200,027 research outputs found

    Inverse Classification for Comparison-based Interpretability in Machine Learning

    Full text link
    In the context of post-hoc interpretability, this paper addresses the task of explaining the prediction of a classifier, considering the case where no information is available, neither on the classifier itself, nor on the processed data (neither the training nor the test data). It proposes an instance-based approach whose principle consists in determining the minimal changes needed to alter a prediction: given a data point whose classification must be explained, the proposed method consists in identifying a close neighbour classified differently, where the closeness definition integrates a sparsity constraint. This principle is implemented using observation generation in the Growing Spheres algorithm. Experimental results on two datasets illustrate the relevance of the proposed approach that can be used to gain knowledge about the classifier.Comment: preprin

    3D Integral Field Observations of Ten Galactic Winds - I. Extended phase (>10 Myr) of mass/energy injection before the wind blows

    Full text link
    We present 3D spectroscopic observations of a sample of 10 nearby galaxies with the AAOmega-SPIRAL integral field spectrograph on the 3.9m AAT, the largest survey of its kind to date. The double-beam spectrograph provides spatial maps in a range of spectral diagnostics: [OIII] 5007, H-beta, Mg-b, NaD, [OI] 6300, H-alpha, [NII] 6583, [SII] 6717, 6731. All of the objects in our survey show extensive wind-driven filamentation along the minor axis, in addition to large-scale disk rotation. Our sample can be divided into either starburst galaxies or active galactic nuclei (AGN), although some objects appear to be a combination of these. The total ionizing photon budget available to both classes of galaxies is sufficient to ionise all of the wind-blown filamentation out to large radius. We find however that while AGN photoionisation always dominates in the wind filaments, this is not the case in starburst galaxies where shock ionisation dominates. This clearly indicates that after the onset of star formation, there is a substantial delay (> 10 Myr) before a starburst wind develops. We show why this behavior is expected by deriving ``ionisation'' and dynamical timescales for both AGNs and starbursts. We establish a sequence of events that lead to the onset of a galactic wind. The clear signature provided by the ionisation timescale is arguably the strongest evidence yet that the starburst phenomenon is an impulsive event. A well-defined ionisation timescale is not expected in galaxies with a protracted history of circumnuclear star formation. Our 3D data provide important templates for comparisons with high redshift galaxies.[Abridged]Comment: 43 pages, 30 figures, Accepted for publication in ApJ Jan-2010, Full resolution figures available from: http://www.aao.gov.au/AAO/local/www/rgs/work/winds/public/papers/SPIRAL_WINDS_hi-res.htm

    The FUV to Near-IR Morphologies of Luminous Infrared Galaxies in the GOALS Sample

    Get PDF
    We compare the morphologies of a sample of 20 LIRGs from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I and H bands, using the Gini (G) and M20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. HST images provide an average spatial resolution of ~80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M20 parameters and the global measures of the IR to FUV flux ratio, IRX. Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z~0.5-3 in deep optical and near-infrared images such as the HUDF, and use these simulations to measure the G-M20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z >= 2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M20 for the GOALS sources do not appear to change more than about 10% from the values at z~0. The change in G-M20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z~0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.Comment: Accepted for publication in the Astronomical Journal. The total page count is 15 pages with 13 figures and 1 Tabl

    Simultaneous inference for misaligned multivariate functional data

    Full text link
    We consider inference for misaligned multivariate functional data that represents the same underlying curve, but where the functional samples have systematic differences in shape. In this paper we introduce a new class of generally applicable models where warping effects are modeled through nonlinear transformation of latent Gaussian variables and systematic shape differences are modeled by Gaussian processes. To model cross-covariance between sample coordinates we introduce a class of low-dimensional cross-covariance structures suitable for modeling multivariate functional data. We present a method for doing maximum-likelihood estimation in the models and apply the method to three data sets. The first data set is from a motion tracking system where the spatial positions of a large number of body-markers are tracked in three-dimensions over time. The second data set consists of height and weight measurements for Danish boys. The third data set consists of three-dimensional spatial hand paths from a controlled obstacle-avoidance experiment. We use the developed method to estimate the cross-covariance structure, and use a classification setup to demonstrate that the method outperforms state-of-the-art methods for handling misaligned curve data.Comment: 44 pages in total including tables and figures. Additional 9 pages of supplementary material and reference

    Wolf-Rayet stars probed by AMBER/VLTI

    Get PDF
    Massive stars deeply influence their surroundings by their luminosity and the injection of kinetic energy. So far, they have mostly been studied with spatially unresolved observations, although evidence of geometrical complexity of their wind are numerous. Interferometry can provide spatially resolved observations of massive stars and their immediate vicinity. Specific geometries (disks, jets, latitude-dependent winds) can be probed by this technique. The first observation of a Wolf-Rayet (WR) star (\gamma^2 Vel) with the AMBER/VLTI instrument yielded to a re-evaluation of its distance and an improved characterization of the stellar components, from a very limited data-set. This motivated our team to increase the number of WR targets observed with AMBER. We present here new preliminary results that encompass several spectral types, ranging from early WN to evolved dusty WC. We present unpublished data on WR79a, a massive star probably at the boundary between the O and Wolf- Rayet type, evidencing some Wolf-Rayet broad emission lines from an optically thin wind. We also present new data obtained on \gamma^2 Vel that can be compared to the up-to-date interferometry-based orbital parameters from North et al. (2007). We discuss the presence of a wind-wind collision zone in the system and provide preliminary analysis suggesting the presence of such a structure in the data. Then, we present data obtained on 2 dusty Wolf-Rayet stars: WR48a-b and WR118, the latter exhibiting some clues of a pinwheel-like structure from the visibility variations.Comment: This paper will be published in the proceeding of SPIE ``astronomical Telescopes and Instrumentation: Optical and Infrared Interferometry'
    corecore