms
of MAE or RMSE. However, the MAPE is reduced using larger k values. In particular, we
can get the best results using ARIMA with k = 1440 and k = 2880, which correspond to
1 and 2 days of observations respectively.

In the World Cup dataset, as in the previous case, we observe that k does not affect the
MAE and RMSE values. Nevertheless, the MAPE is particularly affected. In this dataset a
larger k does not decrease the MAPE in the case of ARIMA and ARz as it occurs for the
Wikipedia dataset. We notice that the MAPE obtained by ARIMA increases with larger k
values. We guess this might occur due to the difficulties of ARIMA to adapt to workload
variations.

These experiments indicate that the selection of k does not particularly affect the sta-
bility of the predictions, but does affect the MAPE. It is important to select k values that
correspond with the period of the signal. However, in the World Cup case we observe
how we can drastically reduce the obtained error using a number of observations that
does not correspond to any period. This situation may occur but it is difficult to identify.
For this reason, the utilization of values of k that cover at least one period seems to be a
reasonable approach.
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Figure 5.18: 1998 World Cup dataset error analysis varying h for k = 1440.

5.4.4 Multimodel prediction approach

In order to analyze the accuracy of minPE and minFE as a model selection criteria, we
have computed the predictions for the Wikipedia and World Cup datasets for k = 1440

and h = 5. The results are shown in Tables 5.5 and 5.6 for the Wikipedia and World Cup
respectively. For comparison purposes we have computed the minimum error that can be
obtained by combining the predictions of the three methods that will generate the lower
error. This approach is not realistic as we select the combination of predictions knowing
the values to be predicted. However, it defines an accuracy baseline.

MAPE MAE RMSE

Minimum 1.28 94 185

ARIMA 1.57 116 200

HW 1.62 120 217

ARz 1.62 120 207

minPE 1.62 119 205

minFE 1.57 116 203

Table 5.5: Wikipedia dataset error comparison using k = 1440 and h = 5.

In the results for the Wikipedia dataset, ARIMA obtains the best results in terms of
MAPE, MAE and RMSE. The minFE and ARIMA get similar results. This indicates that
minFE has been selecting ARIMA as the candidate model most of the time which actually
seems to be the most appropriate solution. However, minPE gets similar values to Holt-
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Figure 5.19: Wikipedia dataset error analysis varying k with h = 5.

Winters and ARz, although it slightly decreases the RMSE. In the World Cup dataset ARz

gets the best results closely followed by Holt-Winters. In this case, minFE approximates
the results obtained by Holt-Winters reducing the RMSE.

MAPE MAE RMSE

Minimum 3.47 1228 2419

ARIMA 4.26 1538 2827

HW 4.23 1496 2788

ARz 4.22 1499 2709

minPE 4.27 1510 2813

minFE 4.23 1510 2717

Table 5.6: World Cup dataset error comparison using k = 1440 and h = 5.

The previous results indicate that minFE is the most suitable solution in regular work-
load scenarios. However, we find that minPE works better during unexpected workload
spikes. Figure 5.21 shows the MAPE obtained for the unexpected Wikipedia workload
spikes using k = 1440 and h = 5
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Figure 5.20: 1998 World Cup dataset error analysis varying k with h = 5.
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Figure 5.21: MAPE obtained for the Wikipedia with unexpected events dataset.

These results indicate that minFE is a suitable model selection criterion that can help to
identify the most proper prediction method to use in different scenarios. This solution is
appropriate to scenarios where we cannot priorly identify the most appropriate model.
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5.5 summary

In this Chapter, we have covered the second objective of this thesis by investigating the
data access patterns of Internet applications and analyzing the limits of workload pre-
dictability. First, we have studied the problem of workload forecasting. Second, we have
described three workloads extracted from real systems. Finally, we provide a detailed
evaluation of aspects such as model definition overhead, and prediction accuracy using
different configurations.

We demonstrate that the utilization of fixed prediction models is not suitable for web-
based applications. Moreover, we propose the utilization of automatic methods for the
definition of prediction models. This permits to define models with a higher frequency
while reducing the human intervention. Additionally, the automatic generation makes
possible to combine several models over time selecting the most accurate one. In partic-
ular, we propose two methods called minPE and minFE that automatically select what
model to use based on the past error and the fitting error respectively.

We present a detailed evaluation of four relevant aspects of prediction models: mod-
eling overhead, accuracy when varying the prediction horizon, accuracy when varying
the number of observations and accuracy under unexpected events. The overhead of au-
tomatic modeling depends on the number of employed observations and the facility to
find periodic components among the given observations. We claim that our approach
can be employed in scenarios with a prediction granularity of minutes. Our evaluation
indicates that models accuracy significantly varies depending on the scenario and partic-
ularly if unexpected variations occur. In these cases, we demonstrate that the combination
of multiple models through models selection criteria minPE and minFE can improve the
accuracy.



6
E L A S T I C S E RV E R I N F R A S T R U C T U R E

The second component of the hierarchical architecture for content distribution proposed
in Chapter 3 is an elastic server infrastructure based on a cloud solution (Figure 6.1).
The cloud enables elastic horizontal scalability of server infrastructures, which allows
to dynamically allocate resources and to pay only for their utilization. In Chapter 4, we
described a distributed collaborative caching infrastructure that can be employed to mit-
igate the pressure in this elastic server infrastructure. By reducing the total workload
served by the infrastructure we can reduce the amount of employed resources, and there-
fore save costs. However, efficiently exploiting the dynamic resource allocation mecha-
nisms offered by clouds strongly depends on understanding and controlling the dynam-
ics of workloads and on reducing the data traffic inside the data center. Increasing scale
and demand variations pose huge challenges on developing, deploying, and evaluating
control mechanisms and policies for efficient resource allocation.

Figure 6.1: Detail of the elastic server infrastructure in the proposed architecture for content dis-
tribution.

Controlling data layout is critical for making feasible the management of large amounts
of data, as the reorganization of large data sets is severely limited by the I/O infrastruc-
ture capabilities and must not negatively impact quality of service requirements [95].
However, controlling data layout has become an increasingly difficult task as the work-
loads of Internet applications show high variability due to factors such as periodic vari-
ations (seasonality), trends, expected and unexpected events. Traditionally, these varia-
tions have been addressed by overprovisioning the infrastructure, but this approach has
been demonstrated to be costly and economically risky, as the peek volume is short-lived
and the server utilization in normal traffic periods is between 10% and 50% [11]. In
Chapter 5 we study and analyze the limits of automatic prediction methods confirming

69
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their suitability for predicting workloads. The utilization of proactive methods based on
workload prediction models can improve the utilization of resources by anticipating the
system size before needed.

This Chapter, covers the third objective of this thesis through the study of methods for
prediction and control theory to enhance data distribution on elastic server infrastruc-
tures. We propose different methods to be employed in the system controller presented
in Section 3.4. First, we introduce our solution. Second, we present the notation em-
ployed. Third, we describe the components of our proposed system controller: the adap-
tive prediction modeling, the adaptive data distribution and the system sizing. Finally,
we experimentally evaluate our proposal using the datasets describe in Section 5.2.

6.1 overview

The elastic server infrastructure is a three-layered server architecture as the one described
in Chapter 2.1. It is composed of three layers: storage backend, content servers and dis-
patchers. The available contents are stored in the storage backend which acts as a long-
term repository. Content servers answer the incoming users requests and acts as a short
term storage layer or cache. These servers reduce the number of accesses to the storage
backend. Finally, the dispatchers employ logical structures that permit to redirect user re-
quests to the content servers. These structures permit to balance the traffic among servers
avoiding bottlenecks and might employ additional intelligence to improve aspects such
as content locality. All these elements are configured by the system controller.

We assume our architecture to employ existing methods provided by a cloud platform.
These methods have to permit the addition and removal of resources from the elastic
infrastructure. Our system controller uses these methods in order to set the system size.
Internally, the system controller estimates the future state of the system and adds or
removes resources accordingly. Additionally, it organizes the dispatchers to redirect the
incoming users requests to the available content servers.

SYSTEM SIZING

Observations
PREDICTOR CHANGE

DETECTOR

ADAPTIVE PREDICTION MODELING

ADAPTIVE DATA DISTRIBUTION

DATA 
GROUPING

DATA 
PLACEMENT

New configuration

Predictions

Initial 
configuration

Dispatchers Content
Servers

Storage
Backend

Workload

Figure 6.2: Components of the system controller

The system controller is composed of the elements showed in Figure 6.2:

• The adaptive prediction modeling component has two main tasks: a) to define, moni-
tor, modify, and adapt time series workload models; b) to inform the adaptive data
distribution component about model failures that could cause reactive resource pro-
visioning actions. This component employs different workload observations to feed
two interacting modules: a predictor module and a change detector module. The
predictor module manages an extensible library of generic time-series models, which
are employed for generating forecasts at global level and group level. The change
detector module constantly monitors the prediction accuracy and takes decisions on
model change based on user-defined criteria. The adaptive prediction component
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provides a series of statistics that can be used for estimating model accuracy or for
defining criteria for model selection or model change. The predictions generated
by this component are forwarded to the adaptive data distribution component.

• The adaptive data distribution component allows to employ elastic data distribution
strategies for content servers based on two modules: data grouping and data place-
ment. The data grouping module dynamically clusters storage objects into logical
groups, which are the unit of placement and replication on the content servers. The
data placement module allows to implement adaptive data placement strategies based
on the information provided by the adaptive prediction component.

• The system sizing module dynamically scales the system by turning servers on and
off based on the information provided by the adaptive prediction module.

Our system controller offers a modular design that permits to explore a vast space of
possible solutions. We focus on exploring two issues: system sizing and data placement.
We study the utilization of autoregressive prediction models to identify the amount of
resources to use in the near future. These modifications in the system size implies modi-
fications in the data placement. We investigate how to increase content locality indepen-
dently of system size variations.

6.2 concepts and notation

The system controller is composed of a set of elements whose interfaces receive input
parameters and return a set of results based on a given configuration. For simplifying
the reading, we present the notation employed in this Chapter using three tables. Ob-
served and predicted variables are defined in Table 6.1. Table 6.2 shows the model and
evaluation criteria used. Table 6.3 contains the notation for the observed and predicted
values that are generated by the components of the system controller.

Variable description
Observed Predicted

value value

Global workload time at time t,
l(t) l̃(t)

measured in number of requests

Workload of server s at time t,
ls(t) l̃s(t)

measured in number of requests

Workload of group gj, measured
lgj

(t) l̃gj
(t)

in number of requests

Number of servers at time t n(t) ñ(t)

Probability of dispatching a
pgj

(s)request for an object in group gj
to server s

Table 6.1: Concepts and notation for observed and predicted variables.
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Variable Description

ε(t) Absolute prediction error at time t

η(t) Relative prediction error at time t

RMSE Root Mean Square Error

MAE Mean Absolute Error

MAPE Mean Absolute Prediction Error

minFE Minimum Fitting Error selection criterion

minPE Minimum Prediction Error selection criterion

GlobalCD
Global Change Detection is a method for evaluating

the model of the global workload

LocalCD
Local Change Detection is a method for evaluating

the models of the local workloads

Table 6.2: Concepts and notation for evaluation criteria.

Parameter Description

oi(t) Number of requests for storage object oi
at time t

Prediction Time series models to be used

models

h Prediction horizon

Model selection Criteria for selecting a model from several

criteria candidates

Change detection Method of deciding model redefinition

ηG Global overprovisioning threshold

εL Local overprovisioning threshold

G
Optional set of categories gj, j = 1, ..., |G|

classifying objects stored in the system

{(oi,gj)}
Optional assignment of the storage object oi
into the group/category gj

Data grouping
Method used for joining the data items

into placement groups

Data placement
Method used for distributing requests to

servers

cs
Maximum load of content server s measured

in concurrent number of requests

ds Data cache capacity of server s in megabytes

thru Server utilization target in %

Table 6.3: Concepts and notation for input parameters.
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6.3 adaptive prediction

The main goal of the prediction modeling component is to generate a set of predictions
for a given set of historic workload observations. In Section 5.3 we demonstrated how
the utilization of statically defined models is not appropriate in dynamic environments
such as user-oriented Internet applications. In order to solve this problem, we propose
the utilization of adaptive prediction techniques using model adaptability and model
change detection.

We propose to continuously redefine the prediction model to be used for the next
prediction horizon. This solves the mentioned problem of static models and permits to
adequate the predictions to the dynamics of workload. This continuous redefinition of
models may result in a delay due to the elapsed time to define the models. However,
our analysis of the elapsed time in model generations (see Section 5.4.1) indicates that
is feasible to continuously redefine models when using a time granularity of minutes.
The change detection must identify when a model is no longer suitable. This may occur
at least in two scenarios: when the generated model is not accurate enough or when
the predictions may become problematic for the system (i.e., possible underprovisioning,
low data locality, etc).

Models Family 1 Models Family 2 Models Family j...

Model Selection

Generate predictions

Change Detector

Observations

Predictions

Redefine model

PREDICTOR

Model

M1 M2 Mj

Figure 6.3: Internal structure of the adaptive prediction component.

Model adaptability and change detection are implemented in two separated interacting
modules as shown in Figure 6.3: a predictor module and a change detector module.
The predictor module automatically defines prediction models, selects among several
candidates and generates predictions from these models. The change detector module
estimates the model accuracy and relaunches the redefinition of models.

We build hierarchical prediction models at two levels corresponding to models for the
global and local workloads. A global model predicts the total workload of the system,
which helps to dynamically determine the system size. At a second level, a local model
predicts the expected number of requests for a group of items. This second level of
prediction permits to identify workload variations at a lower granularity and to control
the dynamic assignment of groups to content servers. The decomposition of the global
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workload into local workloads is managed by the data grouping module, which is part
of the adaptive data distribution component and is discussed later.

6.3.1 Prediction module

The prediction module manages models for predicting the system workload based on
observing the system status. In particular, we employ the content servers history access.
The prediction module receives as input a series of past observations (lt−k, ..., lt−2, lt−1)

and generates a time window of h predictions (l̃t, ..., l̃t+h−1) and the fitting error.
Following the multimodel approach described in Section 5.3.1, the prediction module

is able to simultaneously generate various prediction models. We differentiate two stages:
model generation and model selection.

model generation. The model generation follows the steps described in Section 5.1:
model formulation and model estimation (fitting) [82]. The model formulation iden-
tifies the form of the internal equations used by the models, while the fitting stage
estimates the model parameters by methods such as recursive least squares or max-
imum likelihood.

We employ the three family models described in Chapter 5: ARIMA [82], Holt-
Winters [44], and ARz [63]. For each of them the prediction module relies on auto-
matic model formulation and estimation tools available for the R statistical software
environment. Nevertheless, the available prediction modules can be extended, as
the prediction module interface is generic: any uni-dimensional time series family
model can be incorporated into the framework and evaluated together with other
system components.

model selection. The predictor module allows to employ several concurrent pre-
diction models and to select the best one based on various criteria, as shown in
Figure 6.3. First, a candidate model is chosen based on a family model specific
selector. For instance, for autoregressive models we use the AIC and BIC [82] cri-
teria to select the model with the best combination of low fitting error and small
number of parameters. Further, a model can be chosen from the selected candidate
models based on two criteria. We employ the minFE and minPE criteria described
in Section 5.3.1.

It has been noticed that during expected workloads the amount of requests for some
items may significantly vary [17]. For this reason, we employ two kind of models: global
and locals. The global model generates predictions for the total number of requests to
be expected at time t (l̃(t)). Local models generate predictions for the group gj at time
t (l̃gj

(t)). The number of local models to generate is the number of groups in the sys-
tem. This depends on the data grouping module, which performs the dynamic group
management.

6.3.2 Change detector module

As the workload patterns change, the prediction models can become inaccurate and have
to be either refitted or redefined. The change detection module monitors the model accu-
racy and uses change detection criteria for discovering when a model prediction becomes
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inaccurate and redefines the model when necessary. Detecting when to redefine a model
is a difficult task as it implies to distinguish between permanent changes in the work-
load and temporal fluctuations [56]. Our proposed adaptive prediction allows to define
custom criteria for change detection. Below, we illustrate this process by presenting two
change detection criteria we have already implemented for global and local models.

A model redefinition method periodically checks the accuracy of the predictions and
decides based on change detection criteria when the models have to be redefined. For
each model, the change detection module stores the past absolute error distribution
(ε(t−k), ..., ε(t−1)) and the past absolute relative error distribution (η(t−k), ...,η(t−1))
from the previous predictions of a given model, where t is the current unit of time and k
is the size of the interval for which the errors are recorded. Based on these distributions
we propose here two model redefinition criteria. The first criterion is based on the de-
tection of outliers from the relative error distribution. The second criterion detects errors
beyond an absolute threshold. These thresholds are denoted ηG for the global model and
εL for local models.

The first criterion GlobalCD (Global Change Detector) is described in Algorithm 5,
where E and σ are the mean and the standard deviation of the error distributions in
the time interval [t − k, t − 1]. First, the algorithm checks if the last absolute relative
error is an outlier of the error distribution. We use a standard outlier detection criteria,
based on which an observation is an outlier if the absolute prediction error lies more
than two standard deviations apart from the mean of the past prediction errors. If no
outlier is detected, it checks if the last absolute error was larger than ηG, the ratio of
the total planned free capacity in the system. For example, for ηG = 0.5, the global
model is redefined if the last absolute error is larger than 50% of the overprovisioned
capacity. Intuitively, ηG controls the stability of the system: decreasing its value increases
the probability of model redefinition.

Algorithm 5 GlobalCD checks and redefines the global workload model

1: //Check if l̃(t) is an outlier.
2: if η(t) < E[η(t− k), ...,η(t− 1)] + 2σ[η(t− k), ...,η(t− 1)] then
3: // Check the absolute error
4: if ε(t) < ηG · ñ(t) · (1− thru) · cs then
5: return
6: end if
7: end if
8: //Redefine the model if any criteria fails.
9: redefine(global workload model)

Similarly, Algorithm 6 describes the LocalCD (Local Change Detector) criterion. For
each local model we apply the same outlier detection employed for the global model. The
second criterion compares if the mean of the relative errors distribution is larger than εL.
The threshold εL is the number of requests directed to a group an absolute error must
not exceed. Intuitively, this threshold is necessary, as the relative error for large groups
may correspond to a significant absolute error (in number of requests). Therefore, model
change detection for large groups needs to become more sensitive to the absolute error
in order to avoid system overload.
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Algorithm 6 LocalCD checks and redefines workload models of groups
1: for all j do
2: //Check if l̃gj

(t) is an outlier.
3: if η(t) < E[η(t− k), ...,η(t− 1)] + 2σ[η(t− k), ...,η(t− 1)] then
4: //Check the absolute error.
5: if E[ε(t− k), ..., ε(t− 1)] < εL then
6: return
7: end if
8: end if
9: //Redefine the model if any criteria fails.

10: redefine(workload model of group gj)
11: end for

Both criteria GlobalCD and LocalCD are designed to asynchronously relaunch the
model definition of the affected models. This action may not necessarily be straightfor-
wardly translated into a new system configuration. We currently assume that the redefi-
nitions of the global model have to be immediately translated into a new system size.

6.4 system sizing module

The system sizing module elastically scales the system by turning servers up and down.
We employ a method based on the time series of the number of requests entering the
system. First, at time t, the global workload model generates h predictions. In order
to reduce oscillations in the system size evaluation, we take the maximum predicted
workload l̃max(t, t+ h− 1) = max(l̃(t), ..., l̃(t+ h− 1)) as the reference value for system
sizing for the next time window h. If we assume that all content servers have the same
maximum capacity of c requests per unit of time (c = cs for all s) and that the desired
utilization ratio is thru, the number of servers for the next prediction window h is given
by:

ñ(t) = ... = ñ(t+ h− 1) =

⌈
l̃max(t, t+ h− 1)

thru · c

⌉
(6.1)

Figure 6.4 shows the different variables involved in the system sizing process. Using
l̃max(t) we provision enough resources for the maximum predicted workload in the next
prediction horizon. When thru is close to 100%, the system resizes to employ the minimal
number of resources to serve the predicted demand. This may incur in the overload
of servers due to mispredictions or unexpected events. This effect can be mitigated by
reducing the value of thru. Setting the thru value is equivalent to the utilization of a
security margin or overprovisioning [16]. The most appropriate thru value depends on
the application domain. For instance, certain applications may require an optimization
of the number of employed resources rather than having unattended requests.

6.5 adaptive data distribution

The adaptive data distribution component is in charge of dynamically adapting the data
distribution based on discrete information provided from the adaptive prediction compo-
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Figure 6.4: System sizing for a prediction horizon h.

nent. This component has two main tasks: to identify how to group items and to define
data placement policies. These tasks are carried out by the data grouping and data place-
ment modules.

6.5.1 Data grouping module

The data grouping module maps storage objects oi (data items) to placement groups gj.
A placement group is a unit of data placement, i.e., it is not further divided into smaller
logical units when stored on a server or on a disk (although it can be physically divided
on several blocks when physically stored on a disk). We associate local prediction models
with placement groups. In order to make this approach efficient, groups have to be large
enough to reduce the modeling overhead and small enough to avoid that popularity
variations of individual items remain undetected.

Grouping does not only bring a logical structure to the data provided by the system,
it also permits to simplify the generation of prediction models by leveraging the peri-
odicity of the groups. Figure 6.5 shows an example of how data grouping improves the
capture of periodicity in the Wikipedia dataset. The workload before grouping corre-
sponds to four items with four different popularity ranks. The workload time series has
a clear periodic pattern for the two most popular items. However, the other items have
workloads which periodicity is difficult to find. This would make extremely difficult the
identification of appropriate prediction models for these items. This indicates that using
one model per item apart from being unfeasible due to the number of models to gen-
erate, is difficult due to the workloads of unpopular items. In this example, we show
how by grouping the items of the dataset into four equally-sized random groups the
obtained workloads with clearly defined periodic patterns making easier the generation
of prediction models. Each group may show a different pattern that should be identified
by a different prediction model. Nevertheless, this dramatically reduces the number of
models to manage while permitting to have an approximation of the future behavior for
the data managed by the system.

The data grouping module currently supports two data grouping policies: random
and affinity-based. The random grouping assigns storage objects to placement groups
randomly by using a uniform distribution. Our affinity-based grouping is based on an
affinity metric capturing the relationships between two categories. This metric is an adap-
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Figure 6.5: Example of workload before and after random grouping in the Wikipedia dataset.

tation of the metric previously described in Section 4.2.1. The affinity aij represents the
probability of a user accessing a storage object from categories Ki to access an object
from category Kj. The affinity matrix A is a square matrix of size |K|× |K|, where |K| is
the total number of categories in the system.

The aij value at time t is calculated using a version of the Jaccard coefficient. In par-
ticular, we calculate the probability of a user demanding objects from category Ki to
demand objects from category Kj as:

aij =
|Ut

i ∩Ut
j |

|Ut
i ∪Ut

j |
(6.2)

where Ut
i contains the set of users consuming content from Ki at time t.

Our affinity metric is calculated for the object category, not for the object itself. While
it is possible for an object to have its own category, we are interested in grouping objects
by category, whenever a category is probable to reflect potential spatial and temporal
locality patterns. The affinity metrics are calculated based on a configurable time window.
The time to recalculate the affinity metrics is intended to be large, as user tastes may not
vary in the short term.

The Algorithm 7 describes how our affinity-based data grouping works. First, we se-
lect the most popular category in the system as seed for the algorithm. With this seed,
we select the Kmin categories that maximize the affinity. If the load calculated for the
categories contained in the group does not reach the threshold thrG, we keep on adding
categories until we reach it. The process is repeated iteratively until all the categories are
assigned to a group.

For selecting groups of categories maximizing the sum of their mutual affinities, we
use a greedy algorithm that selects the pair of categories (i, j) with affinity aij and adds it
to an empty result set. Subsequently, it iteratively selects from the remainder categories,
the one that maximizes the affinity of the result set. This algorithm has a complexity of
O(g|K|2), where g is the size of the group. The grouping algorithm is intended to be ap-
plied only for the most popular categories. This approach drastically reduces the number
of categories considered for grouping. Intuitively, grouping the categories from the long
tail does not bring substantial benefit to locality, as they are sporadically accessed.

1-
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Algorithm 7 Affinity-based data grouping
1: i = 0

2: pending = K

3: while pending 6= {∅} do
4: i← i+ 1

5: Select a subset T with Kmin categories from pending such that the sum of their
mutual affinities is maximized

6: Assign subset T to group gi
7: Remove T from pending

8: Calculate gi workload l̃gi

9: while l̃gi
< thrG do

10: Select a category kj that maximizes the mutual affinities with the categories
assigned to gi

11: Assign kj to gi
12: Remove kj from pending

13: Update l̃gi

14: end while
15: end while

6.5.2 Data placement module

The data placement module is in charge of managing the dynamic distribution of the
groups over content servers. This distribution is controlled through two data structures:
the items catalog and the dispatching table. The items catalog is a dictionary provided by
the data grouping module that identifies what group an item belongs to. The dispatch-
ing table maps placement groups onto content servers and is used for redirecting user
requests to these content servers. The table consists of three columns: placement groups,
servers, and dispatching probabilities. Each group is associated with a set of servers with
a certain dispatching probability. Each server is associated a probability interval, which
controls the amount of requests redirected to each server at placement group granularity.
To determine where to redirect a request, the dispatcher generates a uniform random
number between 0 and 1 and identifies the server in charge of the group based on the
probability distribution interval which contains that number.

Figure 6.6 shows an illustrative use case where a user requests the object o100 to one
available dispatcher (1). The dispatcher checks the item catalog and gets the group the
item belongs to, in this case g1 (2). Once the group is identified, assume that the dis-
patcher generates the random number 0.48. After checking the dispatching probabilities
for g1, it selects the server s2 as 0.48 falls in the second dispatching probability interval
(3). Finally, the request is processed by server s2 (4).

In our design, storage objects are transferred from the storage backend to the content
servers when these does not find the requested content. This means that an intelligent
distribution of requests among servers can reduce the traffic in the storage backend.
In this respect, the data placement module allows for custom implementations of the
dispatching table construction. Nevertheless, the final construction has to guarantee a
fair balance of the requests among the content servers while not exceeding the desired
utilization threshold thru.
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Figure 6.6: Data placement module use case example showing the utilization of the items catalog
and the dispatching table.

We address the table construction as a bin-packing problem [93] where the group gj
with size l̃gj

(t) have to be assigned to content servers s1, s2, ..., sn, which are bins with
capacities thru · cs. As the bin-packing problem is NP–Complete, we employ the first-
fit greedy approximation. Algorithm 8 shows how to construct the dispatching table
through this method assuming that the capacities of all servers are the same (cs = c

for all s) and that the target utilization threshold is thru · cs. This approach iteratively
assigns the group with the largest predicted workload to the server with the largest free
capacity until all the groups have been assigned.

Algorithm 8 Dispatching table update.
1: for all j do
2: //Total group load prediction to assign
3: toAllocate = l̃gj

4: //While there is some group load to assign
5: while toAllocate > 0 do
6: //Select a server with available load
7: s = selectNextServer()

8: //Decide how much load to assign to this server
9: assignedLoad = assign(toAllocate, s)

10: //Update the dispatching table
11: updateDispatchingProbabilities(s,assignedLoad)
12: //Calculate the remaining load to assign
13: toAllocate = toAllocate− assignedLoad

14: end while
15: end for
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The selectNextServer, assign, and updateDispatchingProbabilities methods allow
for implementing multiple policies in the dispatching table. The simplest approach is to
uniformly distribute the groups among the servers (RRD policy) with the same probabil-
ity for every group in every server. This solution does not take advantage of local model
predictions. To take advantage of local models, we propose OLARD (Oblivious Locality-
Aware Request Distribution). OLARD calculates the dispatching probability interval as
the ratio of the local predictions l̃gj

(t) assigned to a server. OLARD defines a minimum
number of groups that have to be stored in one server to avoid situations where a server
only returns objects belonging to a single group. This solution adaptively modifies the
amount of traffic redirected to the servers depending on the given predictions. The idea
behind OLARD is to distribute the workload of groups becoming popular to additional
servers while trying to maintain content locality even under system size variations.

OLARD is oblivious with respect to previous assignments of placement groups to
content servers. This is highly undesirable as it does not exploit data locality on the
servers. This fact adds more complexity to the problem as content locality has to be pre-
served among servers through the constructions of the dispatching table. To mitigate this
problem we propose the ABLARD (Affinity-Based Locality-Aware Request Distribution)
approach that takes into account the groups that were previously assigned to a server.
In order to do this, the ABLARD policy uses a content summary table. This table con-
tains the ratio of dispatched requests per group and server. When assigning a group to a
server, the summary table is used to greedily select the server with the largest previous
assignment share for that group. In this way, we increase the chance to allocate content
in a server that previously stored it.

6.5.3 Evaluation metrics

This Section presents the metrics used in our experimental evaluation, which are summa-
rized in Table 6.4. We discuss three categories of metrics: system sizing metrics, server
utilization metrics, and content locality metrics.

system sizing metrics . These metrics estimate the efficiency of server provisioning
based on the optimal number of servers that could have served that workload. Their
main goal is to evaluate how far the provided resources are from the optimum.
For a given server capacity cs, the optimal number of provisioned servers can be
calculated by:

nopt(t) =

⌈
l(t)

cs

⌉
(6.3)

where l(t) is the total number of requests received by the system at time t. Using the
optimal server provisioning value we define the relative provisioning error ηp(t)
as:

ηp(t) =
ñ(t) −nopt(t)

nopt(t)
(6.4)

where ñ(t) is the number of provisioned servers at time t. Based on the calculated
values for the relative provisioning errors in a time interval between t1 and t2, we
calculate the overprovisioning rate ro(t1, t2) as the mean of all positive relative
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System sizing metrics

n(t) Number of servers provisioned at time t

nopt(t) Optimal number of servers at time t for a server load target thru
n(t1, t2) Average number of servers provisioned between t1 and t2
ηp(t) Relative provisioning error at time t

ro(t1, t2) Overprovisioning rate of all servers between t1 and t2
ru(t1, t2) Underprovisioning rate of all servers between t1 and t2

Server utilization metrics

us(t) Utilization of server s at time t (in %)

u(t1, t2) Average server utilization between t1 and t2 (in %)

σu(t1, t2) Standard deviation of server utilization between t1 and t2
Locality metrics

hits(t1, t2) Hit rate of server s between t1 and t2
hit(t1, t2) Average hit rate of all servers between t1 and t2
hit(t) Average hit rate of all servers at time t

Table 6.4: Evaluation metrics.

provisioning errors and the under-provisioning rate ru(t1, t2) as the negated mean
of all negative relative provisioning errors (i.e. both ro and ru have positive values).

ro(t1, t2) =
1

|T |

∑
t∈T

ηp(t) with T = {ti, ..., tj},where ηp(i) > 0 ∀i ∈ T (6.5)

ru(t1, t2) = −
1

|T |

∑
t∈T

ηp(t) with T = {ti, ..., tj},where ηp(i) < 0 ∀i ∈ T (6.6)

As far as we employ a desired threshold utilization thru > 0 there will be overpro-
visioning (ro 6= 0). Nevertheless, to obtain ru > 0 is not desirable as it may indicate
a decrement in the quality of service.

server utilization metrics . We calculate the utilization of a server s at time t,
denoted us(t), as the ratio between the number of served requests ls and the server
capacity cs. Based on these values we calculate aggregation metrics such as the
average server utilization between t1 and t2 denoted u(t1, t2). This metric allows
for identifying how close the server utilization is to the desired threshold thru.
The servers load balance for that interval is estimated as the standard deviation of
server utilization and denoted by σu(t1, t2). The lower σu, the better load balance
obtained in the system.

locality metrics . Each server maintains an object cache with a configurable size ds.
To measure the content locality we evaluate the hit rate in each server. This hit rate
for a period between t1 and t2 is denoted as hits(t1, t2) and measures the rate of
requested objects found in cache memory for that period. We denote the average
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hit rate of all servers at time t as hit(t). For a period of time we note the average
server utilization as hit(t1, t2).

6.6 experimental evaluation

This Section demonstrates how our system controller can be used for browsing the pa-
rameter space of the data distribution in an elastic server infrastructure. Our evalua-
tion employs the datasets described in Section 5.2 based on the traces from Last.FM,
Wikipedia and the 1998 World Cup described in Section 5.2. Table 6.5 overviews the set
of input parameters employed by the experiments discussed here.

For brevity reasons we use the following naming conventions. Adding the suffix "+A"
indicates that a method uses model adaptability based on change detections. For instance
HW+A denotes the utilization of Holt-Winters with the change adaptivity enabled. We
evaluate a three-tier platform as the one showed in Figure 6.1 using an event-discrete
simulator. For simplifying the analysis we make the following assumptions. The system
has a variable number of dispatchers, which simply scale with the number of client re-
quests. The client requests coming from the outside world are uniformly distributed over
all dispatchers. The system has a variable number of content servers, whose elasticity is
controlled by our system. Finally, the storage system has a fixed size and a uniform
service time.

This Section is organized into five parts, which illustrate how our proposed system
controller can be used for evaluating adaptive data placement strategies: evaluation of
prediction accuracy for global and local models (Section 6.6.1), change detection stability
(Section 6.6.2), system sizing (Section 6.6.3), server utilization and load balance (Section
6.6.4), data locality (Section 6.6.5), over- and underprovisioning (Section 6.6.6).

Parameter Value

Prediction models Holt Winters (HW), ARIMA, and ARz
Model selection criteria minPE and minFE

Change detection methods GlobalCD and LocalCD

h 30

ηG 0.5

εL 200

System sizing Predictive, Predictive+Adaptive

Data grouping Random and Affinity-based

Data placement RRD, OBLARD, and ABLARD

ds 512, 1024 and 2048 MBytes

thru 75%, 80%, 85%, 90%, 95%

cs 2000

Table 6.5: Evaluation parameters.
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6.6.1 Local models accuracy

In this Section, we compare the prediction accuracy for local models based on the number
of groups generated using the Wikipedia dataset. For comparison we consider both single
family models (HW, ARIMA, and ARz) and combination of family models (minPE and
minFE).
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Figure 6.7: Average and accumulated prediction error for local models, when using 1, 5, 10, 20,
and 40 placement groups in the Wikipedia dataset. Using 1 group means that only the
global model is used.

We measure the prediction errors for equally-sized random groups. We split the avail-
able items into 5, 10, 20, 30 and 40 groups. Figure 6.7a shows the average of the mean
absolute error (MAE) per group when predicting the workload at the granularity of a
group(l̃gj

(t)). It can be noticed that the error decreases as the number of groups incre-
ments, which indicates that the utilization of local models increases the accuracy of local
workload predictions. However, even though the average error per group decreases, the
accumulated MAE of all groups increases, as it can be observed in Figure 6.7b. This plot
demonstrates that using one model for predicting the global workload results in better
accuracy than the aggregation of the predictions of the local models.

6.6.2 Model change detection

The utilization of the change detector module of the adaptive prediction modeling com-
ponent addresses situations of unexpected workload variations that cannot be detected
by the working models. This adaptivity has to reduce the obtained prediction error, and
should also permit to dynamically modify the prediction window based on the obtained
error.

Figure 6.8 shows the MAPE of global workload models for w1, w2, and w3 from
the Wikipedia dataset with unexpected workload variations. The average error is under
5% in all scenarios (under 8% if we add the standard deviation). We observe that the
largest error and standard deviation is obtained for w2 due to the sudden volume spike.
The utilization of adaptability based on change detection significantly reduces both the
average error and the standard deviation. In particular HW+A, ARz+A and minPE+A
provide the best results.
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Figure 6.8: MAPE of the global workload models for w1, w2, and w3 in the Wikipedia dataset.

Figure 6.9 shows the average time to force a redefinition of the prediction models for
w1, w2, and w3 workload spikes of the Wikipedia dataset using the prediction horizon
h = 30. We observe that all the methods recalculate the model each 10 minutes on
average. In particular, minPE+A takes on average 11 minutes for w2. This corresponds
to the fact that minPE+A obtains the best predictions in that scenario (Figure 6.8), with a
lower error the redefinition of models is delayed. The fact that all the methods redefine
their models every 10 minutes reveals that h = 30 is too large for this scenario under the
given configuration.
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Figure 6.9: Average time used by proactive prediction methods to recalculate their models using
h = 30.

6.6.3 System sizing

In this Section, we explore the evolution of system sizes. Figure 6.10 shows the global
load l(t) and the total number of provisioned servers ñ(t) for the three Wikipedia work-
loads with unexpected events (w1, w2, and w3) using thru = 80%, random grouping,
OLARD based on Holt Winters, and ds = 2048 MB. We observe how the number of
provisioned machines adequately evolves with l(t) at a certain distance due to the over-
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provisioning. Most of the size variations only need to add or remove one machine. This
changes with the peak in w2. The workload increases so fast that the predictions recom-
mend to add three machines at a time.
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Figure 6.10: Example of system size variation for Wikipedia workloads, using thru = 80%, ran-
dom grouping, OLARD based on Holt-Winters, and ds = 2048 MB.

Obviously different prediction models generate different predictions over time, there-
fore different amount of resources may be provisioned. Figure 6.11 shows the saved
machine time of various server provisioning approaches, when compared with the tra-
ditional approach of statically provisioning a percentage over the maximum workload
for w1, w2, and w3 workloads of the Wikipedia dataset. In this experiment, we statically
provision 10% over the maximum workload i.e. thru = 90%. We employ all the pre-
diction methods currently available in our solution with change detection disabled and
enabled (ARIMA, ARIMA+A, ARz, ARz+A, HW, HW+A, minPE, minPE+A, minFE, and
minFE+A), thru = 90%, random grouping, OLARD, and ds = 2048 MB. We calculate for
both approaches the statically and the elastically the total amount of time machines that
have been provisioned. Then, we calculate the saved machine time by comparing both
values. The results indicate that the saved machine time is around 30% for w1 and w3,
and 50% forw2. The savings are larger forw2 as this workload has a higher peak than the
other workloads. This lower machine time makes our solution suitable for energy-aware
solutions that try to reduce energy consumption by turning off machines.
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Figure 6.11: Saved machine time compared with a static approach provisioning the maximum
number of servers needed to serve the given workload. The example uses thru =

90%, random grouping, OLARD, and ds = 2048 MB.

6.6.4 Server utilization and load balance

One of the most important objectives of any data placement technique is to maximize
the server utilization, while perfectly balancing the load. We estimate for a time interval
(t1, t2) the average server utilization u(t1, t2) and the load balance σu(t1, t2). In the op-
timal case the servers are 100% loaded and, thus, perfectly load balanced. However, this
is impractical for two reasons. First, unexpected peaks will be delayed until additional
resources will be available. Second, as the load of a server gets closer to 100%, the vari-
ance of the response time is known to increase [81]. Therefore, a small over provisioning
of 1− thru has the role of mitigating both problems.

Figure 6.12 shows how our solution allows to estimate u(t1, t2) and σu(t1, t2) using
OLARD, random grouping, thru = 90%, three prediction models (HW, ARz, ARIMA,
minPE, and minFE) with and without change detection enabled. How close the server
utilization is to the desired utilization threshold thru depends on the accuracy of the
prediction methods, global and local. The global model defines the system size, this
may explain why using ARIMA the average utilization is closer to 80% instead of 90%.
However, generalizing we can claim that the average server utilization does not exceed
the threshold in any case. We observe that the utilization of change detection improves
the average server utilization in all cases. The load balance is stable: σu is approximately
2% for w1 and w3, and 3% for w2.

6.6.5 Locality-aware requests distribution analysis

An important indicator of the efficiency of a data placement policy is data locality. Elastic
infrastructures have the additional problem of system variations when trying to conserve
content locality. When turning off a machine the requests have to be distributed to the
working servers. Every request to an object not stored in cache results in a request to
the storage backend. A large data locality is translated into less requests to the storage
backend. We analyze the data locality through time by calculating the average hit rate
at time (t hit(t)) for w1, w2 and w3 Wikipedia scenarios using thru = 80%, h = 5

• o D 
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Figure 6.12: Average server utilization u(t1, t2) (bars) and load balance σu(t1, t2) (dashed lines)
for w1, w2 and w3, thru = 90, and OLARD data placement.

and Holt-Winters for the local and global models. Figures 6.13, 6.14 and 6.15 show the
obtained results with the grey line indicating the hit rate and the black line the number
of machines.

We observe that there is no difference among the three policies in the number of
employed machines as they employ the same global prediction method. However, the
hit rate is affected by the selected policy. Server caches are empty when starting the
experiment. The hit rate increases for all the policies until the first size variation occurs at
minute 200. From this point on, we observe clear differences depending on the employed
policy. RRD shows a low hit rate variability in all scenarios, except during the unexpected
workload peak inw2. On contrast, OLARD increases the hit rate in all the scenarios when
compared with RRD. We observe that certain system size variations produce short-term
drops that do not occur in RRD. This occurs due to the redirection of requests from
groups to other servers that now have to serve objects that might not have stored before.
This is due to the fact that OLARD does not take into account past cache contents when
updating the dispatching table. As explained in Section 6.5.2 ABLARD is intended to
mitigate this problem by taking into account the past cache contents when updating
the dispatching table. ABLARD obtains a hit rate similar to the one obtained in OLARD
when no variations are present. However, ABLARD achieves a higher hit rate stability
during system size variations. In particular, we observe that, when removing machines,
ABLARD gets up to 10% more hit rate than OLARD.

Apart from analyzing the system data locality over time, we summarize the obtained
results by calculating the average hit rate for a period of time over all the servers as
hit(t1, t2). Figure 6.16 shows a comparison of average hit rates among the mentioned
three data placement policies employing Holt Winters as prediction model. We evaluate
the average hit ratio for the Wikipedia workloads using thru = 90%, random grouping
and ds = 2048. The results show that our proposed policies get a significantly higher
average hit rate when compared with RRD for the three workloads. OLARD gets 35%
more hit rate than RRD for w1. For w2 and w3 our solutions get 20% higher hit rate
than RRD. Finally, there is not a significant improvement on average between OLARD
and ABLARD.

• o o 
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(b) OLARD
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(c) ABLARD

Figure 6.13: Hit rate and number of servers for w1 from the Wikipedia dataset for thru = 80%,
h = 5, ds = 2048 MB, and Holt-Winters as prediction method.
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(b) OLARD
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(c) ABLARD

Figure 6.14: Hit rate and number of servers for w2 from the Wikipedia dataset for thru = 80%,
h = 5, ds = 2048 MB, and Holt-Winters as prediction method.
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(b) OLARD
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(c) ABLARD

Figure 6.15: Hit rate and number of servers for w3 from the Wikipedia dataset for thru = 80%,
h = 5, ds = 2048 MB, and Holt-Winters as prediction method.
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Figure 6.16: Hit rate for w1, w2 and w3 from the Wikipedia dataset using thru = 90%, random
grouping, Holt Winters, and ds = 2048 MB with RRD, OLARD and ABLARD.

In a second analysis, we study the content locality resulting when varying the cache
size ds. We use the same parameters as in the previous experiment, except that we only
focus on w2 workload using three different cache sizes ds = 512 MB, 1024 MB, and 2048
MB. As expected, the hit rate increases with the cache capacity for all methods. However,
OLARD and ABLARD get 15% improvement over RRD for the three cache sizes. This
demonstrates that independently of the employed cache size our solutions outperform
RRD.
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Figure 6.17: Hit rate forw2 from the Wikipedia dataset, using thru = 90%, random grouping, and
various server cache sizes ds = 512 MB, 1024 MB, and 2048 MB for RRD, OLARD
and ABLARD.

In Section 6.5.1 we describe an affinity-based data grouping method. We analyze the
evolution of the contents assigned to the servers calculating the average Jaccard coeffi-
cient for the groups assigned to a server through time. The closer the metric is to 1, the
better is the temporal content stability. Figure 6.18 shows for each of the 30 servers used
in the simulation the mean of the values for this metric over the whole trace duration and
the associated standard deviations for an execution using the Last.FM dataset. The first
18 servers show a value larger than 0.8, demonstrating that the popular and affine items
have a high temporal stability. The value diminishes for servers 19, 20 and 21. These
servers are likely to store contents that are less popular being more likely to migrate
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content between servers. Finally, the less popular events are mapped on the last servers
which explains the high stability.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Server

A
v
g

 J
a

c
k
a

rd
 c

o
e

ff
ic

ie
n

t

Figure 6.18: Dynamics of content across servers for a simulation using the Last.FM dataset mea-
sured using the Jaccard coefficient.

6.6.6 Over- and underprovisioning evaluation

CONDESA permits to define a desired utilization threshold thru that configures the
system to work with a pre-defined ratio of overprovisioning. However, even when the
average server utilization is the indicated in the configuration, it exists the possibility of
having periods of underprovisioning specially during unexpected workload peaks. This
problem can be solved by overprovisioning a large portion of resources, but this is not
desirable. It exists a trade-off between increasing thru and avoid underprovisioning that
depends on the accuracy of the employed prediction method, the configured thru and
the workload variations.

We explore the over- and underprovisioning for all the proposed prediction methods
and various thru values in the w2 Wikipedia scenario. Figure 6.19 shows the overprovi-
sioning and underprovisioning rates for executions using random grouping and OLARD.
For each thru value, there are ten points corresponding to the employed prediction
method: ARIMA, ARIMA+A, ARz, ARz+A, HW, HW+A, minPE, minPE+A, minFE, and
minFE+A. The x-axis of each point on the plot represents the underprovisioning rate ru
and the y-axis the overprovisioning rate ro, respectively.

We observe in Figure 6.19 three main clusters of points. First, the upper left cluster
with ro larger than 0.15 and ru lower than 0.01 contains mostly points corresponding to
target utilization rates thru of 75% and 80%. Second, the lower left cluster is the closest
to the ideal under- and overprovisioning values and contains ro values between 0.0 and
0.15 and ru values between 0.0 and 0.01 corresponding mostly to target utilization rates
thru with values between 85% and 95%. Third, the lower right cluster contains points
representing low ro values and ru values larger than 0.01, corresponding to target uti-
lization rates thru with values larger than 95%. We notice that, as expected, as the target
system utilization gets closer to the 100% value, the underprovisioning rate increases,
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which has to be avoided. Independently of the underprovisioning that can be assumed,
the suitable combinations of prediction method and thru are in the lower left cluster.
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Figure 6.19: Overprovisioning rate ro and underprovisioning rate ru for workload w2 from the
Wikipedia dataset using random grouping, OLARD, various values of thru (75%,
80%, 85%, 90%, 95%, and 99%), five prediction methods (ARIMA, ARz, Holt Win-
ters, minPE, and minFE), and enabled/disabled change detection for the prediction
models.

For thru > 90% we observe that becomes very difficult to avoid underutilization in-
dependently of the employed method. When using thru 6 90 there are methods that
avoid underprovisioning thus, we can consider 0.9 as the upper bound for the employed
prediction methods here. To define what method is the most appropriate, we select the
method that produces the lowest ru for each combination of scenario and thru. We show
the candidates in Table 6.6. We observe that for w2 the best candidates employ change
detection. In contrast, in scenarios w1 and w3 where the variation of the global workload
is slower, disabling the change detector may get suitable results.

thru w1 w2 w3

75 ARz+A ARz+A ARz+A

80 ARz ARz+A ARz

85 HW+A ARz+A ARz

90 ARIMA minFE+A HW+A

95 minFE minFE+A ARIMA+A

Table 6.6: Best prediction models for different scenarios and thru for w2 Wikipedia scenario.

6.7 summary

This Chapter covers the third objective of this thesis by exploring the design space of
control methods for elastic server infrastructures. This infrastructure is one of the com-
ponents of our proposed hierarchical architecture for content distribution. The infrastruc-
ture is supervised and configured by a system controller. This controller is designed to
configure two aspects of the infrastructure: the system size and the data distribution.
We employ automatically defined prediction models that permit to proactively identify
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the incoming workload. Moreover we add adaptivity to changes by detecting inaccurate
models and reacting under unexpected events. Using the system controller we study the
interplay between five data related strategies: workload prediction, adaptive control of
data distribution and server provisioning, adaptive data grouping, adaptive data place-
ment, and adaptive system sizing.

We have demonstrated how our system controller provides a powerful framework
for browsing the design space of adaptive data distribution policies. We carry out an
experimental evaluation using real traces extracted from Wikipedia and a collection of
synthetically modified workloads with unexpected events. First, we analyze the accu-
racy of local models and demonstrate their utility to identify local workload variations.
Second, we evaluate the impact of model change detection on prediction accuracy and
how adaptive methods can be used for choosing and adequate prediction horizon. In
particular, we observe an improvement in the stability of the predictions and a reduction
in the obtained error. Third, we demonstrate how the adaptive prediction can be used
for sizing a server system with up to 30% of time machine saving when compared with
static approaches. Fourth, we have shown how prediction models can be employed in the
design of locality-aware content placement policies. We demonstrate that independently
of system size variations our locality-aware techniques can reduce up to 20% the traffic
in the storage backend. Finally, we have shown how prediction models, change detection
strategies and data placement policies can be combined and compared based on sever
utilization, load balance, over- and underprovisioning, and data locality.





7
C O N C L U S I O N S

In this thesis, we have proposed and studied a hierarchical content distribution ar-
chitecture for large scale on-line communities that combines decentralized systems
and cloud-based infrastructures. We have fulfilled the three objectives presented in Sec-
tion 1.2:

O1 Explore a decentralized content distribution solution that leverages users prefer-
ences and community knowledge, in order to reduce pressure on the back-end
infrastructures by improving content locality. In Chapter 4, we present a cluster-
based locality-aware collaborative system that employs user knowledge to improve
data locality. We employ a scalable solution based on a structured network topol-
ogy that organizes users into clusters of interest. We carry out an experimental
evaluation with real traces demonstrating that our solution increases content local-
ity while improving search latency and recall. Furthermore, we demonstrate how
community knowledge can be employed to identify the affinity between clusters of
interest and how to use this knowledge.

O2 Study the data access patterns of Internet applications, analyze the limits of
workload predictability, and investigate solutions to adapt to workload variabil-
ity. In Chapter 5, we explore the problem of forecasting web application workloads.
We propose to employ automatically defined autoregressive prediction models to
abstract away the user from the model definition process. Additionally, we pro-
pose the utilization of a multi-model approach that relieves the user from choosing
which family of models is the best. Our experimental evaluation with three differ-
ent real workloads and standard tools indicate that the overhead of automatically
defining the prediction models is acceptable in the scope of this thesis. Moreover,
we propose two model selection criteria that permit to combine multiple models
demonstrating how this combination of models permit to improve accuracy.

O3 Propose and study methods of prediction and control theory to enhance data dis-
tribution on elastic server infrastructures. In Chapter 6, we explore the interplay
of five data related strategies: workload prediction, adaptive control of data distri-
bution and server provisioning, adaptive data grouping, adaptive data placement,
and adaptive system sizing. We propose the design of a modular system controller
in charge of supervising and configuring elastic infrastructures. We demonstrate
that automatically generated prediction models can be employed to determine the
system size. Additionally, we describe adaptive methods to detect unexpected de-
mand variations that permit to adapt the system accordingly. Moreover, we demon-
strate that the utilization of prediction methods can be employed in the design of
locality-aware data distribution techniques that can reduce the traffic in the storage
backend while maintaining load balance.

The design and evaluation of content distribution solutions is a complex task. The
design space is vast and impossible to cover completely in a thesis. In this thesis, we
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have explored ideas to design low cost and highly scalable solutions by combining ex-
isting technologies such as P2P and cloud computing. We have made a significant effort
to design methods to improve content locality in both distributed and server infrastruc-
tures. In the case of distributed infrastructures a high locality permits to improve search
latency and recall. In server infrastructures the locality reduces the traffic in the stor-
age backend. Additionally, we have explored the limits of workload prediction using
different real workloads. We have extended the classic vision of workload forecasting
in existing works [22, 38, 79, 17] by adding reactive components to prediction models
in order to adapt to unexpected workloads. The combination of reactive and proactive
models permit to have a future vision of the system while reacting in case of unexpected
workloads or inaccurate models.

The utilization of proactive and reactive methods to determine the system size can be
extended to other fields not directly related with content distribution. We have proposed
a solution to design locality-aware content distribution policies based on this proactive
and reactive duality. In this sense, we have proposed a set of data structures and updating
mechanisms that deliver the content among a set of servers with limited resources taking
into account the future demand. Our current approach is based on the idea of allocating
contents taking into account the server capacity. However, other approaches taking into
account response time, SLAs, energy consumption, cost, etc., can be easily designed
based on our solution.

The evaluation of content distribution architectures is complex and has many aspects
to be covered. We have evaluated an important set of them including content locality,
resources utilization, load balance or over- and underprovisioning. However, some of
them such as average response time, SLA violations, energy consumption, cost, etc., re-
main outside the scope of this thesis. We strongly believe that our methods and solutions
can improve the results obtained in many of the mentioned aspects. However, evaluating
these aspects requires complete implementations and remains for future work.

Finally, we find extremely difficult to make fair comparisons of our approach with
other existing solutions. As mentioned in Chapter 2 it does not exist a common evalua-
tion dataset that permit to compare values such as models accuracy or content locality
among others. Additionally, existing works do not make their implementations available,
or simply preparing a comparable evaluation scenario becomes time-consuming, unfeasi-
ble or even impossible due to the lack of information about how the evaluation was done.
We believe that the definition of a common evaluation dataset or comparison framework
remains crucial for the simplification of existing solutions.

7.1 contributions

This thesis makes the following contributions:

C1 We design a cluster-based locality-aware self-organizing P2P system leveraging
collaborative classification. First, the system exploits Web 2.0 collaborative content
classification in order to automatically improve content locality. Second, we pro-
pose a novel affinity-based metric for estimating the distance between clusters of
interests. Third, we use a logarithmic-time parallel flooding algorithm that aims to
achieve high data recall, high tolerance to node failure, and no redundant commu-
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nication. Fourth, we propose a greedy cluster placement algorithm, which reorga-
nizes clusters based on affinity in order to increase content locality.

C2 We propose a novel multi-model technique for improving hierarchical workload
prediction accuracy at aggregate and group levels. The utilization of a hierarchy of
models allows to detect workload changes at a finer level. Additionally, employing
simultaneously multiple automatically generated prediction models permits to de-
termine the appropriate prediction models to be used in each situation increasing
the prediction accuracy.

C3 We propose novel locality-aware data management policies based on predictive
models for elastic server infrastructures and demonstrate that they improve con-
tent locality. We demonstrate that employing prediction models in data manage-
ment permits to design efficient locality-aware content distribution policies. Addi-
tionally, we propose techniques to combine several predictions models and demon-
strate that they improve predictions accuracy and permit to abstract the user away
from the task of selecting the most adequate models.

C4 We propose novel techniques for adaptive control of elastic server infrastructures.
These techniques provide adaptability to changes by automatically detecting inac-
curate models and reactive model redefinition. We demonstrate how the utilization
of these techniques permits to estimate change point detections increasing accu-
racy. Moreover, we introduce novel metrics for evaluating efficiency of dynamic
content distribution and server allocation policies. Using these metrics we provide
a detailed evaluation of several aspects such as content locality, resource utilization
and overprovisioning. In our evaluation we use traces extracted from real systems
synthetically extended to contain unexpected workload peaks.

7.2 future work

After the completion of this thesis we identify various future research lines:

• Elastic distributed file systems. In this thesis, we have proposed an elastic server
architecture for content distribution. However, this architecture can be extended to
other application scenarios such as elastic distributed file systems. Our methods
for determining the system size, data groups, and data placement can be easily
adapted to this scenario. However, the utilization of our prediction mechanisms to
forecast the number of I/O operations, how they affect the system performance
and how to take advantage of proactive are research challenges to be addressed.

• Framework for the design and comparison of system controllers. In this thesis, we
have proposed the design of a system controller for elastic server infrastructures.
We have used this controller to evaluate several methods for adaptively determin-
ing the system size and configuring the content distribution while improving con-
tent locality. Based on our experience, we have already started to extend this frame-
work as a research tool for designing, implementing and evaluating methods for
elastic data distribution and management. Our idea is to offer this framework as a
tool to combine existing methods for determining system size or configuring data
distribution. We strongly believe that the design and share of a generic framework



100 conclusions

might significantly facilitate the comparison of existing solutions, making easier to
decide which is the best one.

• Integration with real infrastructures. Based on our experimental evaluations, we
have acquired a detailed background about the problems of elastic server infras-
tructures. Additionally, we have proposed solutions for several aspects such as
determining the system size or increasing content locality. We plan to integrate our
solutions with real infrastructures such as Amazon EC2 [2] or OpenStack [66]. Our
idea is to provide an on-line tool for elastic content server infrastructures. Moreover,
this integration will permit us to further adapt our solutions to the particularities
of each infrastructure and to deal with aspects such as cost or SLAs.

• Energy-aware infrastructures. Our current elastic server infrastructure approach
permits to save energy by shutting down machines when they are not needed. The
ideas proposed in this thesis can be extended to develop energy-aware solutions in
order to minimize the energy consumption. Our ideas can be particularly relevant
for owners of data centers where intelligent methods to adequate resources are
directly translated into a reduction of energy costs. It is also possible to extend our
solutions to design methods that explore the amount of energy needed in order
to translate content among servers. This results into an optimization problem that
tries to find the best data movements in order to save energy, while satisfying the
incoming demand.

7.3 thesis results

The main contributions of this thesis have been published in international conferences
and journals. We enumerate the publications classified into journals, conferences and
workshops. Additionally, we indicate the internships, grants and projects related to the
results of this thesis.

• Journals

1. J. M. Tirado, D. Higuero, J. Blas, F. Isaila, and J. Carretero, “CONDESA: A
Framework for Controlling Data Distribution on Elastic Server Architectures,”
Transactions on Parallel and Distributed Systems, Under Review

2. J. M. Tirado, D. Higuero, F. Isaila, J. Carretero, and A. Iamnitchi, “Affinity
P2P: A self-organizing content-based locality-aware collaborative peer-to-peer
network,” Computer Networks, vol. 54, pp. 2056–2070, August 2010.

3. D. Higuero, J. M. Tirado, J. Carretero, F. Felix, and A. Fuente “HIDDRA: A
Highly Independent Data Distribution and Retrieval Architecture for Space
Observation Missions,” Journal of Astrophysics & Space Science, vol. 321, issue 3,
pp. 169–175, 2009.

• Conferences

1. J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, “Reconciling dynamic sys-
tem sizing and content locality through hierarchical workload forecasting.” in
18th IEEE International Conference on Parallel and Distributed Systems (ICPADS),
2012.
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2. D. Higuero, J. M. Tirado, F. Isaila, and J. Carretero, “Enhancing file transfer
scheduling and server utilization in data distribution infrastructure.” in IEEE
20th International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), 2012.

3. J. Carretero, F. Isaila, A-M. Kermarrec, F. Taiani, J. M. Tirado, “Geology: Mod-
ular Georecommendation in Gossip-Based Social Networks” in IEEE 32nd In-
ternational Conference on Distributed Computing Systems (ICDCS), 2012.

4. J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, “Multi-model prediction
for enhancing content locality in elastic server infrastructures,” in IEEE Inter-
national Conference on High Performance Computing, 2011.

5. J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, “Predictive data group-
ing and placement for cloud-based elastic server infrastructures,” in 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2011, pp. 285 –294.

• Workshops

1. J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero. “Analyzing the Impact of
Events in an Online Music Community,” in Workshop on Social Network Systems,
held at Eurosys, 2011.

• Research internships
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September to December, 2011.

• Grants
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