46,339 research outputs found

    Using Biomedical Technologies to Inform Economic Modeling: Challenges and Opportunities for Improving Analysis of Environmental Policies

    Get PDF
    Advances in biomedical technology have irrevocably jarred open the black box of human decision making, offering social scientists the potential to validate, reject, refine and redefine the individual models of resource allocation that form the foundation of modern economics. In this paper we (1) provide a comprehensive overview of the biomedical methods that may be harnessed by economists and other social scientists to better understand the economic decision making process; (2) review research that utilizes these biomedical methods to illuminate fundamental aspects of the decision making process; and (3) summarize evidence from this literature concerning the basic tenants of neoclassical utility that are often invoked for positive welfare analysis of environmental policies. We conclude by raising questions about the future path of policy related research and the role biomedical technologies will play in defining that path.neuroeconomics, neuroscience, brain imaging, genetics, welfare economics, utility theory, biology, decision making, preferences, Institutional and Behavioral Economics, Research Methods/ Statistical Methods, D01, D03, D6, D87,

    Association of Superoxide Dismutase 2 (SOD2) Genotype with Gray Matter Volume Shrinkage in Chronic Alcohol Users: Replication and Further Evaluation of an Addiction Gene Panel.

    Get PDF
    BackgroundReduction in brain volume, especially gray matter volume, has been shown to be one of the many deleterious effects of prolonged alcohol consumption. High variance in the degree of gray matter tissue shrinkage among alcohol-dependent individuals and a previous neuroimaging genetics report suggest the involvement of environmental and/or genetic factors, such as superoxide dismutase 2 (SOD2). Identification of such underlying factors will help in the clinical management of alcohol dependence.MethodsWe analyzed quantitative magnetic resonance imaging and genotype data from 103 alcohol users, including both light drinkers and treatment-seeking alcohol-dependent individuals. Genotyping was performed using a custom gene array that included genes selected from 8 pathways relevant to chronic alcohol-related brain volume loss.ResultsWe replicated a significant association of a functional SOD2 single nucleotide polymorphism with normalized gray matter volume, which had been reported previously in an independent smaller sample of alcohol-dependent individuals. The SOD2-related genetic protection was observed only at the cohort's lower drinking range. Additional associations between normalized gray matter volume and other candidate genes such as alcohol dehydrogenase gene cluster (ADH), GCLC, NOS3, and SYT1 were observed across the entire sample but did not survive corrections for multiple comparisons.ConclusionConverging independent evidence for a SOD2 gene association with gray matter volume shrinkage in chronic alcohol users suggests that SOD2 genetic variants predict differential brain volume loss mediated by free radicals. This study also provides the first catalog of genetic variations relevant to gray matter loss in chronic alcohol users. The identified gene-brain structure relationships are functionally pertinent and merit replication

    Cerebrospinal Fluid Analysis in Multiple Sclerosis Diagnosis: An Update

    Get PDF
    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS) with brain neurodegeneration. MS patients present heterogeneous clinical manifestations in which both genetic and environmental factors are involved. The diagnosis is very complex due to the high heterogeneity of the pathophysiology of the disease. The diagnostic criteria have been modified several times over the years. Basically, they include clinical symptoms, presence of typical lesions detected by magnetic resonance imaging (MRI), and laboratory findings. The analysis of cerebrospinal fluid (CSF) allows an evaluation of inflammatory processes circumscribed to the CNS and reflects changes in the immunological pattern due to the progression of the pathology, being fundamental in the diagnosis and monitoring of MS. The detection of the oligoclonal bands (OCBs) in both CSF and serum is recognized as the “gold standard” for laboratory diagnosis of MS, though presents analytical limitations. Indeed, current protocols for OCBs assay are time-consuming and require an operator-dependent interpretation. In recent years, the quantification of free light chain (FLC) in CSF has emerged to assist clinicians in the diagnosis of MS. This article reviews the current knowledge on CSF biomarkers used in the diagnosis of MS, in particular on the validated assays and on the alternative biomarkers of intrathecal synthesis

    Focal Spot, Spring 2007

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1105/thumbnail.jp

    Characterization of Vesicular Monoamine Transporter 2 and its role in Parkinson\u27s Disease Pathogenesis using Drosophila

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes induce selective loss of DA neurons is still not known. Notably, dopamine (DA) itself is a chemically labile molecule and can become oxidized to toxic by-products while induce the accumulation of harmful molecules such as Reactive Oxygen Species (ROS). Accordingly, DA toxicity has long been suspected to play a role in selective neuronal loss in PD. Vesicular Monoamine Transporter (VMAT) is essential for proper vesicular storage of monoamines such as DA and their regulated release. Increasing evidence have linked VMAT dysfunction with Parkinson’s disease. In this study, we re-examine the gain- and loss-of-function phenotypes of the sole VMAT homologue in Drosophila. Our results suggest that the C-terminal sequences in the two encoded VMAT isoforms not only determine their differential subcellular localizations, but also their activities in content release. In particular, VMAT2 orthologue potentially poses a unique, previously unexplored activity in promoting DA release. On the other hand, by examining DA distribution in wildtype and VMAT mutant animals, we find that there exists intrinsic difference in the dynamics of intracellular DA handling among DA neurons clustered in different brain regions. Furthermore, loss of VMAT causes severe loss of total DA levels and a redistribution of DA in Drosophila brain. Lastly, removal of both VMAT and another PD gene parkin, which is also conserved in Drosophila, results in the selective loss of DA neurons, primarily in the protocerebral anterior medial (PAM) clusters of the brain. Our results suggest a potential involvement of cytoplasmic DA in selective degeneration of DA neurons and also implicating a role for a differential intracellular DA handling mechanism underlying the regional specificity of neuronal loss in PD patients

    SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts

    Get PDF
    Acknowledgements We sincerely thank the patients and family members who participated in this study. We would also like to thank Stefan Esher, UmeÄ University, for help with genealogy, and Anna Westerlund for excellent technical assistance. This work was supported by grants from the FOU, at the UmeÄ university hospital, and the Medical Faculty at UmeÄ University. The work at University of Gothenburg was supported by grants from The Swedish Research Council, the Swedish Rheumatism Association, the Royal 80-Year Fund of King Gustav V, ALF/LUA research grant from Sahlgrenska University Hospital in Gothenburg and the Lundberg Foundation. The work at the University of Gothenburg and the University of Aberdeen was supported by Euroclast, a Marie Curie FP7-People-2013-ITN: # 607446.Peer reviewedPublisher PD
    • 

    corecore