23 research outputs found

    Environmentally adaptive noise estimation for active sonar

    Get PDF
    Noise is frequently encountered when processing data from the natural environment, and is of particular concern for remote-sensing applications where the accuracy of data gathered is limited by the noise present. Rather than merely accepting that sonar noise results in unavoidable error in active sonar systems, this research explores various methodologies to reduce the detrimental effect of noise. Our approach is to analyse the statistics of sonar noise in trial data, collected by a long-range active sonar system in a shallow water environment, and apply this knowledge to target detection. Our detectors are evaluated against imulated targets in simulated noise, simulated targets embedded in noise-only trial data, and trial data containing real targets. First, we demonstrate that the Weibull and K-distributions offer good models of sonar noise in a cluttered environment, and that the K-distribution achieves the greatest accuracy in the tail of the distribution. We demonstrate the limitations of the Kolmogorov-Smirnov goodness-of-fit test in the context of detection by thresholding, and investigate the upper-tail Anderson-Darling test for goodness-of-fit analysis. The upper-tail Anderson-Darling test is shown to be more suitable in the context of detection by thresholding, as it is sensitive to the far-right tail of the distribution, which is of particular interest for detection at low false alarm rates. We have also produced tables of critical values for K-distributed data evaluated by the upper-tail Anderson-Darling test. Having established suitable models for sonar noise, we develop a number of detection statistics. These are based on the box-car detector, and the generalized likelihood ratio test with a Rician target model. Our performance analysis shows that both types of detector benefit from the use of the noise model provided by the K-distribution. We also demonstrate that for weak signals, our GLRT detectors are able to achieve greater probability of detection than the box-car detectors. The GLRT detectors are also easily extended to use more than one sample in a single test, an approach that we show to increase probability of detection when processing simulated targets. A fundamental difficulty in estimating model parameters is the small sample size. Many of the pings in our trial data overlap, covering the same region of the sea. It is therefore possible to make use of samples from multiple pings of a region, increasing the sample size. For static targets, the GLRT detector is easily extended to multi-ping processing, but this is not as easy for moving targets. We derive a new method of combining noise estimates over multiple pings. This calculation can be applied to either static or moving targets, and is also shown to be useful for generating clutter maps. We then perform a brief performance analysis on trial data containing real targets, where we show that in order to perform well, the GLRT detector requires a more accurate model of the target than the Rician distribution is able to provide. Despite this, we show that both GLRT and box-car detectors, when using the K-distribution as a noise model, can achieve a small improvement in the probability of detection by combining estimates of the noise parameters over multiple pings.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Environmentally adaptive noise estimation for active sonar

    Get PDF
    Noise is frequently encountered when processing data from the natural environment, and is of particular concern for remote-sensing applications where the accuracy of data gathered is limited by the noise present. Rather than merely accepting that sonar noise results in unavoidable error in active sonar systems, this research explores various methodologies to reduce the detrimental effect of noise. Our approach is to analyse the statistics of sonar noise in trial data, collected by a long-range active sonar system in a shallow water environment, and apply this knowledge to target detection. Our detectors are evaluated against imulated targets in simulated noise, simulated targets embedded in noise-only trial data, and trial data containing real targets. First, we demonstrate that the Weibull and K-distributions offer good models of sonar noise in a cluttered environment, and that the K-distribution achieves the greatest accuracy in the tail of the distribution. We demonstrate the limitations of the Kolmogorov-Smirnov goodness-of-fit test in the context of detection by thresholding, and investigate the upper-tail Anderson-Darling test for goodness-of-fit analysis. The upper-tail Anderson-Darling test is shown to be more suitable in the context of detection by thresholding, as it is sensitive to the far-right tail of the distribution, which is of particular interest for detection at low false alarm rates. We have also produced tables of critical values for K-distributed data evaluated by the upper-tail Anderson-Darling test. Having established suitable models for sonar noise, we develop a number of detection statistics. These are based on the box-car detector, and the generalized likelihood ratio test with a Rician target model. Our performance analysis shows that both types of detector benefit from the use of the noise model provided by the K-distribution. We also demonstrate that for weak signals, our GLRT detectors are able to achieve greater probability of detection than the box-car detectors. The GLRT detectors are also easily extended to use more than one sample in a single test, an approach that we show to increase probability of detection when processing simulated targets. A fundamental difficulty in estimating model parameters is the small sample size. Many of the pings in our trial data overlap, covering the same region of the sea. It is therefore possible to make use of samples from multiple pings of a region, increasing the sample size. For static targets, the GLRT detector is easily extended to multi-ping processing, but this is not as easy for moving targets. We derive a new method of combining noise estimates over multiple pings. This calculation can be applied to either static or moving targets, and is also shown to be useful for generating clutter maps. We then perform a brief performance analysis on trial data containing real targets, where we show that in order to perform well, the GLRT detector requires a more accurate model of the target than the Rician distribution is able to provide. Despite this, we show that both GLRT and box-car detectors, when using the K-distribution as a noise model, can achieve a small improvement in the probability of detection by combining estimates of the noise parameters over multiple pings

    Big Data decision support system

    Get PDF
    Includes bibliographical references.2022 Fall.Each day, the amount of data produced by sensors, social and digital media, and Internet of Things is rapidly increasing. The volume of digital data is expected to be doubled within the next three years. At some point, it might not be financially feasible to store all the data that is received. Hence, if data is not analyzed as it is received, the information collected could be lost forever. Actionable Intelligence is the next level of Big Data analysis where data is being used for decision making. This thesis document describes my scientific contribution to Big Data Actionable Intelligence generations. Chapter 1 consists of my colleagues and I's contribution in Big Data Actionable Intelligence Architecture. The proven architecture has demonstrated to support real-time actionable intelligence generation using disparate data sources (e.g., social media, satellite, newsfeeds). This work has been published in the Journal of Big Data. Chapter 2 shows my original method to perform real-time detection of moving targets using Remote Sensing Big Data. This work has also been published in the Journal of Big Data and it has received an issuance of a U.S. patent. As the Field-of-View (FOV) in remote sensing continues to expand, the number of targets observed by each sensor continues to increase. The ability to track large quantities of targets in real-time poses a significant challenge. Chapter 3 describes my colleague and I's contribution to the multi-target tracking domain. We have demonstrated that we can overcome real-time tracking challenges when there are large number of targets. Our work was published in the Journal of Sensors

    Digital Signal Processor Based Real-Time Phased Array Radar Backend System and Optimization Algorithms

    Get PDF
    This dissertation presents an implementation of multifunctional large-scale phased array radar based on the scalable DSP platform. The challenge of building large-scale phased array radar backend is how to address the compute-intensive operations and high data throughput requirement in both front-end and backend in real-time. In most of the applications, FPGA or VLSI hardware are typically used to solve those difficulties. However, with the help of the fast development of IC industry, using a parallel set of high-performing programmable chips can be an alternative. We present a hybrid high-performance backend system by using DSP as the core computing device and MTCA as the system frame. Thus, the mapping techniques for the front and backend signal processing algorithm based on DSP are discussed in depth. Beside high-efficiency computing device, the system architecture would be a major factor influencing the reliability and performance of the backend system. The reliability requires the system must incorporate the redundancy both in hardware and software. In this dissertation, we propose a parallel modular system based on MTCA chassis, which can be reliable, scalable, and fault-tolerant. Finally, we present an example of high performance phased array radar backend, in which there is the number of 220 DSPs, achieving 7000 GFLOPS calculation from 768 channels. This example shows the potential of using the combination of DSP and MTCA as the computing platform for the future multi-functional large-scale phased array radar

    Evolutionary Service Composition and Personalization Ecosystem for Elderly Care

    Get PDF
    Current demographic trends suggest that people are living longer, while the ageing process entails many necessities, calling for care services tailored to the individual senior’s needs and life style. Personalized provision of care services usually involves a number of stakeholders, including relatives, friends, caregivers, professional assistance organizations, enterprises, and other support entities. Traditional Information and Communication Technology based care and assistance services for the elderly have been mainly focused on the development of isolated and generic services, considering a single service provider, and excessively featuring a techno-centric approach. In contrast, advances on collaborative networks for elderly care suggest the integration of services from multiple providers, encouraging collaboration as a way to provide better personalized services. This approach requires a support system to manage the personalization process and allow ranking the {service, provider} pairs. An additional issue is the problem of service evolution, as individual’s care needs are not static over time. Consequently, the care services need to evolve accordingly to keep the elderly’s requirements satisfied. In accordance with these requirements, an Elderly Care Ecosystem (ECE) framework, a Service Composition and Personalization Environment (SCoPE), and a Service Evolution Environment (SEvol) are proposed. The ECE framework provides the context for the personalization and evolution methods. The SCoPE method is based on the match between the customer´s profile and the available {service, provider} pairs to identify suitable services and corresponding providers to attend the needs. SEvol is a method to build an adaptive and evolutionary system based on the MAPE-K methodology supporting the solution evolution to cope with the elderly's new life stages. To demonstrate the feasibility, utility and applicability of SCoPE and SEvol, a number of methods and algorithms are presented, and illustrative scenarios are introduced in which {service, provider} pairs are ranked based on a multidimensional assessment method. Composition strategies are based on customer’s profile and requirements, and the evolutionary solution is determined considering customer’s inputs and evolution plans. For the ECE evaluation process the following steps are adopted: (i) feature selection and software prototype development; (ii) detailing the ECE framework validation based on applicability and utility parameters; (iii) development of a case study illustrating a typical scenario involving an elderly and her care needs; and (iv) performing a survey based on a modified version of the technology acceptance model (TAM), considering three contexts: Technological, Organizational and Collaborative environment

    A selective list of acronyms and abbreviations

    Get PDF
    A glossary of acronyms, abbreviations, initials, code words, and phrases used at the John F. Kennedy Space Center is presented. The revision contains more than 12,100 entries

    Boundary influences In high frequency, shallow water acoustics

    Get PDF

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore