1,106 research outputs found

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Response statistics and failure probability determination of nonlinear stochastic structural dynamical systems

    Get PDF
    Novel approximation techniques are proposed for the analysis and evaluation of nonlinear dynamical systems in the field of stochastic dynamics. Efficient determination of response statistics and reliability estimates for nonlinear systems remains challenging, especially those with singular matrices or endowed with fractional derivative elements. This thesis addresses the challenges of three main topics. The first topic relates to the determination of response statistics of multi-degree-of-freedom nonlinear systems with singular matrices subject to combined deterministic and stochastic excitations. Notably, singular matrices can appear in the governing equations of motion of engineering systems for various reasons, such as due to a redundant coordinates modeling or due to modeling with additional constraint equations. Moreover, it is common for nonlinear systems to experience both stochastic and deterministic excitations simultaneously. In this context, first, a novel solution framework is developed for determining the response of such systems subject to combined deterministic and stochastic excitation of the stationary kind. This is achieved by using the harmonic balance method and the generalized statistical linearization method. An over-determined system of equations is generated and solved by resorting to generalized matrix inverse theory. Subsequently, the developed framework is appropriately extended to systems subject to a mixture of deterministic and stochastic excitations of the non-stationary kind. The generalized statistical linearization method is used to handle the nonlinear subsystem subject to non-stationary stochastic excitation, which, in conjunction with a state space formulation, forms a matrix differential equation governing the stochastic response. Then, the developed equations are solved by numerical methods. The accuracy for the proposed techniques has been demonstrated by considering nonlinear structural systems with redundant coordinates modeling, as well as a piezoelectric vibration energy harvesting device have been employed in the relevant application part. The second topic relates to code-compliant stochastic dynamic analysis of nonlinear structural systems with fractional derivative elements. First, a novel approximation method is proposed to efficiently determine the peak response of nonlinear structural systems with fractional derivative elements subject to excitation compatible with a given seismic design spectrum. The proposed methods involve deriving an excitation evolutionary power spectrum that matches the design spectrum in a stochastic sense. The peak response is approximated by utilizing equivalent linear elements, in conjunction with code-compliant design spectra, hopefully rendering it favorable to engineers of practice. Nonlinear structural systems endowed with fractional derivative terms in the governing equations of motion have been considered. A particular attribute pertains to utilizing localized time-dependent equivalent linear elements, which is superior to classical approaches utilizing standard time-invariant statistical linearization method. Then, the approximation method is extended to perform stochastic incremental dynamical analysis for nonlinear structural systems with fractional derivative elements exposed to stochastic excitations aligned with contemporary aseismic codes. The proposed method is achieved by resorting to the combination of stochastic averaging and statistical linearization methods, resulting in an efficient and comprehensive way to obtain the response displacement probability density function. A stochastic incremental dynamical analysis surface is generated instead of the traditional curves, leading to a reliable higher order statistics of the system response. Lastly, the problem of the first excursion probability of nonlinear dynamic systems subject to imprecisely defined stochastic Gaussian loads is considered. This involves solving a nested double-loop problem, generally intractable without resorting to surrogate modeling schemes. To overcome these challenges, this thesis first proposes a generalized operator norm framework based on statistical linearization method. Its efficiency is achieved by breaking the double loop and determining the values of the epistemic uncertain parameters that produce bounds on the probability of failure a priori. The proposed framework can significantly reduce the computational burden and provide a reliable estimate of the probability of failure

    Forward uncertainty quantification with special emphasis on a Bayesian active learning perspective

    Get PDF
    Uncertainty quantification (UQ) in its broadest sense aims at quantitatively studying all sources of uncertainty arising from both computational and real-world applications. Although many subtopics appear in the UQ field, there are typically two major types of UQ problems: forward and inverse uncertainty propagation. The present study focuses on the former, which involves assessing the effects of the input uncertainty in various forms on the output response of a computational model. In total, this thesis reports nine main developments in the context of forward uncertainty propagation, with special emphasis on a Bayesian active learning perspective. The first development is concerned with estimating the extreme value distribution and small first-passage probabilities of uncertain nonlinear structures under stochastic seismic excitations, where a moment-generating function-based mixture distribution approach (MGF-MD) is proposed. As the second development, a triple-engine parallel Bayesian global optimization (T-PBGO) method is presented for interval uncertainty propagation. The third contribution develops a parallel Bayesian quadrature optimization (PBQO) method for estimating the response expectation function, its variable importance and bounds when a computational model is subject to hybrid uncertainties in the form of random variables, parametric probability boxes (p-boxes) and interval models. In the fourth research, of interest is the failure probability function when the inputs of a performance function are characterized by parametric p-boxes. To do so, an active learning augmented probabilistic integration (ALAPI) method is proposed based on offering a partially Bayesian active learning perspective on failure probability estimation, as well as the use of high-dimensional model representation (HDMR) technique. Note that in this work we derive an upper-bound of the posterior variance of the failure probability, which bounds our epistemic uncertainty about the failure probability due to a kind of numerical uncertainty, i.e., discretization error. The fifth contribution further strengthens the previously developed active learning probabilistic integration (ALPI) method in two ways, i.e., enabling the use of parallel computing and enhancing the capability of assessing small failure probabilities. The resulting method is called parallel adaptive Bayesian quadrature (PABQ). The sixth research presents a principled Bayesian failure probability inference (BFPI) framework, where the posterior variance of the failure probability is derived (not in closed form). Besides, we also develop a parallel adaptive-Bayesian failure probability learning (PA-BFPI) method upon the BFPI framework. For the seventh development, we propose a partially Bayesian active learning line sampling (PBAL-LS) method for assessing extremely small failure probabilities, where a partially Bayesian active learning insight is offered for the classical LS method and an upper-bound for the posterior variance of the failure probability is deduced. Following the PBAL-LS method, the eighth contribution finally obtains the expression of the posterior variance of the failure probability in the LS framework, and a Bayesian active learning line sampling (BALLS) method is put forward. The ninth contribution provides another Bayesian active learning alternative, Bayesian active learning line sampling with log-normal process (BAL-LS-LP), to the traditional LS. In this method, the log-normal process prior, instead of a Gaussian process prior, is assumed for the beta function so as to account for the non-negativity constraint. Besides, the approximation error resulting from the root-finding procedure is also taken into consideration. In conclusion, this thesis presents a set of novel computational methods for forward UQ, especially from a Bayesian active learning perspective. The developed methods are expected to enrich our toolbox for forward UQ analysis, and the insights gained can stimulate further studies

    Advanced methodologies for reliability-based design optimization and structural health prognostics

    Get PDF
    Failures of engineered systems can lead to significant economic and societal losses. To minimize the losses, reliability must be ensured throughout the system's lifecycle in the presence of manufacturing variability and uncertain operational conditions. Many reliability-based design optimization (RBDO) techniques have been developed to ensure high reliability of engineered system design under manufacturing variability. Schedule-based maintenance, although expensive, has been a popular method to maintain highly reliable engineered systems under uncertain operational conditions. However, so far there is no cost-effective and systematic approach to ensure high reliability of engineered systems throughout their lifecycles while accounting for both the manufacturing variability and uncertain operational conditions. Inspired by an intrinsic ability of systems in ecology, economics, and other fields that is able to proactively adjust their functioning to avoid potential system failures, this dissertation attempts to adaptively manage engineered system reliability during its lifecycle by advancing two essential and co-related research areas: system RBDO and prognostics and health management (PHM). System RBDO ensures high reliability of an engineered system in the early design stage, whereas capitalizing on PHM technology enables the system to proactively avoid failures in its operation stage. Extensive literature reviews in these areas have identified four key research issues: (1) how system failure modes and their interactions can be analyzed in a statistical sense; (2) how limited data for input manufacturing variability can be used for RBDO; (3) how sensor networks can be designed to effectively monitor system health degradation under highly uncertain operational conditions; and (4) how accurate and timely remaining useful lives of systems can be predicted under highly uncertain operational conditions. To properly address these key research issues, this dissertation lays out four research thrusts in the following chapters: Chapter 3 - Complementary Intersection Method for System Reliability Analysis, Chapter 4 - Bayesian Approach to RBDO, Chapter 5 - Sensing Function Design for Structural Health Prognostics, and Chapter 6 - A Generic Framework for Structural Health Prognostics. Multiple engineering case studies are presented to demonstrate the feasibility and effectiveness of the proposed RBDO and PHM techniques for ensuring and improving the reliability of engineered systems within their lifecycles

    A data analytics approach to gas turbine prognostics and health management

    Get PDF
    As a consequence of the recent deregulation in the electrical power production industry, there has been a shift in the traditional ownership of power plants and the way they are operated. To hedge their business risks, the many new private entrepreneurs enter into long-term service agreement (LTSA) with third parties for their operation and maintenance activities. As the major LTSA providers, original equipment manufacturers have invested huge amounts of money to develop preventive maintenance strategies to minimize the occurrence of costly unplanned outages resulting from failures of the equipments covered under LTSA contracts. As a matter of fact, a recent study by the Electric Power Research Institute estimates the cost benefit of preventing a failure of a General Electric 7FA or 9FA technology compressor at 10to10 to 20 million. Therefore, in this dissertation, a two-phase data analytics approach is proposed to use the existing monitoring gas path and vibration sensors data to first develop a proactive strategy that systematically detects and validates catastrophic failure precursors so as to avoid the failure; and secondly to estimate the residual time to failure of the unhealthy items. For the first part of this work, the time-frequency technique of the wavelet packet transforms is used to de-noise the noisy sensor data. Next, the time-series signal of each sensor is decomposed to perform a multi-resolution analysis to extract its features. After that, the probabilistic principal component analysis is applied as a data fusion technique to reduce the number of the potentially correlated multi-sensors measurement into a few uncorrelated principal components. The last step of the failure precursor detection methodology, the anomaly detection decision, is in itself a multi-stage process. The obtained principal components from the data fusion step are first combined into a one-dimensional reconstructed signal representing the overall health assessment of the monitored systems. Then, two damage indicators of the reconstructed signal are defined and monitored for defect using a statistical process control approach. Finally, the Bayesian evaluation method for hypothesis testing is applied to a computed threshold to test for deviations from the healthy band. To model the residual time to failure, the anomaly severity index and the anomaly duration index are defined as defects characteristics. Two modeling techniques are investigated for the prognostication of the survival time after an anomaly is detected: the deterministic regression approach, and parametric approximation of the non-parametric Kaplan-Meier plot estimator. It is established that the deterministic regression provides poor prediction estimation. The non parametric survival data analysis technique of the Kaplan-Meier estimator provides the empirical survivor function of the data set comprised of both non-censored and right censored data. Though powerful because no a-priori predefined lifetime distribution is made, the Kaplan-Meier result lacks the flexibility to be transplanted to other units of a given fleet. The parametric analysis of survival data is performed with two popular failure analysis distributions: the exponential distribution and the Weibull distribution. The conclusion from the parametric analysis of the Kaplan-Meier plot is that the larger the data set, the more accurate is the prognostication ability of the residual time to failure model.PhDCommittee Chair: Mavris, Dimitri; Committee Member: Jiang, Xiaomo; Committee Member: Kumar, Virendra; Committee Member: Saleh, Joseph; Committee Member: Vittal, Sameer; Committee Member: Volovoi, Vital

    Flow enhancement in and around buildings for wind energy harvesting

    Get PDF
    Decentralised small-scale wind energy harvesting in urban environments, as one of the potential solutions to tackle the energy crisis and climate change, requires the development of flow enhancement techniques in a fairly turbulent urban wind condition. This study proposes two types of building and façade configurations, including adaptive Double Skin Façade (DSF) and aerodynamic through-building openings, to enhance wind energy harvesting in and around buildings. Depending on their layout configuration, the two proposals form various types of confined aerodynamic duct-shape corridors suitable for installing wind turbines. The desirable wind flow characteristics for wind energy harvesting including speed, uniformity and unidirectionality of the wind flow and undesirable wind turbulence were investigated inside the different layout configurations of the corridors. The effect of wind speed and direction, urban terrain, aerodynamic modifications of layout configurations and wind turbines on the flow characteristics, and the effect of local wind data on annual energy production of the two proposed designs were studied. A series of wind tunnel tests in two phases were conducted utilising flow measurement techniques including hot-wire anemometry, Cobra probe measurements, tuft visualizations and Particle Image Velocimetry (PIV). Several Computational Fluid Dynamics (CFD) simulations using steady and unsteady RANS were also performed to investigate the mechanisms and characteristics of the flow inside different layout configurations of DSF and through-building openings. CFD results were properly validated against the wind tunnel data using statistical performance analysis, which showed the capability of the steady RANS, SST k-ω in particular, to estimate the mean flow characteristics inside the corridors. The results showed that the DSF with proper aerodynamic modifications including recessed regions and curved walls effectively channel and enhance the wind flow inside corridors for a wide range of wind directions, and hence, is a potential technique for enhancing wind flow in urban environments. It was found that proper aerodynamic modifications of the DSF maintain the amplified wind velocity inside the corridors up to the wind direction of ±45° to the corridor’s axis. Within this range of wind directions, the mean velocity inside the leading side corridors of the layout with the proper modifications got almost doubled as compared with the free-stream velocity. The results showed that the aerodynamic modifications and the confined area of the corridors contribute substantially to the reduction of turbulence intensity by about 25%. Considering wind coming in any direction, the middle region of the corridors, where wind flow is relatively uniform and unidirectional, is a suitable location for installing wind turbines

    A Review: Prognostics and Health Management in Automotive and Aerospace

    Get PDF
    Prognostics and Health Management (PHM) attracts increasing interest of many researchers due to its potentially important applications in diverse disciplines and industries. In general, PHM systems use real-time and historical state information of subsystems and components of the operating systems to provide actionable information, enabling intelligent decision-making for improved performance, safety, reliability, and maintainability. Every year, a substantial number of papers in this area including theory and practical applications, appear in academic journals, conference proceedings and technical reports. This paper aims to summarize and review researches, developments and recent contributions in PHM for automotive- and aerospace industries. It can also be considered as the starting point for researchers and practitioners in general to assist them through PHM implementation and help them to accomplish their work more easily.Algorithms and the Foundations of Software technolog

    Systems and control : 21th Benelux meeting, 2002, March 19-21, Veldhoven, The Netherlands

    Get PDF
    Book of abstract
    • …
    corecore