1,455 research outputs found

    Cloud-based Content Distribution on a Budget

    Full text link
    To leverage the elastic nature of cloud computing, a solution provider must be able to accurately gauge demand for its offering. For applications that involve swarm-to-cloud interactions, gauging such demand is not straightforward. In this paper, we propose a general framework, analyze a mathematical model, and present a prototype implementation of a canonical swarm-to-cloud application, namely peer-assisted content delivery. Our system – called Cyclops – dynamically adjusts the off-cloud bandwidth consumed by content servers (which represents the bulk of the provider's cost) to feed a set of swarming clients, based on a feedback signal that gauges the real-time health of the swarm. Our extensive evaluation of Cyclops in a variety of settings – including controlled PlanetLab and live Internet experiments involving thousands of users – show significant reduction in content distribution costs (by as much as two orders of magnitude) when compared to non-feedback-based swarming solutions, with minor impact on content delivery times

    An adaptive framework for real-time data reduction in AMI

    Get PDF
    In existing Advanced Metering Infrastructure (AMI), data collection intervals for each smart meter (SM) typically vary from 15 to 60 min. If we have 1 million SMs that transmit data every 15 min, these SMs will export 4 million records per hour. This leads to dramatically increasing bandwidth usage, energy consumption, traffic cost and I/O congestion. In this work, we present an adaptive framework for minimizing the amount of data transfer from SMs. The reduction in the framework is forecasting-based; when an SM reading is close to the forecasted value, the SM does not transmit the reading. In order for the framework to be adaptive to the ever-changing pattern of SM data, it is provided with a pool of forecasting methods. A supervised-learning scheme is employed to switch in real-time to the forecasting method most suitable to the current data pattern. The experimental results demonstrate that the proposed framework achieves data reduction rates up to 98% with accuracy 96%, depending on the operational parameters of the framework and consumer behavior (statistical features of SM data)

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    CLOUD LIVE VIDEO TRANSFER

    Get PDF
    As multimedia content continues to grow, considerations for more effective storage options, like cloud technologies, become apparent. While video has become a mainstream media source on the web, live video streaming is growing as a prominent player in the modern marketplace for both businesses and individuals. For instance, a business owner may want to oversee operations while he or she is away, or an individual may want to surveillance their property. In this work, we propose Cloud Live Video Streaming (CLVS) - a very efficient method to stream live video that creates a separate pricing model from modern video streaming services. The key component to CLVS is Amazon Simple Storage Service (S3), which is used to store video segments and metadata. By using S3, CLVS employs what is referred to as a ”serverless” design by removing the need to stream video through an intermediary server. CLVS also removes the need for third party accounts and license agreements. We implement a prototype of CLVS and compare it with an existing commercial video streaming software - Wowza Streaming Engine. As live video streaming becomes more common, alternative and cost effective solutions are essential

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    An SOA-Based Framework of Computational Offloading for Mobile Cloud Computing

    Get PDF
    Mobile Computing is a technology that allows transmission of audio, video, and other types of data via a computer or any other wireless-enabled device without having to be connected to a fixed physical link. Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, connection instability, and limited computational power. In particular, the advent of connecting mobile devices to the internet offers the possibility of offloading computation and data intensive tasks from mobile devices to remote cloud servers for efficient execution. This proposed thesis develops an algorithm that uses an objective function to adaptively decide strategies for computational offloading according to changing context information. By following the style of Service-Oriented Architecture (SOA), the proposed framework brings cloud computing to mobile devices for mobile applications to benefit from remote execution of tasks in the cloud. This research discusses the algorithm and framework, along with the results of the experiments with a newly developed system for self-driving vehicles and points out the anticipated advantages of Adaptive Computational Offloading
    corecore