
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 161 – 165

161
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Proofs for Integrity of Data in Cloud Storage

Roopa G. K
1
 and Radhika Shetty D S

2

1
Asst. Professor , Department of Computer Science , VCET, Puttur.

2
Asst. Professor, Department of Computer Science , VCET, Puttur.

Abstract:- Data is moved to a remotely located cloud server in cloud computing. The cloud stores the data and return back to the owner

whenever it is needed. But there is no guarantee that data stored in the cloud is secured and not altered by the cloud or Third Party. In order to

overcome the problem of integrity of data, the user must be able to use the assist of a third party. The third party has experience in checking

integrity of data, that cloud users does not have, and that is difficult for the owner to check. The data in the cloud should be correct, consistent,

accessible and high quality. The aim of this research is to ensure the integrity of data and provides the proof that data is in secured manner and to

provide cryptographic key to secure the data in the cloud. The proposed approach has been implemented.

Keywords: Data integrity, Cryptography, Cloud storage.

__*****___

1. Introduction

 Cloud storage is visualized pools where data and

applications are stored which are hosted by the third party.

Company, who desires to store their data in the cloud, buy

or lease storage capacity from them and use it for their

storage needs. Cloud storage offers benefits like reduction of

costs, providing more flexibility, reduction of IT

management of hardware and data, and providing greater

storage capacity. Cloud also lacks in some of the issues like

data integrity, data loss, unauthorized access, privacy etc.

 Data integrity is very important and essential

among the cloud storage issues. After moving the data to the

cloud, owner hopes that their data and applications are in

secured manner. But that hope may fail sometimes. The

owner‟s data may be altered or deleted. In that scenario, it is

important to verify if one‟s data has been altered with or

deleted. To validate data, often a user must download the

data. If the outsourced data is very large files or entire file

systems, such downloading to determine data integrity may

become prohibitive in terms of increased cost of bandwidth

and time, especially if frequent data checks are necessary.

This paper proposes a method that, owner need not

download the data or files to check the integrity and

provides the proofs that data is stored at a remote storage in

the cloud is not modified by anyone and thereby integrity of

data is assured. Some of the best examples for cloud storage

are Amazon S3, Windows azure, EMC Atoms,

FilesAnyWhere, Google app Engine etc.

 The remainder of the research paper is organized as

follows: Section two analyses about the cloud storage

architecture and along with its characteristics. Section three

of this paper briefly describes the proof of retrievability and

role of third party auditor. Section four is explaining the

existing system. Section five deals with how the data

integrity is verified in the cloud. Section six shows the

results of implementation. We concluded the paper in

section seven.

2. Cloud Storage

The process of storing the data in the remotely located cloud

servers is called cloud storage. The architecture of the cloud

storage as shown in Fig.1.

Fig. 1 Architecture of cloud storage

The cloud storage is better than all traditional storage

methods because of the following reasons:

 Companies do not need to install physical storage

devices in their own data center or offices.

 Storage maintenance tasks, such as back up are

offloaded to the responsibility of a service

provider.

 Companies need only pay for the storage they

actually use.

cloud

cloud

Cloud service provider

TPA

Owner

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 161 – 165

162
IJRITCC | April 2017, Available @ http://www.ijritcc.org

3. Literature Overview

 Storing of user data in the cloud has many

interesting security concerns which need to be investigated

for making it a reliable solution to the problem of avoiding

local storage of data.

 The POR scheme can be made by using keyed hash

function hk(F). In this scheme, the verifier, before archiving

the data file F in the cloud storage, precomputes the

cryptographic hash of F using hk(F) and stores this hash as

well as the secret key. To check if the integrity of the file f is

lost the verifier releases the secret key K to the cloud and

asks it to compute and return the value of hk(F). By storing

multiple hash values for different keys the verifier can check

for the integrity of the file F for multiple times, each one

being an independent proof.

Though this scheme is very simple and easily

implementable the main drawback of this scheme are the

high resource costs it requires for the implementation. At

the verifier side this involves storing as many keys as the

number of checks it want to perform as well as the hash

value of the data file F with each hash key. Also computing

hash value for even a moderately large data files can be

computationally burdensome for some clients (PDAs,

mobile phones, etc). As the archive side, each invocation of

the protocol requires the archive to process the entire file F.

This can be computationally burdensome for the archive

even for a lightweight operation like hashing. Furthermore,

it requires that each proof requires the prover to read the

entire file F - a significant overhead for an archive whose

intended load is only an occasional read per file, were every

file to be tested frequently.[1]

Ari Juels and Burton S. Kaliski Jr(2007) proposed a

scheme called Proof of Retrievability(POR) for large files

using “sentinels”. In this scheme unlike in key hash

approach scheme, only a single key can be used irrespective

of the size of the file or number of files whose retrievability

it wants to verify. At the client only 2 functions are stored,

the bit generator function g, and the function h used for

encrypting the data. Hence the storage at the client is very

much minimal compared to all other schemes that were

developed. [4]

 The ultimate challenge in cloud computing is data

level security. In a data possession work(Ateniese et al.,

2007) defined the “provable data possession”(PDP) model

for ensuring possession of file on untrusted starages. Their

scheme utilized public key based homomorphic tags for

auditing the data file, thus providing public verifiability.

4. Existing system

In the existing cloud storage system, the owner

want to check the data integrity, he need to access the entire

file so its expensive to the cloud server. As data generation

is far outpacing data storage it proves costly for small firms

to frequently update their hardware whenever additional

data is created. Also maintaining the storages can be a

difficult task. It transmitting the file across the network to

the client can consume heavy bandwidths. The problem is

further complicated by the fact that the owner of the data

may be a small device, like a PDA (personal digital assist)

or a mobile phone, which have limited CPU power, battery

power and communication bandwidth.

Disadvantages:

 The main drawback of this scheme is the high

resource costs it requires for the implementation.

 Also computing hash value for even a moderately

large data files can be computationally burdensome

for some clients (PDAs, mobile phones, etc).

 Data encryption is large so the disadvantage is

small users with limited computational power

(PDAs, mobile phones etc.).

5. Proposed Scheme

One of the important concerns that need to

be addressed is to assure the customer of the integrity i.e.

correctness of his data in the cloud. As the data is

physically not accessible to the user the cloud should

provide a way for the user to check if the integrity of his

data is maintained or is compromised. In this paper we

provide a scheme which gives a proof of data integrity in

the cloud which the customer can employ to check the

correctness of his data in the cloud. This proof can be

agreed upon by both the cloud and the customer and can

be incorporated in the Service level agreement (SLA). It is

important to note that our proof of data integrity protocol

just checks the integrity of data i.e. if the data has been

illegally modified or deleted.

Fig. 2. Proposed architecture

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 161 – 165

163
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Advantages:

 Reduction in storage costs and maintenance.

 Avoiding local storage of data.

 It reduces the chance of losing data by hardware

failures.

 Not cheating the owner.

Algorithms used:

Meta-Data Generation:

Let the verifier V wishes to the store the

file F with the archive. Let this file F consist of n file

blocks. We initially preprocess the file and create

metadata to be appended to the file. Let each of the n data

blocks have m bits in them. A typical data file F which the

client wishes to store in the cloud.

Each of the Meta data from the data

blocks mi is encrypted by using a suitable algorithm to give

a new modified Meta data Mi. Without loss of generality

we show this process by using a simple XOR operation.

The encryption method can be improvised to provide still

stronger protection for verifier‟s data. All the Meta data bit

blocks that are generated using the above procedure are to

be concatenated together. This concatenated Meta data

should be appended to the file F before storing it at the

cloud server. The file F along with the appended Meta data

e F is archived with the cloud.

Let g be a function defined as follows:

g(i, j) -> {1..m}, i€ {1..n}, j€ {1..k} ---(1)

Where k is the number of bits per data block which we wish

to read as meta data. The function generates for each data

block a set of k bit positions within the m bits that are in the

data block. Hence g(i, j) gives the j
th

 bit in the i
th

 data block.

The value f k is in the choice of the verifier and is a secret

known only to him. Therefore for each data block we get a

set of k bits and in total for all the n blocks we get n - k bits.

Let mi represent the k bits of meta data for the ith block.

Figure 3 shows a data block of the file F with random bits

selected using the function g.[1]

Fig 3. Random selection of bits

2) Encrypting the meta data: Each of the meta data from

the data blocks mi is encrypted by using a suitable algorithm

to give a new modified meta data Mi.

Without loss of generality we show this process by using a

simple XOR operation. Let h be a function which generates

a k bit integer ai for each i. This function is a secret and is

known only to the verifier V .

h : i ->ai, ai€ {0..2n} ----(2)

For the meta data (mi) of each data block the number ai is

added to get a new k bit number Mi.

Mi = mi + ai ----(3)

In this way we get a set of n new meta data bit blocks. [1]

3) Appending of meta data: All the meta data bit blocks that

are generated using the above procedure are to be

concatenated together. This concatenated meta data should

be appended to the file F before storing it at the cloud

server. The file F along with the appended meta data is

archived with the cloud. Figure 4 shows the encrypted file e

F after appending the meta data to the data file F.[1]

Fig. 4 Encrypted file stored in cloud server

Algorithm for cloud storage:

File is denoted as ‘F’

Owner of data is represented as ‘cc’

Cloud server is denoted as ‘cs’

Security key is represented as ‘Skey’

Begin

If Login==true

Then

Use the application for upload, download and

sharing of files

If option==upload then

Upload F in ‘cs’

Skey is sent to cc (user’s mail id)

Else if option==download then

Enter Skey

If Skey==true then

F will be downloaded

Else print the message as wrong Skey

Else if option==sharing then

 Check for F owned by other users

Else

Report:=invalid owner

Sign up as new user

End if

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 161 – 165

164
IJRITCC | April 2017, Available @ http://www.ijritcc.org

6. Results

The user has to login to the application by using username

and password. If he is new user, he has to register by

entering the details like email id, mobile number etc. The

password is encrypted by using Rijindael algorithm(AES)

and stored in the database.

Fig. 5 User Login

The user can upload the file to the cloud archive by

clicking on „File Upload‟ option. The metadata has been

appended to the file for security. We have taken the time of

upload in terms of clock ticks and it is been added to the

filename at the time of upload to ensure unique filename.

Fig. 6 File upload by the user.

 The authorized users can download the file by

using security key which will be sent to their mail id when

any other user has shared the file with him. The owner also

has to enter the key to download the file by checking mail.

Fig. 7 File download by the user by entering key.

The owner will come to know if anybody downloads his file

by clicking on „Downloads‟.

Fig. 8 Intimation for the owner about file download.

The owner of the file can share the files with other users

who are already registered.

Fig. 9 File sharing with other users.

The owner can check if other users have shared any files

with him. If so, he can download it.

Fig. 10 Shared files

The user needs to check his e mail to obtain security key for

downloading the files.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 5 Issue: 4 161 – 165

165
IJRITCC | April 2017, Available @ http://www.ijritcc.org

Fig.11 Security key is sent to mail id of user.

System Requirements:

Hardware Requirements:

• System : Pentium IV 2.4 GHz.

• Hard Disk : 40 GB.

• Floppy Drive : 1.44 Mb.

• Monitor : 15 VGA Colour.

• Mouse : Logitech.

• Ram : 512 Mb.

Software Requirements:

• Operating system : Windows XP.

• Coding Language : ASP.Net with C#

• Data Base : SQL Server 2005

6. Conclusion

The paper facilitates the client in getting a proof of

integrity of the data in the cloud storage servers with

minimum costs and efforts. This scheme was developed to

reduce the computational and storage overhead of the client

and to minimize the computational overhead of the cloud

storage server. It minimizes the size of the proof of data

integrity so as to reduce the network bandwidth

consumption. At the client we store two functions, the bit

generator function g, and the function h which is used for

encrypting the data. Hence the storage at the client is very

much minimal compared to all other schemes that were

developed. Hence this scheme proves advantageous to thin

clients like PDAs and mobile phones.

The operation of encryption of data generally

consumes a large computational power. In this scheme the

encrypting process is very much limited to only a fraction of

the whole data thereby saving on the computational time of

the client. Many of the schemes proposed earlier require the

archive to perform tasks that need a lot of computational

power to generate the proof of data integrity. But in this

project the archive just need to fetch and send few bits of

data to the client. The network bandwidth is also minimized

as the size of the proof is comparatively very less. The

scheme applies only to static storage of data. It cannot

handle to case when the data need to be dynamically

changed. Hence developing on this will be a future

challenge.

References

[1] Sravan Kumar and Ashuthosh Saxena, “Data integrity

proofs in cloud storage”, 978-1-4424-8953-4/11,2011

IEEE

[2] E. Mykletun, M. Narasimha, and G. Tsudik,

“Authentication and integrityin outsourced databases,”

Trans. Storage, vol. 2, no. 2, pp. 107–138, 2006.

[3] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in SP ‟00:

Proceedings of the 2000 IEEE Security and Privacy.

Washington, DC, USA: IEEE Computer Society, 2000,

p. 44.

[4] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of

retrievability for large files,” in CCS ‟07: Proceedings of

the 14th ACM conference on Computer and

communications security. New York, NY, USA: ACM,

2007, pp.584–597.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson,and D. Song, “Provable data

possession at untrusted stores,” in CCS ‟07:Proceedings

of the 14th ACM conference on Computer and

communications security. New York, NY, USA: ACM,

2007, pp. 598–609.

