
João Paulo de Oliveira Libório

Licenciado em Engenharia Informática

Privacy-Enhanced Dependable and Searchable
Storage in a Cloud-of-Clouds

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Henrique João Lopes Domingos, Full Professor,
NOVA University of Lisbon

Júri

Presidente: Nuno Manuel Ribeiro Preguiça
Arguentes: Alysson Neves Bessani

Henrique João Lopes Domingos

September, 2016

Privacy-Enhanced Dependable and Searchable Storage in a Cloud-of-Clouds

Copyright © João Paulo de Oliveira Libório, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculdade de Ciências e Tecnologia and the Universidade NOVA de Lisboa have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means known

or that may be invented, and to disseminate through scientific repositories and admit its

copying and distribution for non-commercial, educational or research purposes, as long as

credit is given to the author and editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

A C K N O W L E D G E M E N T S

I would like to thank my thesis advisor, Prof. Henrique João Domingos, for the help, support

and advise during the preparation and elaboration of this thesis and the teaching staff at

Faculdade de Ciências e Tecnologia who teached me a lot over the course. I would also like

to thank my family for the support and encouragement over the years, my friends for being

there in the good and bad times and my colleagues for making these last years memorable.

v

A B S T R A C T

In this dissertation we will propose a solution for a trustable and privacy-enhanced storage

architecture based on a multi-cloud approach. The solution provides the necessary support

for multi modal on-line searching operation on data that is always maintained encrypted

on used cloud-services. We implemented a system prototype, conducting an experimental

evaluation. Our results show that the proposal offers security and privacy guarantees, and

provides efficient information retrieval capabilities without sacrificing precision and recall

properties on the supported search operations.

There is a constant increase in the demand of cloud services, particularly cloud-based

storage services. These services are currently used by different applications as outsourced

storage services, with some interesting advantages. Most personal and mobile applica-

tions also offer the user the choice to use the cloud to store their data, transparently and

sometimes without entire user awareness and privacy-conditions, to overcome local storage

limitations. Companies might also find that it is cheaper to outsource databases and key-

value stores, instead of relying on storage solutions in private data-centers. This raises the

concern about data privacy guarantees and data leakage danger. A cloud system adminis-

trator can easily access unprotected data and she/he could also forge, modify or delete data,

violating privacy, integrity, availability and authenticity conditions.

A possible solution to solve those problems would be to encrypt and add authenticity

and integrity proofs in all data, before being sent to the cloud, and decrypting and verifying

authenticity or integrity on data downloads. However this solution can be used only for

backup purposes or when big data is not involved, and might not be very practical for on-

line searching requirements over large amounts of cloud stored data that must be searched,

accessed and retrieved in a dynamic way. Those solutions also impose high-latency and high

amount of cloud inbound/outbound traffic, increasing the operational costs. Moreover, in the

case of mobile or embedded devices, the power, computation and communication constraints

cannot be ignored, since indexing, encrypting/decrypting and signing/verifying all data will

be computationally expensive.

To overcome the previous drawbacks, in this dissertation we propose a solution for a

trustable and privacy-enhanced storage architecture based on a multi-cloud approach, pro-

viding privacy-enhanced, dependable and searchable support. Our solution provides the

vii

necessary support for dependable cloud storage and multi modal on-line searching opera-

tions over always-encrypted data in a cloud-of-clouds. We implemented a system prototype,

conducting an experimental evaluation of the proposed solution, involving the use of conven-

tional storage clouds, as well as, a high-speed in-memory cloud-storage backend. Our results

show that the proposal offers the required dependability properties and privacy guarantees,

providing efficient information retrieval capabilities without sacrificing precision and recall

properties in the supported indexing and search operations.

Keywords: Data storage clouds, dependable cloud storage, multi cloud architectures, multi

modal searchable encryption, RAM storage.

viii

R E S U M O

Nos últimos anos tem-se verificado um aumento notável da utilização de plataformas e servi-

ços na nuvem, incluindo os serviços de armazenamento e gestão de dados. Estes serviços são

hoje amplamente utilizados e integrados em muitas aplicações, como componentes outsour-

cing, tendo em vista as suas vantagens. As aplicações pessoais e de utilização móvel, que

manipulam cada vez mais dados e informação multimédia usam também aqueles serviços,

para armazenamento e acesso remoto de informação, de forma transparente para o utili-

zador e como forma de ultrapassar limitações de armazenamento dos dispositivos móveis.

Em muitos casos os utilizadores desses dispositivos não tem mesmo consciência desse facto.

Por outro lado, muitas empresas recorrem cada vez mais a serviços de gestão e armazena-

mento de dados na nuvem, como forma de reduzir custos operacionais bem como ultrapassar

limitações de investimento em infra-estruturas próprias e centros de dados privados.

A anterior realidade, no entanto, colide com um conjunto de preocupações também cres-

cente, em relação às reais garantias de privacidade, integridade, disponibilidade e fiabilidade

de dados críticos, quando estes estão armazenados fora do completo controlo do utilizador.

De facto, um administrador de sistemas trabalhando para um provedor de serviços na nu-

vem pode, por exemplo, violar aquelas garantias, aumentando o perigo de revelação de dados

privados e pondo em causa as condições de confiabilidade que se esperaria estarem preserva-

das. Não são completamente controláveis pelo utilizador as reais condições de segurança e

controlo de acesso aos dados depositados na nuvem ou que garantias existem face a ataques

externos, por exploração de vulnerabilidades do software ou das plataformas de hardware/-

software que suportam os serviços disponibilizados. São várias as situações de incidentes e

ataques que têm sido reportadas ao longo do tempo.

Uma solução possível para mitigar ou resolver alguns dos problemas anteriores poderia

passar por garantir que todos os dados fossem cifrados, sendo acopladas provas de autentici-

dade e integridade, antes de serem enviados para repositórios na nuvem. Os dados também

poderiam ser arquivados ou salvaguardados com base na sua replicação ou fragmentação em

múltiplas nuvens, operadas por diferentes provedores de serviços independentes. Neste úl-

timo caso o acesso aos dados pressupõe a sua localização, leitura e descarregamento de modo

a serem acedidos pelos utilizadores correctos e decifrados nos seus próprios dispositivos,

considerando-se estes confiáveis. Esse tipo de soluções só é interessante para salvaguarda

ix

ou acesso de pequenos volumes de dados, não sendo adequados quando é necessário pesqui-

sar e recuperar "on line"grandes quantidades de dados cifrados, nomeadamente no caso da

pesquisa, acesso e recuperação de dados multimodais. Por outro lado, as anteriores soluções

impõem naturalmente elevada latência de acesso, com aumento muito significativo de trá-

fego trocado entre o cliente e as nuvens, com agravamento de custos operacionais e redução

da efectividade e desempenho das aplicações. No caso de dispositivos móveis ou dispositivos

embebidos, os custos de computação, comunicação e de consumo energético devidos a opera-

ções de treino, indexação e localização dos dados, descarregamento, cifra e decifra, aquelas

soluções são inutilizáveis.

Para ultrapassar as anteriores limitações, a presente dissertação propõe uma solução

de armazenamento confiável e com garantias de privacidade acrescida, com base num sis-

tema de armazenamento de dados pesquisáveis, numa arquitectura de nuvem de nuvens.

A solução avançada permite suportar operações de escrita, leitura, indexação e pesquisa de

dados num contexto multimodal, sendo os dados mantidos sempre cifrados nas nuvens que

os albergam e permitindo que as pesquisas sejam feitas na nuvem usando apenas dados

cifrados.

O sistema proposto foi implementado e validado experimentalmente, tendo sido testado

para suportar dados em contexto de utilização multimodal (texto e imagem), incluindo-se

o suporte de pesquisas por similaridade. A avaliação inclui o estudo do impacto da solução

quando a mesma usa diferentes soluções de armazenamento confiável com base em soluções

de provedores Internet, e quando se utiliza um repositório na nuvem para armazenamento

em memória (do tipo in memory storage cloud). Os resultados obtidos mostram a validade

da proposta e que é possível oferecer garantias de confiabilidade e privacidade acrescidas

com repositórios indexáveis e pesquisáveis na nuvem, sendo possível suportar técnicas de

indexação e recuperação eficiente de dados multimodais mantidos cifrados. A avaliação

experimental revela que se conseguem suporta pesquisas eficientes, sem perda de precisão

e sem que se ponha em causa a correcção da recuperação desses dados.

Palavras-chave: Clouds de armazenamento, armazenamento seguro, arquitecturas multi

cloud, cifras pesquisáveis multi modais, armazenamento em memória . . .

x

C O N T E N T S

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Context and Motivation . 1

1.2 Problem Statement . 3

1.3 Objectives and Contributions . 4

1.4 Document Structure . 5

2 Related Work 7
2.1 Cloud Privacy . 7

2.1.1 Cryptographic Mechanisms and Tools 7

2.1.2 Oblivious Schemes . 9

2.1.3 Multi Modal Searchable Encryption . 10

2.1.4 Discussion . 11

2.2 Trustable and Secure Cloud Storage Systems 11

2.2.1 Farsite . 12

2.2.2 EHR . 12

2.2.3 Silverline . 13

2.2.4 Depsky . 13

2.2.5 iDataGuard . 14

2.2.6 TSky . 14

2.2.7 Fairsky . 15

2.2.8 MICS . 15

2.2.9 Discussion . 16

2.3 Other Approaches and Tools . 16

2.3.1 Erasure Codes . 16

2.3.2 Google’s Encrypted BigQuery Platform 17

2.3.3 RAMCloud . 18

2.3.4 Memcached . 18

xi

C O N T E N T S

2.3.5 OpenReplica . 18

2.3.6 Cloud-RAID Solutions . 19

2.3.7 Discussion . 21

2.4 Trusted Computing . 22

2.4.1 Trusted Execution Environment . 22

2.4.2 TPM . 23

2.4.3 Software Implementations . 25

2.4.4 Discussion . 28

2.5 Critical Analysis . 29

3 System Model and Architecture 31
3.1 System Model Overview . 31

3.2 Adversary Model . 33

3.2.1 Storage Backend . 33

3.2.2 Middleware Server . 33

3.2.3 Client Proxy . 34

3.2.4 Generic Adversarial Conditions . 34

3.3 System Model and Software Architecture . 34

3.3.1 Client Proxy . 35

3.3.2 Middleware Server . 40

3.3.3 Cloud Storage Backend . 45

3.4 System Operation . 45

3.4.1 Upload . 45

3.4.2 Get . 46

3.4.3 Search . 47

3.4.4 Index . 47

3.5 Architectural Options for Deployment . 48

3.5.1 Local Behaviour . 49

3.5.2 Cloud Behavior . 49

3.5.3 Multi-Cloud Behavior . 49

3.6 Discussion of Architectural Variants . 49

3.7 Summary and Concluding Remarks on the System Model Design 50

4 Implementation 53
4.1 Implementation Environments . 53

4.2 Technology . 54

4.2.1 Client Proxy . 54

4.2.2 Middleware Server . 55

4.2.3 Cloud Storage Backend . 58

4.2.4 TPM Attestation . 59

4.3 Transparent Integration with JCA . 59

xii

C O N T E N T S

4.3.1 Provider Implementation . 59

4.3.2 Programming Environment . 61

4.4 Deployed Environment for Evaluation Test benches 63

4.4.1 Local environment . 63

4.4.2 Single Datacenter Multi Cloud Environment 63

4.4.3 Multi Datacenter Multi Cloud Environment 64

4.5 Implementation Effort . 65

5 Experimental Evaluation and Analysis 67
5.1 Test Bench 1 - Local Base Environment . 67

5.1.1 Cost of Using CBIR . 67

5.1.2 Cost of Setup . 68

5.1.3 Cost of Searching . 71

5.1.4 Cost of Retrieval . 71

5.2 Test Bench 2 - Multi Cloud in the Same Datacenter 72

5.2.1 Cost of Setup . 73

5.2.2 Cost of Searching . 75

5.2.3 Cost of Retrieval with Middleware . 75

5.3 Test Bench 3 - Multi Cloud in Several Datacenters 77

5.3.1 Cost of Setup . 77

5.3.2 Cost of Retrieval . 79

6 Conclusions 83
6.1 Conclusions . 83

6.2 Future Work . 85

Bibliography 87

xiii

L I S T O F F I G U R E S

2.1 TPM components . 23

3.1 System Model . 32

3.2 System Model in Detail . 35

4.1 Test bench 1 . 64

4.2 Test bench 2 . 64

4.3 Test bench 3 . 64

4.4 COCOMOII Metrics . 65

5.1 Upload times for test bench 1 . 69

5.2 Measurements of the training and indexing phases in test bench 1 70

5.3 Search times for test bench 1 . 71

5.4 Download times for test bench 1 on the client side 72

5.5 Download times for test bench 1 on the server side 72

5.6 Upload times for test bench 2 . 73

5.7 Measurements of the training and indexing phases in test bench 2 74

5.8 Search times for test bench 2 . 75

5.9 Download times for test bench 2 on the client side 76

5.10 Download times for test bench 2 on the server side 76

5.11 Upload times for test bench 3 . 77

5.12 Measurements of the training and indexing phase in test bench 3 79

5.13 Client download times for test bench 3 without cache and with cache with 100 %

hit rate . 80

5.14 Client download times for test bench 3 with cache with 80 % hit rate 81

5.15 Server download times for test bench 3 . 82

xv

L I S T O F TA B L E S

5.1 Comparison of CBIR Dense and AES for one image 68

5.2 Comparison of CBIR Sparse and AES for one text document 68

5.3 Comparison for train and index times between DepSky and RamCloud for test

bench 1 . 70

5.4 Comparison for train and index times between DepSky and RamCloud in test

bench 2 . 74

5.5 Comparison for train and index times between DepSky and RamCloud in test

bench 3 . 79

xvii

L I S T O F A L G O R I T H M S

1 Algorithm for uploading unstructured documents on the client side 46

2 Algorithm for uploading mime documents on the client side 46

3 Algorithm for uploading documents on the server side 46

4 Algorithm to download unstructured document on the client side 47

5 Algorithm to download mime documents on the client side 47

6 Algorithm to download documents on the server side 47

7 Algorithm for searching on the server side . 48

8 Algorithm for training and indexing . 48

9 Encrypting image features with CBIR . 62

10 Encrypting image features and data . 62

11 Splitting encrypted image features and data . 62

12 Decrypting an encrypted image . 62

xix

C
H

A
P

T
E

R

1
I N T R O D U C T I O N

In this chapter we introduce the context and motivation as well as the problem statement

for this thesis, followed by the goals and contributions. In the end we present the structure

for the following chapters.

1.1 Context and Motivation

In recent years the use of cloud services has been increasing exponentially. Among the

biggest increases in usage is the upload and sharing of visual data, like photos and videos.

This increase is easily seen with the growth of Instagram in the last years [1]. Outsourcing

that data to the cloud is an attractive approach since it has several advantages: it’s cheaper

than hosting the data on a company server; has some guarantees of persistence since cloud

providers backup their data regularly and has a dynamic allocation of resources so that a

company only uses, and pays for, what it needs. Although managing visual data is harder

and requires more resources than textual data, searching for a specific image might be easier

done by the content and characteristics of the image rather than user defined expressions.

Unfortunately outsourcing data to the cloud, although attractive at first sight given

the recognized advantages of cloud storage solutions, has its own set of problems. Data

owners and users cannot control all guarantees of privacy over the outsourced data and in

many circumstances lose the expected privacy or confidentiality, as reported in many real

incidents of cloud-based data-leakage and confidentiality breaks.

Privacy is a strong concern for applications managing sensitive data. As data will be

stored on the provider infrastructure using their native storage solutions managed out of

the entire control of users, it will be more vulnerable. A malicious system administrator or

external attacker that somehow gain access to the system, by exploiting vulnerabilities in

access-control services or in the software and operating systems provided by each specific

1

C H A P T E R 1 . I N T R O D U C T I O N

cloud-vendor [2] could have complete access to the data. As a consequence, those opponents

could leak or modify the state of data-repositories, by data tampering, adding or deleting

actions. Indeed, different cloud services could have vulnerabilities (sometimes "zero-day

vulnerabilities"as extensively reported), or could not be trusted in terms of the integrity of

software stacks supporting the provided services for their end-users. The client has no way

to audit the cloud infrastructure and confirm the data integrity conditions or to attest the

correctness of data-access operations. Cloud providers also have downtimes, also reported in

many real situations, which make data unavailable and breaking the expected availability

conditions [3].

Although it may seem like all these concerns are not realistic, events have shown other-

wise. Google admitted that people shouldn’t expect privacy on GMail [4], a Google engineer

spied on chats [5] and the US government had access to servers from many of the major

Internet companies like Microsoft, Google, Apple, Facebook [6]. External threads are also

happening, as it was the case of iCloud photo leakage [7] and more recently Instagram

"million dollar bug". Although there was no leak of data in the Instagram case as it was

reported to Facebook’s Bug Hunting program [8], the bug would give an external attacker

access to private keys used to authenticate session cookies and connections allowing them

to impersonate any valid system user (having access to all private data from that user),

including Instagram staff or the server itself [9]. Moreover, the decision to use outsourced

data-storage solutions, should lead users to reflect carefully on the expected dependability

conditions. To illustrate the concern we can take (as one of many representative examples)

the real conditions expressed in typical statements for the provision of such services, by a

reference Internet cloud-service provider:

Excerpts from the liability statement and customer agreement conditions by Amazon

(Amazon Web Services™ Customer Agreement Documentation) for the provision of Amazon

AWS resources and services, namely on Security and Data Privacy conditions 1:

Security. We strive to keep Your Content secure, but cannot guarantee that we will

be successful at doing so, given the nature of the Internet. Accordingly, without

limitation to Section 4.3 above and Section 11.5 below, you acknowledge that you

bear sole responsibility for adequate security, protection and backup of Your Content.

We strongly encourage you, where available and appropriate, to use encryption tech-

nology to protect Your Content from unauthorized access and to routinely archive

Your Content. We will have no liability to you for any unauthorized access or use,

corruption, deletion, destruction or loss of any of Your Content.

1http://portal.aws.amazon.com/gp/aws/developer/terms-and-conditions.html

2

http://portal.aws.amazon.com/gp/aws/developer/terms-and-conditions.html

1 . 2 . P R O B L E M S TAT E M E N T

Data Privacy. (....) we will implement reasonable measures designed to help you

secure your content against accidental or unlawful loss, access or disclosure. (....)

You may specify the AWS regions in which Your Content will be stored. You consent

to the storage of Your Content in, and transfer of Your Content into, the AWS regions

you select. We will not access or use Your Content except as necessary to maintain or

provide the Service Offerings (....) but you accept the necessary conditons to comply

with the law or a binding order of a governmental body. We will not (a) disclose

Your Content to any government or third party or (b) subject to Section 3.3, move

Your Content from the AWS regions selected by you; except in each case as necessary

to comply with the law or a binding order of a governmental body (....) in accordance

with the Privacy Policy you accept.

1.2 Problem Statement

With all the problems that outsourcing data to the cloud raises, many companies and users

are wary of their use. This doesn’t mean however that cloud providers shouldn’t be used,

but instead that solutions should be found as a way to fully utilize cloud services to their

potential. Although some solutions can seem easy and solve some of the problems, they

might also raise other, and harder, problems that need to be solving. One perfect example is

the privacy of the data outsourced.

One possible approach to the lack of privacy guarantees on data outsourced to the cloud

is to encrypt it before outsourcing it, assuming that the client is trusted. This however

raises the problem that operations must be done in the client. Although in some cases the

overhead of retrieving, decrypting, processing, re-encrypting and uploading the data might

be small if the client knows exactly which data to retrieve and that data is small, operations

like searching or operations on large quantities of data become impractical. Even for small

quantities of data this approach is limiting for lightweight client devices like smartphones

or tablets. The solution would be to outsource the computations to the cloud and operate on

encrypted data. Although solutions for executing operations on encrypted data exist by using

fully homomorphic encryption they are computationally too expensive [10]. Other schemes

like CBIR presented by Ferreira et al [11] are more promising as they allow searches on

encrypted multi-modal data with a much smaller overhead.

On top of privacy concerns there is also integrity and availability concerns. Data stored

on the cloud is vulnerable to attacks on the cloud itself. It will become unavailable if access

to the cloud provider is lost. A client might also become locked-in to a cloud provider if they

outsource too much data, as the price to migrate all of the data to a second cloud provider

could be prohibitive. Solutions to both these problems appear to be easier. Data can be

replicated to several clouds which would solve the availability problem. However, just repli-

cating all the data on a number of clouds presents a serious storage overhead. Fortunately

algorithms like eraser codes could be used to reduce that overhead while maintaining the

fault tolerance to some of the clouds failing, while hashes could provide integrity checks for

3

C H A P T E R 1 . I N T R O D U C T I O N

the data replicated.

Can users and companies outsource data to the cloud and have guarantees that their

sensitive data is protected, while remaining available and correct whenever they need it?

Is it possible to build a system that offers all these three security guarantees (privacy,

integrity and availability) that also offers the possibility of executing searches on encrypted

data, particularly multi-modal data, while also maintaining performance that allows it to

be used in practice? While systems that address some of those concerns exist, none of them

try to address all three of those security guarantees while allowing searching on encrypted

multi-modal data.

1.3 Objectives and Contributions

The objective of this dissertation is focused on the design, implementation and experimen-

tal evaluation of a solution implementing a trustable and privacy-enhanced indexing and

searchable multi-cloud encrypted storage backend. The goal of such system is to allow data-

storage, indexing and searching operations on documents (objects) that can be composed by

text or images.

For our purpose, the designed solution provides the necessary support for multi modal

online searching operation on the encrypted documents, always maintained encrypted on

the used cloud-services, leveraging on the transparent integration of diverse solutions from

multiple cloud-storage providers.

Our solution is based on a middleware system supporting remote storage and multi-

modal privacy-enhanced indexing and searching of cloud-based encrypted documents. These

documents can be fragmented, and the fragments can be replicated in a dependable multi-

cloud repository backend.

Summarizing, we achieved the following results and contributions:

• The design of trustable and privacy-enhanced searchable storage middleware archi-

tecture based on a dependable multi-cloud approach;

• The implementation of the proposed solution in a research prototype that can be used

for the intended purpose and ready for the possible integration of different applica-

tions (via the provided external APIs). The solution is composed by two main macro

components: a client-component that will be used as a client-proxy (for local appli-

cation support), and a middleware service component that can execute in a trusted

virtualized docking based appliance, running remotely in a computational cloud. The

former will support object indexing, fragmentation and replication, transparently, in

the multi-cloud encrypted storage backend;

– We implemented the integration of two different variants for the multi-cloud

storage backend: a replicated multi-cloud data-store leveraged by the Depsky

4

1 . 4 . D O C U M E N T S T R U C T U R E

solution [12], and a replicated multi-cloud in-memory data-store supported by

the implementation of the RAM-Cloud solution [13].

– Among the different components of the middleware solution, we emphasize the

implementation of a Java JCA [14] compliant cryptographic-provider library

(standardizing its design for the generic use as any other JCE-cryptographic

provider), implementing new cryptographic primitives for content-based search-

able encryption and multi modal searchable encryption constructions [15].

• We conducted the experimental evaluation of the proposed system, analyzing the va-

lidity of the system design model, performance, and data-access latency for searching

and retrieving operations. In this evaluation we included the comparative analysis of

the two multi-cloud storage backend solutions: Depsky-based and RamCloud-based.

Our results show that the proposal offers the desired security and privacy guarantees

and provides efficient privacy-enhanced information retrieval capabilities, without sacrific-

ing precision and recall properties on the supported search operations, if compared with the

same operations accessing non-encrypted data stores.

1.4 Document Structure

This document is organized in six chapters. The second chapter is dedicated to current

efforts to solve the issues presented in this chapter, from novel encryption schemes to

trusted computing and state-of-the-art middleware systems that are similar to the one

presented in this thesis. We also compare those middleware systems and see where this

thesis improves the current solutions over those already developed middleware systems. On

the third chapter we state the adversary model and an initial view of the system model

and architecture. On the fourth chapter we detail the implementation details, including the

technologies used and the evaluation environment. The fifth chapter includes the description

of the test benches and datasets used as well the experimental observations and analysis.

The sixth chapter includes the conclusions and future work.

5

C
H

A
P

T
E

R

2
R E L AT E D W O R K

Outsourcing data to the cloud while maintaining guarantees of privacy, availability and

integrity is an hot topic actively being developed. In this chapter several approaches are

discussed that can be used to achieve one or more of these objectives. In Section 2.1 we

discuss cloud privacy and how it can be achieved. We discuss cryptographic schemes, pre-

senting mechanisms and tools, oblivious schemes and multi modal searchable techniques.

We will then move in Section 2.2 to trustable and secure cloud storage, which tries to ad-

dress the problems of availability and integrity of data in the cloud. We analyze several

state-of-the-art approaches and in Section 2.3 we analyze other approaches like Google’s

Bigquery Platform, RAMCloud, OpenReplica and solutions that try to look at clouds as a

RAID disk. In Section 2.4 we look at the state-of-the-art in trusted computation and in

Section 2.5 we do a critical analysis of the analyzed approaches.

2.1 Cloud Privacy

When outsourcing data to the cloud all guarantees of privacy are lost if the data is in plain

text. It is necessary then to find an efficient method of encrypting it while not incurring

in an excessive overhead for it’s use. We look at several approaches that allow privacy to

be maintained when data is sent to the cloud and see their benefits and problems. These

approaches are secret sharing, threshold signatures, homomorphic encryption SSE, Path

ORAM, Multi-Cloud Oblivious Storage and multi modal searchable encryption.

2.1.1 Cryptographic Mechanisms and Tools

2.1.1.1 Secret Sharing

Secret sharing schemes are designed to distribute a secret among several participants. Each

participant is given a share of the secret and the secret itself can be reconstructed if enough

7

C H A P T E R 2 . R E L AT E D W O R K

shares are joined. This schemes have two essential properties: given any t or more pieces

D i computing D is easily done; with any t−1 or less pieces D i D is undetermined such that

all possible values are equally likely.

Secret sharing schemes that do not follow the second property are called imperfect

schemes. One example of an imperfect scheme is Blakley Secret Sharing Scheme [16]. This

scheme uses an hyperspace in which t planes, out of n, can be used to define a point. That

point is the secret and each plane is a secret share. By knowing some of the planes the

solution space can be reduced to the intersection of those planes. Shamir Secret Sharing

Scheme is an example of a perfect secret sharing scheme [17]. A polynomial p is used to

share the secret and t points in the plane of that polynomial are the secret shares. The

polynomial is reconstructed by using the points.

2.1.1.2 Threshold Signatures

Digital signatures provide a way to guarantee authenticity and integrity to data and it’s

widely used with emails and electronic documents. A public key can be used to verify data

signed by the private key. This is however limited when multiple parties represent a single

entity. In those cases multi signature and threshold signature schemes are used. Multi

signature schemes don’t have a minimum number of participants and each participant signs

the data individually. In threshold signature schemes the participants sign the message

using a split key [18]. A split key is distributed among all participants and enough partici-

pants are required to generate a valid signature. This ensures that the message was signed

by enough parties to represent the entity.

Current threshold signature schemes are based on ElGammal (discrete logarithm prob-

lem), RSA (factorization problem), Elliptic Curve ElGammal (elliptic curve discrete problem).

They allow any t or more participants to generate a valid signature and the verification of

the signature by using the group’s public key, without identifying any of the signers.

2.1.1.3 Homomorphic Encryption

Homomorphic encryption schemes have been proposed as a way to execute operations on

encrypted data. This attempts to solve the problem that when outsourcing encrypted data

to the cloud there is no way to execute operations on it without a big overhead on decrypting

and re-encrypting it. There are two groups of homomorphic encryption schemes: partial and

full.

Partial schemes, like Paillier [19], allow only some operations. Full schemes allow all

operations. Full homomorphic schemes have been proposed by Gentry [20], and Djik et al

[21], however they have a very poor performance and retrieving all the data to do all the

processing locally and then re-upload it is often less expensive. Due to this, several partial

schemes are used instead. Partial schemes however are still much slower when compared

to other more traditional cryptographic schemes.

8

2 . 1 . C L O U D P R I VA C Y

2.1.1.4 Searchable Symmetric Encryption

Searchable symmetric encryption schemes allow an user to search over the encryption data

avoiding some of the overhead costs of having to retrieve all the data, decrypt it, do the

necessary operations, re-encrypt it and send it back to the cloud. The data is indexed by the

client, with the data being encrypted with a probabilistic encryption scheme and the index

with a weaker encryption scheme (deterministic or order-preserving).

There are several algorithms available for both text and image searches [11, 15]. On text

algorithms a keyword/file pair and search tokens are generated with a secret key, while for

image algorithms color histograms, shape descriptors or salient points are used. Security

guarantees degrade with every query until a minimum threshold and in most cases they

are designed for a one reader/one writer scenario

The first SSE scheme proposed that supports multiple writers/readers [22] encrypts

all documents with a different key. To search users send a search token and a delta be-

tween their key and the key of documents they have access to. Although each delta is only

calculated once, the storage requirements on the cloud increase exponentially the more

documents and more users exist limiting scalability and it has a linear-time search. The

cryptographic schemes are also slower than traditional symmetric encryption.

2.1.2 Oblivious Schemes

While encrypting data may seem like it’s enough to protect data, an attacker might still

learn information about it by looking at the access patterns, seeing which data is returned

for a query, and which data is more frequently read or written. Oblivious RAM schemes

were initially proposed by Goldreich and Ostrovsky [23]. Initially designed to be a scheme

of software protection, it was the base for the development of oblivious storage that can be

applied to the cloud by hiding the access patterns to files following the same idea that allows

to hide the access patterns to memory areas.

2.1.2.1 Path ORAM

Path ORAM, present in 2013 by E. Stefanov, et al [24], hides access patterns to a remote

storage by using a small client storage. This is done by continuously re-encrypting and

moving data in the storage as it is used. So although an attacker can see the physical

accesses to the data they can’t know which data is actually being accessed, since which

data is in that position on the storage has changed since it’s last access. To achieve this the

algorithm sees data as blocks of a certain size that are stored in the server in a binary tree.

Each node from the tree is a bucket that can hold several blocks and unused blocks in a

node are filled with dummy blocks. The client stores a stash which can hold some blocks and

a position map. The stash is usually empty after operations and it’s used to hold blocks that

overflow during the execution of an operation. The map stores the path in which a given

block is and when requesting a block, the whole path will be retrieved. After accessing a

9

C H A P T E R 2 . R E L AT E D W O R K

block it’s position is changed. Client side storage can be reduced by using recursion and

storing the position map in the cloud.

2.1.2.2 Multi-Cloud Oblivious Storage

Presented in 2013 by E. Stefanov and E. Shi [25], this algorithm uses multiple clouds

to store data. The objective is to reduce the bandwidth cost of using an ORAM algorithm.

The best ORAM algorithms known have a 20X-35X bandwidth cost over accessing the data

directly, while with Multi-Cloud Oblivious Storage that cost can be reduced to 2.6X. This

is achieved by moving the higher bandwidth cost to be inter-cloud instead of client-server.

While it requires a cloud with computational capabilities, it doesn’t require secure computa-

tion which makes it possible to deploy this algorithm in the current clouds. It is assumed

that the clouds are non-colluding and at least one cloud is honest. Although only two clouds

are used in the paper, it is possible to use more. The client side storage required is O(
p

N),

with N being the number of data blocks outsourced to the clouds.

To prevent incurring in bandwidth cost for the client, the clouds encrypt and shuffle

the data between themselves. After the access to some data, one cloud shuffles it, adds an

encryption layer and sends it to the other cloud. On the next access the clouds switch roles,

so that one cloud sees the access pattern, and the other sees the shuffling. An encryption

layer is needed so that one cloud can’t recognize a block of data when the other cloud sends

them after shuffling. Otherwise it would be possible for a malicious cloud to detect an access

patterns when operations are executed over data, even with shuffling. To detect a deviation

of the algorithm a commutative checksum-encryption is used, so clouds can monitor each

other actions and allow the client to verify the correctness of the protocol.

2.1.3 Multi Modal Searchable Encryption

Multi Modal Searchable Encryption was first proposed in [15, 26] by Ferreira et al. To

support searching in encrypted data a new cryptographic algorithm was developed called

Distance Preserving Encoding (DPE). The designed DPE scheme has two instantiations to

be applied to dense and sparse data (image and text respectively). The scheme preserves

a controllable distance function between the ciphertexts. Since some distance between the

ciphertext is maintained some information is leaked about similarities between plaintexts.

The distance preserved can be configured so that this leakage can be controlled on a appli-

cation basis. If the distance between ciphertexts is bigger than the defined threshold then

nothing is leaked.

Dense data like images are characterized by having an high dimensionality and a non-

zero value in all of its dimensions. This means an algorithm must be able to deal with high

dimensional feature vectors and keep a controllable distance between them. To achieve this

the features vectors are transformed with universal scalar quantization, which preserves

distance l2 between the plaintext features vectors for a distance l1 between the ciphertext

vectors if that distance is less than a configurable parameter t. If the plaintext distance is

10

2 . 2 . T R U S TA B L E A N D S E C U R E C L O U D S T O R A G E S Y S T E M S

bigger than t then the distance between ciphertexts will tend to a constant. Sparse data

like text is characterized by having a limited number of non-values, for example, an english

document will contain only a small subset of the english vocabulary. This means that to

compare two features vectors it’s only necessary to compare for equality the non-null values.

This means threshold t will be 0 and it will only leak if two keywords are the same.

2.1.4 Discussion

Secret Sharing schemes provide an interesting approach to share encryption keys. However,

other symmetric encryption schemes(as presented in...) are more efficient to encrypt the

files. Futhermore is always possible to use a key distribution service with those schemes

in orthogonal way. Threshold signatures are schemes to authenticate documents signed by

several parties. However when data is outsourced to several clouds which are untrusted

from a single client, and when there is only one party signing it, there are no advatages in

using threshold signatures.

Homomorphic encryption schemes have a considerable ciphertext expansion and are

still too slow for a practical environment. Alternatively, SSE schemes are faster, however

requiring a lot of client computation and bandwidth. This poses a problem when lightweight

and mobile devices are used in the client side. Multi Modal searchable encryption tries

to minimize the impact seen in searchable symmetric encryption schemes on the client by

moving most computations to the cloud while maintaining privacy.

The approach of Oblivious Ram is interesting to hide access patterns. Although both

Path ORAM and Multi-cloud Oblivious Storage incur into a expensive overhead in band-

width cost while also decreasing the performance of the system. These solutions were used

as starting points to provide obfuscation on the access patterns to files on the storage clouds

an issue which is not in our objectives.

2.2 Trustable and Secure Cloud Storage Systems

Storing data on the cloud can be cheaper than hosting the data on a company’s own server,

but if access to the cloud is lost so is access to the files. This can happen for several reasons

like connections issues, cloud hardware failure, denial of service attacks (DoS) or malicious

administrators corrupting the data. It can also reduce the speed at which files are written

or read due to the latency in contacting the cloud servers for operations and create a vendor

lock-in problem for the company. In this Section we look at different approaches to make

cloud storage more reliable and secure.

11

C H A P T E R 2 . R E L AT E D W O R K

2.2.1 Farsite

Published in 2002 by Adya et al. [27], Farsite is a remote storage system that provides

privacy, availability and integrity. Files are encrypted with symmetric encryption and repli-

cated across several machines and one way hash functions provide detection for file corrup-

tions. Each machine in the system can have three roles: client, directory group or file host.

Files are stored logically in a repository, which is called a namespace. Directory groups are

responsible for managing a namespace and file host are machines that host the file’s data.

Namespaces are managed through a Byzantine-fault-tolerant protocol. To access a file a

request is sent to the machines responsible for the namespace where the file is stored. If a

machine fails for a long period of time it’s functions are migrated to another machine using

the replication to regenerate the lost data.

Despise addressing privacy, availability and integrity, Farsite also trys to address scala-

bility issues. It was assumed a maximum of 105 machines in the system but a small number

of concurrent I/O operations for files. Although it can support large scale of read only opera-

tions on the same file, the system is not designed for scalable write operations. The system

design is more intended to provide the functionality of a local file system with the benefits

of a remote replicated file system with low sharing requirements.

2.2.2 EHR

A privacy preserving Electronic Health Records (EHR) systems was developed by Narayan et

al. [28] in 2010. This is achieved by a combination of symmetric and asymmetric encryption,

specifically attribute-based encryption (ABE). ABE schemes allow security to be based on

a set of attributes. In a ABE system each user’s public key has a set of attributes and each

ciphertext has a access policy based of those attributes. Decrypting the data is only possible

if the private key has the right set of attributes.

File metadata is encrypted with an user’s public key and the data itself is encrypted

using symmetric encryption. Keys are generated by a trusted (TA) authority that verifies the

private key’s attributes and public key’s are published in a public directory. The ABE scheme

used allows users to give access to only parts of the file and to revoke access directly without

having to re-encrypt the files or metadata with a different key. It also allows an user or

entity to delegate some it’s attributes to another user or entity. Searching is supported with

the use of a Secure Channel Free Public-Key Encryption with Keyword Search which doesn’t

reveal keywords or partial matches. Although this system addresses privacy concerns, it

doesn’t solve the integrity and availability problems. It also requires a central TA to issue

or verify the keys of every user which will have access to all encrypted files, it’s search

capabilities only work on text and doesn’t support ranked matches.

12

2 . 2 . T R U S TA B L E A N D S E C U R E C L O U D S T O R A G E S Y S T E M S

2.2.3 Silverline

Silverline is a middleware designed by Puttaswamy et al. in 2011 [29]. It aims at providing

data confidentiality for applications using cloud storage to keep a database with minimal

changes to the application code. In order to maintain the application performance Silverline

leverages the fact that the cloud doesn’t need to know exactly what the data being stored

represents to be able to perform it’s functions. Data that is used in the cloud for computa-

tions, like calculating the average age of users, is stored in plain text. Other data, called

functionally encryptable is encrypted with a symmetric key. For example a SELECT query

for a given user id, the cloud doesn’t need to know which user id is been processed, only that

the query compares two equal values. Encryption keys for users are generated and man-

aged by the organization responsible for the application. Users can retrieve and store their

keys through browsers and HTML5 to reduce network traffic and load on the organization

servers.

To set up a Silverline system a training phase must be executed, in which the application

perform a set of queries. This queries will determine the minimal key set for users and which

data is functionally encryptable. This can be problematic for larger databases in which is

hard to get a set of queries that represents real use case of the application. The database

will have to be changed so that the encrypted data is stored correctly although those changes

are column type changes and not in the database structure and the application will have

to be changed to communicate with the middleware instead of with the cloud directly. It

doesn’t support ranked queries, or keyword searches since it compares the whole ciphertext

in the database field and doesn’t address availability or integrity.

2.2.4 Depsky

Depsky is a cloud-of-clouds storage middleware proposed by Bessani et al. in 2011 [12]. It

addresses confidentiality, availability, integrity and vendor lock-in by using several clouds,

symmetric encryption, secret sharing and erasure codes. It supports a byzantine fault

tolerant protocol so up to f in 3 f +1 clouds can fail and data remains available. The system

is also extendable to support more, or different, clouds which deals with the vendor lock-in

problem.

To provide confidentiality file data is encrypted with a randomly generated symmetric

key. This key is then shared among all clouds using a Secret Sharing scheme. File data,

organized as data units, are replicated in multiple clouds using erasure codes. This scheme

allows the storage space used on each cloud to be around 50% of the size of the original data.

Depsky also allows the user to use only secret sharing, erasure codes, or none when storing

data. The authors also propose a low contention locking mechanism that uses the cloud

themselves to manage concurrent writes.

13

C H A P T E R 2 . R E L AT E D W O R K

2.2.5 iDataGuard

Proposed in 2008 by Jammalamadaka et al. [30], iDataGuard is a cloud storage middleware

that aims to support multiple clouds. It addresses confidentiality and integrity by using PBE

and HMACs. Encryption of files uses a symmetric key constructed with a master password

given by the client and the object’s name. Each file will have a different key to prevent

cryptanalysis attacks. Data integrity is achieved by using HMACs constructed by using the

file’s content and the version number. Since version numbers can’t be stored together with

the file iDataGuard stores an object in one cloud and the version number in another cloud.

Text and pattern search are supported by an inverted index with all the keywords and

a list of documents where they appear, and a q-gram index that maintains all the possible

q-grams and a list of keywords that contain them. Both indexes are encrypted and stored

in the cloud. When an user wants to perform a search the required index is retrieved

and consulted, instead of retrieving all documents. For a large number of files however

these indexes can become too big. File system operations are translated into abstract

operations that the Service Adapters (SAs) can perform, while SAs translate those abstract

operations into operations supported by the cloud provider. These SAs will be cloud specific

and independently developed SAs and can be installed into iDataGuard to support more

cloud providers.

2.2.6 TSky

TSky is a middleware framework proposed by J. Rodrigues in 2013 [31]. It uses a cloud-

of-clouds to store data and ensures confidentiality, availability, integrity and avoids vendor

lock-in. TSky can be run locally or as a proxy running on a trustable machine. It uses

LSS and Paillier to provide searchability and scoring updates in encrypted data, threshold

signatures for data availability and integrity, and symmetric encryption with secret sharing

for data confidentiality. The API provided by the framework consists of PUT/GET/REMOVE

and LIST operations and several adapters are used to communicate with the clouds in a

transparent way to the client.

A master key and reference are generated and stored locally. The master reference is the

hash of a cloud object containing the hash of a replica and the cloud in which it’s stored. A

replica contains all the necessary information to retrieve the data. The master key encrypts

the replica’s hash and the reference to the cloud where it’s stored. To retrieve some data the

master reference is used to get the encrypted cloud object associated with it. The master key

is used to decrypt this data and obtain the replica’s hash and cloud reference to where it’s

stored the data. Using the replica’s hash the data is retrieved, the seed used to generated the

symmetric encryption keys is regenerated from the secret shares, the file’s data is decrypted

and then verified it’s authenticity with the threshold signature schemes.

14

2 . 2 . T R U S TA B L E A N D S E C U R E C L O U D S T O R A G E S Y S T E M S

2.2.7 Fairsky

Fairsky is a cloud-of-clouds middleware proposed by A. Strumbudakis in 2013 [32]. It

provides confidentiality, integrity, availability and cost analysis of the best clouds to use

based on file use. The API provide a transparent interface with a set or regular functions in

file systems: PUT, GET, REMOVE, LIST, MKDIR and SEARCH. The connectors provide an

abstraction to the heterogeneity of the cloud interfaces so the components in the middleware

can use the interface for all clouds.

The index consists of a list of file entries and their fragments list with each fragment

having a reference to the cloud where the data is being stored. The data stored in the

clouds consists of some metadata like the symmetric key used and the hash of the data. The

symmetric key is stored encrypted with asymmetric encryption so it can also be used as

means to implement access control by storing it encrypted with the public key of each user

who has access to the file.

An application profile configured by the client is used to decide how many replicas to

use, how much file fragmentation should be done and the priority of read, write and search

operations. In addition to those factors the latency for read and write operations, remaining

storage before the pricing model changes and how much does each read and write operation

costs, as well as current storage price are used to decide in which cloud to store the data

fragments. These last factors are measured while the application is running and can change

from one operation to the next. Although Fairsky has a search operation it only supports

search over the file’s names. It also uses a multiple-reader one-writer model which can limit

scalability.

2.2.8 MICS

Mingling Chained Storage Combining Replication and Erasure Coding (MICS) is cloud

remote storage system proposed by Y. Tan et al. in 2015 [33]. It offers availability and high

performance in trade of some space overhead by using chain replication and erasure codes.

Chain replication offers high read performance and tolerates up to N−1 cloud failures, with

N being the total number of clouds used. The drawback is that chain replication uses raw

replication and as such it might not be practical with the storage overhead. Eraser codes

are used to reduce that overhead. The system is divided into clients, proxy server clusters

(PSC) and object storage clusters (OSC). PSCs maintain a global state of the system and

direct the requests to the correct OSC.

MICS was designed to offer high performance and so tries to use the advantages of both

chain replication and erasure codes on each operation. Read operations will be directed

to the Master Node (MN), which is essentially a copy of the file, so that network traffic is

reduced and there is no need to reconstruct the file. There are two types of write operations

considered: sequential and random. Sequential writes are initial uploads or overwrite

operations. In this case the write is directed to the MN. After the MN stores the file the

erasure codes are calculated and pushed to the other clouds. A random write is a update

15

C H A P T E R 2 . R E L AT E D W O R K

on a file. In this case the request is directed to the Erasure Coded Chain which uses Parity

Logging. Because of the write algorithm there can be problems related to consistency. MICS

provides PRAM consistency, so write operations done by a single client will be seen by every

client in the order they were made, but there are no guarantees as to which order write

operations done by different clients will be seen.

2.2.9 Discussion

Individually, none of the analyzed systems provide a system with the same characteristics

as the one proposed in this thesis. Fairsite lacks the search capabilities intended, while

also being designed to a smaller scale deployment setting. EHR doesn’t address availability

or integrity of data, and also trusts all of the data stored to a single central authority, for

example a single cloud. Silverline tries to use conventional encryption schemes and so makes

some trade-offs when storing data. One of them is that data is not encrypted if it’s required

for some operation in the cloud. Unfortunately data can be both sensitive and required

for operations. Depsky addresses the availability, integrity and privacy of data however

doesn’t offer any form of searchability on encrypted data which limits it’s use. Fairsky,

while addressing the main issues of availability, integrity and privacy also lacks search

capabilities and only supports a single writer policy, even if writers are modifying different

files. MICS only addresses availability and both iDataGuard and TSKy offer searchability

but only on text data.

2.3 Other Approaches and Tools

In addition to the previously presented solutions, there are other approaches to the problems

of cloud storage. Google’s Encrypted BigQuery is one such approach, in which an encrypted

database is provided as a service for the client. Other possible approach are cloud-raid sys-

tems that treat clouds as raid disks. Encrypted BigQuery [34], RAMCloud [13], Memcached

[35], OpenReplica [36], RACS [37], Cloud-RAID [38, 39], NCCloud [40] and InterCloud

RAIDer [41] will be presented in this Section.

2.3.1 Erasure Codes

Erasure codes are widely used in storage solutions as way to deal with errors and failures

[42]. Unlike data being transmitted and received in real time, data stored can’t be retrans-

mitted in case an error occurs that corrupts it creating the necessity for error correction on

top of detection. There are several kinds of erasure codes each one presenting advantages

and disadvantages. For example, if we use an erasure coding scheme that replicates all

data on a second storage, we have the advantage of redundancy and access to the data

with a low computational overhead. However, the disadvantage is that such a scheme will

require much more storage. More complex erasure codes, like Reed-Solomon codes, can

16

2 . 3 . O T H E R A P P R O A C H E S A N D T O O L S

provide similar redundancy with less overhead on storage. However this approach is more

computationally expensive.

The complexity of the required computations depends on the codes and the used pa-

rameters. Indeed, erasure codes depend on several parameters, both for redundancy and

performance. For the most simple codes k data blocks are used to create m coding blocks

using w-bit words. Those three parameters define the fault tolerance, storage overhead and

performance. The most common values of w are 1 and 8 (which means a word is a byte).

Higher values are possible, however with a significant impact on performance due to the

Galois Field arithmetic required for the coding. The fault tolerance depends on both m and

the code used. If a code can tolerate and recover from the failure of any m blocks then it’s

optimal and called a maximum distance separable code (MDS). These codes provide the

optimal balance between storage overhead and fault tolerance.

When dealing with a distributed system and objectives as stated in this thesis another

factor has to be considered which is the cost of recovery. How to deal with the failure of one

of the storage clouds? Although data remains available it means that another cloud can’t

fail without affecting the availability of the stored data. A direct solution in which all data

is retrieved and redistributed is not acceptable due to the computational requirements and

network traffic generated. Other solutions can be explored, and erasure codes that minimize

this problem, called Regenerating Codes [43], is still an area of active research.

2.3.2 Google’s Encrypted BigQuery Platform

Encrypted BigQuery is an extension to BigQuery that alters the client connecting to the

database while maintaining performance and being scalable [34]. It works by supporting

an extended schema for tables in which an user can choose how to encrypt each column.

Several encryptions schemes are supported including homomorphic, probabilistic and some

adaptations of more traditional schemes to support searches. This allows the user to query

the encrypted data and perform some operations. The encryption key is stored on the client

and it’s distribution is left to the user. Not all data needs to be encrypted, so non-sensitive

data be stored in plaintext to improve performance.

Although Encrypted BigQuery provides availability by being built on top of BigQuery

still has several problems to it’s adoption. In order for data to be encrypted in a secure way

only a subset of BigQuery’s operations are supported and it’s search capabilities are limited

to text. The user also needs to define when making the tables schema which encryption

scheme will be used for each column. This takes away some flexibility as if later the appli-

cation is changed to support a new query to which the encryption used isn’t adequate it will

force either a performance loss because data will have to be retrieved and the processing

done in the client or a database re-encryption.

17

C H A P T E R 2 . R E L AT E D W O R K

2.3.3 RAMCloud

RAMCloud is a solution based on in-memory storage to improve the performance of cloud

based web applications [13]. While applications running on a single machine can often store

the required data to work on DRAM and access it in 50ns−100ns, web applications have

to store their data on separate servers causing access times of 0.2ms−10ms. RAMCloud

uses a key-value data model and a log structured storage. Data is organized in tables, which

might be split over multiple servers in tablets. Objects in the log are referenced by entries

in a hash table stored in the server.

There are three types of servers on RAMCloud: masters, replicas and coordinator. Al-

though a single server can act as both master and replica, replicas must be on a different

server than the master responsible for the data. Data written to RAMCloud will be as-

signed to a master server which will keep it on DRAM. Replicas will store that data on disk

to provide persistence. Coordinators direct clients to the servers responsible for the data

requested.

2.3.4 Memcached

Memcached is a solution designed by Fitzpatrick to improve the caching in web servers [35].

The intention was to cache the objects needed to generate dynamic web pages, but not the

pages themselves as that would lead to some page objects being cached more than once and

being requested less often. A regular caching solution would be able to cache the objects

instead of the pages. However that would not solve the problem of an object being cached

more than once as multiple servers could need it but they couldn’t access each others cache.

Memcached allows servers to access a single cache that is distributed among those servers.

Cache entries are organized in a two layer hash table. The first layer indicates in which

server the entry is located, while the second one accesses the object in the server. Memcached

server instances are independent of each other and it’s the client library that decides in

which server a certain key is stored. Several client libraries are available and the protocols

to communicate with the Memcached servers are available allowing the development of

specific client libraries for applications. This creates a single cache that has the size of the

DRAM available in all the server running Memcached combined, instead of several smaller

instances. Each Memcached instance can also have different space available for caching

allowing an easier deployment in different machines.

2.3.5 OpenReplica

OpenReplica is an object-oriented coordination service [36]. It operates on objects that repre-

sent state machines provided by the user and turns them into fault-tolerant replicated state

machines. Clients don’t need to be aware of the replication and don’t need to instantiate the

object itself. Operations are called on a proxy object created by OpenReplica that provides

an interface similar to the one of the object provided. Paxos is used for coordination and

18

2 . 3 . O T H E R A P P R O A C H E S A N D T O O L S

operations are executed in a strict order so developers don’t need to concern themselves with

locks or idempotent operations that can be executed more than once due to failures or delays

in the network. Replicas are instantiated in several servers and name servers direct clients

to those servers. To provide at most once semantics a command log is kept. The order of the

commands in the log is decided by Paxos.

2.3.6 Cloud-RAID Solutions

RAID systems provide integrity and availability by using striping in which data is split over

all disks and by using redundancy in which the same data is written in more than one place.

Redundancy can be implemented with raw data replication, parity bits or erasure codes and

provides availability in case some of the disks fails. How many fails it supports depends on

the RAID level [44]. Some systems that approach clouds as RAID disks will be presented on

this section.

2.3.6.1 RACS

Redundant Array of Cloud Storage (RACS) was presented in 2010 by H. Abu-Libdeh et

al [37]. It was designed as a proxy that writes data to clouds with minimal changes to

applications by using a subset of operations from Amazon S3 REST API. This system

provides availability, integrity and deals with vendor lock-in by using multiple clouds as

storage. Like RAID approaches on disks, RACS uses a mix of striping and redundancy with

eraser codes to write data and maintain availability without incurring in the price of full

replication.

Clients that are modified to use all capabilities of RACS can also give some policies hints

on requests so that RACS can choose repositories better suited to that operation for example

based on latency, load balancing or pricing model. To avoid becoming a bottleneck RACS

can work in a distributed mode in which several RACS proxies are connected to the same

set of cloud repositories and maintain the same state for user authentications. Zookeeper is

used to coordinate all the proxies and to maintain a one-writer multiple-readers policy for

each key in a bucket.

2.3.6.2 Cloud-Raid

Cloud-RAID is a system proposed by Schnjakin et al [38, 39]. It provides privacy, availability,

integrity and avoids vendor lock-in by adopting some RAID techniques. Each cloud is seen

as a RAID disk and symmetric encryption and eraser codes are used to store files in the

clouds. Cloud-RAID also tries to dynamically store files in the best cloud providers according

to user criteria, for example storage price or quality of service expectations. Cauchy-Reed-

Solomon algorithm is used to split files and after encoding the fragments are encrypted with

AES. The resource management module has a database back end and keeps track of the

information necessary to retrieve the files like encryption keys, original file size and hash

and eraser code algorithms.

19

C H A P T E R 2 . R E L AT E D W O R K

Cloud providers are abstracted into storage repositories and only support six operations:

create a container, write a data object, list all data objects, delete a data object and retrieve

the hash of a data object. Data objects represent the file fragments and are stored in

containers. To keep track of cloud providers services there is a reputation object which

stores information about past performance (storage price and response time for example).

This object is then used to choose which cloud providers to use. Although providing privacy

Cloud-RAID doesn’t support any operations on encrypted data. Encryption keys are also all

stored locally in a database which can become a single point of failure.

2.3.6.3 NCCloud

NCCloud is a system proposed in 2013 by H. Chen [40] that aims to provide a RAID6 storage

system over multi-cloud storage. It improves on RAID6 by using functional minimum-

storage regenerating codes (FMSR) which generate less network traffic when recovering

data but doesn’t offer any privacy or integrity. Using the NCCloud system with four clouds

the file is split into four chunks and then generate eight chunks obtained by different linear

combinations of the original four chunks. Two of the eight chunks are stored in each cloud

provider. When a cloud provider fails its two chunks can be recovered by retrieving any three

of the remaining six chunks. Although NCCloud deals with availability better than other

systems it doesn’t provide integrity or privacy for data. It also only supports file upload, file

download and file recovery operations. The system evaluation for availability purposes was

conducted in a four cloud scenario where it’s possible to tolerate up to two failures instead

of one.

2.3.6.4 InterCloud RAIDer

InterCloud RAIDer is a system proposed in 2014 by C. H. Weng and A. Datta [41]. It

provides privacy, integrity and availability however it uses different techniques than the

ones used in the systems presented previously. It uses chunk-based deduplication to split

the files over the clouds, non-systematic eraser codes for redundancy and provable data

possession (PDP) for integrity.

The eraser code chosen is a homomorphic self-repairing erasure code (HSRC). Unlike

systematic eraser codes, non-systematic eraser codes don’t have any of the original data in

the encoded blocks, so unless a cloud provider gets access to enough encoded blocks from

the same file to reconstruct it completely it won’t be able to retrieve any of the original data.

After the blocks chunks are encoded with the HSRC they are uploaded to the cloud.

Although it can be generalized to a multi cloud file system with a predefined interface

this system was designed with private users in mind and as such is not very scalable and the

concurrency of multiple users accessing the same file for reading or writing is not addressed.

The index scheme was also not optimized for a very large quantity of data stored.

20

2 . 3 . O T H E R A P P R O A C H E S A N D T O O L S

2.3.7 Discussion

Google’s Encrypted BigQuery is an interesting approach but it’s geared towards databases

and big data analytics. It also has some limitations on the operations allowed which the pro-

grammer has to take into account when deciding the database schema. The wrong schema

can be very costly in terms of performance and bandwidth costs and it’s not always easy to

predict which queries will be made in the future. RACS doesn’t provide privacy and offers

only two connectors for existing cloud providers and a connector for a network file system.

Cloud-RAID provides privacy, availability, integrity and avoids the vendor lock-in while also

adjusting dynamically in which clouds should files be stored to better suit the user’s needs.

However there are no operations on encrypted data and all encryption keys are stored lo-

cally in a database leaving key distribution completely to the user. NCCloud translate a

RAID6 architecture almost directly to cloud storage and then makes some improvements to

reduce network traffic to optimize the cost of recovery in case of failure. However it lacks

privacy and integrity. InterCloud RAIDer provides availability, integrity and some weak

privacy with non systematic eraser codes. If an attacker gets access to enough chunks of

a file they will be able to reconstruct it, which would not be the case with the help of an

encryption scheme. It also makes some improvements on storage overhead. It is however

more geared towards private user with little to moderate amounts of outsourced data. RAM-

Cloud provides an interest solution which tries to minimize latency. Although the results

presented in the paper look promising it’s a solution designed to be deployed in a data center.

This raises the problem of vendor lock-in. Also since replication is all the same data center

availability might be affected in case of data center failure, which would not be a problem

on other replication services. When deploying it with servers on different data centers the

performance gains might not be as good. OpenReplica also provides an interesting approach

to replication and the lineralization of operations by using Paxos to guarantee strong con-

sistency. However the use of Paxos for every request can become a bottleneck if too many

client proxies are used.

Although the different approaches presented before are interesting contributions in dif-

ferent areas, they are in general aimed at solving different issues when compared with the

thesis objectives. Google’s Encrypted BigQuery addresses to solve privacy in databases for

big data analytics, RACS addresses availability and vendor lock-in problems, Cloud-RAID

addresses dynamic placement of files in the cloud while keeping data privacy, integrity and

availability, NCCloud focus on the recovery cost if a cloud fails permanently and InterCloud

RAIDer addresses cloud storage for a single user. None of these systems, with the exception

of Encrypted BigQuery, address data searching capabilities in their implementations. En-

crypted BigQuery can do some searches over text data, not providing multi modal searching

facilities.

21

C H A P T E R 2 . R E L AT E D W O R K

2.4 Trusted Computing

Trusted Computing refers to technologies to implement trust computing bases, by ensuring

the integrity of attested operations performed to trusted anchors. In this Section we will

look at the state of the art implementations, their architectures, what they accomplish, and

their disadvantages. This support stands for attestation capabilities at load and execution

time avoiding for the damage of possible malicious code injections. Then we will move to

some implementations of TEEs starting with On-Board Credentials (ObC) [45], Open-TEE

[46], Trusted Language Runtime (TLR) [47], fTPM [48] and finally cTPM [49].

2.4.1 Trusted Execution Environment

A Trusted Execution Environment (TEE) [50] is usually provided by hardware to create

an isolated execution environment from the normal execution environment applications

regularly use, in some cases called Rich Execution Environment (REE). A TEE provides

a place for applications to execute sensitive operations as well as provide secure storage

and guaranteeing the integrity of the software loaded. The hardware architecture can be

implemented with two chips, one that provides the REE, and a weaker processor for the TEE.

One example of this architecture are TPMs. The other architecture shares some hardware

components for both TEE and REE. The processor can execute in two modes, the secure

and normal worlds, for example the ARM TrustZone. Access to peripherals and memory

areas is restricted by in which mode is the access executed. Some implementations can use

virtualization to support several TEEs at the same time and give each application it’s own

TEE. TEEs have less functionalities than the REE and although this might restrict what an

application can execute in the secure world the Trusted Computing Base (TCB) is smaller

and it’s easier to audit.

A TEE usually provides five services: boot integrity, secure storage, isolated execution,

device identification and attestation/provisioning. Boot integrity can be achieved by using

either secure boot in which the boot fails if any component fails its verification or authenti-

cated boot in which the hashes of the components loaded are stored and can be provided if

requested. Secure storage is provided by storing a device key and cryptographic functions

that are protected from physical tampering and can only be accessed by authorized code.

Isolated execution can be implemented by using two execution modes (the normal and the

secure world) and having an entry point to move from one mode to another. The normal

world, will be responsible for the REE where applications execute while the secure world

will be responsible for the TEE for sensitive operations. Device identification can be im-

plemented with a identifier stored in the TEE. Remote attestation can be implemented by

using the hashes stored during the boot signed with a device certificate. Provisioning can

be achieved by using the public key of the device certificate to encrypt the data being sent

to the TEE.

22

2 . 4 . T R U S T E D C O M P U T I N G

2.4.2 TPM

A TPM (Trusted Platform Module) is an hardware module deployed in the motherboard of

a computer, smart card or integrated with the processor that provides the functionalities

needed for trusted computing. It is composed of several components as shown in 2.1: I/O,

cryptographic co-processor, key generation, HMAC engine, random number generator, SHA-

1 engine, power detection, opt-in, execution engine, nonvolatile memory and volatile memory

[51].

I/O

Packaging

Cryptographic
co-processor

HMAC
engine

SHA-1
engine

Opt-in

Nonvolatile
memory

Key
generation

Random number
generator

Power
detection

Execution
engine

Volatile
memory

Figure 2.1: TPM components. Adapted from Computer Security: Principles and Practice
[51]

The TPM works with the other hardware/software components by providing authenti-

cated boot, certification and encryption services. This allow applications, including the OS

itself, to verify that the OS loaded is correct and to securely encrypt data being processed in

the machine. To provide authenticated boot the TPM checks the integrity and validity of the

code being executed during each stage of booting using digital signatures. A tamper-proof

log is also kept of the code loaded so the TPM can check at any time the version and mod-

ules of the OS that are running. After booting more trusted applications and/or hardware

modules can be loaded by using an approved list. The certification service allows a TPM

to certify the system state, based on the authenticated boot service, to other applications.

The application requesting the certification sends a nonce along the request and the TPM

signs the current system state concatenated with the nonce. This signature is made with a

private key that only the TPM has access to, which allows the application to trust that the

certification is valid and is not a replay from a previous certification.

This certification service can be used for remote attestation allowing an application that

23

C H A P T E R 2 . R E L AT E D W O R K

is executing on a remote machine to attest the integrity of system and applications loaded

on the machine running the TPM. When used in the provisioning boot mode this can be used

for client applications to attest the integrity of the code loaded on the server. This is done

by having the TPM verify the first code executed, usually the BIOS and storing its hash in

a Platform Configuration Register (PCR). The BIOS will then verify the next executed code

extending the current PCR value. Extending a PCR consists of concatenating the current

value with the hash of the new code, and creating an hash of the combined individual hashes.

This allows the verification of an arbitrary large stack of software without running out of

PCRs, which are limited. Since the TPM is trustable all the system stack can be attested.

The client application can generate a nonce and request a quote to the TPM which contains

an hash of the values of the PCRs with the nonce signed by a Attestation Identity Key (AIK).

An AIK is a asymmetric encryption key registered to the TPM with the public key known

to the client. Once the client receives the quote it can verify the signature confirming its

validity as well as freshness by comparing the nonce in the quote. It can then compare the

hash of the PCRs with known values and decide to trust the system state or not. The known

values for the client should be determined ahead of time, for example creating an hash of the

PCRs values in a trusted environment. The client can verify the state of the whole system

which allows the detection of attacks to system software as well as the server software that

the client wants to interact with.

The encryption service allows data to be encrypted and decrypted only when the machine

is in a certain state. To achieve this the TPM has a master secret key unique to the machine,

which is never shared with any application. With that master secret key several other secret

keys are generated for each state. The application requests a secret key from the TPM for

the current state and uses it to encrypt the data. An encrypted version of the key with

information about the machine state required for the decryption is also provided for the

application to keep, while the application is expected to discard the plain text key when it

no longer needs it for the encryption. To decrypt the data the application requests the TPM

to decrypt the encrypted key that was provided during the encryption. If the machine state

is the correct one the key will be decrypted and the application can decrypt the data.

2.4.2.1 ARM TrustZone

ARM TrustZone is an example of a TEE architecture which uses shared components for

REE and TEE and splits the two by using two execution modes, secure world and normal

world [45, 50]. The processor, ROM, some RAM and peripheral and interrupt controllers are

connected by a chip bus. The remaining device components like main RAM memory, storage

and antennas are connected with a off chip device bus. Usually the chip components can only

be accessed in the secure world mode, while the off chip components can be split between the

normal and secure worlds. A status flag in both the on chip and off chip buses indicates in

which mode the processor is executing. The ROM contains cryptographic functions, device

keys, root trust and device base identity while the on chip RAM is used for runtime isolated

24

2 . 4 . T R U S T E D C O M P U T I N G

execution of the TEE.

While in the normal world RAM zones assigned to the secure world can’t be accessed, but

from the secure world areas assigned to both the normal and secure world can be accessed.

Isolated execution is provided to applications through a TrustZone library and hardware

driver. While in the TEE applications execute on top of a minimal runtime environment

which provides an API for applications on the TEE to communicate with applications on the

REE and access TEE functions like cryptographic primitives.

2.4.2.2 TrustLite

TrustLite is a TEE designed for resource constrained and low cost devices [46, 50]. Instead

of using a Memory Management Unit it uses a Execution Aware Memory Protection Unit

(EA-MPU), an extension to Memory Protection Unit. The EA-MPU controls accesses to

memory zones based on the current program counter. This provides a fine-grained access

control to memory areas. It also provides secure exception engine which protects secure

memory even in case of hardware or software interrupts. This provides a lot of flexibility for

low cost devices as the EA-MPU is programmable. A device could be programmed to provide

exclusive access to a certain application, allows running several parallel secure tasks and

shared memory between applications. TrustLite also uses a secure boot loader to initialize

the EA-MPU.

2.4.2.3 Intel SGX

Intel Software Guard Extensions is a set of new instructions for Intel CPU architecture

[46, 50]. In this architecture the TEE is called a enclave. Enclaves are instantiated inside

applications running in the REE and refers to the protected memory area inside the pro-

cesses virtual address space and the SGX control data structures. Accesses to protected

memory areas from outside the application are prevented by the hardware. This restriction

is applied to any software, even the OS or BIOS. Data in a enclave is encrypted while stored

in the RAM and is decrypted by a hardware unit when being moved to the CPU. Similarly

data leaving the CPU is encrypted by the same hardware unit.

While in the enclave the process can access any memory zone on it’s own enclave, but not

enclaves from other processes. System calls from inside the enclave are prevented and ac-

cesses to enclave memory zones outside of the enclave are treated as accesses to non-existent

memory. For attestation and provisioning there are two other instructions: EREPORT and

EGETKEY. EREPORT provides a encrypted evidence structure and EGETKEY gives an

enclave access to the keys used. A special enclave is used for signing the evidence structures

with a device specific key.

2.4.3 Software Implementations

Several implementations have been developed on top of the architectures mentioned in the

previous Section to address some of the problems that aren’t solved by them. In this Section

25

C H A P T E R 2 . R E L AT E D W O R K

we will analyze some of those implementations and what they can do.

2.4.3.1 On-board Credentials

On-board Credentials (ObC) was developed at Nokia Research Center [45]. It provides an

API that developers can use to create applications that use ARM TrustZone and in particular

provides a open provisioning model. While using the ARM TrustZone applications need to

be trusted by the manufacturer or other trusted third party, like the OS developer, ObC

allows applications to run on the TEE without needing the permission of those trusted third

parties, but it still needs the permission of the user. Applications are split into a trusted

part that runs in the TEE and a second part that runs in the REE. A byte code assembler

or Basic can be used to create applications to run on the ObC interpreter.

The ObC interpreter is a VM that runs on the TEE of the TrustZone. The interpreter

provides a runtime environment with cryptographic functions, string and array manipula-

tion, sealing and I/O functionalities. Several applications can run in the interpreter and the

state of each one is encrypted and stored when it’s not being used. To provide the open provi-

sioning model a device and a manufacturer public keys are used. By using those public keys

a provisioner sends a secret key that can be used in a security domain. Trusted applications

belong to a specific security domain and data from different security domains is encrypted

with different keys.

2.4.3.2 Open-TEE

Open-TEE is a virtual TEE designed to simplify the development of applications that use the

TEE capabilities [46]. It uses a Manager process that provides services to the TEE runtime

and a Launcher process that creates instances of trusted applications (TAs) and pre-loads

the TEE Core API shared library. Each TA process is then split in two threads: an I/O thread

responsible for communication with the Manager process and a thread responsible for the

TA logic. Open-TEE provides an API that conforms to the GlobalPlatform (GP) standard

and is implemented on top of TrustLite and Intel SGX.

2.4.3.3 Trusted Language Runtime

Trusted Language Runtime is a TEE developed on top of ARM TrustZone [47]. It’s based

on .NET Microframework to provide an easier programming environment while having a

smaller TCB than using a regular OS. Applications are split into a untrusted component

that runs in the normal world and a trusted component that runs in the secure world.

The trusted component doesn’t have access to any peripherals or I/O and must rely on the

untrusted component for those.

The trusted component of an application is developed in a trustlet. The trustlet defines

the interface of the trusted component and which data may cross from the untrusted envi-

ronment to the trusted one or vice versa. Each trustlet will run inside a trustbox, which is a

isolated runtime environment on the trusted environment. Other applications, including the

26

2 . 4 . T R U S T E D C O M P U T I N G

OS, can’t change or inspect any data inside a trustbox which provides privacy and integrity.

To provide secure communication channels TLR makes use a public key pair to identify the

device and a seal/unseal function. The seal function binds data to a trustlet and a device,

encrypting it. The decryption must be done inside a trustbox that is running the specific

trustlet and on the right device. While the device identity is provided by the private key of

the key pair, the trustlet identity is provide by a secure hash of its code. This allows states

to persist across reboots and lets remote applications send data to a specific trustlet.

2.4.3.4 fTPM

fTPM is a firmware based implementation of TPM 2.0 [48]. It runs on a TEE developed

on top of ARM TrustZone that consists of a monitor, a dispatcher and a runtime. fTPM

itself runs on the runtime, although that runtime can also run other services and a single

interface is provided to programs in the normal world through shared memory. Secure

storage is provided by a replay protected memory block (RPMB) present in embedded Multi-

Media Controllers (eMMCs). The RPMB offers authenticated writes in which a HMAC is

stored along with the data and a 32-bit counter is increased. That counter is monotonic and

when it reaches it’s maximum value that data can’t be overwritten anymore. Authenticated

reads are issued with nonces to guarantee that the value being read and returned is correct

and not an old one.

The TEE monitor is responsible for context switches between secure and normal world.

It provides full context switches in which the processor’s registers for the current world are

saved, and then the registers of the other world are restored, and lightweight switches in

which no state of the world is saved. The TEE Dispatcher directs requests to the secure

world to the correct service. The TEE runtime provides an interface to secure devices and

dynamic memory allocation.

The TPM 2.0 specification requires a secure clock with at least millisecond granularity

and a secure random number generator. TrustZone doesn’t provide a secure clock but most

operations that require a secure clock can be adapted to work on TrustZone on Windows or

Chrome devices. The value of the clock is stored periodically to a persistent storage and can

be used to measure time intervals. Storing the value of the clock guarantees that the clock

value will never roll back to a previous time than the one stored and as such can be used to

provide semantics of the type "refuse service for the next x seconds".

2.4.3.5 cTPM

Cloud-TPM (cTPM) is an extension to TPM 2.0 that allows cross-device functionalities [49].

It adds the ability to share a seed with the cloud and access cloud storage. The seed is

introduced in the cTPM during manufacture and it’s initially used to create a asymmetric

root key, cloud root key (CRK) and a symmetric communication key, cloud communication

key (CCK). The generation of those keys is done both at the device and in the cloud, as

cTPM design assumes that the seed is securely shared with the cloud by external means (for

27

C H A P T E R 2 . R E L AT E D W O R K

example at manufacture time, as the interface to add a seed to the device is not available

to regular users). The CRK is used to encrypt all data stored in the cloud, while the CCK is

used to encrypt all data exchanged with the cloud.

cTPM can’t directly communicate with the cloud and must rely on the OS for that. Since

the OS can be compromised asynchronous functions were introduced so the cTPM doesn’t

block for long periods of time when dealing with the cloud storage. This is done by having

the cTPM send the data encrypted to the OS, which will then send it to the cloud. The

cloud sends back an encrypted response to the OS, which will then be delivered to the cTPM.

Commands that don’t need to the use cloud storage are still synchronous. Asynchronous

commands require the cTPM to store their information on memory. To prevent filling up all

the memory if a OS is compromised and refuses network access it was introduced a global

route timeout (GRT). The GRT keeps tracks of how long a asynchronous request has been

in memory and after a period of time removes it.

Cloud storage is implemented as a key-value store with a index. cTPM also implements

a local cache in which entries have a time to live (TTL). Once the TTL is over the entry

is deleted from memory. There is also an additional field that stores when was the entry

stored in memory. A secure clock is also implemented by using the remote storage. The

remote clock is seen as an entry in an index. When trying to read the clock the cTPM issues

a read on that index entry, which is subjected to a stricter timeout than regular reads, and

then caches the value on the memory. Current time can be calculated by the TPM timer in

relation to when the cache was stored. Since there can be a drift on the timer the clock is

periodically re-synchronized.

2.4.4 Discussion

There has been a lot of work on going (hot) work in developing TEEs, and most mobile

devices (smartphones or tablets) already have the hardware requirements, however most

applications available to users don’t make use of them. This is because the hardware imple-

mentations don’t provide a standardized interface and are mostly used by the manufacturers.

The lack of standardization interfaces is a serious block to the development of TEE-aware

applications as a developer would have to make applications adapted to several interfaces

instead of a single one. Hardware implementations also often lack properties required by

most applications like a secure clock or secure storage. Several works have been done in

an effort to improve TEEs and make them more available for developers but they still have

their own disadvantages.

One of the main disadvantages of ARM TrustZone is that it uses a single processor to

provide both execution runtimes and lacks virtualization. This becomes visible in ObC as

the context switches cause a lot of overhead for the system. Manufacturers often use a

less powerful processor for the TEE if the processors for both execution environments are

separated. Although ObC is using a more powerful processor, it’s performance it’s similar to

the performance of using a separate and less powerful processor like a smart card. On TLR

28

2 . 5 . C R I T I CA L A N A LY S I S

the performance issue is also visible. In order to reduce the TCB TLR also doesn’t provide

access to peripherals which can be limiting on some applications. fTPM had to make several

design compromises in order to be deployed in TrustZone. Because of the lack of a secure

clock some semantics on TPM2.0 were weakened, for example not allowing time-bounded

constrained permissions, and it can’t distinguish between a legitimate reboot or shutdown

from a brute force attack while booting. Because of that, if the user shutdowns the device,

or for some reason it happens, the device will be locked for a period of time before the user

can attempt to boot again. cTPM on the other hand assumes that the cloud is trustworthy

and only the client device can be compromised. As such, seeds and keys can be stored in the

cloud where they can be seen by a malicious administrator. Open-TEE lacks a secure clock,

as it’s build on top of TEEs that don’t have it themselves.

Most TEE solutions are based on mobile hardware and processors as manufacturers

need some properties given by TEEs. Although desktop solutions are also available they

aren’t much more available to users than their mobile counterparts. Cloud based TEEs are

also not currently available and the adoption of such solutions incur in an extra expense

for cloud providers and possibly to clients. Finally there is a lack of standardizations for

generalized implementations by hardware manufacturers.

2.5 Critical Analysis

As seen by the previous Sections, the outsourcing of data to the cloud and the several

problems that arise from doing so is an area of active investigation. Although several

systems follow a related approach to the one taken on this thesis, they can be improved

upon, addressing requirements not covered by those solutions. iDataGuard [30] and TSky

[31] are proposals particularly related to the main dissertation contributions. Both these

systems provide privacy, integrity, availability and text search capabilities. Text search

only is however very limited when we consider that clouds are used to store multi-modal

data and multi-modal operations. Other systems analyzed that follow key-value data store

models don’t provide search capabilities and as such are even more limited (ex. Depsky

[12], Farsite [27], Fairsky [32]). In our system model design (approached in chapter 3) we

used both in-memory cloud storage backends (leveraged from the RAMCloud solution [13])

and disk based storage backends (leveraged from Depsky [12]), comparing the trade-offs in

both. There are also other approaches like Silverline [29] and Google’s Encrypted BigQuery

[34] geared towards databases instead of key-value stores. However they also have serious

limitations: Silverline resorts to not encrypt data that the cloud needs to perform queries,

while Encrypted BigQuery limits the possible queries using partial homomorphic schemes

that only support text processing.

With the outsourcing of the heaviest computations to the cloud we could improve on

trustability requirements in designing the client appliance. By using a TCB that provides

secure storage, isolated execution, secure random number generation and integrity loading

we can provide a security solution defending from attackers intending to compromise the

29

C H A P T E R 2 . R E L AT E D W O R K

client device. The integrity of the client appliance would be attested at loading time, while

cryptographic keys would be securely generated and stored. Cryptographic functions would

run without danger of memory inspection. To materialize such security requirements we

designed our trustability support leveraging from fTPM abstractions [48]. Indeed, this

solution provides all the required functions and allows our appliance to be securely deployed

on top of TPM2 functionality implemented by ARM TrustZone enabled mobile devices.

Cache is generally used to reduce the time an operation takes or to prevent the server

having to process several requests that have the same result. Our approach leverages cache

to avoid several requests to the backend to retrieve object fragments and it’s reconstruction.

This way if an object is requested several times the middleware only has to reconstruct it

once reducing the processing and network traffic between the middleware and the backend.

Although any cache system could achieve this, Memcached was chosen for several reasons.

It was already deployed in several known websites with proofs of its performance and more

importantly it is adaptable to possible extensions to this work. By having the cache as a

separate server there is the option to deploy it in the same machine as the middleware or

move it to another machine (in this case the extra latency would have to be taken in account).

Furthermore, because it uses a distributed caching mechanism it makes it easier to adapt if

an extension deploying more middleware servers is implemented.

30

C
H

A
P

T
E

R

3
S Y S T E M M O D E L A N D A R C H I T E C T U R E

As introduced before, the objective of the dissertation is the design, implementation and

experimental evaluation of a middleware system, providing privacy-preserving search and

data storage facilities using outsourced cloud-storage backends. The solution combines

the support for storage, indexing, searching and retrieval operations for multi modal data

maintained always encrypted in the cloud-provided backends. In order to combine the

privacy guarantees with other dependability criteria, the system is designed to integrate a

multi-cloud storage environment, transparently integrated in our middleware solution as a

cloud-of-clouds storage model. In this chapter we present the system model and architecture

of the proposed solution. Initially we present an overview of the system model (Section 3.1)

and the adversary model definition related to the system design (Section 3.2). Then, we

describe (Section 3.3) the system model and architecture in more detail, namely the main

architectural components , the cryptographic support for the provided security services and

the remaining processing modules of the middleware solution, including the integration

support for two variants of multi-cloud provided storage backend services. The two variants

are leveraged by two different solutions: Despsky [12] and RamCloud [13].

3.1 System Model Overview

Our system model is composed of three main blocks in which different components are de-

ployed, the cloud storage backend, the middleware server and the client proxy as represented

in figure 3.1. On more powerful client devices like a desktop computer the middleware server

can be deployed locally together with the client proxy.

The client proxy will be responsible for the extraction of the features required for in-

dexing and searching as well as the encryption of the data. A cryptographic provider will

provide an API based on current implemented cryptographic providers. An in-memory cache

31

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

for retrieved files is also supported and can be configured or disabled based on the client

device capabilities.

Client
Application

….

Client
Proxy

Middleware
Server

Cloud Storage
Backend

Figure 3.1: System Model

Training and indexing operations which are computationally expensive are done in the

middleware server reducing the impact on the client device which is particularly useful

for client devices with resource constraints or with less powerful CPUs. Additionally the

middleware server will also have a replication module, an in memory cache and several

cloud connectors. The replication module will be responsible for the fragmentation and

integrity checking of the data. The use of cache on the server and on the client is used to

minimize both the latency and the computational overhead. While the server cache will

minimize the impact of retrieving the object fragments, the reconstruction and verification

of the client cache will minimize the network traffic generated by the client requesting the

same object several times. This not only reduces the time the client takes to return a specific

object back to the user but also the load on the server.

Two different kinds of storage backends are available, one using RamCloud and another

using Depsky. Depending on which one is chosen different clouds have to be used for the

storage. In the case of RamCloud we need computational clouds and the cloud connector

on the cloud server appliance will be a RamCloud client. In the case of Depsky we only

need to use storage clouds and the cloud connectors will use the API provided by each cloud

provider.

32

3 . 2 . A DV E R S A R Y M O D E L

3.2 Adversary Model

Each of the main blocks in our system has a distinct adversary model. In this Section we

will characterize in detail each of these adversary models, indicating what they can and can

not. These adversary models are based on the adversary models presented in some of the

composing parts leveraged for the development, however they were expanded as our system

can deal with more adversary parts than each of the single components.

3.2.1 Storage Backend

The adversary model for the storage backend is the most extensive from the three adver-

sary models presented. It is based from the adversary models presented in CryptDB [52]

and Depsky [12]. CryptDB presents two threats: DBMS server compromise and arbitrary

threats. While in our system we use a key-value store as opposed to a database approach,

we can adapt those adversary models.

The first threat, DBMS server compromise, deals with a honest but curious database

system administrator, or an external attacker, with full access to the DBMS and the data

stored, both in disk and in RAM. Both the system administrator and the external attacker

are interested in seeing which data is stored, but do not modify it or delete it. They also

don’t change the normal operation of the server. In our system we treat the storage backend

as the equivalent of the DBMS considered in CryptDB and fully support this threat. The

second threat, arbitrary threats, assumes that all components of CryptDB can be arbitrarily

compromised, and guarantees privacy for data encrypted by keys belonging to users that

are not logged in during the attack. In this threat model attackers can modify some of the

data since attackers would have access to the encryption keys of logged in users. We assume

this adversary model only for the storage backend component, but expand on it with Depsky

adversary model. We use four storage servers and allow an attacker to create, modify or

delete any data in a compromised server, or even arbitrarily change the server behavior, as

long as the data in the other three servers remain integer and available. We also assume

the possibility of DoS/DDoS to one of the four storage servers.

We deal with this adversary model by using encryption to protect the confidentiality of

the stored data, Reed-Solomon codes to fragment the data over the several storage servers

and digital signatures to guarantee authenticity and integrity. As long the data in three of

the servers is available with integrity guarantees it is possible to reconstruct the original

data.

3.2.2 Middleware Server

For the middleware server we assume an adversary model with limited capabilities com-

pared to the one presented for the storage backend. It is neither vulnerable to DoS/DDoS

nor code injection at runtime, however an attacker, both external or a system administrator,

can inspect, but not modify, all the data being processed. Furthermore, they have access to

33

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

all of the disk contents and can modify the server code in storage with the intent to inspect

the data processed or store it in a second storage in addition to the regular one, effectively

having persistent access to all data processed after the modification.

We make use of client-side encryption to allow an attacker to inspect all the data in

the middleware server and use a TPM module to authenticate the code being executed by

the server to the client. We are assuming here that a TPM module is present in the cloud.

Although in reality that is often not the case, TEEs are the subject of hot on-going research

and our system is prepared to make use of it when it becomes more widely available.

3.2.3 Client Proxy

We assume the client proxy to be trusted. Attackers don’t have any access to it’s memory or

disk contents, nor they can do code injections to alter the normal behavior of the proxy. With

the use of TPM 2.0 we could extend this adversary model to allow attackers to have access

to the disk contents and even modify them. This could be solved then by authenticating

the client proxy code with the TPM module as the proxy initiates, and using the encryption

capabilities of the TPM to encrypt the proxy encryption keys. Those encrypted keys could

then be stored in disk or in the cloud, while the key used by the TPM would be safely stored

in the secure storage, accessible only by the TPM itself.

3.2.4 Generic Adversarial Conditions

In addition to the previous adversary models we also make some assumptions about their

interactions. We assume non-colluding adversaries and independent failures. This means

an attacker looking to exploit one of the components of our system won’t use an attack made

by a different attacker together with is own nor will be caused by it.

3.3 System Model and Software Architecture

In this Section we will describe in detail each of the main blocks of our system as well as

their components. The main blocks are the client proxy, the middleware server and the

storage backend. Each of these components is deployed in a different location, although the

middleware server could be deployed together with the client proxy on more powerful client

devices, such as a desktop computer. However, since the middleware server isn’t replicated,

this would either allow only one client, or the desktop computer would have to act as a server

for the other clients, which could impact their quality of service. Previously, in Section 3.2

we present an overview of the components that make each block. In next sub-sections we

will discuss those components in more detail.

34

3 . 3 . S Y S T E M M O D E L A N D S O F T WA R E A R C H I T E C T U R E

Client Proxy

In Memory
Cache

Server
Connector

Client API

Encryption
Module

Dispatcher

Crypto Provider
Factory

Crypto API

Client
Application

Remote Server

Se
rv

er
 A

PI

Dispatcher

Indexing and
Training Module

In Memory Cache

Backend Factory

Storage

Cloud Connector 1

Cloud Connector ...

Cloud Connector N

Encrypted Data Repository

Multi-Cloud Storage Backend

Client-Appliance Cloud Server-Appliance Multi-Cloud Storage
Backend

TPM Abstraction

Disk
Based

Storage

RAM
Based

Storage

TPM Abstraction

Figure 3.2: System Model in Detail

3.3.1 Client Proxy

The client proxy connects directly with the client applications that want to make use of

our system. When uploading or searching data the client proxy will handle the feature

extraction from text and images, the encryption of both features and data and sending the

encrypted data to the middleware server. The feature extraction is a necessary step so that

the middleware server can index and search on the encrypted data. When downloading

the client proxy will handle the retrieval and decryption of the data from the middleware

server. There is no integrity check when retrieving data as that was already made in the

middleware server and will be explained in more detail in the next Section.

The client proxy supports unstructured image, text and mime documents, providing

specific methods for each type. We define unstructured image and text as an image, for

example a jpeg file, and a text document, for example a text file without specific structure,

that are not organized in a structured way. Notwithstanding the unstructured characteristic

of these files we must consider that there contents must be related in search operations. For

mime documents the client proxy will parse the file and extract all text and compatible

images found to index. The document itself, including all the data that couldn’t be indexed,

is sent to the server along with the features of the indexable data.

We refer to the association between the unstructured image and text as document, since

the client proxy is the only entity that distinguishes between unstructured and structured

data. For both the middleware server and the storage backend all data received to index

and store represent an opaque document with a set number of images and keywords. When

35

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

an user retrieves a document that is made of unstructured data both the image and text

will be retrieved. If the user retrieves a mime document the original uploaded document is

retrieved.

Client API
We provide an API that client applications can use to use our system functionality. Here

we will list and explain all the methods provided.

1. addUnstructredDoc

This method receives an image and a text along with a name and sends them to

the middleware server to be stored as a document. The client proxy will extract the

features of the text and the image, encrypt all the data, including the features, and

send it to the middleware server.

2. getUnstructuredDoc

This method receives a name and retrieves the document associated with that name.

If the client cache is being used and the document is there then it’s retrieved from

the cache and no communication with the middleware server is made. Otherwise the

document is requested to the middleware server. Upon receiving the document from

the middleware the client proxy will decrypt it and store it in it’s own cache before

splitting it in it’s image and text components and returning it to the client application.

3. searchUnstructuredDocument

This method receives an image and a text and sends a search request to the mid-

dleware server. The search request is composed of the encrypted features that were

extracted from the image and the text. It receives a variable sized list with potential

matches. The number of results can be indicated by the client application or a default

can be used. We have chosen twenty matches as the default.

Unlike the addUnstructuredDoc method, the data itself is neither encrypted nor sent

as the only requirement for the search are the features. This method will return a

ranked list of documents names, not the document themselves. The client application

can choose to retrieve each document individually or based on other factors with the

getUnstructuredDoc.

4. addMime

This method is similar to the addUnstructuredDoc presented above, however it re-

ceives a mime document instead of an image and text. The client proxy parses the

document and extracts the features of all text and compatible images. It then encrypts

all features and the document and sends it to the middleware server.

5. getMime

Like its getUnstructuredDoc counterpart, this method receives a name and retrieves

the document associated with that name. Its processing is in everything similar to

36

3 . 3 . S Y S T E M M O D E L A N D S O F T WA R E A R C H I T E C T U R E

getUnstructuredDoc, however the document is returned as it was sent. There is no

split between images and text before returning the document to the client application.

6. searchMime

This method is in everything similar to searchUnstructuredDoc. It will ignore any

data presented in the mime that is not an indexable image or text while extracting the

features of indexable data. Only those features will be sent to the middleware server.

It will return a ranked list of document names that potentially match the features of

the provided data.

7. index

This method will start a training and indexing operation on the middleware server.

For better search results this method should be called after a reasonable big quantity

of data was uploaded as the training operation can be expensive. During the training

and indexing phase it is possible to still use the middleware server as usual although

indexing operations will be ignored while either a training or indexing phase is in

progress. Search requests might also be slower as access to the indexes is restricted

while an indexing phase is being done. The training phase, which is the most expensive

of the two phases, doesn’t restrict index access and search requests can be processed

at normal speed. Since the training phase is considerably longer than the indexing

phase, it is a relatively small period in which search requests are slower.

8. printServerStatistics

This will return to the client application some measurements about the time opera-

tions in the server take to conclude. The server measures both processing and net-

working time. On the processing times it provides the train, index, and search times.

Associated with the train and index time there is also the network feature and net-

work index time. The network feature refers to how long the server took to store the

features it has in memory to the storage, while the network index time refers to how

long it took to store the indexes.

Both of these times include some processing and networking components as storing

data involves fragmenting and signing it before the upload to the storage cloud actu-

ally happens. For this reason two more times are measured during each upload and

download operation: network upload and network download time. These refer to the

time it took to upload or download data to the storage clouds, respectively. These two

times are also used to measure the time user uploads and downloads took.

9. clearServerStatistics

This method resets all the server timers to zero.

10. getCacheLimit

37

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

Returns the max size that all the documents on the client cache can have. The actual

size of the cache will be bigger than this value because of the data structures required

to hold and maintain the cache.

11. setCacheLimit

The client application can set a specific size for the cache during runtime to better

adapt to the client device. If this value is negative or zero the use of cache will be

completely disabled until a new call to this method with a positive number is made

and all documents currently in the cache will be removed. If the new size is smaller

than the current size then older documents are removed until the size of all remaining

documents is smaller than the new defined max size.

12. getCacheTTL

Returns the max time that documents will remain in the cache in seconds. After this

time is up the document must be retrieved from the server.

13. setCacheTTL

Sets a new max time for documents to remain in the cache. Unlike the setCacheLimit

method, when changing the max time to a lower value than the one currently active

doesn’t automatically remove all documents that have expired unless the new value

is zero or negative, in which case the use of cache is disabled and all documents are

removed from the cache.

14. clearCache

This method removes all the cache contents but without disabling the use of cache or

changing any of its parameters.

Encryption Module
The encryption module is responsible for all the cryptographic operations. In practice

it acts almost as a wrapper for the cryptographic provider developed, managing and gener-

ating the cryptographic keys used. It is also where all the cryptographic settings such as

encryption mode or padding are defined.

Cryptographic Provider
In addition to our system we also developed a cryptographic provider capable of being

integrated with the Java Cryptography Architecture. We implemented all the required

methods and followed the standard defined for providers, allowing out provider to be inte-

grated transparently. Requesting a cipher instance for CBIR encryption is done just like

requesting a cipher for any other cryptographic algorithm, for example AES.

Despise following all the standards, some things needed to be different due to the nature

of CBIR itself. While CBIR encrypts the features in a way that makes them searchable,

the original data needs to be encrypted with a standard encryption algorithm. We allow

the application making use of our provider to choose the algorithm, mode and padding to

38

3 . 3 . S Y S T E M M O D E L A N D S O F T WA R E A R C H I T E C T U R E

be used with the use of algorithm parameters passed when initializing the cipher instance.

Creating these parameters requires only the application to construct an AlgorithmParam-

eterSpec passing as argument to the constructor the transformation just as if requesting

that transformation from the Cipher class. It is important to note here that there are

two CBIR algorithms, one for images and one for text. The difference between the two is

explained in great detail in [53], however this lead to two implementations. When instan-

tiating specific classes of the CBIR algorithm it’s important to use CBIRD for images, and

CBIRS for text. For example, to request a cipher instance to encrypt an image we would use

CBIRDWithSymmetricCipher while to request a cipher instance to encrypt a text document

we would use CBIRSWithSymmetricCipher. For the application they are otherwise equal.

Additionally, since we are following all the standards from JCA, the return of the two

cipher had to be merged. We don’t expect a programmer to know how the resulting byte

array is organized and as such we provide an utility class that receives the array returned

by the cipher and interprets the result, providing methods to access each of the cipher texts.

Although we use a single key to encrypt all features and documents, an scheme like the

one presented in [53] in which there is a repository key used to encrypt the features and

each document is encrypted with its own symmetric encryption key is also possible. The

encryption keys used on the CBIR algorithm with a symmetric cipher are composed of two

elements, the CBIR key and the symmetric cipher key. Each of these keys can be generated

independently, and then both can be used together to create the key required for the cipher

instance.

For cases in which the encryption of the data is not required, for example for searches,

we also provide an instance to use only CBIR without any other encryption. This interface

however uses the MAC class instead of the Cipher. This is because the MAC interface was

better adapted for the CBIR requirements.

In Memory Cache
The cache stores recently retrieved and decrypted files from the server. This allows the

client device to reduce processing work when requesting the same documents in a short

time. Both the total size of the documents and how long they are considered fresh can be

configured and changed at runtime to better adapt to the needs of the client application and

device.

When removing documents from the cache we remove the oldest first. An auxiliary con-

trol data structure keeps an ordered list of references to the items to remove next reducing

the processing required when removing items. By removing the oldest items we keep the

complexity of the cache low as the same time as taking advantage of the TTL defined. The

TTL is not refreshed when an item in the cache is accessed which makes the older items

have a bigger probability of being removed due to being expired. Using an algorithm like

LRU could potentially lead to the unnecessary removal of documents if for example the

cache needs to make room for another document and the least recently used document is

not the oldest. That document would be removed, the new document inserted, and then the

oldest document expires leading to its removal.

39

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

Server Connector

The server connector sends the requests to the server after the data is processed and

receives the result to queries and retrieval requests. Since all the data is already encrypted

we use regular sockets with TCP to communicate with the server. The server connector is

also responsible for compressing and decompressing the data sent and received over the

network.

3.3.2 Middleware Server

The middleware server is where indexing data is stored and all searching related operations

are made. It has the biggest computational requirements of the three main blocks as the

training operation can be very expensive and the features data might take a lot of RAM on

top of being composed of several other complex components.

We use two storage types, disk and RAM, and for each type a specific component is used.

For disk based storage we use Depsky [12] which provides fragmentation, integrity checking,

encryption and secret sharing. Since we use our own encryption which is done in the client

we only use the fragmentation and integrity check implemented by Depsky. We don’t use

secret sharing as it’s better used to share the encryption keys, however to do so the server

would need to have access to the key used, which would in turn give it access to all the data

if it was compromised. In this mode only our middleware server, the DepSky client and

possibly the cache will be running on the middleware server machine.

For RAM based storage we use RAMCloud [13]. RAMCloud doesn’t provide fragmenta-

tion or integrity checking so we did our own implementation of it by using OpenSSL [54] for

public key cryptography and Jerasure [55] for fragmentation. In this mode the middleware

server as well as several RAMCloud clients, the ZooKeeper server and cache will be running

on the machine.

Middleware Server API

The server provides an API through TCP sockets to the client. To select an operation

a client sends one byte at the start of the connection and then follows the operation se-

mantic. There are six operations available to the client: addDoc, search, getDoc, index,

printStatistics, clearStatistics. The semantics of operations were made with the intent of

reducing round-trip times while maintaining guarantees of correctness. All requests receive

a response with a status code indicating if the request was accepted, succeeded or failed. A

request can fail if the server is in shutdown mode, in which case it is waiting for previous

requests to complete, but its not accepting any new requests.

The client will start sending data to the server before receiving a response, which can

lead to some unneeded network traffic, however this allows requests to be handled in one

round trip time. Waiting for a response from the server before sending the data would

increase the time it would take for all requests to be made. Since the server is expected to

accept all requests, then the possibility of significant extra network traffic is small. In cases

40

3 . 3 . S Y S T E M M O D E L A N D S O F T WA R E A R C H I T E C T U R E

where the request has extra data for the response, such as getDoc, search and printStatistics,

the status code is sent together with the response.

1. addDoc

This operation is invoked with the byte 0x61 (’a’). The client sends the document and

encrypted features and waits for a confirmation of the server that it was received and

accepted. The client doesn’t wait for a confirmation of the write finishing as under

our adversary model it will always succeed. It would also slowdown the upload as the

client would need to wait for the storage and indexing to finish.

The server will then send the encrypted document to the storage module for processing

and storage, and store the features in memory for the index operation. It should be

noted that the features will always be stored in memory as they might be used in a

future training phase even if a previous training phase was already done.

2. search

This operation is invoked with the byte 0x73 (’s’). The client sends the encrypted

features and the server searches for documents that match those features. If the

index is built then it is used, otherwise a linear search on the features in memory is

made. This linear search is considerably slower and should be avoided as it iterates

all documents features stored in memory. However, the precision of the index search

is related to how many features were in memory at the time of the training phase,

which can be slow.

The best precision is achieved by uploading a large amount of documents and doing

a training phase afterwards before invoking many searches. It’s worth noting that

the precision might fall slightly when uploading documents after the training phase

has been done. In that case, after a large amount of documents have been uploaded,

another training phase should be done to keep precision high.

3. getDoc

This operation is invoked with the byte 0x67 (’g’) and its followed by a flag byte. If

the flag byte is 0x66 (’f ’) the request will ignore the server cache. The client sends

the name of the document to retrieve and the server retrieves it through the storage

module. Reconstruction of the document and integrity check are all done on the server.

The client receives the encrypted document ready to be decrypted. If no document is

found with that name a not found error code is sent. Integrity check is done on the in-

dividual fragments retrieved from each cloud and not on the reconstructed document.

This allows the server to start the reconstruction of the document before having all the

fragments ready as long as it has the minimum amount necessary for reconstruction.

The erasure code algorithm will provide the guarantee that the reconstructed docu-

ment is the same as the original if none of fragments used are corrupted. Although

41

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

the request is made, the storage clouds with the highest latency are ignored, as long

as the fragments on the other clouds are valid.

4. index

This operation is invoked with the byte 0x69 (’i’). This operation can have different

effects based on the status of the server. If there are features in memory but the

codebook is not generated yet it will start a training phase, which is followed by an

indexing phase, otherwise only a indexing phase is done. At the end of the training

phase the current in memory features are stored and after the index phase the index

is stored. A training phase can be forced even a previous training phase was already

done to restore precision after a big quantity of documents have been uploaded.

This is the only operation that stores the features in the storage backend. This is

because storing the features in each upload would be too expensive as there isn’t an

append function in the storage backend that allows the new features to be written

without retrieving the features already stored first.

5. printStatistics

This operation is invoked with the byte 0x70 (’p’). It will send all the time measured

by the server to the client up to that point. It doesn’t affect the timers as this allows

more flexibility in time measurement. A client can issue this command in the middle

of a sequence of requests to measure the time up to that point and then a final one to

measure the full sequence. It will send processing times as well as network times for

all operations, allowing the client to see where is the server spending more time. A

more detailed description of the times was presented on the client API Section for the

respective method.

6. clearStatistics

This operation is invoked with the byte 0x63 (’c’). It will reset all the measurements

to zero allowing the client to easily discard the times measured on the previous opera-

tions.

Indexing and Training Module
To search on encrypted data we keep several indexes in memory along with the encrypted

features of all documents stored in our system and a codebook. Features are encrypted with

CBIR [53] on the client side while data is encrypted using AES. All operations are done

on encrypted data as the server never gets access to the encryption keys used. This also

guarantees the privacy of the user data as the only component to see the plain text data is

the client proxy.

Keeping the features in memory can represent a significant overhead in memory usage.

To deal with this it we only keep in memory the features of data uploaded after the last

indexing phase. Features from data from before the last indexing phase are already indexed

42

3 . 3 . S Y S T E M M O D E L A N D S O F T WA R E A R C H I T E C T U R E

and don’t need to be in memory since we won’t do a linear search over them. Storing them

on each upload would add an extra overhead as the old file would need to be retrieved, the

new data added and then stored. Over time this would lead to unacceptable delays for each

upload. Instead we keep old features on storage, retrieve and update that file only on the

indexing phase which is much less common than uploading and leads to minimal disruption

for the user.

To index the features we use the codebook created during the training phase. This

codebook is also used for the search and so must be kept in memory. Once a training

phase is completed we lock access to the indexes, update to the new codebook and index

all the features. During this period the user applications can’t do searches, although other

operations still work. For optimization we don’t move the features from one structure to

another, but instead we move the structure itself and create a new one to store the new

features. This allows this move to take constant time instead of being linear with the

amount of features in memory and increasing the time the indexes are locked. Once the

indexing is done the old structure is discarded.

To prevent serious overheads on memory usage we keep track of how many features

and how much DRAM they are taking. Once it hits a pre-configured threshold it triggers

an automatic training and indexing phase as a way to remove the features from memory.

This however is not intended to be a replacement for user requested indexing as several

other factors might make a new training and indexing recommended. For example, if many

images were uploaded the precision might fall enough for users to start noticing. However

this isn’t a guarantee that the features of those images will trigger the high memory usage

threshold. This threshold should be high as to not cause needless training and indexing

phases which can be disruptive to the user usage of our system.

Storage
The storage module is responsible for managing all the reads and writes done to the

storage backend as well as access to the cache. It keeps track of files currently being written

and manages concurrent accesses to the same file by different threads. We allow one writer

and multiple readers. To prevent starvation of either readers or writers we use a model

in which writer threads lock the file preventing any other thread from reading or writing.

Readers that try to access the file without a writer holding the lock are placed on a readers

group. When a writer arrives it locks the file and any future readers will be placed on a

waiting readers group. The writer then waits for the readers group to be empty and starts

the write. Once the write is done it will see if there is any reader on the waiting readers

group, if there is it will signal them and release the lock. Once the lock is released any new

readers will be placed directly into the readers group. Readers on the waiting group will

be moved to the readers group, and when the last reader is moved it will signal the next

writer. The writer will then lock the file and wait for the current readers to finish. If when

the write is done the waiting readers group is empty the current writer signals directly the

next writer before releasing the lock. This ensures that both readers and writers can always

make some progress.

43

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

To control the memory usage of writing or reading big files (on some of our tests we had

a features file of 1.7GB) we define a maximum file size so we can have a bounded upper limit

of how much memory our system will use for any read/write. Every write will internally

split the files into equally sized segments if the file size is bigger than the maximum allowed,

although the storage module offers a way to prepare a write of a big file ahead of time. In

this case the size of the file must be known beforehand so it is possible to split the segments

correctly. Afterwards we can pass parts of the file for the write operation in sequence, instead

of sending the whole file in a single call. This has the advantage of avoiding allocating a

big array in memory, using instead many small ones that don’t need to exist at the same

time and reducing the maximum memory taken by the write. We use normal writes for

all user operations since the default maximum file size is 350MBs which should be enough

for most unstructured documents of images and text or mime documents. For our system

reads, namely the features, codebook, and indexes we use a prepared write. We store the

information about big files in a special blobs file. This file is kept in memory and also

updated on storage after every write that triggers a division and as such is not ideal for use

in user reads or writes, although it can, and will, be used if a user uploads a file considered

big. When reading we consult this file to know if we read the whole file at once or in parts.

Because of this the storage module offers two kinds of writes/reads. A partial read/write

in some ways similar to a stream and a single read/write operation that operates on the

whole document. The single write operation will split the file internally, the partial write

will keep the data in memory until it reaches a limit. When that limit is reached the data

in memory is sent to be stored. As a way to prevent inference we divide the file into equally

sized smaller files. This is possible even with partial writes as we know the size of the file

ahead of time. The partial write main use is to prevent situations in which we have to

prepare a large amount of data to be stored, like the features file. Instead of preparing and

allocating all the data in a single large array, we send it piece by piece as soon as each piece

is ready using less memory overall. The partial read retrieves the file by reading each of

the smaller files as needed. Both partial writes and reads are prepared to deal with files

smaller than the max file size. In this case no file division is done.

Backend Factory
The backend factory is where we make the division between RAM storage and disk

storage. The two available backends are RAMCloud and Depsky. The backend factor is

responsible for fragmenting the file and signing each fragment before the upload. For this

purpose we use Reed-Solomon codes for fragmentation allowing for the reduction of file sizes

on each cloud by half. This results in using twice the storage across all clouds, instead of four

times as we would by replicating the whole contents of the file. The use of Reed-Solomon

codes allow the recovery of the original file with only two fragments although we still need

a quorum to read the metadata and retrieve the information required for the decoding. We

sign those fragments and check their integrity before starting the decoding process. Any

fragment that fails the integrity check is discarded and we treat it as if that cloud doesn’t

have the fragment.

44

3 . 4 . S Y S T E M O P E R AT I O N

The requests for the clouds are done in parallel and for optimization we assume the

operation succeeded after three of the four requests finish. This follows our adversary model

in which one of the storage clouds can be unavailable or compromised in some way. While we

don’t wait for the fourth request to finish, we don’t cancel it. The request completes on the

background and silently terminates. This allows us to ignore the storage cloud with highest

latency when uploading and downloading if the remaining clouds are working correctly and

start to freeing some of the resources used by those operations sooner.

In Memory Cache
We use Memcached to reduce the number of requests to the storage backend and the

processing done to reconstruct the files. This allows much faster responses to the client. The

cache can be disabled on a configuration file or on a user request basis, which will force that

request to ignore the cache and go the backend. This request won’t affect the others done

and although it ignores the cache when reading the file, it will update the cache contents

after the file is retrieved.

Cloud Storage Backend Connector
The backend connector is responsible for dealing with requests to each individual storage

cloud. Each cloud service provider will have a specific one when using disk storage as they

will use the API provided. To add a new service provider for a disk storage cloud the

connector would have to be developed. For RamCloud there is only one connector regardless

of service providers as it will use the RamCloud API.

3.3.3 Cloud Storage Backend

The cloud storage backend is a cloud-of-clouds, allowing for dependability and availability

even when some of the individuals clouds are unavailable. For disk storage backends we use

regular storage clouds like Amazon S3 [56] or Google Cloud Storage [57]. For RAM storage

we use servers like Amazon EC2 [58]. Disk storage backend is possibly cheaper and with

more capacity. RAM storage offers more speed but at a more expensive price.

3.4 System Operation

In this Section we will describe the steps taken when each operation is performed. We will

divide them into four main groups: add, get, search, index. On each group we will explain

the algorithm on the client side, and then on the server side.

3.4.1 Upload

The algorithm to add an unstructured document on the client side is described in algorithm

1. The algorithm for adding a mime document is described in algorithm 2. The difference

between the two is that when adding a mime document the dispatcher parses the document

to select all indexable parts of it. Then it forwards those parts to the encryption module to

extract and encrypt the features of each part. The document is then encrypted. To add an

45

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

unstructured document the dispatcher forwards the input directly to the encryption module.

The encryption module will then extract and encrypt the features as well as encrypting

each part individually. Algorithm 3 describes the operations executed in the server once

it receives an upload request. In the server there is no distinction between mime and

unstructured documents. The division is simply between features and user data which the

dispatcher forwards to the index and training module and to the storage module respectively.

Input :An img and txt

1 begin Dispatcher
2 begin Encryption Module
3 begin Criptographic Provider
4 Features← ExtractFeatures(img);
5 EncFeats← EncryptFeatures(Features);
6 EncData← EncryptData(img);
7 return CipherText← JoinData(EncFeats,

EncData);

8 ImgsCipherTexts.Append(CipherText);
9 begin Cryptographic Provider

10 Features← ExtractFeatures(txt);
11 EncFeats← EncryptFeatures(Features);
12 EncData← EncryptData(txt);
13 return CipherText← JoinData(EncFeats,

EncData);

14 TxtsCipherTexts.Append(CipherText);

15 begin Server Connector
16 Data← Compress(ImgsCipherTexts,

TxtsCipherTexts);
17 Send(’a’, ImgsCipherTexts, TxtsCipherTexts);

Algorithm 1: Algorithm for uploading

unstructured documents on the client

side

Input :A mime document m

1 begin Dispatcher
2 imgs, txts ← ParseMime(m);
3 begin Encryption Module
4 foreach img do
5 begin Cryptographic Provider
6 Features← ExtractFeatures(img);
7 EncFeats← EncryptFeatures(Features);

8 ImgsCipherTexts← Append(EncFeats);

9 foreach txt do
10 begin Cryptographic Provider
11 Features← ExtractFeatures(txt);
12 EncFeats← EncryptFeatures(Features);

13 TxtsCipherTexts← Append(EncFeats);

14 begin Cryptographic Provider
15 CipherText← EncryptData(m);

16 begin Server Connector
17 Data← Compress(ImgsCipherTexts, TxtsCipherTexts,

CipherText);
18 Send(’a’, Data);

Algorithm 2: Algorithm for uploading

mime documents on the client side

1 begin Dispatcher
2 DecompressedData← DecompressData;
3 EncryptedData← Parse(DecompressedData);
4 begin Storage
5 EraseCacheEntry(name);
6 Fragments← Fragment(EncryptedData);
7 foreach fragment do
8 Metadata← Hash(fragment);

9 Sign(Metadata);
10 Store(Fragments, Metadata);

11 EncryptedFeatures← Parse(DecompressedData);
12 begin Index and Training module
13 foreach feature do
14 InMemoryFeatures.Add(feature);

Algorithm 3: Algorithm for uploading documents on the server side

3.4.2 Get

The algorithm to retrieve a document from the storage is presented in algorithms 4 and 5

for unstructured documents and mime documents respectively. Like the add algorithms the

difference is between the parsing made of the data. To retrieve an unstructured document

the dispatcher parses the encrypted document and the encryption module decrypts the

image and text individually. This is possible because together with the encrypted data

some metadata was also stored. This metadata is limited to the size of the cipher texts,

46

3 . 4 . S Y S T E M O P E R AT I O N

which is public information for anyone who would access the cipher text. To retrieve a mime

document the dispatcher forwards the encrypted document directly to the encryption module.

The algorithm from the server is described in algorithm 6. From the server side there is no

difference between the two types of documents. The server will retrieve at least three of the

fragments, verify their integrity and reconstruct the original encrypted document.

Input :name
1 begin Dispatcher
2 if name ∈ cache then
3 Document← RetrieveFromCache(name);

4 else
5 begin Server Connector
6 EncryptedDocument← Retrieve(name);

7 begin Encryption Module
8 img← Decrypt(EncryptedImg);
9 Document.Append(img);

10 txt← Decrypt(EncryptedTxt);
11 Document.Append(txt);

12 Cache.Add(name, Document);

Algorithm 4: Algorithm to download

unstructured document on the client

side

Input :name
1 begin Dispatcher
2 if name ∈ cache then
3 Document← RetrieveFromCache(name);

4 else
5 begin Server Connector
6 EncryptedDocument← Retrieve(name);

7 begin Encryption Module
8 Document← Decrypt(EncryptedDocument);

9 Cache.Add(name, Document);

Algorithm 5: Algorithm to download

mime documents on the client side

1 begin Dispatcher
2 if name ∈ cache then
3 EncryptedDocument← RetrieveFromCache(name);

4 else
5 begin Storage
6 Fragments← Retrieve(name);
7 foreach fragment do
8 VerifySignature(Metadata);
9 if Metadata is valid then

10 Verify(fragment);

11 if valid fragments > 3 then
12 EncryptedDocument← Reconstruct(Fragments);
13 Cache.Add(name, EncryptedDocument);

14 Send(EncryptedDocument);

Algorithm 6: Algorithm to download documents on the server side

3.4.3 Search

For the search the algorithm on the client side is identical to the add algorithms 1 and 2,

except that the document itself is not encrypted, only the features are encrypted and sent

to the server. The algorithm for the server side is described in algorithm 7. The server will

check each of the features received and assign scores to matching features that are indexed.

It will then merge and sort the different results from the image and text features and send

them to the client. Since the list is already sorted the client only have to parse the data

received from the server.

3.4.4 Index

The index operation is executed completely on the middleware server. The client only sends

the operation request which consists of two bytes, one for the operation selection and a

47

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

1 begin Dispatcher
2 begin Index and Training Module
3 foreach image feature do
4 ImgFeatures← AssignScore(matching indexed feature);

5 ImgFeatures← Sort(ImgFeatures);
6 foreach text feature do
7 TxtFeatures← AssignScore(matching indexed feature);

8 TxtFeatures← Sort(TxtFeatures);
9 Results← Merge(ImgFeatures, TxtFeatures);

Algorithm 7: Algorithm for searching on the server side

second one to force a training phase if required. The algorithm is described in algorithm 8.

The server will start by switching the containers where the features are stored in memory

so that uploads can still be processed during this operation. It will then proccess all image

features, both in memory and in storage to create a new codebook. After the codebook

is created all the features are indexed using the new codebook. The text features will be

indexed and stored directly without a training phase. After both image and text features

are indexed the indexes are stored in the multi-cloud storage backend.

1 begin Index and Training Module
2 TmpImgFeatures← InMemoryImgFeatures;
3 TmpTxtFeatures← InMemoryTxtFeatures;
4 InMemoryFeatures← new empty feature container;
5 if image features in storage then
6 foreach image feature in storage do
7 if RNG <= 10% then
8 Trainer.Add(image feature);

9 if image features in storage fit in memory then
10 TmpImgFeatures.Add(image feature);

11 foreach image feature do
12 if RNG <= 10% then
13 Trainer.Add(image feature);

14 codebook← Trainer.Train();
15 Store(codebook);
16 if image features in storage and did not fit in memory then
17 foreach image feature in storage do
18 codebook.Index(image feature);

19 foreach image feature in TmpImgFeatures do
20 codebook.Index(image feature);
21 Store(image feature);

22 foreach text feature in TmpTxtFeatures do
23 Index(text feature);
24 Store(text feature);

25 Store(ImgIndex);
26 Store(TxtIndex);

Algorithm 8: Algorithm for training and indexing

3.5 Architectural Options for Deployment

Because of our division of the system in main blocks and the way they interact with each

other there some possibilities to the its deployment. The client proxy will always be deployed

together with the client application, however the middleware server can be deployed on local

server close to the client proxies, or even in the same machine as a client proxy, or it can

be deployed in the cloud. In case of RAM based storage the backend can also be deployed

on a company servers without any changes. For disk based storage that would require

48

3 . 6 . D I S C U S S I O N O F A R C H I T E C T U R A L VA R I A N T S

the implementation of the storage server itself and the connector for our server to use the

storage server API. On this Section we focus on the options available for the middleware

server, since it can’t be replicated and can be the bottleneck for the system performance.

3.5.1 Local Behaviour

When deployed locally with the client application the middleware server will offer the best

possible latency for searches and gets from the client that hit the cache. The clients will

essentially have two caches, if both are enabled. However uploads, and operations from

clients that are not local, might suffer from it and become slower. This local server will

also have to have the capability to support the middleware server load which can put a

considerable strain on its resources.

3.5.2 Cloud Behavior

By deploying the middleware server on a cloud the latency to the clients will increase,

however it is possible that it can offer a better performance than deploying it locally. This

is because although the latency to the client increased, the latency to the storage backend

will probably decrease. This makes the time the server spends executing the upload less,

reducing the time resources are being used on the same request, which in turn can be used

to do other client requests. However the longer a client takes to upload the data, the longer

the server has resources allocated for that request without doing any work, so there must

be a balanced approach when looking at where the middleware server is deployed.

3.5.3 Multi-Cloud Behavior

Although we make use of several storage clouds to guarantee availability of the data, we

don’t replicate the middleware server. There are several problems with the replication of

the middleware server addressed in detail in the final chapters as future work. Another

possibility is to keep several middleware servers in stand-by for the case of a crash and

keep only one active. Although that presents less problems than replication it is not a direct

deployment. Because features are only stored during the training and indexing phase, if

the active server crashed some features could be lost, which would affect the next training

phases and by consequence the precision of searches for those images until they were re-

uploaded. We also don’t provide a mechanism to detect a server crash and let a second server

take over, communicating this change to the clients. This would provide an extra guarantee

of availability, although at the possible cost of search precision.

3.6 Discussion of Architectural Variants

All deployments presented in the previous Section have advantages and disadvantages

based on the situation that they are used. To serve a limited number of clients all in close

49

C H A P T E R 3 . S Y S T E M M O D E L A N D A R C H I T E C T U R E

proximity to each other, for example the employees computers of a company in a single

building it might be beneficial to deploy the middleware server on a local server dedicated to

it. The server cache would reduce the time for retrieving a document across the clients, while

the client cache would further reduce it for each client. Employees could even access the

middleware server from their smartphones or tablets if they are connected to the company

network.

However this solution would not be practical if the employees were to have access to the

middleware server from their home as it would mean either open the middleware server

to outside connections or the employees would have to be able to connect to the company

network from outside, so they could then connect to the middleware server. In this situation

a cloud deployment would provide more advantages than a local deployment. It could

be accessible from outside the company network without exposing it and it would benefit

from the scalability of the cloud servers allowing the company to better adapt the server

specifications to their needs.

The third variant with multiple instances of the middleware server would improve the

reliability of the system, however it would increase the latency of the operations due to the

synchronization, either from the multiple instances or to allow recovery without precision

loss.

3.7 Summary and Concluding Remarks on the System
Model Design

Our system is designed in three main blocks, each with their own adversary model. This

allows for several deployment schemes, each with their own benefits and trade-offs. The

different adversary models allows our system to deal with different problems in different

blocks. This makes it easier to move the more expensive operations to a single block which

is deployed in a more powerful device, while the operations responsible for data privacy can

remain on the client device, which might be a smaller device, like a smartphone.

The three main blocks of our system are the client proxy, the middleware server and

the multi-cloud storage backend. The client proxy is deployed in the client device and com-

municates directly with the applications. It offers methods to encrypt, upload, search and

download unstructured images and text documents, or mime documents. The middleware

server is deployed in a local server or cloud and is responsible for the indexing and search

operations. It will also fragment and replicate the data to the multi-cloud storage backend

when uploading and reconstruct the file from the fragments when downloading. The multi-

cloud storage backend consists of four clouds which hold the file fragments. Only three

clouds are needed to reconstruct a file and we assume that one of the four clouds might be

compromised in anyway.

Files are encrypted on the client proxy, and none of the other blocks has any access to the

encryption keys used. Although communication from client proxy to the middleware server

50

3 . 7 . S U M M A R Y A N D C O N C L U D I N G R E M A R K S O N T H E S Y S T E M M O D E L
D E S I G N

is made unencrypted using sockets all the user data and indexable features is transfered

encrypted. The adversary model for the middleware server and the multi-cloud storage

backend allows an attacker to have access and inspect files and memory contents.

51

C
H

A
P

T
E

R

4
I M P L E M E N TAT I O N

In this chapter we present the implementation details of our system 1. We will present

about the technologies used in each of the three main blocks as well as how each module

of each block is implemented and connects to the other modules. We will also describe

the implementation and test environments used. Additionally, we will also explain our

criptographic provider implementation and how it integrates with the JCA framework and

standards and give some examples of it’s use.

4.1 Implementation Environments

Our system is developed in Java and C++. We used Java version 1.8.0_91 and g++ 6.1.1

for compilation. Our system also requires several external libraries to work. We used

RamCloud, commit from 23th May 2016 [59] and Depsky, commit from 16th June 2015

[60] for the backend communication. For fragmentation with Reed-Solomon codes we used

GF-Complete 1.03 and Jerasure 2.0 [55]. Jerasure is only used for RamCloud as Depsky

already provided it’s own implementation of erasure codes. For feature extraction of images

we used OpenCV 2.4.10 for the client and OpenCV 3.0 for the server. For integrity check

with RamCloud we used OpenSSL 1.0.2h. We integrated Depsky with our C++ code using

JNI. The client proxy is completely done in Java, while the middleware server is done in

C++ with the exception of the Depsky code. We also leverage Trousers 0.3.13 [61] with the

TPM emulated by TPM-Emulator 0.7 [62] for remote attestation of the middleware server

code.

1The implementation is available at https://github.com/khasm/seasky

53

https://github.com/khasm/seasky

C H A P T E R 4 . I M P L E M E N TAT I O N

4.2 Technology

In this Section we will explain the implementation details of each component and how they

interact with other modules in the same block. We will start by the client proxy and then

the middleware server. This section won’t cover the multi-cloud storage backend as that

consists of either storage clouds provided by cloud services or the RamCloud servers which

were not implemented by us. Although we tried to not alter either the Depsky or RamCloud

code some changes were required. For Depsky the changes were limited to adding methods

to the DepSky API so we could access the time measurement for uploads and downloads, as

well as reset those times and the selection of the region in which buckets were created in

the Amazon Driver. For RamCloud we increased the timeout before a RPC was aborted and

retried as the higher latencies made several requests abort and retry. Although the request

ultimately succeeded as the storage server was working and had received the request the

first time this lead to less false positives of server crashes and network traffic.

4.2.1 Client Proxy

The client proxy consists of four classes, each representing a module, not counting the cryp-

tographic provider. The dispatcher implements the API available to the client applications

and forwards data to the other modules as needed. The client application creates an instance

of the dispatcher which will create instances of the other classes for it’s use. The dispatcher

makes use of javax.mail to parse the mime documents and get images and text. Currently

only images with content type image/jpeg are extracted, all other images are ignored. Text

only needs it’s content type to start with text to be extracted.

Client API

The client API is implemented in a single interface designed to be simple and easy to use.

It receives byte arrays as arguments, leaving the method of obtaining a document contents

to the client application. After the client application has the contents of the document

all processing is done by the client proxy without the need for the client application to do

anything else. When retrieving documents the client proxy returns them as byte arrays.

Encryption Module The encryption module is responsible for managing the crypto-

graphic functions. It will read the keys from disk, or if they aren’t found generate new ones

and store them. It’s other functions will act as wrappers for the cryptographic provider.

Since the encryption module isn’t intended to be used by the client application directly we

don’t use the utility class on the cryptographic provider to wrap the cipher text resulting

from the CBIR and AES cipher. Instead we return those cipher texts directly to the dis-

patcher and parse them on the server connector. To improve performance the encryption

module provides functions to encrypt the documents received with both CBIR and AES or

only CBIR. This allows searches to be performed without using AES since the AES cipher

text is not used on that operation and also allows the encryption module to encrypt the

features of images and text of mime documents while not having an overhead of encrypting

54

4 . 2 . T E C H N O L O G Y

the image or text with AES twice, or splitting the mime document into several parts which

would then have to be tracked to reconstruct the original document when retrieving it. For

unstructured documents we use CBIR with AES, which performs the feature extraction and

encryption as well as AES encryption in a single method call.

In Memory Cache
The in memory cache is implemented as a map with the document names as keys and

cache entries as values. Cache entries consist of the document contents and a time value

indicating when that document was retrieved. That time value is used to know when a

document has become too old and must be discarded. When the cache is full we discard the

older documents first as they are more likely to be removed sooner than new documents. To

avoid iterating over the map every time we need to add a document to the cache and another

document must be removed we also keep a queue with the name of the documents. When a

document is put in the cache it’s name it’s also put at the end of the queue. When removing

files we remove the files at the head of the queue until the new document can be placed

in the map without violating the maximum memory permitted for documents. Documents

that are rarely used will eventually be removed as the older documents are renewed and

placed at the end of the queue. Documents that are used many times will be removed when

their time expires or the cache needs to free some memory for a new document. The second

case should not happen often if the cache size is set up properly since all documents will

at some point be refreshed and be put at the end of the queue as long as they are being

requested. Client applications can set up the cache size and expire time through the API to

better adapt the cache to their needs.

Middleware Server Connector
The middleware server connector contains all the protocols to communicate with the

server API. It uses sockets and byte buffers to parse and format the requests. It also

compresses and decompresses the requests and answers.

4.2.2 Middleware Server

The middleware server is composed of six modules: the dispatcher, the indexing and training

module, the storage module, the backend factory, the in memory cache and the cloud connec-

tors. Similarly to the client proxy the dispatcher receives and redirects the data as needed.

Cryptographic functions in the middleware server are reduced to hash and signatures. All

the user data processed is encrypted on the client proxy and there isn’t any situation in

which the client proxy will send the encryption keys to the server. The server has it’s own

public key pair to sign and verify the integrity which are stored on the middleware server

disk.

Middleware Server API
When a request is received in the middleware server API, a thread is assigned to handle

that request. If no threads are free then the request has to wait until a previous request

completes. The number of threads depend on the number of available cores available to the

55

C H A P T E R 4 . I M P L E M E N TAT I O N

middleware server. Those threads are created when the middleware server starts and are

only terminated when the middleware server stops. When a request is received the first

byte the thread checks the first byte and calls the respective function. If the byte is not

recognized as a valid request the connection is closed and the request ignored.

Indexing and Training Module
The index and training module handles everything related to indexing and searching.

Features are kept in memory up to a maximum, if a new upload would take the memory

taken by the features above the maximum a self request to index is made to the server API,

causing another thread to start the index processing. After the index is in progress and the

feature containers are switched by new ones the upload proceeds as normal. This causes

the new document to not be indexed by the automatic indexing, but guarantees a maximum

memory consumption regardless of the size of the features being uploaded.

When indexing features are handled using a process similar to a stream. It first tries

to read the features in the storage backend to create the codebook. Those features will

be cached in a secondary feature container if their total size is small enough to fit in the

maximum allowed memory for features. This parameter is different than the maximum

memory allowed for features in memory outside an indexing phase and can be configured

separately. If the features are too big then they are discarded and a second read from the

backend will be made for the indexing phase. This is required because the new indexing

will be done with a different codebook. If the features are kept in memory then the second

read isn’t done. Features will then be written as they are indexed. While the index and

codebook are read automatically when the server starts, the feature files are only written or

read specifically during the index and training phases.

Storage Module
The storage module makes the connection between all the other modules and the storage

backend, as well as controlling all the concurrent access to files. It keeps an list of open

files and the threads that are using them. These file entries have a buffer for each reader

thread and a single buffer for the writer thread. The current writer thread is identified by a

thread id which allows all threads to make use any kind of reads or writes without worrying

about concurrency. The storage module will check if the thread attempting to write is the

current writer thread, or if there isn’t any other thread writing and allow or delay the write

accordingly. The buffer sizes will be determined by the file size, but each buffer will have

at maximum the size of the maximum file size allowed. Files bigger than that are split in

several parts and only one part is kept at the same time for each thread. Because bigger

files can take some time to write readers are still allowed to read while a thread is writing

under some circumstances. Reads are only stopped when a write enters the commit phase.

For small files that aren’t split in parts, the commit phase begins as soon as the write begins.

For bigger files a list of the previous parts of the file is retrieved, then new parts are named,

making sure to avoid any name conflicts with the previous parts. Those parts are then

written to the storage backend while readers are still allowed to read the older parts. Once

all parts are written the commit phase begins and readers are prevented from starting more

56

4 . 2 . T E C H N O L O G Y

reads. During the commit phase the metadata is updated to reflect the new parts of the file

and the old parts are removed from the storage backend. The storage module also manages

which files are stored in the cache and when to retrieve a file from there. When reading big

files only parts of the file are attempted to be placed and read from the cache.

Backend Factory
The backend factory creates an abstraction between RAM and disk based storage. In

the case of disk based storage the backend factory serves only as a wrapper to call the JNI

functions that connect to the JVM running Depsky. It also keeps track of the threads and

environments to which each thread is attached. Since our thread pool doesn’t create new

threads for new requests we only keep track if a thread is already attached and to which

environment. We don’t detach threads at the end of a operation as the same thread will

potentially make another operation and will only cease to exist when the middleware server

terminates.

For the RAM based storage the backend factory implements the fragmentation of the

documents as well as the hash, signing and integrity checks. Requests are handle in a

similar way to Depsky. A thread is responsible for processing all operations to a storage

cloud. These requests are serialized, however requests to different storage clouds are done

by different threads and so are done in parallel. When a thread from the dispatcher wants

to read or write a document it will put the request in the storage cloud queues and signal

the responsible threads that a request is waiting. Threads managing the queue process

requests until the queue is empty and them block waiting for more requests. RamCloud

clients are not thread-safe so each thread must manage a client instance context to avoid

synchronization with other threads.

When writing a document the metadata of the document is retrieved, if it already exists

to determine the new version. This metadata is not the same as the big files metadata.

Big file metadata is stored in a specific file that has information about all big files files in

our system, which consists in the original file size, the size of the parts and the sequence

numbers used to generate the parts names. The metadata stored with the file itself consists

on the file size, the reed-solomon parameters used, version of the file, and a list of fragments

that are stored in each storage cloud with their hashes. In case of big files the file size of this

metadata is the size of the part of the file. The backend factory doesn’t make any distinction

between big or small files. This metadata is not necessarily equal across all storage clouds.

The list of fragments only contain information about the fragments stored on a specific cloud.

In practice that list contains only one element as we store only one fragment on each cloud.

One major difference between DepSky and RamCloud is that RamCloud has a file size

limit of 1MB. This forces us to additionally perform a second split of files bigger than

1MB when using a RamCloud backend. Although this causes an additional overhead for

RamCloud, it is possible to avoid the biggest overhead of this processing, which would be

write each part individually causing several RPCs to write a single file. RamCloud provides

a multi write rpc which writes several objects using only one RPC which we use to write the

objects resulting from this second split in bulk. This allows the overhead to be reduced to

57

C H A P T E R 4 . I M P L E M E N TAT I O N

the split. For files smaller than 1MB we don’t write this extra metadata.

In Memory Cache

The in memory cache is provided by Memcached. The Memcached server executes

separately from our middleware server which allows it to be moved to a different machine

if required although this will impact the performance of the cache. Our server expects the

Memcached server be executing in the same machine unless a different IP address is written

in the configuration file. We use sockets with the binary protocol to make the requests.

Cloud Storage Backend Connector

The storage backend connectors implement the required methods to communicate with

the storage clouds. In the case of DepSky they use the API provided by the cloud providers

and when changing from one cloud provider to another the new connector must be imple-

mented. For RamCloud the connector is a client that communicates with the RamCloud

servers. In this case the cloud provider doesn’t define the API used and changing from one

provider to another doesn’t require a new connector.

4.2.3 Cloud Storage Backend

For disk based storage the storage backend are regular storage clouds like Amazon S3 [56],

Google Cloud Storage [57] or Microsoft Azure Blob Storage [63]. They are used as provided

without any alterations. For RAM based storage the storage backend are computational

clouds like Amazon EC2 [58]. In this case a storage cloud is abstracted into clusters as a

single computational cloud doesn’t provide enough RAM to have comparable storage capacity

to a regular storage cloud. For RamCloud we use a single ZooKeeper instance that executes

together with the middleware server and four clusters, each with a single table where all

the objects are stored. Coordinators are deployed on the storage backend together with

all the storage servers for that cluster. Each RamCloud server registers itself with the

ZooKeeper instance and the backend connectors retrieve the correct IP addresses from

there. This allows a lot of flexibility in the setup of the clusters as more RAM can be added

or removed by adding or removing storage servers while the coordinator will handle the data

distribution. For better performance each cluster should be limited to a single datacenter,

while difference clusters are deployed in different datacenters. This is because RamCloud

server were developed for fast networks and as such don’t do well when servers in the same

cluster have high latency between themselves. This can lead ultimately to servers shutting

down by themselves when the coordinator removes them from the cluster because of a

false positive indicating that the server crashed. In this setup we only needed to increase

the RamCloud client timeout for aborting RPCs to allow the clients to work across several

datacenters. In reality that increase in the timeout is not necessary as RamCloud will

attempt the write again if the coordinator indicates that the storage server is running and it

will eventually succeed, however the increase leads to less retries, specially for bigger files

that have to split in several objects smaller than 1MB.

58

4 . 3 . T R A N S PA R E N T I N T E G R AT I O N W I T H J CA

4.2.4 TPM Attestation

The TPM attestation is implemented in two separate modules. One runs on the server and

simulates the operations executed by the a real TPM, generating and writing the hashes to

the PCRs. Trousers and TPM-Emulator are both running on the server and provide the TPM

interface used for this. On the client side a separate modules is executed when the client

starts which requests a quote to Trousers running on the middleware server. The quote is

then verified against expected values. These values were obtained ahead of time with the

middleware server executing in a trusted environment. If the values match operations are

performed normally, otherwise the client might choose not to communicate with the server.

4.3 Transparent Integration with JCA

In this Section we will explain the implementation of our cryptographic provider as well as

giving some examples of how to use it and compare it to some other encryption algorithms.

In our implementation we followed the design principles and standards of the JCA reference

guide so that using our cryptographic provider isn’t significantly different than using any

other cryptographic provider available. Despise that, some differences still exist due the

difference in the CBIR algorithm compared to standard algorithms. We will explain those

differences and show examples of how to work with them at the end of this Section.

4.3.1 Provider Implementation

The cryptographic provider has one major division in which we will focus: the CBIR im-

plementation and the CBIR plus symmetric cipher implementation. This division allows a

programmer to use only CBIR or use CBIR and encrypt the data with a symmetric encryp-

tion scheme as needed, simplifying it’s use. We will start first with the CBIR implementation

and then explain the addition of the symmetric cipher.

CBIR

To implement the CBIR algorithm we used the MAC engine. There are two classes im-

plementing the CBIR algorithm that extend the MacSpi class: CBIRDense and CBIRSparse.

The CBIRDense class implements the CBIR algorithm for images, while the CBIRSparse

class implements it for text. The programmer must choose the correct class for the kind of

data being used. Both classes will handle feature extraction through third party libraries,

OpenCV2 for images and Porter Stemmer for text [64]. OpenCV must be installed separately

while Porter Stemmer is included in our provider. Using these classes is done like any other

standard MAC class with a single difference. Since we don’t know how many features will

be extracted we can’t give an accurate output size when calling getMacLength until all the

2OpenCV (http://opencv.org) is open source computer vision and machine learning software library. It
possesses several algorithms to detect and recognize faces, identify objects, find similar images, among others.
It’s available with a BSD license and used extensively by companies, research groups and govermental bodies.

59

C H A P T E R 4 . I M P L E M E N TAT I O N

data is passed to the class instance through the update methods. If all the data was already

provided then getMacLength will return the exact size of the output.

In addition to the CBIR algorithm we also implemented a parameter generator, parame-

ter spec, key generator, secret key factory and key spec classes. This allows a programmer to

configure an instance with different parameters as required. The available parameters for

CBIRDense are m, delta, the feature detector and feature extractor type. The parameter

m and the feature extractor type will impact the size of the matrices generated that will be

used as key for the encryption process. Since the extractor type will impact the resulting

features we use m to indicate the key size although in practice the CBIRDense key are two

matrices, one of m×k dimensions and another of m×1 dimensions with k being a value deter-

mined by the feature extractor. Each of these parameters can be changed when creating an

CBIRDParameterSpec instance. For CBIRSparse the available parameters are the key size

and the HMAC algorithm used internally. A specific HMAC provider can also be selected. If

the provider selected isnt́ found we fall back to default providers. Finding which provider

is being used can be done by calling the getProvider method in the CBIRSParameterSpec

class. By default we use HMac-SHA1 from the BouncyCastle provider if installed or from

the default JVM provider if not. Keys can be generated automatically by the key generator

and stored or read from files. The CBIRSparse key is a valid key for the HMAC instance

used. For m and delta the default values are 64 and 0.5 respectively, for the feature detec-

tor and feature extractor types the default algorithm is SURF. SURF (Speeded-Up Robust

Features) is one of the several algorithms available in OpenCV for feature detection and

extraction. Other algorithms might be choosen for specific requirements of feature detection

if necessary.

CBIR with symmetric cipher
The CBIR with symmetric cipher classes join the CBIR algorithms and a symmetric

encryption algorithm, allowing a programmer to encrypt the features and data with a single

cipher instance. These classes extend the CipherSpi class and are used just like other cipher

instances with two differences. Because the output of the cipher operation will include the

CBIR output we can only provide an accurate output size after all the data is passed to

the cipher object through the update methods. This also causes the output of the update

methods to only being ordered relative to the symmetric cipher output. The final update

operation will provide the initial contents of the final output. This difference doesn’t occur

when calling directly the doFinal methods in a single part operation.

Parameter generator and specs, key generator and specs and secret key factory classes

are also implemented allowing for configuring both CBIR and the symmetric cipher. To con-

figure a CBIR with symmetric cipher instance a CBIRCipherParameterSpec is used. This

is an abstract class that is extended by CBIRDCipherParameterSpec and CBIRSCipherPa-

rameterSpec. Both classes are instantiated by providing a transformation for the symmetric

cipher and a set of parameters optionally. The parameters can be for the CBIR component,

the symmetric cipher component, or both. Both parameter components are instantiated

as if using just their respective ciphers. They will be stored and passed for the respective

60

4 . 3 . T R A N S PA R E N T I N T E G R AT I O N W I T H J CA

cipher objects when initializing. The transformation is a regular JCA transformation used

to specific a symmetric cipher algorithm, mode and padding. By default we use AES in CTR

mode with PKCS7Padding. Keys can be generated by the key generator in a similar way

to other cipher algorithms. When using a key generator for CBIR with symmetric cipher

both a CBIR key and a symmetric key cipher will be generated. Since there are actually

two keys being generated instead of one there can be some problems when defining a key

size. We solve this by assuming that if a specific key size is requested during initialization

of the key generator it is applied to the symmetric cipher. To define a specific key size for

the CBIR component then a parameter spec with the specific key size for both the CBIR and

symmetric cipher must be created. By default we use a 256 bits key for AES. If the default

values for the symmetric cipher are acceptable for the programmer defining a different CBIR

key size is done by creating a CBIRParameterSpec with the desired key size and creating a

CBIRCipherParameterSpec using the previous spec. Everything else will be created with

the default values and the CBIRCipherParameterSpec object can be used to initialize the

key generator.

We also support creating key by parts. Since a CBIR with symmetric cipher key is

essentially the CBIR key and the symmetric cipher key together a programmer can use

previously generated keys to create a CBIRCipherKeySpec which can be used as key for

a CBIR with symmetric cipher instance. Those keys can be generated in any way the

programmer wants as long they are instances of the required key types (CBIRKeySpec

and SecretKey). This allows for example to use a repository in which the CBIR key is the

same for all documents, but the symmetric key is different for each document, or for a set of

documents.

4.3.2 Programming Environment

The following examples show how a programmer could use our cryptographic provider to

leverage CBIR in an application. In algorithm 9 we show how a key can be generated and

used to initialize a MAC instance of CBIR. We use the default parameters in this example

and don’t specify how the img variable is created as that is not important as long it holds

the contents of an indexable image. Although this example refers to encryption of image

features the code would be identical for encryption of text features. The only change would be

on line 2 and line 4 where "CBIRD"would be replaced by "CBIRS". In algorithm 10 we show

an example code of using CBIR with a symmetric cipher with default parameters. Similarly

to the previous example, this code refers to an image processing. To use text data we would

replace "CBIRDWithSymmetricCipher"on lines 2 and 4 for "CBIRSWithSymmetricCipher".

Because of the format of the cipher text produced by CBIR, a byte array is not the best

way of representing it as it forces the programmer to be familiar with the internal formatting

used in our cryptographic provider. We provide an utility class called CBIRCipherText to

avoid this situation. A programmer can just pass encrypted_features or cipher_text as the

constructor argument and this class will parse the cipher text, returning the results in a

61

C H A P T E R 4 . I M P L E M E N TAT I O N

1 byte[] img← image contents;
2 KeyGenerator key_gen = KeyGenerator.getInstance("CBIRD");
3 SecretKey key = key_gen.generateKey();
4 Mac cbir = Mac.getInstance("CBIRD");
5 cbir.init(key);
6 cbir.update(img);
7 byte[] encrypted_features = cbir.doFinal();

Algorithm 9: Encrypting image features with CBIR

1 byte[] img← image contents;
2 KeyGenerator key_gen = KeyGenerator.getInstance("CBIRDWithSymmetricCipher");
3 SecretKey key = key_gen.generateKey();
4 Cipher cipher = Cipher.getInstance("CBIRDWithSymmetricCipher");
5 cipher.init(Cipher.ENCRYPT_MODE, key);
6 byte[] cipher_text = cipher.doFinal(img);

Algorithm 10: Encrypting image features and data

more user friendly format, exemplified in algorithm 11.

1 CBIRCipherText obj = new CBIRCipherText(cipher_text);
2 float[][] encrypted_img_features = obj.getImgFeatures();
3 byte[] symmetric_cipher_text = obj.getCipherText();

Algorithm 11: Splitting encrypted image features and data

The programmer will now have easy access to the correct format of the encrypted fea-

tures, and to the cipher text produced by the symmetric cipher algorithm. When decrypting

only the symmetric_cipher_text should be passed for the cipher instance. A follow-up exam-

ple for decrypting the image encrypted in algorithm 10 is shown on algorithm 12.

1 AlgorithmParameters parameters = cipher.getParameters();
2 Cipher decipher = Cipher.getInstance("CBIRDWithSymmetricCipher");
3 decipher.init(Cipher.DECRYPT_MODE, key, params);
4 byte[] plain_text_img = cipher.doFinal(symmetric_cipher_text);

Algorithm 12: Decrypting an encrypted image

One thing to take note on the last example: on line 1 we obtain the parameters used

by the cipher instance. This is not necessary if the parameters were generated by the

programmer. In the case of using default parameters this can be used to obtain the IV used

during the cipher process. The method getIV() could also be used but it returns a byte array

which would then need to be turned into an IVParameterSpec to be used in another cipher

instance. This IV is generated automatically unless the programmer passes their own IV

when initializing the cipher for encryption. To use their own IV a programmer needs to

create an IVParameterSpec and then pass that object to the init method of the cipher.

62

4 . 4 . D E P L OY E D E N V I R O N M E N T F O R E VA L UAT I O N T E S T B E N C H E S

4.4 Deployed Environment for Evaluation Test benches

To evaluate the performance of our system we deployed it in several environments: local

environment, a single datacenter and several datacenters. In this Section we describe

each of these environments and how the system was deployed in each of them. In all the

environments the machine running the client proxy was a i7-4700MQ @2.4GHz with 4

cores and hyper-threading and running Kali with kernel 4.6.0 and 12GBs of RAM. We

used Amazon EC2 and S3 for all environments, with the middleware server deployed in the

Frankfurt region. Because RamCloud uses busy waiting special care was taken to make

sure all instances had enough credits to perform at full capacity for the duration of the tests.

In these evaluations we chose to use Amazon datacenters to have a comparison base

between DepSky and RamCloud which would be harder to evaluate if using datacenters

from different providers when comparing both storages. For RamCloud we also used a

single storage server. While on a real use case several storage would need to be used for

the storage capacity this doesn’t affect the measurements as the internal replication from

RamCloud wouldn’t be necessary and can be asynchronous if used. Since we abstract a

storage cloud into a cluster, replicating a file inside the same cluster would be equivalent

at writing the same file more than once in a storage cloud using Depsky, which would be

redundant. Persistence isn’t affected as files are fragmented over several clusters and we

can reconstruct the file from the remaining clusters.

4.4.1 Local environment

For the local environment test we placed both the middleware server and the storage clouds

in a single machine, represented in figure 4.1. This environment has the objective of min-

imizing latency so both the client and the server machines are connected on an isolated

network. Because of the overhead of having four coordinators running and the memory

requirements the RamCloud backend has a difference compared to the other environments.

Instead of having four coordinators, each responsible for a cluster, we have a single coordina-

tor, and abstract the storage clouds as tables instead of clusters. This reduces the overhead

caused by the busy waiting used by RamCloud, which creates less impact on the indexing

operations. In this situation we can reduce the number of coordinators and expect similar

results to what it would be as if the deployment was the same as the other environments

because if all coordinators were to be running in the same machine, having the client con-

nect to coordinator 1 is no different than connecting to coordinator 2. The server used in

this environment is an AMD A6-6310 APU @1000MHz with 4 cores running Ubuntu and

with 8Gbs RAM.

4.4.2 Single Datacenter Multi Cloud Environment

For test bench 2, represented in figure 4.2 we used clouds in the same datacenter as the

middleware server. The middleware server machine was a T2.large instance while the

63

C H A P T E R 4 . I M P L E M E N TAT I O N

Middleware
Server

Cloud Storage Backend

Local Server

Client
Application

Client
Proxy

Client
Machine

Figure 4.1: Test bench 1

Client
Application

Client
Proxy

Middleware
Server

Cloud Storage Backend

Client
Machine

T2.large
Instance

T2.medium Instances

Frankfurt
Datacenter

Figure 4.2: Test bench 2

RamCloud storage server and coordinators were deployed in T2.medium instances. For

Depsky we created different buckets all in the same region.

4.4.3 Multi Datacenter Multi Cloud Environment

For test bench 3, represented in figure 4.3 we used cloud in different datacenters. The

middleware server and one storage cloud were deployed in the Frankfurt region, while the

other storage clouds were deployed in Ireland, Oregon and North Virginia. For DepSky

buckets we created one bucket in each of the regions. For RamCloud the deployment is more

complex as the storage servers and coordinators provide their IP to the ZooKeeper instance

and is that IP that the client will use. However the public IP of the T2 instances isn’t

actually connected to the instances and belongs instead to a router that allows instances to

communicate to addresses outside their VPC. RamCloud only allows IPs that are attached

to the machine were it’s running, preventing the use of the public IP to receive connections.

To solve this and allow the client to communicate with the coordinators and the storage

servers we use IPSec to create tunnels between the different VPCs in which the instances

are deployed.

Middleware
Server

Cloud Storage Backend

T2.large
Instance

T2.medium Instances

Frankfurt
Datacenter

Frankfurt
Datacenter

Ireland
Datacenter

Oregon
Datacenter

N. Virginia
Datacenter

Client
Application

Client
Proxy

Client
Machine

Figure 4.3: Test bench 3

64

4 . 5 . I M P L E M E N TAT I O N E F F O R T

4.5 Implementation Effort

In this last section we summarize some figures related to the implementation effort as

describe in the previous sections. The project has 12724 lines of code, with 1881 of those

being reused from a previous implementation of CBIR. This includes all components of the

project but not it’s dependencies. For any of the dependencies required only the code required

to use them was included. This project was mainly written in C/C++ for the middleware

server and in Java for the client proxy. Overall there is 6822 lines of code in C/C++ and 5902

in Java, with the middlware server creating a package with 16 classes and the client proxy,

together with the cryptographic provider, creating a package with 47 Java classes.

To provide a metric of effort involved COCOMOII was used to provide a reference. This

model is more suited for a team project with on-going maintenance and so it’s estimations

can be inflated to the effort involved however it is still an interesting evaluation for the

implementation effort. In figure 4.4 we present the settings used and the respective results

obtained with the use of an online tool available at [65]. The parameters are explained in

great detail in [66] and as such will not be explained here.

Figure 4.4: COCOMOII Metrics

Using these parameters the effort was measured at 16.4 person-month with a schedule

of 6.2 months. While this may seem too much it is important to note that this model assumes

a project with more than one person working on it and with several versions that need to

be compatible. The integration of the work done by different people together with the tests

required to make that all funcionalities are working correctly even with previous versions

of the project would increase the time taken which is reflected on this evaluation. In this

project the integration of several dependencies was done once for each dependency and while

care was taken to make the system easy to extend with new cryptographic algorithms or

new backend types there wasn’t a need to test new changes with previous versions.

65

C
H

A
P

T
E

R

5
E X P E R I M E N TA L E VA L U AT I O N A N D A N A LY S I S

We present in this chapter the results of the experimental evaluation of the proposed system.

As previously addressed, the test bench environments are built on different configurations

and specific deployments. The assessment results presented next are structured according

to the used test bench environments as initially characterized in Section 4. In all the test

benches we deployed all the system components in a machine on a single docker instance.

5.1 Test Bench 1 - Local Base Environment

Based on the test bench 1 deployment we evaluated the following aspects of our implementa-

tion: (1) cost of encrypting data with CBIR as opposed to use only AES, (2) cost of the setup

(encryption, upload and indexing of the data), (3) searching for uploaded documents, (4)

retrieval of documents with cache on the middleware server and (5) retrieval of documents

without cache in the middleware server. In each one of the following sub-sections we focus

on each evaluated aspect presenting experimental test behaviors, presenting the achieved

results and discussing the observed results.

5.1.1 Cost of Using CBIR

On tables 5.1 and 5.2 we show the comparison between CBIR and AES for one document.

Those values are the average processing time for 1000 different documents, resulting from

5 different observations, in milliseconds. For the CBIR column we show how long it took for

the feature extraction, indexing and encryption, which were measured in the cryptographic

provider. The total row is the time measured in the client application. For this test we used

a single doFinal operation with all the data. For the AES column we only show the total

value as we used the BouncyCastle. implementation.

67

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

It can be seen that the CBIR process is much more expensive than standard symmetric

encryption, however there is also more processing involved. Extracting and computing

indexable features takes 228.262 ms, which is 44.45 % of the total time for CBIR Dense

and 0.084 ms for CBIR Sparse, which is 56.76 % of the total time. This process also causes

data expansion on most documents. In our dataset the plain text size of the 1000 images is

111.561 MB and the textual data is 83.147 KB, while the features size is 321.205 MB for the

images and 181.504 KB for the text. This cause the input data for encryption on the CBIR

to be more than the input data for AES which contributes to the difference in times.

CBIR Dense AES
Feature Extraction 65.705 0
Indexing 162.557 0
Encryption 285.217 0
Total 513.551 1.407

Table 5.1: Comparison of CBIR Dense and AES for one image in ms

CBIR Sparse AES
Feature Extraction 0.084 0
Indexing 0 0
Encryption 0.043 0
Total 0.148 0.012

Table 5.2: Comparison of CBIR Sparse and AES for one text document in ms

5.1.2 Cost of Setup

Documents need to be uploaded and indexed before users can retrieve and search them. We

refer as those two operations the setup of the system. We measured the cost of uploading

and doing the first indexing operation on all test benches to compare Depsky with RamCloud

and to see the effect that higher latencies have on each of the backends. We present next

the results of uploading and indexing in a local environment.

Upload
Figure 5.1 presents the results of the upload test. In figure 5.1a feature represents fea-

ture extraction, index represents the feature processing, cryptograpic represents encryption

time, cloud represents the time the client spent uploading and waiting for the middleware

server and client total represents the total time measured by the client. There are no signifi-

cant difference between DepSky or RamCloud in any of the measurements. This is expected

for the feature, index and cryptographic assessement as this processing doesn’t require any

interaction with the backend storage. However one could expect a noticeable difference in

the cloud measurement as latencies are very low which allows RamCloud to make more use

of the speed of RAM storage compared to disk storage. In figure 5.1b we see the time spent

by the middleware server in uploading data to the storage backend. While the client time is

68

5 . 1 . T E S T B E N C H 1 - L O CA L BA S E E N V I R O N M E N T

Feature Index Crypto Cloud Client Total
0

100

200

300

400

500

600

Client Processing

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times

Network upload
0

50

100

150

200

250

300

Network Times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times

Figure 5.1: Upload times for test bench 1

very similar for both RamCloud and DepSky, the upload time from the middleware server is

very different. RamCloud took 73.251 seconds while DepSky took 257.503 seconds to store

all 1000 images, a difference of 351.54 %. The reason for this difference not being noticed in

the client side is the write protocol of our system and the time it takes to process one image

on the client proxy. Once the client receives a confirmation from the middleware server

that the document was received the upload operation is completed. This makes it so that

only the upload time until the middleware server is noticed by the client. The middleware

server uploads the document to the storage backend after sending the client the confirma-

tion that the document was received. Another factor is that the client takes on average 506

ms processing each document. Looking at the upload values of the middleware we see that

RamCloud takes on average 73 ms per document while DepSky takes 257 ms. Both values

are less than the time the client requires, making the client the bottleneck on this test. If

that was not the case then it would be possible that the client would see some difference

between DepSky and RamCloud.

The difference between the times measured by RamCloud and Depsky can be explained

by the test bench setup. In this setup we are not using clouds but a single local server. To

simulate the clouds we used the local driver provided with the DepSky implementation,

which uses the server disk to store the data. Since the local driver simulates 4 clouds, all

4 fragments had to be written in the same disk, causing a significant overhead. While

RamCloud also had some overheads, they were not as significant as the processing done in

the middleware server during upload is not very heavy and although it also had to store the

4 fragments in RAM the write in RAM was faster and less affected by that overhead.

Training and Indexing
The cost of the training and indexing operation are presented in figure 5.2. In this

figure train represents the training phase and the storage of the generated codebook, index

represents the indexing time, network feature represents the time reading or writing the

features to the storage backend, network index represents the time spent writing the indexes

to the storage backend and network upload and download represent the time that was spent

on every write or read during these phases. Because the training phase takes much longer

69

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

Tra
in

Ind
ex

Net
wor

k
fea

tu
re

Net
wor

k
ind

ex

Net
wor

k
up

loa
d

Net
wor

k
do

wnlo
ad

0.02

0.2

2

20

200

2000

Training and indexing

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

Figure 5.2: Measurements of the training and indexing phases in test bench 1

than the remaining phases the scale presented is logarithmic. Table 5.3 shows the values

in seconds as well as the variation in percentage of RamCloud compared to DepSky. We can

DepSky RamCloud Variation %
Train 1293.863 1639.812 26.738
Index 38.038 57.180 50.324
Network feature 25.949 32.821 26.485
Network index 2.343 2.459 4.914
Network upload 16.784 9.583 -42.907
Network download 0.229 0.145 -36.703

Table 5.3: Comparison for train and index times between DepSky and RamCloud for test
bench 1

see that DepSky has better results in all but the time spent writing or reading. The network

feature and network index times were measured outside the storage module and show how

long the function calls took, while the network upload and network download times were

measured inside the storage module and represent the time since the first request sent

until enough replies are received to conclude the write or read. This difference in times is

because the storage operations are more expensive for DepSky, however it doesn’t have any

processing overhead. RamCloud uses busy waiting in both the coordinator and the storage

server, making all processing operations slower. Both of the network feature and network

index operations make use of our second type of writes for big files which causes files to be

split and buffered before being sent to the storage backend. This pre-processing together

with the overhead of busy waiting makes DepSky faster than RamCloud, despise the slower

read and write operations. This overhead is even more noticeable for the training phase, in

which RamCloud is 26.738 % slower, but that difference represents nearly 346 seconds. For

the indexing phase RamCloud is 50.324 % slower, although that translates to a 19 second

difference, much less than the difference for the training phase. One thing to note is the the

docker container runs it’s own scheduler. When we split the components in two containers,

70

5 . 1 . T E S T B E N C H 1 - L O CA L BA S E E N V I R O N M E N T

one running the coordinator and the storage server and another running the middleware

server the processing times got considerably worse. Checking the processes while in the

training phase we saw that with two containers the coordinator and storage server were

among the top programs with 100 % CPU utilization each with the remaining being left

for the middleware server. When running only one container the CPU utilization of the

coordinator and storage server decreased, making the middleware server the process with

most CPU time and reducing the time that it took for the training and indexing.

5.1.3 Cost of Searching

The results for the search evaluation are presented in figure 5.3. We can see that although

Feature Index Crypto Cloud Client Total
0

200

400

600

800

1000

1200

1400

1600

Client Search Times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times

Search
0

100

200

300

400

500

600

700

800

900

1000

Server Search Times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times

Figure 5.3: Search times for test bench 1

the search operation doesn’t make use of the storage backend the RamCloud version is

slower than the version running DepSky. That difference comes from the time the client

spends waiting for the server to send the search results and we see that the middleware

server spends more time searching when using RamCloud than when using DepSky. This

difference is caused by the coordinator and storage server overhead. Since there is no writes

or reads the overhead from DepSky doesn’t affect this operation, however the busy waiting

method used by the two servers slows down the search. Since we used a single threaded

client the multi thread factor of the middleware server that allowed the client to not notice

the difference between backends isn’t applied here as the client will not start searching for

the next image until it receives the results for the previous one.

5.1.4 Cost of Retrieval

In figure 5.4 we can see the time measurements on the client side and in figure 5.5 the

measurements on the server side. We don’t show the feature and index measurements

on the client side as they aren’t used for downloads. We can see in 5.4a that downloads

are much faster with RamCloud than with DepSky. Using DepSky is 428.457 % slower

than a RamCloud on the client side while on the server side, shown in 5.5a DepSky takes

665.167 % more time to read the files. The extra overhead from the RamCloud processing

71

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

Crypto Cloud Client Total
0

50

100

150

200

250

300

Client times for download without cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times without cache

Crypto Cloud Client Total
0

50

100

150

200

250

300

Client time for downloads with server cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Client times with cache

Figure 5.4: Download times for test bench 1 on the client side

Network download
0

50

100

150

200

250

Server times for download without cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Server times without cache

Network download
0

50

100

150

200

250

Server times for download with server cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times with cache

Figure 5.5: Download times for test bench 1 on the server side

doesn’t offset the slower reads from DepSky. For the cache test we assumed an hit rate of

approximately 80 %. We can see those results in figures 5.4b and 5.5b. Comparatively to the

results without cache, RamCloud takes 22.6 % of the time to retrieve the files while DepSky

takes 16.139 % of the time without cache. On the client side we can see that the RamCloud

time is 50.012 % and the DepSky time is 22.582 % of the time without cache. This makes

DepSky much closer to RamCloud, being now 138.614 % slower. It’s obvious from these

values that DepSky benefits much more from the cache than RamCloud. This makes sense

as the cache avoids the slower reads from disk for DepSky as well as the reconstruction of

the file, while for RamCloud it only avoids the reconstruction since the data will be read

from memory when retrieving from the cache or from the storage.

5.2 Test Bench 2 - Multi Cloud in the Same Datacenter

In this Section we focus the evaluation on the test bench 2 deployment, from which we

performed the following experimental observations: (1) cost of setup, (2) searching, (3)

retrieval with cache in the middleware server, (4) retrieval without cache on the middleware

server. In the next sub-sections we present for each observation the experimental test

behaviors, the observed results and the interpretation and analysis of those results.

72

5 . 2 . T E S T B E N C H 2 - M U LT I C L O U D I N T H E S A M E D ATA C E N T E R

5.2.1 Cost of Setup

Upload

Figure 5.6 shows the results for the uploads in test bench 2. While the feature, index,

Feature Index Crypto Cloud Client Total
0

100

200

300

400

500

600

700

800

900

Client upload times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times

Network upload
0

50

100

150

200

250

Server upload times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times

Figure 5.6: Upload times for test bench 2

and cryptographic values show the expected results with the same values in both DepSky

and RamCloud, the cloud and client total values show DepSky being slower than RamCloud.

With the increase in latency between the client and the middleware server we expected these

values to be closer as the higher latency makes the faster writes of RamCloud less noticeable.

One possible reason when looking at figure 5.6b is that the slower uploads times seen in the

middleware server with DepSky might be the bottleneck which would increase the time that

the client spends on uploads as it waits for previous uploads to complete and free a thread.

However that is not the case as DepSky spends approximately 200 seconds uploading, which

gives an average of 200 ms per document. On the client side we can see that the processing

of a document alone takes more than 200 ms and so DepSky can’t be the bottleneck. The

reason for the extra time measured on the client side is variation in the latency of the

connection from the client to the middleware server. The standard deviation for the cloud

value in DepSky is 36.544 seconds and for RamCloud is 6.585 seconds. Furthermore, the

minimum value measured for DepSky in the cloud measurement is 252.826 seconds. That

value is actually lower than the minimum of RamCloud at 254.298 seconds. We can assume

then that the difference noticed in the client was not caused by a difference in the storage

backend as the connection between the client and the server is the bottleneck in the upload.

The difference in the upload times measured in the middleware server are expected based on

the results obtained in test bench 1. While we moved the middleware server and storage to

the cloud, all components are in the same datacenter and the latency from the middleware

server to any of the storage clouds is less than 1 ms, which is very close to test bench 1 but

without the extra overhead. In this environment the faster writes and reads in RAM from

RamCloud can still be noticeable when comparing to DepSky. It is interesting to see however

that while RamCloud takes slightly longer, DepSky is actually faster in this test bench than

in test bench 1. This makes sense when considering that latencies for the middleware server

73

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

are very close in both test benches, but in test bench 2 DepSky can write all fragments in

parallel in different clouds instead of in sequence in a single disk. RamCloud would not

benefit as much from this change as writing in memory is already a very fast operation.

Index
In figure 5.7 we show the results for the training and index phases. In table 5.4 we

show the exact values as the scale presented in the figure is logarithmic. We can see

Tra
in

Ind
ex

Net
wor

k
fea

tu
re

Net
wor

k
ind

ex

Net
wor

k
up

loa
d

Net
wor

k
do

wnlo
ad

0.01

0.13

1.3

13

130

1300

Training and indexing

RamCloud

DepSky

Ti
m

e
s

 (
s

e
co

n
d

s
)

Figure 5.7: Measurements of the training and indexing phases in test bench 2

DepSky RamCloud Variation %
Train 1016.462 992.785 -2.329
Index 33.738 32.731 -2.986
Network feature 22.028 26.761 21.489
Network index 1.280 1.040 -18.698
Network upload 20.768 12.530 -39.666
Network download 0.184 0.120 -34.655

Table 5.4: Comparison for train and index times between DepSky and RamCloud in test
bench 2

that the training and indexing have similar values between DepSky and RamCloud. The

difference between the indexing is approximately 1 second, with DepSky being 2.986 %

slower than RamCloud. Although we expected the same value on both the results are close

enough that is possible that it was was caused by the scheduling of the operations on the

system. For the training phase it was expected that RamCloud was faster based on the

results seen on the upload test since the training phase also includes storing the codebook

generated in the storage backend and in that operation RamCloud would be faster. For

the network feature we expected RamCloud to perform better, however DepSky is 21.489

% faster than RamCloud in that operation. Although unexpected it’s not surprising as

the features generated a file of approximately 600MB. We split that file for both DepSky

and RamCloud before the fragmentation with erasure codes, with DepSky handling the

file segments directly. RamCloud doesn’t support files bigger than 1MB and so we have to

further split the file into 1MB pieces after the fragmentation. We make use of multi write

74

5 . 2 . T E S T B E N C H 2 - M U LT I C L O U D I N T H E S A M E D ATA C E N T E R

rpcs to write all pieces using a single RPC, however the extra processing makes this write

slower. When looking at the network index result we see that RamCloud is again faster

than DepSky, with the index file being much smaller with 6MB. Although we use the same

kind of write for both features and indexes the latter aren’t split. Looking at the network

upload and network download times we see that DepSky is 39.666 % and 34.655 % slower

than RamCloud respectively. Comparing this variation with the ones seen on test bench 1

we see that it decreased. This is expected as although RamCloud have faster writes and

reads, as latency increases the more similar times DepSky and RamCloud will have.

5.2.2 Cost of Searching

In figure 5.8 we present the results for the search operations. There is a slight difference

Feature Index Crypto Cloud Client Total
0

200

400

600

800

1000

1200

Client search times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times

Search
0

50

100

150

200

250

300

350

400

450

500

Server search times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times

Figure 5.8: Search times for test bench 2

between RamCloud and DepSky, with RamCloud being 1.644 % slower than DepSky, and

with the search in the middleware server being 5.439 % slower. We expected similar results

for both kind of backends since the backends aren’t actually used in this operation and

although there is a slight difference it is due to the scheduling and processing time of the

system. The results for both DepSky and RamCloud varied a lot between themselves, with

a standard deviation of 26.592 seconds for DepSky and 32.068 seconds for RamCloud. That

is more than the difference between the average of the client total (18.305 seconds) and the

search time (23.120 seconds). Pinpoint the exact cause of this variance is not direct as it can

be caused by the scheduler of the docker container or the system or a combination of both

as noted on test bench 1.

5.2.3 Cost of Retrieval with Middleware

In figures 5.9a and 5.9b we present the results for the download test on the client side.

Figures 5.10a and 5.10b show the results measured on the server side. Comparing DepSky

with RamCloud we see that RamCloud is faster by 8.048 % when measured from the client

side, but spends only 51.544 % of the time of DepSky in the middleware server. Although it

might seem that RamCloud is slower after download the file from the storage backend when

75

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

Client download times without cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times without cache

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

Client download times with server cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Client times with cache

Figure 5.9: Download times for test bench 2 on the client side

Network download
0

10

20

30

40

50

60

70

Server download times without cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Server times without cache

Network download
0

10

20

30

40

50

60

70

Server download times with cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times with cache

Figure 5.10: Download times for test bench 2 on the server side

looking at the values we see that the difference measured between the times in the client

side is 23.465 seconds and in the middleware server is 29.141 seconds, with a standard

deviation of 23.381 seconds for the cloud time in RamCloud and 4.934 seconds in DepSky. If

we look at the values with cache we can see that RamCloud is 13.727 % faster while DepSky

is 16.443 % faster compared to the no cache version. In the middleware server we can see a

reduction of 80.220 % on the download time for RamCloud and 70.504 %. This represents a

reduction of 24 seconds for RamCloud and 42 seconds for DepSky which is expected. Given

that DepSky takes longer to retrieve the documents it will benefit more from the cache as it

will save more time.

When we compare the benefits of the cache on the client side on this test bench with

the ones obtained in test bench 1 they appear to be low. This is explained by the increase

in the distance between the client and the middleware server. Using the values with cache

as they are more constant we can calculate that with a 100 % hit rate on the cache the

client would still take 225 seconds to download all documents, which leads to 0.225 seconds

per document. Using the values obtained in the middleware server without cache we can

assume 0.03 seconds per document for RamCloud and 0.06 seconds for DepSky, both much

faster than the download between the client and middleware server, making the connection

between the client and the middleware server the bottleneck.

76

5 . 3 . T E S T B E N C H 3 - M U LT I C L O U D I N S E V E R A L D ATA C E N T E R S

5.3 Test Bench 3 - Multi Cloud in Several Datacenters

This Section is dedicated to the evaluations conducted with the test bench 3 deployment.

Based on this test bench we conducted the following experimental tests: (1) cost of setup,

(2) retrieval with cache on the middleware server and client, (3) retrieval with cache on

the middleware server and without cache on the client, (4) retrieval without cache on the

middleware server and with cache on the client, and (5) retrieval without cache on the

middleware server or on the client. For each experimental purpose we present in the next

sub-sections the experimental environment, the obtained results and the critical analysis of

the observed results.

5.3.1 Cost of Setup

Upload
In figure 5.11 we show the results for the upload of 1000 images when the storage clouds

are in different datacenters. The feature, index and encryption measurements are similar,

Feature Index Crypto Cloud Client Total
0

200

400

600

800

1000

1200

Client upload times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Server times without cache

Network upload
0

200

400

600

800

1000

1200

Server upload times

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times with cache

Figure 5.11: Upload times for test bench 3

however the cloud and total values present a considerable difference between DepSky and

RamCloud. DepSky takes 357 seconds longer, making it 45.631 % slower than RamCloud.

When looking at the server times we can see that the difference is bigger, with DepSky taking

658 seconds longer than RamCloud. Looking at the upload time on the server for RamCloud

we can see that the bottleneck is the client as it takes 509 ms to get one document ready

to upload, while in the server RamCloud only takes 478 ms to perform the upload. This

explains why the difference seem in the middleware server between RamCloud and DepSky

is not the same as the one seem by the client but it doesn’t explain the difference between

DepSky and RamCloud. With the higher latencies we expected the results to be closer as

latency would be nearly the same for both storage backends. To explain this difference is

necessary to look at the implementation and traffic generated by DepSky as well as the test

bench conditions.

For the upload tests we always started with an empty storage. This was to avoid the

overhead of reading files which could start introducing differences from the start and to

77

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

make sure both DepSky and RamCloud would start in the same conditions. While both

DepSky and RamCloud follow the same high level protocol when writing data consisting

in 3 steps: read current metadata, write new data and write new metadata, they differ

greatly in the implementation. The first step of reading metadata is where the differences

start. To move to the write data step is necessary 3 storage clouds finish the read so that

there is a quorum about the current metadata. RamCloud issues a request to each of the

storage servers and when it receives 3 answers the step is finished and the write data starts.

DepSky, like RamCloud, issues a request to each storage cloud, but doesn’t necessarily move

to the next step once 3 answers are received. In the case that the a file doesn’t exist DepSky

assumes an error and triggers an exception causing a retry of the request, for another 3

times if all fail. Since we start with a empty storage, this behavior is triggered on every

upload and the 3 extra operations on each cloud start accumulating a considerable difference.

Although in implementation RamCloud is more complex as it requires extra operations to

deal with the split of the files in 1MB segments we make use of multi operation RPCs as well

asynchronous RPCs, which allow us to invoke several RPCs without waiting for the previous

one to finish, making sure they terminate only after issuing all the requests needed. This

implementation allows RamCloud to perform all operations in the same time as it would to

execute 3 operations, while waiting for the previous one to finish before starting the new

one.

Another aspect which delays DepSky, although not related to it’s implementation, is

the protocol of the write operation for Amazon S3. Each write operation is composed of

2 operations, a first initial request followed by the data after the storage cloud sends the

response to the first request. Although SSL is used on these requests and we can’t directly

see the data on that first request, it is possible that it corresponds to the header of the

request. Looking at Amazon S3 API we can see that the PUT request allows an application to

send the request header before sending the request body so that data is not sent if the upload

won’t succeed. While this allows to save on network traffic, it delays the write by one RTT as

a response from the server is required before starting the upload. For an upload operation

the delay is actually 2 RTTs as there is a delay for writing the data and then another one

for writing the metadata. On the previous test benches this was not noticed as the latency

between the middleware server was small, not reaching 1 ms between middleware server

and any of the storage clouds. However in this test bench latencies between the middleware

server and the storage clouds can reach up to 161 ms for the slowest storage cloud. Since the

read operation requires a quorum we can assume that, in general, the latency of that cloud

won’t impact the reads unless one of the other cloud fails. However, this assumption only

reduces the latency of the slowest used cloud to approximately 92 ms. It is possible that by

using a different storage cloud, for example Microsoft Azure or Google Cloud Storage, this

extra request before each write wouldn’t happen, reducing the time for the uploads.

Index
Figure 5.12 shows the results for the training and indexing phases and the exact values

are presented in table 5.5. The training and indexing phases are very similar in both Dep-

78

5 . 3 . T E S T B E N C H 3 - M U LT I C L O U D I N S E V E R A L D ATA C E N T E R S

Tra
in

Ind
ex

Net
wor

k
fea

tu
re

Net
wor

k
ind

ex

Net
wor

k
up

loa
d

Net
wor

k
do

wnlo
ad

0.12

1.2

12

120

1200

Training and indexing

RamCloud

DepSky
Ti

m
e

 (
s

e
co

n
d

s
)

Figure 5.12: Measurements of the training and indexing phase in test bench 3
DepSky RamCloud Variation %

Train 1036.207 1037.608 0.135
Index 34.016 35.614 4.699
Network feature 87.772 78.630 -10.415
Network index 3.697 3.843 3.945
Network upload 71.215 68.117 -4.350
Network download 1.626 0.899 -44.706

Table 5.5: Comparison for train and index times between DepSky and RamCloud in test
bench 3

Sky and RamCloud. Although that is expected for the indexing, we would expect DepSky to

perform worse in the training phase as that includes the upload of the codebook. The same

happens in network index, in which DepSky is faster than RamCloud by 1.598 seconds. The

values for the network upload are also very close. The reason for this is in the number of

uploads and amount of data sent. The codebook and indexes are small files in which only

one upload is required, but the features require 4 uploads per cloud. With more uploads

the overhead of the writes in DepSky becomes more noticeable. Another thing to take into

consideration is the latency between the clouds. Because this are the results of 5 tests a

variation in only a few tests might skew the results. The standard deviation for the network

index value is only 0.202 seconds, but for RamCloud is 1.271 seconds. For the network fea-

ture the standard deviation is 19.112 seconds for DepSky and 8.979 seconds for RamCloud.

For the network upload the standard deviations are 9.068 seconds for DepSky and 8.621

seconds for RamCloud. This seems to indicate that values for DepSky and RamCloud would

tend to be closer to each other with more tests performed which makes sense as the number

of uploads performed is quite small and the difference between the two version should be

minimal.

5.3.2 Cost of Retrieval

In figure 5.13 we present the results for the download evaluation on the client side without

cache and with cache with 100 % hit rate on both the client and the server. The cache on

79

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

400

450

Client download times without cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times without cache

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

400

450

Client download times with server cache with 100% hit rate

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Client times with server cache with 100 % hit rate

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

400

450

Client download times with client cache with 100% hit rate

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

c Client times with client cache with 100 % hit rate

Figure 5.13: Client download times for test bench 3 without cache and with cache with 100
% hit rate

the client side is the most efficient in this test as it avoids all processing to decipher the

documents on the client side as well as all processing and download from the middleware

server. The server cache although avoids all processing related to the storage backend such

as download, integrity check and reconstruction is less efficient since the client still needs to

download the documents from the middleware server. We could see that in test bench 1 the

server had more impact as the latency between the client and the middleware server was

much smaller. Although the results with the cache are the expected, in figure 5.13a we can

see that DepSky is 17.174 % slower than RamCloud, a difference of 61 seconds. Although

in previous test benches RamCloud was faster the latency between every cloud was also

very small. We expected that the higher latencies from this test bench would mitigate that

difference making both DepSky and RamCloud similar in performance. Looking at figures

5.13a and 5.15a we see that it increased from test bench 2, with the difference going from

29 seconds to 68 seconds in the times measured in the middleware server.

We used Wireshark to capture the traffic in the middleware server for 10 requests and

evaluated the times of packet arrivals in comparison with the expected results from figure

5.15a. From that capture we made an average of 199 ms since the first packet of an upload

was sent until the last necessary packet to conclude the upload was received for DepSky and

117 ms for RamCloud. We expected 193 ms for DepSky and 125 ms for RamCloud based on

the values measured during the tests. Although we only used 10 requests, as opposed to

80

5 . 3 . T E S T B E N C H 3 - M U LT I C L O U D I N S E V E R A L D ATA C E N T E R S

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

400

450

Client download times with server cache with 80% hit rate

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Client times with server cache with 80 % hit rate

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

400

450

Client download times with client cache with 80% hit rate

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Client times with client cache with 80 % hit rate

Crypto Cloud Client Total
0

50

100

150

200

250

300

350

400

450

Client download times with client and server cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

c Client times with client cache and server with 80 %
hit rate each

Figure 5.14: Client download times for test bench 3 with cache with 80 % hit rate

the 1000 made during the download tests, values are very close to the ones expected, with

the standard deviation being 69 ms for DepSky and 12 ms for RamCloud in the Wireshark

capture. Although not directly comparable the standard deviation on the tests was 6.455

seconds for DepSky and 5.506 seconds for RamCloud. While this seems to support that

even with higher latencies RamCloud is faster we also measured the time that both DepSky

take on average to read the metadata and the fragments on individual clouds. These times

were measured since the first packet with the request was sent until the last packet with

data was received. For DepSky we got an average of 20 ms for reading the fragments

on the closest cloud to the middleware and 125 ms on the second closest cloud while for

RamCloud we got 12 ms for the closest cloud and 69 ms for the second closest cloud. We

didn’t measured this values for the remaining clouds as although fragments were read in

some of the requests they were never used to complete the request and didn’t directly impact

the time for the retrieval of the file. There could be some influence in further retrievals as

in particular request the metadata stored in the slowest cloud was used because one of

the faster clouds was still busy retrieving the fragment for a previous request that had

already been completed, however in our capture this only affected the one of the following

requests. In the request following that one that cloud had already completed every pending

request. During our Wireshark capture this only happened with DepSky, although it would

be possible to happen with RamCloud as well. For the metadata we got 18 ms, 32 ms, 115 ms

and 155 ms averages for DepSky with 13 ms, 12 ms, 3 ms and 25 ms of standard deviation

81

C H A P T E R 5 . E X P E R I M E N TA L E VA L UAT I O N A N D A N A LY S I S

and 7 ms, 30 ms, 104 ms, and 172 ms averages for RamCloud with 4 ms, 5 ms, 4 ms and

5 ms of standard deviation. Although the slowest cloud on RamCloud is slower than the

equivalent cloud in DepSky its responses were never used to complete a request. These

values support the test results that show RamCloud being faster than DepSky even with

higher latencies.

Network download
0

50

100

150

200

250

300

350

400

450

Server download times no cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

a Server times without cache

Network download
0

50

100

150

200

250

300

350

400

450

Server download times with server cache with 80% hit rate

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

b Server times with server cache with 80% hit rate

Network download
0

50

100

150

200

250

300

350

400

450

Server download times with client cache with 80% hit rate

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

c Server times with client cache with 80% hit rate

Network download
0

50

100

150

200

250

300

350

400

450

Server download times with client and server cache

RamCloud

DepSky

Ti
m

e
 (

s
e

co
n

d
s

)

d Server times with client and server cache with 80%
hit rate each

Figure 5.15: Server download times for test bench 3
In figures 5.14 and 5.15 we show the results for downloads with cache with 80% hit

rate. We can see from figure 5.15b that using a server cache reduces the difference between

RamCloud and DepSky however there is a limited influence in the client times which is

expected. When using a client cache there is a similar reduction in the download times in

the middleware to a server cache, but there is a much noticeable difference from the client

side. In figures 5.14c and 5.15d we show the result of using both a client and a server cache,

both with 80 % hit rate. Using both caches results in values very close to the use of a single

cache with 100 % hit rate for the middleware server with 8.033 seconds for DepSky and

5.019 seconds for RamCloud. With 100 % hit rate in either cache these values are 0 for

both backends types. They also reduce the client times by a large margin although a client

cache with 100 % hit rate is still much faster which is expected as that avoids all network

operations.

82

C
H

A
P

T
E

R

6
C O N C L U S I O N S

6.1 Conclusions

The demand for cloud services, such as cloud storage solutions, is increasing constantly

due to its several advantages, compared with the use of private computation and storage

infrastructures and datacenters. However the migration of computations and data to the

cloud leaves data vulnerable, if we consider the dependability requirements including secu-

rity and privacy, as well as, reliability, availability and integrity control guarantees. Data

privacy, conjugated with those guarantees under the control of users is a strong concern for

many applications managing sensitive data.

Privacy-breaks and the danger of data-leakage breaking confidentiality control, can be

caused by “honest but malicious” system administrators or external attackers, being today

a “stopover” criteria for the generic adoption of cloud-storage services for many critical

applications, for individual users but also for companies. However, complementarity, other

security concerns also impose a carefully approach in the decision “to cloud or not to cloud”,

or “to outsource data or computations without outsource the dependability control”.

While solutions exist for to address those problems they lack the ability to use the

encrypted data manipulations online, making them suitable only for backup purposes or

small amounts of data stored remotely in a cloud-storage solution.

In this thesis we proposed a system allowing applications to store documents, in a

secure and dependable way, in a cloud-of-clouds, while allowing for online search of “always

encrypted” contents and supporting information retrieval capabilities. This proposal is

based on a system architecture based on a middleware approach, with the middleware

services supported in two main macro-components: a client proxy, and a middleware service.

The former, offers transparently the integration of searchable storage services to access

“always encrypted data”, distributed and replicated in a multi-cloud storage backend.

83

C H A P T E R 6 . C O N C L U S I O N S

The client proxy is deployed in a client device, implementing an API for client applica-

tions, communicating transparently with the middleware server. This client proxy handles

all the required data processing operations allowing the client application to simply pass

documents contents through the client proxy API, supporting a multi modal interaction for

search, index, store and retrieve operations. The middleware service can be deployed in

different flavors: in a local server or in a computational cloud. The middleware handles

the most expensive operations like training, indexing and searching, reducing the computa-

tional requirements for the client device and offering to the client a transparent access to

the multi-cloud storage backend.

This is particularly relevant for resource-constrained client devices like smartphones

and/or tablets or client-side devices used in Internet-of-things ecosystems supported in cloud-

computing and storage solutions, in which the extra processing comes with computation,

memory, storage and energy costs which can be significant or impossible to address with

such devices.

One interesting aspect of our proposal is the possible adoption of different multi-cloud

storage backends, by configuration. The solution can be deployed with disk based storage

services in multiple and diverse clouds, as provided by typical cloud-storage services from

well known providers, or “in-memory” storage services, such as multiple RAM-clouds used

for reliable storage and fast access.

We implemented the proposed solution in a prototype that can be used for the intended

purpose. The prototype is available for use and it is ready for the possible integration of

different applications (via the provided external APIs). The implementation involves the

two main macro-components: the client-component that will be used as the client-proxy (for

local applications support), and the middleware service component that can be deployed

in a stand-alone server or in a trusted virtualized docking cloud-based appliance, running

remotely in a computational cloud.

The middleware service implements the integration of the two different variants of multi-

cloud storage backend: the disk-based replicated multi-cloud data-store backend, leveraged

by the Depsky solution [12], and the multi-cloud “in-memory replicated data-storage back-

end” supported by the implementation of the RAM-Cloud repository system model [13].

In our evaluations we concluded that the RamCloud was faster than DepSky for both

upload and downloads, even when in higher latency environments, where the difference be-

tween reading from disk and reading from memory would be less noticeable when compared

to the observed latency. However this improvement comes at a cost, with RamCloud being

significantly more expensive to deploy than DepSky, in terms of monetary costs1. To have

4GB of storage available every time it would cost C144.25 per month with an on-demand

contract, using for example the Amazon AWS provided services. This could be reduced to

C64.56 with a three-year contract with an upfront payment, which although making it cost

less per month would require an upfront payment of C2324.12. For DepSky, the same 4GB

1Prices were checked during October 2016

84

6 . 2 . F U T U R E W O R K

of storage cost would be C0.3 monthly, without taking into account the amount of PUT and

GET requests. With 1 million PUT and GET requests for each region per month, the price

would go up to C20.02 monthly. The price for both DepSky and RamCloud would increase

when considering the amount of data transferred as well.

To support multi modal searching, indexing and information retrieval capabilities over

the encrypted multi-cloud storage backend, among the different components of the middle-

ware solution, we developed a Java JCA [14] compliant cryptographic-provider library (with

a standard design for the generic and transparent use as any JCE-cryptographic provider).

Our provider implements new cryptographic primitives for content-based searchable encryp-

tion and multi modal searchable encryption constructions [15]. And tested this support

for image-similarity searches, showing that we can search images by similarity, even that

the images are always maintained encrypted, thanks to the novel MIE/CBIR encryption

algorithms. The results obtained from our experimental evaluation of on-line multi modal

searching over multi-cloud encrypted data show that the proposal offers the desired security

and privacy guarantees and provides efficient privacy-enhanced information retrieval capa-

bilities. To achieve the observed efficiency we don’t sacrifice precision and recall properties

on the supported search operations and used algorithms, if compared when we use them to

search and retrieve on plaintext data-stores or in encrypted data-stores.

6.2 Future Work

In this dissertation we focused primarily in providing privacy, availability and integrity

of data stored in the provided multi-cloud storage backends, while allowing multi modal

searches over the data-contents, without sacrificing precision and efficiency requirements.

While these issues were addressed our system could be improved further in some interesting

research directions. We emphasize the following ideas for some possible next steps:

First of all, we can extend the experimental evaluation initially done, to observe the

system behaviors for high-scalability requirements, including the observation of multiple

clients and the performance for big-data processing, possibly addressing our middleware

solution as a multi-tenant service;

Replication of the middleware server could also allow to support a more exigent adver-

sary model targeting the middleware instance as a single point of attack, for example to

break the availability of the system or to cause a degradation of the service with Denial

of Service attack types. This would require however the use of a replicated ecosystem of

different middleware servers with coordination between the state such server instances,

which could impact performance for the provided operations.

Another research line is the addition to the replication of middleware servers shar-

ing the state allowing indexes to be split or to be migrated in runtime between different

cloud-computing resources, under scale-up/scale-down conditions. On the other hand, since

indexes are kept in memory there is a bound limit to the scalability of the system, even if

the indexes are relatively small. Allowing the indexes to be split over several middleware

85

C H A P T E R 6 . C O N C L U S I O N S

instances would solve this problem, but would require that search were coordinated between

the different middleware server instances or that the client was aware of which instance it

should contact for a specific search.

Finally, some implementation issues arise, in using other real setups related to the

components of our solution. In particular we emphasize the performance issues of new

hardware-based TPM modules, implementing the new standards in this field: TPM 1.1 and

the future emergence of TPM 1.2 standardization. This integration and evaluation would

be interesting to check the performance of the remote attestation and trustability auditing

facilities supported in our solution that, initially, adopted a software-based emulation of the

TPM functionality.

As a final interesting direction, the integration of new cryptographic primitives (added to

our multi modal-searchable encryption primitives), allowing other information retrieval ca-

pabilities over multimedia documents (for example, mime-documents with different search-

able media parts) could be, certainly, a hot research topic. Our work can provide an exper-

imental base to the future implementation and integration of of such cryptographic prim-

itives, as part of the provided search capabilities for multi modal and mobile applications

accessing cloud-based multimedia documents.

86

B I B L I O G R A P H Y

[1] Meeker, M. (2015). “Internet Trends 2015”. In: Code Conference.

[2] Database, N. V. (2016). “CVE Statistics”. http://web.nvd.nist.gov/view/

vuln/statistics. Ac. 04-02-2016.

[3] Chow, R., P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina (2009).

“Controlling Data in the Cloud: Outsourcing Computation Without Outsourcing Con-

trol”. In: Proc. of the 2009 ACM Workshop on Cloud Computing Security. CCSW ’09.

Chicago, Illinois, USA: ACM, pp. 85–90.

[4] Rushe, D. (2013). “Google: don’t expect privacy when sending to Gmail”. http:

//www.theguardian.com/technology/2013/aug/14/google-gmail-

users-privacy-email-lawsuit. Ac. 04-02-2016.

[5] Chen, A. (2010). “GCreep: Google Engineer Stalked Teens, Spied on Chats”. http:

//gawker.com/5637234. Ac. 04-02-2016.

[6] Greenwald, G. and E. MacAskill (2013). “NSA Prism program taps in to user data of

Apple, Google and others”. http://www.theguardian.com/world/2013/jun/

06/us-tech-giants-nsa-data. Ac. 04-02-2016.

[7] Lewis, D. (2014). “iCloud Data Breach: Hacking And Celebrity Photos”. http://

www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-

hacking-and-nude-celebrity-photos/. Ac. 04-02-2016.

[8] “Facebook White Hat” (2016). https://www.facebook.com/whitehat. Ac.

20-09-2016.

[9] F.-Brewster, T. (2015). “Researcher Finds ’Shocking’ Instagram Flaws And Ends Up In

A Fight With Facebook”. http://www.forbes.com/sites/thomasbrewster/

2015/12/17/facebook-instagram-security-research-threats. Ac.

04-02-2016.

[10] Gentry, C., S. Halevi, and N. P. Smart (2012). “Homomorphic Evaluation of the AES

Circuit”. In: Advances in Cryptology – CRYPTO 2012: 32nd Annual Cryptology Con-

ference, Santa Barbara, CA, USA, August 19-23, 2012. Proc. Pp. 850–867.

87

http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics
http://www.theguardian.com/technology/2013/aug/14/google-gmail-users-privacy-email-lawsuit
http://www.theguardian.com/technology/2013/aug/14/google-gmail-users-privacy-email-lawsuit
http://www.theguardian.com/technology/2013/aug/14/google-gmail-users-privacy-email-lawsuit
http://gawker.com/5637234
http://gawker.com/5637234
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
http://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
http://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.facebook.com/whitehat
http://www.forbes.com/sites/thomasbrewster/2015/12/17/facebook-instagram-security-research-threats
http://www.forbes.com/sites/thomasbrewster/2015/12/17/facebook-instagram-security-research-threats

B I B L I O G R A P H Y

[11] Ferreira, B., J. Rodrigues, J. Leitão, and H. Domingos (2014). “Privacy-Preserving

Content-Based Image Retrieval in the Cloud”. In: Cornell University arXiv.org.

[12] Bessani, A., M. Correia, B. Quaresma, F. André, and P. Sousa (2011). “DepSky: De-

pendable and Secure Storage in a Cloud-of-clouds”. In: Proc. of the Sixth Conference

on Computer Systems. EuroSys ’11. Salzburg, Austria: ACM, pp. 31–46.

[13] Ousterhout, J., A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro,

S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang (2015). “The

RAMCloud Storage System”. In: ACM Trans. Comput. Syst. Vol. 33. 3. New York, NY,

USA: ACM, pp. 1–55.

[14] “JCA Reference Guide” (2016). https://docs.oracle.com/javase/8/docs/

technotes/guides/security/crypto/CryptoSpec.html. Ac. 20-09-2016.

[15] Ferreira, B., J. Leitão, and H. Domingos (2015c). “Multimodal Searchable Encryption

and the Quest for Practicality”.

[16] Bozkurt, I. N., K. Kaya, A. A. Selc, and A. M. Güloglu (2008). “Threshold Cryptography

Based on Blakley Secret Sharing”. Information Sciences.

[17] Shamir, A. (1979). “How to Share a Secret”. In: Communications of ACM. Vol. 22. 11.

[18] Hwang, M. and T. Chang (2005). “Threshold Signatures: Current Status and Key

Issues”. In: International Journal of Network Security. Vol. 1. 3, pp. 123–137.

[19] Paillier, P. (1999). “Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes”. In: Eurocrypt ’99, 223–238.

[20] Gentry, C. (2009). “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proc. of

the Forty-first Annual ACM Symposium on Theory of Computing. STOC ’09. Bethesda,

MD, USA: ACM, pp. 169–178.

[21] Dijk, M., C. Gentry, S. Halevi, and V. Vaikuntanathan (2010). “Fully Homomorphic

Encryption over the Integers”. In: Advances in Cryptology – EUROCRYPT 2010: 29th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, French Riviera, May 30 – June 3, 2010. Proc. Pp. 24–43.

[22] Popa, R. A., E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M. F. Kaashoek, and H.

Balakrishnan (2014). “Building Web Applications on Top of Encrypted Data Using

Mylar”. In: Proc. of the 11th USENIX Conference on Networked Systems Design and

Implementation. NSDI’14. Seattle, WA: USENIX Association, pp. 157–172.

[23] Goldreich, O. and R. Ostrovsky (1996). “Software Protection and Simulation on Obliv-

ious RAMs”. In: J. ACM. Vol. 43. 3. New York, NY, USA: ACM, pp. 431–473.

88

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

B I B L I O G R A P H Y

[24] Stefanov, E., M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas (2013).

“Path ORAM: An Extremely Simple Oblivious RAM Protocol”. In: Proc. of the 2013

ACM SIGSAC Conference on Computer & Communications Security. CCS ’13.

Berlin, Germany: ACM, pp. 299–310.

[25] Stefanov, E. and E. Shi (2013). “Multi-cloud Oblivious Storage”. In: Proc. of the 2013

ACM SIGSAC Conference on Computer & Communications Security. CCS ’13.

Berlin, Germany: ACM, pp. 247–258.

[26] Ferreira, B., J. Leitão, and H. Domingos (2015a). “Cifra Multimodal Indexável para

Aplicações Móveis baseadas na Nuvem”. In: Proc. of Inforum’15, pp. 386–401.

[27] Adya, A., W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell,

J. R. Lorch, M. Theimer, and R. P. Wattenhofer (2002). “FARSITE: Federated, avail-

able, and reliable storage for an incompletely trusted environment”. In: Proc. of the

5th Symposium on Operating Systems Design and Implementation (OSDI). Boston,

MA: USENIX, pp. 1–14.

[28] Narayan, S., M. Gagné, and R. Safavi-Naini (2010). “Privacy Preserving EHR System

Using Attribute-based Infrastructure”. In: Proc. of the 2010 ACM Workshop on Cloud

Computing Security Workshop. CCSW ’10. Chicago, Illinois, USA, pp. 47–52.

[29] Puttaswamy, K. P. N., C. Kruegel, and B. Y. Zhao (2011). “Silverline: Toward Data

Confidentiality in Storage-intensive Cloud Applications”. In: Proc. of the 2Nd ACM

Symposium on Cloud Computing. SOCC ’11. Cascais, Portugal, pp. 1–13.

[30] Jammalamadaka, R. C., R. Gamboni, S. Mehrotra, K. Seamons, and N. Venkatasub-

ramanian (2008). “iDataGuard: An Interoperable Security Middleware for Untrusted

Internet Data Storage”. In: Proc. of the ACM/IFIP/USENIX Middleware ’08 Confer-

ence Companion. Companion ’08. Leuven, Belgium: ACM, pp. 36–41.

[31] Rodrigues, J. (2013). “TSKY: A Dependable Middleware Solution for Data Privacy

using Public Storage Clouds”. MA thesis. Faculdade de Ciências e Tecnologia - Uni-

versidade Nova de Lisboa.

[32] Strumbudakis, A. (2013). “FairSky: Gestão Confiável e Otimizada de Dados em

Múltiplas Nuvens de Armazenamento na Internet”. MA thesis. Faculdade de Ciências

e Tecnologia - Universidade Nova de Lisboa.

[33] Tang, Y., J. Yin, W. Lo, Y. Li, S. Deng, K. Dong, and C. Pu (2015). “MICS: Mingling

Chained Storage Combining Replication and Erasure Coding”. In: 2015 IEEE 34th

Symposium on Reliable Distributed Systems (SRDS), pp. 192–201.

[34] “Encrypted-bigquery-client Tutorial” (2015). https://github.com/google/

encrypted-bigquery-client/blob/master/tutorial.md. Ac. 15-12-

2015.

89

https://github.com/google/encrypted-bigquery-client/blob/master/tutorial.md
https://github.com/google/encrypted-bigquery-client/blob/master/tutorial.md

B I B L I O G R A P H Y

[35] Fitzpatrick, B. (2004). “Distributed Caching with Memcached”. In: vol. 2004. 124.

Houston, TX: Belltown Media, pp. 5–. U R L: http://dl.acm.org/citation.

cfm?id=1012889.1012894.

[36] Altınbüken, D. and E. G. Sirer (2012). “Commodifying replicated state machines with

openreplica”. Tech. rep. Cornell University.

[37] Abu-Libdeh, H., L. Princehouse, and H. Weatherspoon (2010). “RACS: A Case for

Cloud Storage Diversity”. In: Proc. of the 1st ACM Symposium on Cloud Computing.

SoCC ’10. Indianapolis, Indiana, USA: ACM, pp. 229–240.

[38] Schnjakin, M., D. Korsch, M. Schoenberg, and C. Meinel (2013). “Implementation of

a secure and reliable storage above the untrusted clouds”. In: 2013 8th International

Conference on Computer Science Education (ICCSE), pp. 347–353.

[39] Schnjakin, M. and C. Meinel (2013). “Evaluation of Cloud-RAID: A Secure and Reli-

able Storage above the Clouds”. In: 2013 22nd International Conference on Computer

Communications and Networks (ICCCN), pp. 1–9.

[40] Chen, H. C., Y. Hu, P. P. Lee, and Y. Tang (2014b). “NCCloud: A Network-Coding-

Based Storage System in a Cloud-of-Clouds”. In: IEEE Transactions on Computers.

Vol. 63. 1. Los Alamitos, CA, USA: IEEE Computer Society, pp. 31–44.

[41] Ling, C. W. and A. Datta (2014). “InterCloud RAIDer: A Do-It-Yourself Multi-cloud

Private Data Backup System”. In: Distributed Computing and Networking. Vol. 8314.

Lecture Notes in Computer Science, pp. 453–468.

[42] Plank, J. (2013). “Erasure Codes for Storage Systems A Brief Primer”. In: vol. 38. 6,

pp. 7–.

[43] Jiekak, S., A.-M. Kermarrec, N. Le Scouarnec, G. Straub, and A. Van Kempen (2013).

“Regenerating Codes: A System Perspective”. In: SIGOPS Oper. Syst. Rev. Vol. 47. 2.

ACM, pp. 23–32.

[44] Pereira, V. (2014). “Segurança e Privacidade de Dados em Nuvens de Armazena-

mento”. MA thesis. Faculdade de Ciências e Tecnologias - Universidade Nova de

Lisboa.

[45] Ekberg, J.-E., K. Kostiainen, and N. Asokan (2014). “The Untapped Potential of

Trusted Execution Environments on Mobile Devices”. In: IEEE Security Privacy.

Vol. 12. 4, pp. 29–37.

[46] Nyman, T., B. McGillion, and N. Asokan (2015). “On Making Emerging Trusted

Execution Environments Accessible to Developers”. In: Cornell University arXiv.org.

90

http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894

B I B L I O G R A P H Y

[47] Santos, N., H. Raj, S. Saroiu, and A. Wolman (2014). “Using ARM Trustzone to

Build a Trusted Language Runtime for Mobile Applications”. In: Proc. of the 19th

International Conference on Architectural Support for Programming Languages and

Operating Systems. ASPLOS ’14. Salt Lake City, Utah, USA: ACM, pp. 67–80.

[48] Raj, H., S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshu-

mann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger, S. Thom, and D.

Wooten (2015). “fTPM: A Firmware-based TPM 2.0 Implementation”. Tech. rep.

[49] Chen, C., H. Raj, S. Saroiu, and A. Wolman (2014a). “cTPM: A Cloud TPM for Cross-

device Trusted Applications”. In: Proc. of the 11th USENIX Conference on Networked

Systems Design and Implementation. NSDI’14. Seattle, WA, pp. 187–201.

[50] Asokan, N., J.-E. Ekberg, K. Kostiainen, A. Rajan, C. Rozas, A.-R. Sadeghi, S. Schulz,

and C. Wachsmann (2014). “Mobile Trusted Computing”. In: Proc. of the IEEE.

Vol. 102. 8, pp. 1189–1206.

[51] Stallings, W. and L. Brown (2015). “Computer Security: Principles and Pratice”. In:

[52] Popa, R. A., C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan (2011). “CryptDB:

Protecting Confidentiality with Encrypted Query Processing”. In: Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles. SOSP ’11. Cascais,

Portugal: ACM, pp. 85–100.

[53] Ferreira, B., J. Leitão, and H. Domingos (2015b). “Multimodal Indexable Encryption

for Mobile Cloud-based Applications”.

[54] “OpenSSL” (2016). https://www.openssl.org/. Ac. 04-08-2016.

[55] “Jerasure” (2016). http://jerasure.org/. Ac. 04-08-2016.

[56] “AWS Amazon S3” (2016). https://aws.amazon.com/s3/. Ac. 10-02-2016.

[57] “Google Cloud Storage” (2016). https://cloud.google.com/storage/. Ac.

10-02-2016.

[58] “Amazon EC2” (2016). https://aws.amazon.com/ec2/. Ac. 10-02-2016.

[59] “RamCloud” (2016). https://github.com/PlatformLab/RAMCloud. Ac.

23-05-2016.

[60] “Depsky” (2016). https://github.com/cloud-of-clouds/depsky. Ac.

23-05-2016.

[61] “Trousers” (2016). http://trousers.sourceforge.net/. Ac. 20-09-2016.

[62] “TPM-Emulator” (2016). https://github.com/PeterHuewe/tpm-emulator/.

Ac. 20-09-2016.

91

https://www.openssl.org/
http://jerasure.org/
https://aws.amazon.com/s3/
https://cloud.google.com/storage/
https://aws.amazon.com/ec2/
https://github.com/PlatformLab/RAMCloud
https://github.com/cloud-of-clouds/depsky
http://trousers.sourceforge.net/
https://github.com/PeterHuewe/tpm-emulator/

B I B L I O G R A P H Y

[63] “Microsoft Azure Blob Storage” (2016). https://azure.microsoft.com/en-

gb/services/storage/blobs/. Ac. 10-02-2016.

[64] “Porter Stemmer” (2016). https://tartarus.org/~martin/PorterStemmer/.

Ac. 10-02-2016.

[65] “COCOMO II - Constructive Cost Model” (2016). http://csse.usc.edu/tools/

COCOMOII.php. Ac. 20-09-2016.

[66] “COCOMOII: Model Definition Manual” (2016). http://csse.usc.edu/csse/

research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf. Ac. 20-

09-2016.

92

https://azure.microsoft.com/en-gb/services/storage/blobs/
https://azure.microsoft.com/en-gb/services/storage/blobs/
https://tartarus.org/~martin/PorterStemmer/
http://csse.usc.edu/tools/COCOMOII.php
http://csse.usc.edu/tools/COCOMOII.php
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context and Motivation
	Problem Statement
	Objectives and Contributions
	Document Structure

	Related Work
	Cloud Privacy
	Cryptographic Mechanisms and Tools
	Oblivious Schemes
	Multi Modal Searchable Encryption
	Discussion

	Trustable and Secure Cloud Storage Systems
	Farsite
	EHR
	Silverline
	Depsky
	iDataGuard
	TSky
	Fairsky
	MICS
	Discussion

	Other Approaches and Tools
	Erasure Codes
	Google's Encrypted BigQuery Platform
	RAMCloud
	Memcached
	OpenReplica
	Cloud-RAID Solutions
	Discussion

	Trusted Computing
	Trusted Execution Environment
	TPM
	Software Implementations
	Discussion

	Critical Analysis

	System Model and Architecture
	System Model Overview
	Adversary Model
	Storage Backend
	Middleware Server
	Client Proxy
	Generic Adversarial Conditions

	System Model and Software Architecture
	Client Proxy
	Middleware Server
	Cloud Storage Backend

	System Operation
	Upload
	Get
	Search
	Index

	Architectural Options for Deployment
	Local Behaviour
	Cloud Behavior
	Multi-Cloud Behavior

	Discussion of Architectural Variants
	Summary and Concluding Remarks on the System Model Design

	Implementation
	Implementation Environments
	Technology
	Client Proxy
	Middleware Server
	Cloud Storage Backend
	TPM Attestation

	Transparent Integration with JCA
	Provider Implementation
	Programming Environment

	Deployed Environment for Evaluation Test benches
	Local environment
	Single Datacenter Multi Cloud Environment
	Multi Datacenter Multi Cloud Environment

	Implementation Effort

	Experimental Evaluation and Analysis
	Test Bench 1 - Local Base Environment
	Cost of Using CBIR
	Cost of Setup
	Cost of Searching
	Cost of Retrieval

	Test Bench 2 - Multi Cloud in the Same Datacenter
	Cost of Setup
	Cost of Searching
	Cost of Retrieval with Middleware

	Test Bench 3 - Multi Cloud in Several Datacenters
	Cost of Setup
	Cost of Retrieval

	Conclusions
	Conclusions
	Future Work

	Bibliography

