7,714 research outputs found

    Proofs for Integrity of Data in Cloud Storage

    Get PDF
    data is moved to a remotely located cloud server in cloud computing. The cloud stores the data and return back to the owner whenever it is needed. But there is no guarantee that data stored in the cloud is secured and not altered by the cloud or Third Party. In order to overcome the problem of integrity of data, the user must be able to use the assist of a third party. The third party has experience in checking integrity of data, that cloud users does not have, and that is difficult for the owner to check. The data in the cloud should be correct, consistent, accessible and high quality. The aim of this research is to ensure the integrity of data and provides the proof that data is in secured manner and to provide cryptographic key to secure the data in the cloud. The proposed approach has been implemented

    Data integrity proofs in cloud storage,”

    Get PDF
    Abstract-Cloud computing has been envisioned as the de-facto solution to the rising storage costs of IT Enterprises. With the high costs of data storage devices as well as the rapid rate at which data is being generated it proves costly for enterprises or individual users to frequently update their hardware. Apart from reduction in storage costs data outsourcing to the cloud also helps in reducing the maintenance. Cloud storage moves the user's data to large data centers, which are remotely located, on which user does not have any control. However, this unique feature of the cloud poses many new security challenges which need to be clearly understood and resolved. One of the important concerns that need to be addressed is to assure the customer of the integrity i.e. correctness of his data in the cloud. As the data is physically not accessible to the user the cloud should provide a way for the user to check if the integrity of his data is maintained or is compromised. In this paper we provide a scheme which gives a proof of data integrity in the cloud which the customer can employ to check the correctness of his data in the cloud. This proof can be agreed upon by both the cloud and the customer and can be incorporated in the Service level agreement (SLA). This scheme ensures that the storage at the client side is minimal which will be beneficial for thin clients

    Keyword-Based Delegable Proofs of Storage

    Full text link
    Cloud users (clients) with limited storage capacity at their end can outsource bulk data to the cloud storage server. A client can later access her data by downloading the required data files. However, a large fraction of the data files the client outsources to the server is often archival in nature that the client uses for backup purposes and accesses less frequently. An untrusted server can thus delete some of these archival data files in order to save some space (and allocate the same to other clients) without being detected by the client (data owner). Proofs of storage enable the client to audit her data files uploaded to the server in order to ensure the integrity of those files. In this work, we introduce one type of (selective) proofs of storage that we call keyword-based delegable proofs of storage, where the client wants to audit all her data files containing a specific keyword (e.g., "important"). Moreover, it satisfies the notion of public verifiability where the client can delegate the auditing task to a third-party auditor who audits the set of files corresponding to the keyword on behalf of the client. We formally define the security of a keyword-based delegable proof-of-storage protocol. We construct such a protocol based on an existing proof-of-storage scheme and analyze the security of our protocol. We argue that the techniques we use can be applied atop any existing publicly verifiable proof-of-storage scheme for static data. Finally, we discuss the efficiency of our construction.Comment: A preliminary version of this work has been published in International Conference on Information Security Practice and Experience (ISPEC 2018

    Privacy-Enhanced Dependable and Searchable Storage in a Cloud-of-Clouds

    Get PDF
    In this dissertation we will propose a solution for a trustable and privacy-enhanced storage architecture based on a multi-cloud approach. The solution provides the necessary support for multi modal on-line searching operation on data that is always maintained encrypted on used cloud-services. We implemented a system prototype, conducting an experimental evaluation. Our results show that the proposal offers security and privacy guarantees, and provides efficient information retrieval capabilities without sacrificing precision and recall properties on the supported search operations. There is a constant increase in the demand of cloud services, particularly cloud-based storage services. These services are currently used by different applications as outsourced storage services, with some interesting advantages. Most personal and mobile applications also offer the user the choice to use the cloud to store their data, transparently and sometimes without entire user awareness and privacy-conditions, to overcome local storage limitations. Companies might also find that it is cheaper to outsource databases and keyvalue stores, instead of relying on storage solutions in private data-centers. This raises the concern about data privacy guarantees and data leakage danger. A cloud system administrator can easily access unprotected data and she/he could also forge, modify or delete data, violating privacy, integrity, availability and authenticity conditions. A possible solution to solve those problems would be to encrypt and add authenticity and integrity proofs in all data, before being sent to the cloud, and decrypting and verifying authenticity or integrity on data downloads. However this solution can be used only for backup purposes or when big data is not involved, and might not be very practical for online searching requirements over large amounts of cloud stored data that must be searched, accessed and retrieved in a dynamic way. Those solutions also impose high-latency and high amount of cloud inbound/outbound traffic, increasing the operational costs. Moreover, in the case of mobile or embedded devices, the power, computation and communication constraints cannot be ignored, since indexing, encrypting/decrypting and signing/verifying all data will be computationally expensive. To overcome the previous drawbacks, in this dissertation we propose a solution for a trustable and privacy-enhanced storage architecture based on a multi-cloud approach, providing privacy-enhanced, dependable and searchable support. Our solution provides the necessary support for dependable cloud storage and multi modal on-line searching operations over always-encrypted data in a cloud-of-clouds. We implemented a system prototype, conducting an experimental evaluation of the proposed solution, involving the use of conventional storage clouds, as well as, a high-speed in-memory cloud-storage backend. Our results show that the proposal offers the required dependability properties and privacy guarantees, providing efficient information retrieval capabilities without sacrificing precision and recall properties in the supported indexing and search operations

    Public Auditing for Ensuring Cloud Data Storage Security With Zero Knowledge Privacy

    Get PDF
    In cloud storage service, clients upload their data together with authentication information to cloud storage server. To ensure the availability and integrity of clients\u27 stored data, cloud server(CS) must prove to a verifier that he is actually storing all of the client\u27s data unchanged. And, enabling public auditability for cloud storage is of critical importance to users with constrained computing resources, who can resort to a third party auditor (TPA) to check the integrity of outsourced data. However, most of the existing proofs of retrievability schemes or proof of data possession schemes do not consider data privacy problem. Zero knowledge privacy requires TPA or the adversary can not deduce any information of the file data from auditing system. In this paper, after giving a new construction of a recently proposed cryptographic primitive named aggregatable signature based broadcast (ASBB) encryption scheme, we present an efficient public auditing scheme with zero knowledge privacy. The new scheme is as efficient as the scheme presented by Shacham and Waters without considering privacy and is secure in the random oracle model

    Cloud Data Auditing Using Proofs of Retrievability

    Full text link
    Cloud servers offer data outsourcing facility to their clients. A client outsources her data without having any copy at her end. Therefore, she needs a guarantee that her data are not modified by the server which may be malicious. Data auditing is performed on the outsourced data to resolve this issue. Moreover, the client may want all her data to be stored untampered. In this chapter, we describe proofs of retrievability (POR) that convince the client about the integrity of all her data.Comment: A version has been published as a book chapter in Guide to Security Assurance for Cloud Computing (Springer International Publishing Switzerland 2015

    Entangled cloud storage

    Get PDF
    Entangled cloud storage (Aspnes et al., ESORICS 2004) enables a set of clients to “entangle” their files into a single clew to be stored by a (potentially malicious) cloud provider. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files encoded in the clew. A clew keeps the files in it private but still lets each client recover his own data by interacting with the cloud provider; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of the clew as this will imply that none of the clients can recover their files. We put forward the first simulation-based security definition for entangled cloud storage, in the framework of universal composability (Canetti, 2001). We then construct a protocol satisfying our security definition, relying on an entangled encoding scheme based on privacy-preserving polynomial interpolation; entangled encodings were originally proposed by Aspnes et al. as useful tools for the purpose of data entanglement. As a contribution of independent interest we revisit the security notions for entangled encodings, putting forward stronger definitions than previous work (that for instance did not consider collusion between clients and the cloud provider). Protocols for entangled cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not modify or delete their data illegitimately. Current solutions, e.g., based on Provable Data Possession and Proof of Retrievability, require the server to be challenged regularly to provide evidence that the clients’ files are stored at a given time. Entangled cloud storage provides an alternative approach where any single client operates implicitly on behalf of all others, i.e., as long as one client's files are intact, the entire remote database continues to be safe and unblemishe
    corecore