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ABSTRACT 

BIG DATA DECISION SUPPORT SYSTEM 

Each day, the amount of data produced by sensors, social and digital media, and 

Internet of Things is rapidly increasing.  The volume of digital data is expected to be doubled 

within the next three years.  At some point, it might not be financially feasible to store all the 

data that is received.  Hence, if data is not analyzed as it is received, the information collected 

could be lost forever.  Actionable Intelligence is the next level of Big Data analysis where data is 

being used for decision making.  This thesis document describes my scientific contribution to 

Big Data Actionable Intelligence generations.  Chapter 1 consists of my colleagues and I’s 

contribution in Big Data Actionable Intelligence Architecture.  The proven architecture has 

demonstrated to support real-time actionable intelligence generation using disparate data 

sources (e.g., social media, satellite, newsfeeds).  This work has been published in the Journal of 

Big Data.   Chapter 2 shows my original method to perform real-time detection of moving 

targets using Remote Sensing Big Data.  This work has also been published in the Journal of Big 

Data and it has received an issuance of a U.S. patent.  As the Field-of-View (FOV) in remote 

sensing continues to expand, the number of targets observed by each sensor continues to 

increase.  The ability to track large quantities of targets in real-time poses a significant 

challenge. Chapter 3 describes my colleague and I’s contribution to the multi-target tracking 

domain.  We have demonstrated that we can overcome real-time tracking challenges when 

there are large number of targets.  Our work was published in the Journal of Sensors.     
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Chapter 1: Big Data Actionable Intelligence Architecture1 

1.1 Introduction 

 

The amount of data produced by sensors, Internet of Things (IoTs), social and digital 

media, are rapidly increasing each day [1].  The International Data Corporation expects that 

there will be 175 zettabytes of data worldwide by 2025 [2].  There is significantly more 

information as compared to the number of people analyzing it.  This becomes a potential 

problem, where lots of data could get overlooked.  Data storage, retrieval, and maintenance 

can become extremely costly due to the explosion of data.  At some point, it might not be 

financially feasible to store all the data that is received.  Hence, if data is not analyzed as it is 

received, the information collected could be lost forever.  Decision support in a dynamic real-

time environment using large volumes of structured, unstructured, and semi-structured data 

can be a research challenge [1].  Many Big Data analytic techniques such as regression analysis 

[3] and machine learnings [4] have been available for many years.  However, data mining and 

data analytics [5] are post-event processes [6][7][8], which are inadequate to support real-time 

decision making.  Actionable intelligence is the next level of data analysis where data are 

analyzed in near-real-time to create insights that support decision making [1].  In this chapter, 

we will discuss a Big Data Actionable Intelligence (BDAI) framework that can quickly turn real-

time streaming data from a variety of sources into actionable insights.  Our framework 

architecture has demonstrated the ability to integrate disparate data sources from a variety of 

interfaces in near-real-time. Our platform addresses the National Spatial Data Infrastructure 

Executive Order 12906 concepts by providing “the technology, policies, standards, and human 

 
1 The material from this chapter was published in [41]. 
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resources necessary to acquire, process, store, distribute, and improve utilization of geospatial 

data.” [9]. This paper is organized as follow.  Section “2.0” provides a discussion on the data 

sources and exemplar we used to demonstrate our architecture.  Section “3.0” goes over any 

related work in current open literature.  Section “4.0” discusses our approach to the BDAI 

problem. Section “5.0” provides a discussion of the results in our project.  Section “6.0” goes 

over the conclusion of our research. 

1.2 Exemplar Problem 

 

1.2.1 Exemplar Description 

 

To demonstrate our capability of transforming Big Geospatial Data to Actionable 

Intelligence in near-real-time, we focused on an exemplar problem of generating Actionable 

Intelligence in regard to the traffic congestion in the city of Chicago.  The traffic prediction 

problem is extremely complex, which makes it hard to accurately predict traffic condition based 

on off-line data (patterns, trends, road networks, etc.) or crowdsourcing applications such as 

Waze [9] due to the dynamic changes of  real-time environment (i.e. accidents, sport events, 

weather changes, etc.).  This exemplar highlights the importance of Actionable Intelligence.  For 

example, first responders need to safely and expeditiously transport a victim to the hospital.  

Rapidly identifying the fastest route to a medical facility increases the survivability of the victim.  

Actionable Intelligence provides timely information such as heavy traffic, which allows the first 

responders to make important time saving transportation decisions.  

1.2.2 Data Sources 
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Table 1 provides the data sources used to test the BDAI framework.  Figure 1 provides a 

high-level pictorial illustration of each data types.  The data sources were extremely diverse, in 

terms of data types and data frequency.  Most of the data interfaces provided ways to 

geospatially constraint the results within the Chicago city limits.  One of the data sources 

included a 3-hour ground truth dash camera video experiment to validate actionable 

intelligence created from our framework. 

Table 1: Heterogenous Data Sources 

 

Data Sources Source Type Frequency Description 

Twitter [11] Live text • Live.  Query every 5 mins • Decahose – Geo-
tagged tweets 
within Chicago city 
limits  

Travel Mid-west 
[12] 

Various • Traffic camera images 
every 15 min 

• Vehicle Detection System 
(VDS) every 10 min 

• Dynamic Message Sign 
(DMS) every 10 min 

• Thousands of camera 
locations 

• Traffic Cameras 

• VDS - Vehicle 
Speeds, Vehicle 
Occupancy 

• DMS – Traffic 
times, Lane 
Closures, Accidents 

City of Chicago [13] Various • Traffic Segments every 
10-15 mins 

• Traffic Region every 10-
20 mins 

• Construction Moratorium 
- Infrequent 

• Traffic Segments – 
Vehicle Speeds, 
Vehicle Occupancy 

• Traffic Region - 
Vehicle Speeds, 
Vehicle Occupancy 

• Construction 
Moratorium – 
Road closures 

GDELT [14] Various Every 15 minutes Global Knowledge 
Graph – provides 
context and feeling 
between people, 
organizations, and 
locations 
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Event Mentions, 
Events 

MapQuest [15] Various Every 5 minutes Reported Incidents 

Digital Globe [16] Satellite 
Imagery 

1-3 images a day Satellite Imagery 
(limited number of 
images) 

Dash Camera  3-hour Video Field experiment Dash Camera Video 
(Live Experiment and 
Validation)  

 

 

Figure 1: Heterogenous Data Sources 

 

1.2.3 System Requirement 

 

A summary of requirements and metrics that we used to evaluate our system is depicted in 

Table 2.   
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Table 2: System Requirement 

 

Requirements Descriptions Goal Threshold 

Scalability Number of streaming location 
supported 

150 streaming 
location 

100 streaming 
location 

Data Variety Structured, Unstructured, Semi-
structured 

Structured, 
Unstructured, 
Semi-structured 

Structured, Semi-
structured 

Average 
Throughput Per 
Location 

Average data transfer rate per 
location 

1 Mbps per source 
Location 

0.50 Mbps per 
source location 

Average Data 
Latency 

Time measured from data 
creation to the time the data 
has arrived and indexed into 
our system 

Less than or equal 
to the polling 
frequency 

max (polling 
frequency, data 
update frequency) 
+ 2 minutes 

Data 
Management 
Guarantees 

Level of guarantee on which 
message to be processed 

Fully process each 
message  

Drop message on 
failure 

Traffic 
Classification 
Accuracy 

Traffic Classification Accuracy 95% accuracy on 
trained location 

90% accuracy on 
trained location 

 

1.2.4 Assumption about Data 

 

We made the following general assumptions in regards to data: 

1. Data can be referenced by time and geospatial extent. 

2. Each data type may not follow a standardized format.  Hence, architecture needs to 

accommodate needed flexibility to onboard new format. 

3. Input data can come from variety of form (structured, semi-structured, or 

unstructured). 

4. Data might not be immediately available for retrieval due to site restriction. 

5. Data might not always be updated on a regular interval.   



6 
 

1.3 Related Works 

 

Traffic prediction analysis is typically done in a crowd sourcing way, where location 

information from GPS apps are shared among users to help predict the fastest route [17].  

Recently, improvement in traffic prediction accuracy using social media data has been 

demonstrated [18].  Despite many researches on traffic prediction [19], many existing research 

focuses on using few data sources for traffic prediction.  Based on our research, we were not 

aware of any existing work utilizing a combination of data sources such as Twitter, web camera 

imageries, satellite imagery, dash camera video, Mapquest, and GDELT to support near-real-

time traffic prediction.  Our work uses seven disparate data sources as described in Table 1.  

Each data sources can be streamed from multiple locations.  The web camera data in particular, 

involves the live streaming of over hundreds of camera locations around the City of Chicago.  

The traffic reports are received from hundreds of stations.  Existing software architecture [20] 

typically focuses on acquisition, storage, and the retrieval of Big Data. However, our 

architecture focuses on Actionable Intelligence generations.  Several data architecture has been 

proposed for network traffic monitoring applications [21][22][23], but our data architecture 

supports multiple disparate data sources.  A general five-layer Big Data Processing and Analytics 

(BDPA) involves a collection layer, a storage layer, a processing layer, an analytic layer, and an 

application layer [24].  However, this architecture does not address actionable intelligence 

generation in their framework.  In 2019, Zhu et al. states: “Currently, there are no widely 

accepted BDPA solution, especially a general-purpose solution fit for both traditional and 

internet industries [24].” Liu et al (2019) proposed a general multi-source framework [25] to 

map disparate data sources to a common unified data format for Big Data fusion. Their paper 
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suggested the benefits of combining heterogenous sources to provide a better solution, but it 

did not provide a solution on how this framework can be integrated with Big Data streaming 

sources. Hence, the motivation for our work focuses on using Big Geospatial Data to answer key 

customer geospatial and temporal questions.  Big Geospatial Data is Big Data with geospatially 

tagged features and error estimates.  As stated by the NIST Big Data Public Working Group 

(NBD-PWG), “Big Data consists of extensive datasets, primarily in the characteristics of volume, 

variety, velocity, and/or variability⎯that require a scalable architecture for efficient storage, 

manipulation, and analysis.” [26].  While most Big Data information fusion solution focuses on 

social media data sources [27], our architecture accommodates a variety of geospatially tagged 

data sources at various velocities and veracities. Our traffic prediction exemplar allows us to 

test and validate key BDAI capabilities: handling heterogenous data sources, hosting data 

pipelines on distributed processing platforms, and running machine learning algorithms in near-

real-time.  The exemplar is not meant to compete with crowd sourcing GPS apps, but rather 

serve as a generic exemplar that can be extended to other Big Data Actionable Intelligence 

problems.   

1.4. Methods 

 

1.4.1 System Setup 

 

Our BDAI software was initially deployed to a bare metal system named “Ray”.  We 

deployed, configured, and tested the HORTONWORKS Data Platform (HDP) Apache Hadoop 

Distro [28] to the Ray cluster, composing of 120 computing nodes and 400 TB of Hadoop 

Distributed File System (HDFS) [29] storage.  Since initial deployment, we have migrated our 
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BDAI software to run on a cloud infrastructure (Azure Stack [30]).   Most of our custom data 

processing code is implemented in Java, [31] with some processing implemented in Python 

[32].   

1.4.2 BDAI Architecture Contributions 

 

A high level of our BDAI architecture is depicted in Figure 2. While a similar architecture 

has been proposed in open literature [20][24], these architectures focus on acquisition, storage 

and retrieval of Big Data, and on the use of specific datatypes [22][23].  The key question we 

want to answer in this paper is: Can we create a near-real-time data agnostic software 

architecture that can process many disparate sources while autonomously generate Actionable 

Intelligence?  In order to combine and fuse disparate streaming data sources to produce 

actionable intelligence, we believe Big Data should be curated as it arrives to the system.  Our 

main contributions to the Big Data Architecture field is listed as such: 1. Provide a general 

framework to map data from disparate data sources into a common frame of reference indexed 

by time and geo-spatial extent.  This enables our architecture to stay data agnostic, which 

provides the possibility to quickly onboard new data sources that allows for agile responses to 

complete new and orthogonal scenarios.  This method also provides the ability to ask questions 

generically over many disparate data sources, which minimizes the learning curve to perform 

meaningful fusion and analysis. 2. Provide a high-level description of our implementation in 

which our architecture uses a modern Big Data technology stack (depicted in Figure 3).  This 

software stack is natively distributed and built for high-throughput streaming that allows us to 

tackle problems of mission-level magnitude.  3. Demonstrate and prove that our architecture 
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and technology stack are capable of supporting the streaming of disparate data sources to 

produce actionable intelligence.    

 

 

Figure 2: BDAI SNL Architecture 
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Figure 3: Big Data Technology Stack 

 

1.4.3 BDAI Architecture – algorithm workflow 

 

Our architecture contains four levels of processing: Data Source, Data Pipeline, Data 

Analytic, and Data Reporting.  First, we set up a streaming interface connection for each data 

source.  We utilized Apache Storm’s topology [33] and Apache Kafka’s [34] inter-process 

communication mechanism to implement our Data Pipelines because they are known to 

achieve a high level of scalability, low latency, fault-tolerant, and the data is guaranteed 

[35][36].  A general workflow of our data pipeline is depicted in Figure 4. 
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Figure 4: Data Pipeline 

 

We created a separate processing Storm Topology [33] for each data type.  Each 

topology follows a similar workflow of acquiring, normalizing, processing, and publishing the 

data (see Figure 4).  Apache Kafka is used as a central messaging broker, connecting each step 

of the processing. For example, when incoming data arrives, it will first be placed in Kafka, and 

the “Getter” will be informed to obtain the data.  The “Getter” is responsible for acquiring the 

data from an individual data source.  The “Normalizer” is responsible for transforming the data 

by mapping out both raw data and metadata into a common event schema.  A description of 

the event schema is depicted in Figure 5.  The ontology mapping of each individual data source 

into a common event description is depicted Figure 6.  The mapping of each individual data 

source into a common data schema is necessary to establish a common frame of reference for 

events that occurs at a given in time and space.  This design makes searching for the events in a 

specific time or space to be easily accessible.  All the data sources are “normalized” with the 

same common event schema, in which they are all “linked” by the time and its location.  By 
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tagging the data in this manner, it ensures that the data can be discoverable by geospatial 

analytic processing in later steps. 

 

Figure 5: Mapping Raw Data to generic Event Schema 

 

Figure 6: General Event Schema 
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The “Processor” is responsible for extracting events from raw sensor data and then 

populating its results in the event schema.  The “Publisher” is responsible for “indexing” the 

data to enable search and discovery at the “Data Analytic” level.  Apache Solr [37], an 

enterprise search engine, is used for both indexing and querying the geospatial and temporal 

data. 

In our design, we developed a custom topology for each data type.  The custom design 

provides flexibility to support different data types.  An illustration of a web camera topology 

insertion is depicted in Figure 7.  In this example, the “Processor” was built based on an object 

detection algorithm called You Only Look Once (YOLO)[38].  As depicted in Figure 8, the pre-

trained YOLO processor did not yield good results.  Hence, we labeled and re-trained YOLO 

using the web camera images from Travel Mid-West.  Results of the re-trained YOLO processing 

are also depicted in Figure 8 as a comparison.  The output of YOLO is used to determine the 

number of cars in each camera image.  The event (i.e. number of cars at a location) generated 

from the YOLO topology is indexed by image time (when the image is captured) and image 

location (i.e. latitude and longitude of where the event occurred).    
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Figure 7: Camera Topology Example 

 

Figure 8: YOLO Results 

 

For the Tweeter Topology, we implemented a separate machine-learning “Processor” to 

process live tweets to generate traffic sentiment.  Similarly, we indexed tweeted events by their 

time and location on where/when the events were tweeted.  Following a similar workflow, we 

created separate topologies for each of the other data types as listed in Table 1.   

1.4.4 Muti-Source Data Fusion 

 

Information Fusion (IF) is a process of combining data or information to develop 

improved estimates or predictions of entity states[39].  Information obtained from a single 
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source can be unreliable or insufficient to make an accurate determination. For example, in one 

traffic scenario on the Dan Ryan Expressway Inbound between 87th St and 71st St on March 22, 

2019, our YOLO topology had reported light traffic conditions because there were very few cars 

detected (see Figure 9).  However, information received from our Tweet Processor indicated 

that the road was closed due to police activity (see Figure 10).  Since the Tweet information had 

already been indexed by time and location, we could easily perform a geospatial query to 

obtain the Tweet’s information to match the closest image time and location.  Hence, the use of 

multiple data sources is necessary in order to improve the reliability and quality of the 

information provided to decision makers.  

 

 

Figure 9: Vehicle Detections reported by YOLO processor between 87th St and 71st 
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Figure 10: Tweets reported by Tweet processor between 87t St and 71st 

 

1.4.4 BDAI Architecture Analytical Fusion Algorithm 

 

Our BDAI analytic seeks to combine event data from disparate sources to predict traffic 

congestion by improving the outcome beyond what could be done with a single source of 

information.  At the data analytic level, we first query the normalized and curated data from all 

data sources by time and location. Then, we performed a data analytic on events occurring at 

similar times and locations.  To demonstrate how machine-learning algorithm can be integrated 

into our architecture, we designed a Merged Neural Network (as depicted in Figure 11) to 

perform the traffic congestion classification.  The algorithm takes input from all the normalized 

event data (related by time and location) to produce a traffic congestion probability.  The 

output is a real-valued number between 0 and 1, as related to the level of traffic, where 0 is 

negligible traffic and 1 is a severe, complete standstill traffic jam.  
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Figure 11: BDAI Merge Neural Network 

 

1.5 Results and Discussion 

 

1.5.1 Chicago Traffic Analytic – Multi-Source Analytical Fusion Demonstration 

 

A web camera image which captured the traffic condition on the Dan Ryan Expressway 

is depicted in Figure 12.  At the corresponding time frame, our BDAI system was able to locate a 

tweet from the Total Traffic Chicago data source indicating that the road was closed due to an 

accident in the area (see Figure 13).  At a similar time frame, the BDAI system had confirmed 

slow traffic through a traffic report from Mapquest (see Figure 14).  However, Mapquest had 

reported that the West Dan Ryan Expressway had light traffic (see Figure 15).  This information 

was also confirmed by the small number of cars detected (Figure 16) by our web camera 

topology. Taking into account all of the sources, BDAI was able to distinguish the traffic 

congestion level on both sides of the West Dan Ryan Expressway.   
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Figure 12: Camera Image Indicating Traffic Congestion on Dan Ryan 

 

Figure 13: Tweets indicated Dan Ryan Outbound at 59th St was closed due to an accident 
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Figure 14: Congestion Report from Map Request reported slow speed on EAST BOUND 

 

Figure 15: Congestion Report from Map Request reported light traffic 



20 
 

 

Figure 16: Small Number of Cars is detected East Bound Traffic 

 

 

 

1.5.2 Traffic Classifier Performance 

 

Overall, the BDAI Merge Neural Network classifier performed extremely well on 

intersections where the network was trained.  We also tested the BDAI Merge Neural Network 

classifier on intersections where it was not trained.  As expected, the performance was not 

good.  A summary of the performance of our classifier is depicted in Figure 17.    
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Figure 17: Merge Neural Network Results 

 

1.5.3 BDAI Dashboard 

 

The output of the BDAI system is visualized using a Banana Dashboard[40], as depicted 

in Figure 18. The BDAI Dashboard is back ended by an Apache Solr Cluster, which contains all 

event data.  The map in the lower left represents the event records that were ingested in one of 

our data pipelines.  The icons are the actual geospatial locations of the events.  The event 

metadata is the table to right of the map.   
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Figure 18: BDAI Dashboard 

1.5.4 System Performance 

 

Our BDAI software was deployed to a bare metal system named “Ray” (Section 4.1).  A 

summary of the system performance from “Ray” for all event types is depicted in Table 3.  We 

are not aware of any similar systems that are published in open literature to draw a direct 

comparison from our effort.  The missing entries in the table are due to insufficient information 

in that particular event type to derive statistics.  Each event type can have multiple sources as 

there may be multiple camera locations or traffic report stations active at a given time.  Our 

data architecture supports concurrent streaming from each data sources.  Each event type 
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restricts how frequent we can “poll” the data.  Hence, “polling” is not done instantaneously 

when the event is available, but rather done at a fixed time interval, as permitted by the 

external source.  This is not a limitation in our architecture, but rather a limitation set forth by 

an external data source.  Latency in Table 3 is measured from the time an event happens, to the 

time that the event is curated and indexed into Solr.  This does not account for any additional 

latency required by downstream analytic processing.  Once the data is indexed into Solr, the 

data is immediately available to perform any sort of analysis.  Some events, such as the web 

camera imagery requires additional processing (i.e. using the YOLO processor).  The time for 

data processing highly depends on the specific type of algorithm implemented.  Our Merge 

Neural Network (section 4.4) used for actionable intelligence generation performs a poll from 

“Solr” every 15 minutes.  All information retrieved over the time interval are used to create 

actionable intelligence.  The execution time for the Merge Neural Network is negligible (within 

a millisecond).  The “polling” period is not a limitation in the architecture, but it is an adjustable 

parameter depending on the arrival time of each individual data sources.  The polling rates for 

each topology is depicted in Table 4.  The overall turnaround time for actionable intelligence 

generation is mainly driven by the availability of data sources and the frequency we poll the 

data since actual data processing is deemed negligible.     
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Table 3: System Performance 

 

eventType avg num 
of 
locations 

avg 
record 
size 
(bytes) 

avg 
daily 
record 
total 

total num 
of 
records 

avg 
latency 
(min) 

avg 
throughput 
(bytes/sec) 

tweet_posted 1 3835 132305 16875132 5.5 5873 

        
traffic_segment_updated 

818   117957 4362857 29.9   

vds_report_updated 818 639 117250 2305651 4.7   

gdelt_gkg_posted   109388 4254 1104740 3.0 5386 

gdelt_mention_posted   7509 4504 1034357 1.0 391 

camera_picture_taken 150 350000 14041 516782 2.2 56879 

dms_report_updated 150 2200 20906 508288 34.9 532 

gdelt_event_posted   1204 1793 217691 1.7 25 

traffic_region_updated     4156 153555 37.3   

tweet_traffic_posted 1 3835 561 68124 5.8 25 

        
construction_moratorium 

    1000 37000     

        
congestion_report_updated 

    74 28092 28.6   

        incident_report_updated     238 9346     

        
construction_report_updated 

    99 800     

        
social_event_report_updated 

      225     

 

Table 4: Topology Polling Rates 

 

Topology Polling Rate 

ChicagoTrafficTrackerTopology no more frequently than 10 minutes 
(~between 10 and 12 minutes) 

XmlTopology no more frequently than 10 minutes 
(~between 10 and 12 minutes) 

MoratoriumTopology 24 hours 

CamerasTopology 15 minutes 

GDELT 15 minutes 

MapQuestTopology 5 minutes 
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TweetTopology every 5 or 15 minutes subject to twitter rate 
limits 

1.5.5 Performance vs Requirement Discussion 

In regards to the original requirement as depicted in Table 2, our system has achieved 

the scalability and flexibility needed for Big Data processing.  We have demonstrated that our 

system is horizontally scalable to hundreds of locations.  For example, the data we ingested 

include: traffic segments received from 818 stations, vehicle detection system reports received 

from 818 stations, images received from 150 camera locations, and dynamic message signs 

reported from 150 stations.  We ingested an average of 132,000 tweets a day, 14,000 camera 

images a day, and 10,000 posts from Gdelt.  A comparison breakdown of the statistics for 

requirement analysis is depicted in Table 5.  The majority of the data met our requirement 

specification.  The only exception is the dynamic message sign report topology.  The larger 

latency was associated with an inconsistent update interval provided in the server rather than 

the actual latency in our system.  As depicted in Table 5, the overall latency performance of 

each data types are largely driven by external site restrictions on how frequent we are allowed 

to query the data.  Despite this restriction, most data sources had an average latency less than 

the “polling” time.  It is possible that the latency can be further reduced if the data can be 

pushed to the consumer at a higher rate.  Evaluation of this architecture using a different 

application exemplar with real-time accessible data would be left for future exploration.   
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Table 5: Latency Performance vs Requirement 

 

Event 
Type 

Avg 
Record 
Per Day 

Num of 
Source 
Station 

Query 
Freq 
(min) 

Polling 
Freq 
(min) 

Average 
throughput 
(bytes/sec) 

Average 
Latency 
(Measured) 

Status 

Tweets 132K 1 5 or 15 
(subject 
to rate 
limit) 

5 or 15 
minutes 
subject to 
rate limit) 

5873 5.5 min Met 
Goal 

Tweet 
Traffic 
Posts 

0.5K 1 5 or 15 
(subject 
to rate 
limit) 

5 or 15 
(subject 
to rate 
limit) 

25 5.8 min Met 
Goal 

Camera 
Images  

14K 150 15  15 56879 3 min Met 
Goal 

Gdelt 
Global 
Knowled
ge 
Graphs 

4.2K 1 15  15  5386 3 min Met 
Goal 

Gdelt 
Mention 
Posts 

4.5K 1 15  15  391 1 min Met 
Goal 

Gdelt 
Event 
Posts 

1.7K 1 15 15 25 1.7 min Met 
Goal 

Dynamic 
Messag
e Sign 
Report 

20.9K 150 15 10-12 532 34.9 min Failed 

 

1.6 Conclusion 

 

In conclusion, our big data architecture provides a framework for machine-learning 

algorithms to learn and analyze streaming data (e.g. near real-time analytics) from 

heterogenous data sources (texts, signal waveforms, images, videos) to turn them into 

actionable information for decision makers.  Our data-agnostic solution is accomplished by 

mapping different data types into a common frame of reference that requires both temporal 
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and geospatial metadata.  We have demonstrated through a traffic prediction exemplar that 

our architecture can support actionable intelligence generation in near-real-time using 

disparate data sources.  Our traffic prediction exemplar allowed us to test and validate key 

BDAI capabilities: handling heterogenous data sources, hosting data pipelines on distributed 

processing platforms, and running machine learning algorithms in near-real-time.  Our BDAI 

platform was designed with flexibility in mind, allowing us to quickly onboard new data sources 

and apply machine learning algorithms.  Our data platform’s agility and common frame of 

reference allows us to rapidly provide Actionable Intelligence to our customer’s mission 

relevant problems.  The framework architecture is a generalized architecture that can enable 

solutions for other BDAI problems with similar data diversity and data volume. The BDAI 

architecture has been fully implemented into a software system that is currently running and is 

hosted at Sandia National Laboratories for over a year.  Our work has been featured on the 

local news media [1].  The current BDAI system can produce first order of data analytics (i.e. 

combining data from multiple source to assess what is happening at current time).  In the 

future, we plan to further develop statistical techniques such as minimum variance to optimize 

the resultant estimate.  In addition, we plan to extend BDAI’s capability to include a second 

order of analytics by providing the decision maker with a list of suggested actions, based on the 

assessment of the current situation using multiple data sources.     
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Chapter 2: Remote Sensing Detection Enhancement2 

 

2.1 Introduction 

 

Big Data in the area of Remote Sensing has been growing rapidly.  Remote sensors are used 

in surveillance, security, traffic, environmental monitoring, and autonomous sensing.  Data 

from remote sensors can be fused with other data sources to generate actionable intelligence 

for decision makers [41].  However, real-time detection of low signal-to-noise-ratio (SNR) small 

moving targets using a remote sensor has been an ongoing, challenging problem.  Since the 

object is located far away, the object often appears too small on the sensor.  The object’s SNR  

is often very low.  Occurrences such as camera motion, moving backgrounds (e.g. rustling 

leaves), low contrast and resolution of foreground objects makes it difficult to segment out the 

targeted moving objects of interest.  Due to the limited appearance of the target, it is difficult 

to obtain the target’s characteristics such as its shape and texture.  Without these 

characteristics, filtering out false detections can be a challenging task.  Detecting these targets, 

would often require the detector to operate under a low detection threshold.  However, 

lowering the detection threshold could lead to an increase of false alarms.  In this paper, the 

author will introduce a new method that improves the probability to detect low SNR objects, 

while decreasing the number of false alarms as compared to using the traditional baseline 

detection technique.  This chapter is organized into the following sections: Section 2.2 provides 

a discussion on related research work published in open literature; Section 2.3 focuses on the 

 
2 The material from this chapter was published in [99]. 
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data used for our experimental results; Section 2.4 is a detailed discussion on our methods 

used; Section 2.5 goes over our results; and Section 2.6 is a summary conclusion of the paper.    

2.2 Related Works 

 

Recent artificial intelligence (AI) based object recognition methods uses a deep learning 

approach to segment objects in motion [42-44].  Deep learning algorithms can now achieve 

human-level performances on a variety of difficult tasks.  Success on these methods generally 

require large training datasets [45] with quality features [45,46].  However, deep learning 

methods have several drawbacks; including understanding its reasoning in making decisions. 

These methods are unclear to a human observer [47,48] and requires large training data sets 

[45].  This can often lead to unexpected results when real data does not resemble those in the 

training datasets [49].  Moreover, studies have shown that these methods are vulnerable to 

adversarial attacks [50], fooling deep learning models to mis-classify objects [50,11].  Resolving 

these challenges are especially important in time critical security surveillance application, 

where failure to detect a target could result in high consequences.  

Traditional change detection methods rely on background subtraction [52].  The 

background is continuously updated as each new frame is received.  For each new frame that 

comes in, the estimated background will be subtracted from the new frame to produce a 

“Difference Image”.  Thresholding can then be applied on the Difference Image to identify 

changes in the scene [53-56].  Though these methods do not require pre-trained labels, they 

generally have a higher false alarm rate.  Traditional background estimation can typically be 

categorized into two categories: pixel-based approaches and dimension reduction approaches.  
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The popular pixel-based approach - Gaussian Mixture Model (GMM) [57], is known for its 

simplicity in implementation.  Dimensional reduction approaches such as Principle Components 

of Pursuit (PCP) [58] and other subspace estimation approaches [59] are known for their 

robustness on handling camera jitters and light illumination. 

Despite research advances in background modeling and AI object recognition approaches, 

these methods alone are inadequate to detect low SNR targets.  Low SNR targets with limited 

features and training examples are not ideal for machine learning problems.  Lowering the 

threshold using traditional background subtraction detection, could cause an increased number 

of false alarms.  

Thus far, Velocity Matched Filter (VMF) techniques have been introduced [60,61] and it 

appears to be extremely effective in improving the detection and tracking of low SNR targets. 

These methods enhance the target’s signal and noise ratio (SNR) by integrating the target’s 

energy over a period of time.  It also matches the target’s true velocity and direction of where it 

is traveling. Numerous Track-Before-Detect (TBD) algorithms [62-66] have evolved using VMF.  

TBD algorithms have been studied in a variety of remote sensors such as Radar [63,64 ,66 ,67], 

Sonar [68], and Infrared (IR) [69].  While earlier publications have demonstrated the 

effectiveness of using TBD algorithms in single target scenarios, it has also been used for 

tracking multiple targets, [65,70] generally requiring the number of targets to be known ahead 

of time.  Dynamic programming algorithms for performing VMF without a known target velocity 

has also been developed [66,71].  While dynamic programming techniques seem to overcome 

run-time performance limitation, it tends to degrade on maneuvering targets due to the lack of 

motion modeling.  More recently [72], motion models have been incorporated in TBD 
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techniques to better handle target maneuver, but the challenge remains on how to initialize 

tracking.  Many of the published techniques are only demonstrated with simulated data.   

Though VMF or TBD type techniques have shown to be theoretically appealing in low SNR 

target tracking scenarios, there are several challenges that make these approaches difficult to 

apply in the real world.  First, the algorithm assumes a priori knowledge in which the number of 

targets are known or a priori knowledge to initialize the track.  This knowledge is often not 

provided in real-time surveillance application.  Recent advances made to [62,73] eliminate 

these problems are by inserting an additional detection process before the TBD processor.  

However, initiating a low SNR target track is a challenge for this framework.  If the target is not 

detectable by the threshold set by the initial detector process, then TBD will not start.  On the 

other hand, setting a low detection threshold to force TBD to initiate could lead to many false 

alarms.  Secondly, to gain the maximum benefit of the TBD approach, it assumes the noise is 

white [61].  Nonstationary changes such as jitters or sensor noises which are not removed, can 

introduce correlated noises that can potentially degrade VMF’s performance.  Finally, VMF 

assumes that the objects can be seen and that finding the best matched hypothesis is always 

available.  However, in a real-world situation, objects may not always be observable by the 

sensors.  For example, a person’s movement can be observed by the sensor, but not when the 

person is walking behind a big tree.  In this situation, finding the best matched filter becomes 

difficult because all the match hypotheses could be invalid. 
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2.3 Experimental Setup 

 

To evaluate our technique in a real-world scenario, a video camera [Table 6] was placed at 

the top of Sandia Mountain [Table 7] to collect live traffic data.  The distance of the camera to 

the target on the ground was approximately 4000 feet.  Since the image is large, [Figure 19] 

only shows a cropped off portion of the image.  The targets were barely visible, and they 

appeared like small dots.  The size of the target(s) in the image ranged from 4 pixels to 20 

pixels.  The camera video is subjected to jitter motion naturally induced by the wind.  This setup 

allowed us to evaluate the challenges of remote target detection under a real-world natural 

setting.   

Table 6: Camera Specifications 

Video Camera Frame Rates Image Resolution Lens focal length 

Mysterium X 24 frames per 

second 

3072x1620 72mm 

 

Table 7: Experiment Location 

Camera Location Peak of Sandia Mountain, Albuquerque, New Mexico 

Camera Location Elevation 10,379 feet 

Ground Target Elevation 6060 feet 
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Figure 19: A cropped image captured by the video camera 

2.4 Methods 

To overcome the limitations of existing TBD methods, this paper provides the following key 

contributions. 1. An ideal “Normalized Difference Frame” calculation to perform VMF 

enhancement; and 2. A novel Constrained Velocity Matched Filter (CVMF) that combines known 
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physical constraints with the target’s dynamic motion constraints to enhance its SNR.  Our 

processing workflow is summarized as shown in [Figure 20].   

 

Figure 20: Processing Workflow 

2.4.1 Image Stabilization 

To eliminate motion jitters on the camera induced by wind, we used the first frame of 

the video as a reference frame and registered subsequent frames from the video onto the 

reference frame.  This was accomplished by using a frame-to-frame registration technique as 

described in [74] to create a stabilized frame. 
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2.4.2 Background Estimation 

The stabilized frame was then fed to a temporal background estimator so that the 

background subtraction could be performed.  The process of background subtraction can be 

expressed mathematically using the following equation: 

 𝐷(𝑡) =  𝐹𝑠(𝑡) −  𝐵(𝑡 − 1) (1) 

where 𝐷(𝑡), corresponds to the difference frame at time 𝑡, 𝐹𝑠(𝑡) corresponds to the stabilized 

frame at time 𝑡, and 𝐵(𝑡 − 1) corresponds to the background computed in the previous time 

step. For simplicity in implementation, the popular Gaussian Mixture Modeling (GMM) 

background estimation method [57] was used in our processing.  However, it is important to 

note that our method can also be applied to other temporal background estimation methods 

such as the Principal Component of Pursuit [58], and Subspace Tracking techniques [59]. 

2.4.3 Noise Estimator 

In general, a background cannot be perfectly estimated regardless of which background 

estimation method used.  Hence, it is important to model a deviation of background models.  

To model the estimated background deviation, we estimated the temporal variance 𝑣 of frame 

pixel location (𝑖, 𝑗) at each time step 𝑡 using an Infinite Impulse Response (IIR) filter with the 

following equation: 

 𝑣(𝑖, 𝑗, 𝑡) = (1 − 𝛾) 𝐷(𝑖, 𝑗, 𝑡)2 + 𝛾 𝑣(𝑖, 𝑗, 𝑡 − 1) 

 

(2) 

where 𝛾 is the variance update rate [0,1] 

The temporal standard deviation for pixel (𝑖, 𝑗) at time 𝑡, is obtained using the following 

equation: 
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 𝜎(𝑖, 𝑗, 𝑡) = √𝑣(𝑖, 𝑗, 𝑡) (3) 

2.4.4 Difference Frame Normalization 

Pixels in different parts of an image can have different temporal standard deviation, 

depending on factors such as the environment and the scene structure.  For example, the 

temporal standard deviation of the pixels in the waterfall region with constant running water is 

much higher than the pixels of an empty field.  Hence, it is important to normalize the 

Difference Frame with respect to its temporal noise estimation before any thresholding is 

applied.  The Normalized Difference Frame 𝑁𝑑 for frame pixel location (𝑖, 𝑗) in time 𝑡 is 

expressed as follow: 

 𝑁𝑑=
𝐷(𝑖,𝑗,𝑡)𝜎(𝑖,𝑗,𝑡−1) (4) 

 

While numerous existing methods attempt to detect objects on difference frames [53-56], our 

method attempts to find objects on the Normalized Difference Frame. 

2.4.5 Constrained Velocity Matched Filter 

The Constrained Velocity Matched Filter (CVMF) uses a combination of physical 

constraint and motion estimation constraint to find, match, and integrate target signals along a 

motion path to enhance the target’s SNR. Performing operation on the Normalized Difference 

Frame is more ideal because it reduces the risk of enhancing the noise on high noise region 

areas (e.g. high scene contrast region, waterfalls, etc.).  For detecting vehicles in this video, a 

physical road constraint is imposed in the CVMF processing.  However, for other applications, 
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other constraints can be used, such as railroads for trains, pathways inside a building.  A 

summary of the CVMF method is depicted in [Figure 21].   

 

Figure 21: Constrained Velocity Matched Filter Process 

Given the road constraints, we divided the path into different numbers of processing 

region (called “chips”) along the road in the Normalized Difference Frame.  An illustration is 

shown in [Figure 22].  The size of each “chip” used was 65x65 pixels.  In general, the size of the 

“chip” should be selected based on the knowledge of the target’s size and the path.  For 

example, the region selected should be big enough to cover the width of the path with enough 

margin to account for path uncertainties.  In addition, the region should be large enough to 

include non-targeted areas. 
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Figure 22: Constraint Processing Illustration (processing region is denoted by red box, road 

path is denoted by green line) 

The continuous VMF process [60,61] can be implemented in a discrete form, by shift-

and-add operation with different velocity hypotheses along the path region in both forward and 

backward direction.  For instance, suppose an object’s movement is within the camera’s view 

over a sequence time step as illustrated in [Figure 23].  For each processing chip, we can 

perform a range of shift-and-add operation for a range of velocities in attempt to match the 

target’s movement over a period of time [Figure 24].   

 

Figure 23: Example of an object's movement multiple time steps 
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Figure 24: Shifting and Adding Operation 

The “sum chip” is the summation of individual chips over the temporal window.  

Mathematically, this can be expressed as the following: 

 𝑆𝑘(𝑖, 𝑗, 𝑡) = 𝐶(𝑖 + ∆𝑖, 𝑗 + ∆𝑗, 𝑡 − 𝑤) + ⋯ 𝐶(𝑖, 𝑗, 𝑡) + ⋯ 𝐶(𝑖 + ∆𝑖, 𝑗 + ∆𝑗, 𝑡 + 𝑤) (5) 

where 𝑆, is the summation of the pixel (𝑖, 𝑗) across multiple frames. (∆𝑖, ∆𝑗) corresponds to the 

shift positions, and 𝑤, represents the frame window for the summation, and 𝑘 corresponds to 

the index of the matched hypothesis.  The total number of matched hypothesis 𝐾 can be 

expressed as: 

 𝐾 = 𝑀 ∗ 𝑁 (6) 

where  𝑀 is the number of directional hypotheses and 𝑁 is the number of velocity hypotheses.  

Since the movement of the individual targets are constrained in a pre-determined path, 𝑀 is 2 

in most cases (either forward or backward direction).  𝑀 can be greater than 2 when the chip is 

at the intersection.  The number of velocities depends on the target’s speed.  The units of the 

velocity in the target’s movement can generally be described in fractions of pixels per frame.  
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We started with an initial set of velocities and allowed for further refinement once a track has 

been established.   

To find the detection in the sum chip 𝑆 for a given hypothesis 𝑘, we first normalized the 

sum chip to form a Z-score chip.  We can do this by computing the mean 𝜇𝑠 and standard 

deviation 𝜎𝑠 of the sum chip 𝑆.  For dense target scenarios, it is recommended that a trim mean 

is used instead, to avoid high SNR targets inflating the mean estimates. 

 𝜇𝑠 = 1𝑝 ∑ 𝑆(𝑝)𝑃
𝑝=1  

(7) 

 𝜎𝑠 = √1𝑃 ∑(𝑆(𝑝) −  𝜇𝑠)2𝑃
𝑝=1  

(8) 

Then, we compute the 𝑍 score of the sum chip 𝑍𝑠 for each pixel (𝑖, 𝑗) using the following 

equation: 

 𝑍𝑠(𝑖, 𝑗) = 𝑆(𝑖, 𝑗) − 𝜇𝑠𝜎𝑠  
(9) 

The following thresholding logic is applied to perform detection. 

If (|𝑍𝑠(𝑖, 𝑗)| ≥ 𝑇), then pixel (𝑖, 𝑗) is a candidate detection 

Pixel detected locations are generated from all hypotheses. They are consolidated to eliminate 

redundant detections from each chip.  Adjacent pixel detections are clustered to represent a 

single target.   

The centroid of the target’s cluster is then fed to the Multiple Target Tracker (MTT) for 

association and tracking.  To simplify, MTT is implemented using a simple 4-state constant 
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velocity model [75].  An object’s dynamic movement can be expressed mathematically using 

the following equations: 

𝒙(𝑡) = 𝑨 𝒙(𝑡 − 1) + 𝒒(𝑡 − 1),   𝒒(𝑡)~𝑁(0, 𝑸) (10) 𝒚(𝑡) = 𝑯 𝒙(𝑡) + 𝒓(𝑡),   𝒓(𝑡)~𝑁(0, 𝑹) 

where 𝒙 corresponds to the state vector, 𝒚 corresponds to the output vector, 𝑨 corresponds to 

the system matrix, and 𝑯 corresponds to the output matrix.  The system includes additive 

process noise 𝑞 and measurement noise 𝑟, which are modeled as white noise gaussian with 

zero mean.  The constant velocity model can be expressed in the following form: 

𝑥1(𝑡) = 𝑥1(𝑡 − 1) + ∆𝑇𝑥3(t − 1) + q1 (11) 𝑥2(𝑡) =  𝑥2(t − 1) + ∆𝑇𝑥4(𝑡 − 1) + 𝑞2 𝑥3(𝑡) = 𝑥3(𝑡 − 1) + 𝑞3 𝑥4(𝑡) = 𝑥4(𝑡 − 1) + 𝑞4 

where 𝑥1, 𝑥2 represents the positions of the object, and 𝑥3, 𝑥4 corresponds to the velocity state 

of each position component, and ∆𝑇, corresponds to delta time changes between the state 

update.   

In matrix form, this can be expressed as: 

𝒙(𝑡) = [1 00 1 ∆𝑇 00 ∆𝑇0 00 0 1   00   1 ] 𝒙(𝑡 − 1) + 𝑸, 

 

(12) 

𝒚(𝑡) = [1 00 1 0 00 0] 𝒙(𝑡) + 𝑹 
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where 𝑸, is the process noise matrix, and 𝑹, is the measurement noise matrix.  Kalman Filtering 

can be used to predict and update the state estimates and its covariance estimate 𝑷 at each 

time step. 

Prediction Steps: 

�̂�(𝑘|𝑘 − 1) = 𝑨 �̂�(𝑘 − 1|𝑘 − 1) (13) 𝑷 (k|k-1) =𝑨 𝑷(𝑘 − 1|𝑘 − 1)𝑨𝑻+ Q 

Update Steps: 

𝑲(𝑘) = 𝑷(𝑘|𝑘 − 1)𝑯𝑻(𝑯𝑷(𝑘|𝑘 − 1)𝑯𝑻 + 𝑹)−𝟏 (14) �̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝑲 (𝒚(𝑘) − 𝑯)�̂�(𝑘|𝑘 − 1) 𝑷(𝑘|𝑘) = (𝑰 − 𝑲(𝑘)𝑯)𝑷(𝑘|𝑘 − 1) 

As the target(s) are being tracked, the state vectors �̂� associated with covariance 𝑷 (motion 

constraint) are fed back to the CVMF process to fine tune the pre-defined velocity bins and 

improve the accuracy of matching.  Having feedback from a tracker to CVMF also adds 

robustness to maintain the tracking of moving objects in a temporary occlusion (e.g. a car 

temporarily obscured by a tree). The tracker’s state is capable of propagating to the next time 

step, assuming the target is traveling in a similar speed without the need to re-initialize VMF 

filters.  Different applications might require a more sophiscated modeling of dynamic behavior 

such as the target’s acceleration [75].  

2.5 Results and Discussion 

 

We compared our method with our baseline processing method as depicted in [Figure 25].  

The baseline processing workflow is the same as the one in [Figure 20] but without the 
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additional CVMF component.  The same video was used as an input to both processing 

methods.  Both methods were evaluated over the same detection areas in the same regions of 

the image.  Valid detections in the frames were manually labeled to provide assessment for the 

probability of detection and false alarm measures.  

 

Figure 25: Baseline Detection Processing 

[Figure 26] shows a comparison of the Receiver Operating Characteristics (ROC) data 

curve as a baseline, along with different window of frames used in the CVMF calculation.  The 

ROC curve improves as the window of frames increases; however, it reaches an asymptotic 

state at 7 frames.  A more sophisticated motion model is probably needed to integrate the 

target’s motion over a longer framed window.  An example of a qualitative comparison is 
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depicted in [Figure 27]. The baseline Normalized Difference Frame shows a very low SNR target 

at around 4.0.  After incorporating the CVMF enhancement, the target’s SNR increased to 8.0.   

To support our claim of performing VMF operations on Normalized Difference Frames instead 

of operating on Difference Frames, [Figure 28] shows the ROC curve comparison of a baseline 

single Difference Frame thresholding versus using the CVMF method operating on Difference 

Frames.  An example of a qualitative comparison is depicted in [Figure 29].  Though CVMF is 

also effective in boosting SNR on the Difference Frame domain, it does not perform as well on 

the Normalized Difference Frame.  A direct ROC curve comparison of CVMF operating on 

Difference Frame versus CVMF operating Normalized Difference Frame is shown in [Figure 30]. 

As shown, operation on Normalized Difference Frames significantly outperforms operation on 

Difference Frames.    
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Figure 26: ROC Curves Comparison - Normalized Difference Frame 

 

Figure 27: Target Enhancement (Left –original, center- baseline normalized difference, Right – 

CVMF 5-frame Z-scores) 
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Figure 28: ROC Curve Comparison - Difference Frame 

 

Figure 29: Target Enhancement (Left –Original Frame, Center - Baseline difference, Right – 

CVMF 5-frame difference) 
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Figure 30: CVMF Normalized Difference vs CVMF Difference 

2.6 Conclusion 

 

In this chapter, we have provided a new method to enhance detection of low SNR targets.  

The innovation of this work is evident by the issuance of a U.S. patent [76].  Our CVMF method 

incorporates physical constraints from known roads and dynamic motion constraints obtained 

from a Kalman Tracker to accurately find, match, and integrate target signals over multiple 

frames to improve the target’s SNR.  We have demonstrated our results using real data 

collected by an actual sensor.  Our method has established a significant improvement over 

baseline traditional detection techniques.  In addition, we have proven that our technique can 

achieve better performance if the CVMF operations were performed under the Normalized 
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Difference Frames.  Currently, our CVMF performance converges to a steady state at 7 frames.  

In the future, we plan to incorporate a more sophisticated motion model (e.g. constant 

acceleration model) to support a longer frame integration window.  A more sophisticated 

motion model can potentially provide a more accurate estimation of the target’s motion over a 

longer period of time.         
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Chapter 3: Performance Study of Distance-Weighting Approach with Loopy Sum-Product 

Algorithm for Multi-Object Tracking in Clutter3 

 

3.1 Introduction 

 

Since probabilistic data association (PDA) was introduced for tracking in a cluttered 

environment [77], engineers have been trying to optimize the data association (DA) technique 

for implementing in a Kalman filter (KF) [78] tracker. With the inception of the sum-product 

algorithm (SPA) [79], a new graphical approach for KF tracking was developed that is more 

efficient in dealing with the complex problem of multiple target tracking (MTT). To develop a 

robust algorithm that is also scalable for tracking multiple objects in clutter, in this paper we 

examine the performance of the distance-weighting probabilistic data association (DWPDA) 

[80] in conjunction with the loopy sum-product algorithm (LSPA) [81]. The problem of DA is 

finding the correspondence between the targets and the measurements of uncertain origins. 

There are several approaches to tackle this problem, such as the nearest neighbor (NN), PDA, 

and joint probabilistic data association (JPDA) [77,82,83]. The NN approach is one of the easiest 

and uses at any time only the nearest measurement to the predicted measurement as if it were 

the one originated from the target of interest [82]. The NN approach is suboptimal and can only 

work well in case of widely spaced targets, accurate measurements, and few false alarms. 

Finding some association between all the targets and measurements is computationally 

expensive. Therefore, a gate is formed around the predicted measurement based on some 

predefined threshold called the validation region. The PDA algorithm obtains the probability of 

each measurement lying inside the validation region as being the correct measurement and 

 
3 The material from this chapter was published in [100]. 
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updates the state estimates according to an appropriately modified tracking filter, called PDAF 

[77]. One major drawback of the PDA algorithm is that it treats every measurement inside the 

validation region of a target of interest as if it were originated from the said target or as a 

Poisson-distributed false alarm. PDA does not take into account the possibility that a validated 

measurement for one target might be a measurement originated from another nearby target. 

The JPDA algorithm improves this deficiency of the PDA algorithm by computing the association 

probabilities for the validated measurements from the joint likelihood functions corresponding 

to all feasible joint events such that no more than one measurement originates from each 

target [83]. However, with an increasing number of targets and/or clutter, the JPDA algorithm 

becomes impractical for real-time applications due to its combinatorial complexity because it 

considers all feasible joint events of measurements to targets to obtain the joint association 

probabilities [84]. 

PDA and JPDA are zero-scan algorithms, meaning that all hypotheses are combined after 

computation of the probabilities, for each target at each time step [77,83]. Alternatively, 

multiple hypothesis tracking (MHT) is a deferred decision logic algorithm. In the case of a 

conflicting target-measurement association, the MHT algorithm formulates alternative data 

association hypotheses instead of choosing the best-combined hypothesis. The ambiguities 

between the alternative hypotheses are resolved using the measurements that arrive later into 

the future [85].  JPDA is shown to produce reasonable results compared to the computationally 

expensive multi-scan MHT algorithm [83–96]. Both the PDA and the JPDA algorithms utilize 

known targets for forming validation gates in the measurement space to compute the posterior 

probabilities and are therefore categorized as target-oriented approaches. There exist 
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measurement-oriented algorithms, such as the one described in [87] and others, where 

hypotheses are formed for each measurement to have originated from a known target, a new 

target, or clutter. Both sets of algorithms have shown to yield an equivalent expression for 

posterior probabilities with appropriate assumptions [83,87,88]. As we realize that calculating 

DA probabilities for MTT is a process that involves a complicated global function of many 

variables that can be broken down into a product of local functions each of which depends on a 

subset of the variables, we look for alternate methods that can exploit this trait. SPA is one such 

method that operates in a factor graph [89] and attempts to compute, either exactly or 

approximately, various marginal functions associated with the global function [79]. SPA 

operates by passing messages, called beliefs, between the nodes of a factor graph, i.e., 

variables and local functions, that involve summations and products of factors. Implementation 

of a factor graph for the MTT DA problem requires a loopy sum-product solution which is 

neither guaranteed to converge nor produce the correct marginal functions if convergence 

occurs. A simultaneous target- oriented and measurement-oriented factor graph formulation of 

the DA problem has been shown that is guaranteed to converge and results in accurate 

association probabilities [81,90]. A simplified implementation of LSPA results in a significant 

reduction in computational complexity without loss of accuracy [90,91], which makes LSPA 

more appealing than PDA or JPDA for DA. 

In recent years, the use of LSPA for DA in MTT has been gaining traction. A belief- propagation 

approach to multi-target multi-sensor tracking is proposed in [92] by formulating a detailed 

factor graph where every single target and data-association variable is modeled as an individual 

node. To tackle the problem of tracking an unknown number of targets, where targets appear 
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and disappear, an LSPA-based method is proposed in [93] that creates augmented target states 

for keeping track of existing and non-existing tar- gets. A more comprehensive derivation of the 

message-passing algorithm for multi-sensor multi-target tracking is given in [94,95]. An 

extension of the LSPA-based MTT framework for target estimation is given in [96] that exploits 

additional target information provided by a classifier. All these efforts highlight the potential of 

SPA for solving the complicated problem of DA in MTT. 

The data association probabilities obtained using PDA are a crucial part of the beliefs being 

passed between nodes during the convergence of LSPA. Modifying the DA probabilities 

according to a weighting scheme based on distances between the predicted and validated 

measurements has been shown to enhance the tracking accuracy of PDAF while tracking a 

single target in a densely cluttered environment [80]. In this paper, we want to explore whether 

this distance-weighting approach for PDA, when integrated with LSPA, would improve the 

performance of LSPA even further. To evaluate this possibility, we formulate a distance 

weighting LSPA (DWLSPA) and compare its performance in terms of tracking accuracy and 

computation time against DWPDA, JPDA, and LSPA for tracking multiple targets crossing at a 

small angle in different density clutter. Our results turn out to be contrary to expectations. 

The main contribution of this performance study is to explore the idea of modifying one of the 

building blocks for a state-of-the-art data-association algorithm [91] for multi- target tracking 

and to compare the tracking accuracy of the modified algorithm to that of the original 

algorithm. The distance-weighting modification analyzed in this paper is based on a recent 

successful implementation of a similar modification to one of the earliest data-association 

frameworks for tracking targets in cluttered environments [90]. In doing so, we develop the 
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mathematical formulation for each data-association filter being considered and evaluate its 

performance in terms of tracking accuracy and computation time over a wide range of easy-to-

replicate multi-object-tracking scenarios. 

We introduce our notations and the target tracking system in Section 3.2. In Section 3.3, we 

describe the problem of PDA, DWPDA, JPDA, and LSPA. We present simulation results for these 

methods and our analysis in Section 3.4. In Section 3.5, we conclude the paper with our 

observations and final remarks regarding the performance of these methods. 

3.2 Target Tracking Dynamic System Model and Assumptions 

We describe the classic data association problem in which a single sensor surveils a large 

number of targets. The number of targets under surveillance is assumed to be known and is 

denoted by NT. The measurements are comprised of possible target detections and false 

alarms. A target is detected with a known probability of detection PD and is independent of 

time. The false alarms, modeled according to the Poisson point process with a known spatial 

density λ, are uniformly distributed in the measurement space. A validation region, with the 

threshold γ corresponding to certain gate probability PG, is set up at every sampling time 

around the predicted measurement and possibly several measurements fall in it. Each 

algorithm differs in how these measurements are used (or not) in the estimation of the state of 

the target. We assume that each target can generate at most one measurement and each 

measurement can have only one source. 

We denote by 𝑥𝑖(𝑘), i ∈ {1, . . . , NT}, the state of i-th target of dimension 𝑛𝑥 at time k. The 

complete set of target states at time k is denoted by X(k) = (x1(k), . . . , xNT (k)). At time k, the 
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total number of measurements is denoted by M(k). We denote by zj(k), j ∈ {1, . . . , M(k)}, the 

value of j-th measurement of dimension 𝑛𝑧. The complete set of measurements at time k is 

denoted by Z(k) = (z1(k), . . . , zM(k)(k)), and the complete set 

of measurements up to and including time k is denoted by 𝑍𝑘= (Z(1), . . . , Z(k)). 

The state and measurement equations are assumed linear with additive zero-mean 

white noise with known covariances. The state of target t evolves in time according to the 

equation 

 

and the true measurement for target t is given by 

 

where u(k) and w(k) are zero-mean mutually independent white Gaussian noise sequences with 

known covariances Q(k) and R(k), respectively. Functions F(k), G(k), and H(k) are known 

matrices for state transition, noise gain, and sensor, respectively. The past information (through 

time k-1) about the target t is assumed to be known and summarized approximately by the 

Gaussian posterior 

 

where 𝑥�̂�(k − 1|k − 1) and 𝑃𝑡(k − 1|k − 1) are the state estimate and covariance for target 
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3.3 Algorithm Description 

 

3.3.1 Probabilistic Data Association Filter 

 

The PDA algorithm calculates the association probabilities for each validated measurement at 

the current time for the target of interest. PDA assumes that all the validated measurements 

are generated by either the target of interest or clutter. The association prob- abilities are used 

for calculating the mean squared error (MSE) estimate and covariance of the target’s state. An 

appropriately modified KF, called PDAF, is used to account for the uncertainty of origins for the 

validated measurements while estimating the state of the target. The algorithm can be given as 

follows. 

3.3.1.1 Prediction 

The prediction of the state and measurement of target t at time k is done as in the KF, i.e., 

 

The covariance of the predicted state for target t is 

 

Here, 𝑥�̂�(k-1 | k-1) and 𝑃𝑡(k-1|k-1) are available from Equation (3). The innovation covariance 

of the target t (for the correct measurement) is 
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i 

L 

3.3.1.2 Measurement Validation 

The validation region for target t at time k is the elliptical region given by 

 

Here, γ can be obtained according to 

 

where 𝑉(𝑘) is the volume of the validation region given by Equation (8) and 𝑐𝑛𝑧 is the volume 

of the unit hypersphere of dimension 𝑛𝑧 [88]. The validated measurements for target t 

according to Equation (8) are 

 

where 𝑚𝑡(𝑘) is the number of validated measurements for target 𝑡 at time 𝑘. 

3.3.1.3 Data Association Probabilities 

The association probability 𝛽𝑖𝑡
 for each validated measurement of target t is obtained as 

 

where i = 0 indicates probability of associating none of the validated measurements to the 

target. In Equation (11), 𝐿𝑖(k) the likelihood ratio (LR) of measurement 𝑧𝑖(k) originating from the 

target t vs. from clutter and is obtained as: 
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3.3.1.4 State Estimation 

The state estimation for target t is done according to PDAF by 

 

where the combined innovation for target t is 

 

and 

 

is the innovation of measurement for zi(k) ∈ Zt(k). The filter gain is calculated as 

 

The covariance estimation for target t associated with the updated state is 

where the covariance of the state updated with the correct measurement, Pc, and the 

innovation spread, 𝑃, for target t are given by 

 

and 
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respectively. 

The estimated state in PDAF from Equation (13) is for a single target 𝑥𝑡. To estimate the state of 

every target 𝑥𝑡, 𝑡 ∈ {1, … , 𝑁𝑇} , we need to apply PDAF to the targets one by one sequentially. 

This means that for each target 𝑥𝑡, 𝑡 ∈ {1, … , 𝑁𝑇} , we perform state and measurement 

prediction, form a validation region around the predicted measurement and prune off 

potentially unrelated measurements, obtain data-association probabilities for the validated 

measurements, and, finally, update the state estimate according to Equation (13). The order in 

which PDAF is applied to the targets is irrelevant because the outcome is independent of the 

order. 

3.3.2 Distance-Weighting Probabilistic Data Association Filter 

In the PDA algorithm, the association probability β is calculated as the likelihood ratio of a validated 

measurement to have originated from a target vs. from clutter. Chen et al. [80] have pointed out 

that a true measurement from a target of interest is more likely to be near the target’s predicted 

measurement. Since false alarms are uniformly distributed in the measurement space, the 

measurement nearest to that of the predicted measurement from a target of interest should carry 

more weight while calculating the association probabilities for the target. The distance weight 

proposed in [4] is calculated as 
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i 
where 𝛿𝑖𝑡(k) is the Mahalanobis distance between validated measurement i and predicted 

measurement of target t at time k. The Mahalanobis distance is calculated as the norm of the 

innovation squared and is given by 

 

where 𝑣𝑖𝑡(𝑘) is the innovation as defined in Equation (15). 

The new data association probabilities for target t at time k are calculated as 

 

and are normalized according to 

 

The data association probabilities obtained in Equation (23) are used for estimating target state 

as explained previously in PDAF Section 3.3.1. Similar to PDAF, the DWPDA filter is designed for 

tracking a single target. For the purpose of tracking multiple targets, we need to update the 

states of the targets one by one. 

3.3.3 Joint Probabilistic Data Association Filter 

The PDA algorithm is designed for tracking a single target in clutter. Because the PDA algorithm 

assumes all the incorrect measurements in the validation region of a target of interest are clutter, 

it is susceptible to scenarios where these incorrect measurements might have originated from 

another nearby target. Situations may arise in MTT where the validation regions of nearby targets 
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may overlap for several time frames in a row and cause persistent interference that can lead to 

track deterioration or track loss altogether with PDA. JPDA improves on PDA by calculating joint 

association probabilities at each time step. Marginalized association probabilities for each 

target can be obtained using these joint association probabilities, which are then used for 

estimating the state of each target. 

3.3.3.1 Measurement Validation 

A major difference between the PDA and the JPDA algorithm is that no individual validation 

gates will be assumed for the various targets. A uniform validation region for all targets is 

obtained by taking a union of individual validation gates. This way each measurement is 

assumed to be validated for each target and false alarms will be assumed to be uniformly 

distributed across the entire validation region. Predictions for each target are done at each time 

step similar to the PDA algorithm using Equations (4)–(7). 

 

Once the validated measurements are obtained for each target using Equations (8) and (10), 

the combined validated measurements at time k are given according to 

 

The number of combined validated measurements is  𝑚𝑁𝑇(𝑘) at time k. 
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3.3.3.2 The Validation Matrix 

A validation matrix Ω of size 𝑚𝑁𝑇 ×  (𝑁𝑇 + 1) with binary elements is created using the 

combined validated measurement. 

 

where

 

The first column of Ω(k) corresponding to t = 0 is all unity indicating that each measurement 

could be a false alarm. 

3.3.3.3 The Feasible Joint Events 

The joint association events for time k are given by 

 

where in the event of 𝜃𝑗𝑡  measurement j is originated from target 𝑡𝑗. An event matrix Ω̂ 

consisting of the units in Ω corresponding to the association in θ is used to represent a joint 

association event θ. 
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Where’

 

Not all joint association events are feasible joint events. As per our target tracking model 

assumptions, feasible association events are only those where no more than one measurement 

is associated with each target. Therefore, a feasible association event is the one which satisfies 

the following two conditions: 

1. A measurement can have only one source, i.e., 

 

2. Each target can generate at most one measurement, i.e., 

 

𝛿𝑡(θ(k)) in Equation (31), called the target detection indicator, indicates if a measurement is 

associated with target t in event θ(k). Similarly, we define the measurement association 

indicator τ(θ(k)) to indicate if measurement j is associated with a target in event θ(k). 

 

 

We can obtain the number of false alarms in event θ(k) as 
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3.3.3.4 Joint Data Association Probabilities 

The joint data association probabilities are calculated as 

 

where P indicates the probability mass function (PMF) and c is the normalization constant. The 

marginal association probabilities are obtained from the joint DA probabilities by summing over 

all the joint events according to Equation (29). The marginal association probabilities at time k 

are then given as 

 

where the probability 𝛽𝑗𝑡  represents that the measurement j is associated with target t and t 

indicates that none of the validated measurements is associated with target t. The 

expression for the joint association probabilities in Equation (35) can be given in terms of the 

variables defined in JPDAF Section 3.3.3 as 

 

where Λ𝑗𝑡𝑗 is the Gaussian density of measurement j associated with target of index 𝑡𝑗 given by 
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and 𝑐1 is the new normalization constant. The marginal association probabilities obtained in 

Equations (35) and (36) are used in conjunction with the state estimation equations given in 

PDAF Section 3.3.1.4 for estimating state of each target separately. 

3.3.4 Loopy Sum-Product Algorithm 

Graphical models can be used for representing the joint probability distributions of many 

variables efficiently by exploiting factorization. For SPA, factor graphs are utilized for 

representing the DA relations between multiple targets and their validated measurements. SPA 

is then conducted on the resulting loopy factor graph for obtaining the marginal DA 

probabilities. The algorithm for the loopy-SPA can be given as follows. 

3.3.4.1 Belief Propagation in Factor Graphs 

Kschischang et al. [79] demonstrated how factor graphs can be used to interpret a variety of 

algorithms such as the KF, the Viterbi algorithm, the Hidden Markov Model, etc. A factor graph 

is a standard bipartite graphical representation of a mathematical relationship between 

random variables and local functions. While formulating a factor graph to express the structure 

of the factorization of a global function of many variables into several local functions, each 

node represents each random variable 𝑛 ∈ ℵ, each factor represents each local function 𝑓 ∈ ℑ, 

and an edge connects a node 𝑛 to a factor 𝑓 if and only if 𝑛 is an argument of 𝑓. 

The SPA algorithm, also called as Belief Propagation (BP), passes messages, called beliefs, 

between nodes and factors in an iterative manner for conducting optimal inference on a tree-
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structured factor graph.  We denote by ψ·(·) the joint probability distribution function, by 𝜇𝑛→𝑓(𝑥𝑛) the message sent from node 𝑛 ∈ 𝜂𝑓  to factor 𝑓, by 𝜇𝑛→𝑓(𝑥𝑛) the message sent from 

factor 𝑓 to node 𝑛 ∈ 𝜂𝑓 , by 𝜂𝑓 ⊆ ℵ the set of neighboring nodes of 𝑓 , and by 𝜂𝑛 = {𝑓 ∈ ℑ 

| 𝑛 ∈ 𝜂𝑓} the factors involving node 𝑛. The message computation performed by SPA can be 

given as 

 

where 𝑥𝑛 denotes the summation over all arguments of 𝑓 except 𝑥𝑛. For factorization involving 

continuous variables, the summation is replaced with an integral taken over a Lebesgue 

measure. The algorithm is known as sum-product because the steps involved are summations 

(or integrals) and products of factors and messages. 

SPA extended to loopy graphs is called LSPA. LSPA simply requires repeated ap- plication of SPA 

until convergence occurs. Practically, this means computing messages continuously using 

Equations (39) and (40) until the maximum error between subsequent messages is less than a 

pre-set threshold. However, LSPA is neither guaranteed to converge to the right answer nor to 

converge at all. 

3.3.4.2 Factor Graphs for Data Association 

We consider the DA problem involving known and fixed 𝑁𝑇 targets and their combined 

validated measurements 𝑍𝑁𝑇 (k) at time k obtained as explained in JPDAF Section 3.3.3.1. The 
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number of combined validated measurements are 𝑚𝑁𝑇 (k) at time k. Formulating a factor 

graph for the DA problem that is guaranteed to converge according to [81,90,91], we need the 

following two sets of association variables: 

1. Target oriented association variable (a): Create an association variable 𝑎𝑖(𝑘)∈ {0, 1, . . . , 𝑚𝑁𝑇 (k)   for each target i        1, . . . , 𝑁𝑇  . The value assigned to 𝑎𝑖(𝑘) is an index to the 

measurement with which target 𝑖 is hypothesized to be associated at time k (zero if the target is 

hypothesized to not have been detected). The complete set of target oriented association 

variables at time k is denoted by 𝑎(k). 

2. Measurement oriented association variable (b): Create an association variable 𝑏𝑗(k) ∈ 0, 

1, . . . , 𝑁𝑇   for each measurement 𝑗      1, . . . , 𝑚𝑁𝑇  (k) . The value assigned to 𝑏𝑗(k) is an index 

to the target with which measurement 𝑗 is hypothesized to be associated 

at time k (zero if the measurement is hypothesized to be clutter). The complete set of 

measurement oriented association variables at time k is denoted by 𝑏(k). 

Given one set of association variables, the other set can be perfectly reconstructed. As shown in 

[81,90,91], this use of seemingly redundant information while forming a factor graph leads to 

the remarkable result of guaranteed convergence of LSPA computed on the said factor graph. A 

bipartite graphical model formed using the association variables 𝑎(k) an 𝑏(k) is shown in [Figure 

31]. 
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Figure 31: Bipartite graphical model formulation for data association at time k. The value 

assigned to 𝒂𝒊(𝒌) is an index to the measurement with which target i is hypothesized to be 

associated at time k and the value assigned to 𝒃𝒋(k) is an index to the target with which 

measurement j is hypothesized to be associated at time k. 

 

 

where 

 

and 

 

Here, ∝ indicates equality up to a normalization factor, 𝜓𝑖(𝑥𝑖(𝑘), 𝑎𝑖(𝑘)) indicates the 

dependence of the factors 𝜓𝑖(∙) on Z(k), 𝜓𝑖,𝑗 (𝑎𝑖(𝑘), 𝑏𝑗(k)) enforces consistency of the 

redundant association variables 𝑎𝑖(𝑘) and 𝑏𝑗(k) describing the same association configuration, 

 b1(k) 
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𝑃𝐷(𝑥𝑖) gives the probability of detection for target 𝑥𝑖, and 𝜆(𝑧𝑗) gives the PDF value of 

measurement zj occurring as a result of false alarm with a Poisson point process. 

The factorization structure in Equation (41) can be represented by a factor graph. As an 

example, for 𝑋(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘)) and 𝑍(𝑘) = (𝑧1(𝑘), 𝑧2(𝑘)) , the factor-graph 

representation of Equation (41) is shown in Figure 2.   Since the target states 𝑥𝑖(𝑘) in [Figure 

32] are leaf nodes, we can marginalize these and replace the factor 𝜓𝑖(𝑥𝑖(𝑘), 𝑎𝑖(𝑘))  with 𝜓𝑖(𝑎𝑖(𝑘). In a factor graph, each parameter variable is represented by a variable node (circle 

node), and each factor is represented by a rectangle node, as shown in [Figure 32]. Each 

variable node and each factor node are connected by an edge if the variable is an argument of 

the factor. For each node, certain messages are calculated according to Equations (39) and (40). 

Message passing is started at variable nodes with only one edge (which pass a constant 

message) and/or factor nodes with only one edge (which pass the corresponding factor).   

Finally, for each variable node, a belief (posterior PDF value) is calculated as the product of all 

incoming messages (passed from all adjacent factor nodes) followed by a normalization. For a 

tree-structured factor graph, these beliefs are exactly equal to marginal posterior PDF values. 

For a loopy factor graph, the beliefs are in general only approximations of the respective 

marginal posterior PDF values. A detailed description of the messages passed between each 

variable node and factor node is given in [95]. A sample MATLAB program for implementing 

one iteration of loopy SPA is given in [90]. 
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Figure 32: Factor graph representing the factorization of the joint posterior probability 

density function (PDF) 𝒇(𝒙𝟏, 𝒙𝟐, 𝒂𝟏, 𝒂𝟐, 𝒃𝟏, 𝒃𝟐 | 𝒛𝟏, 𝒛𝟐) according to Equation (41), depicted for 

one time step. For simplicity, the time index k is omitted. 

3.3.4.3 Joint Data Association Probabilities 

Once the combined validated measurements are obtained as given in Equation (24), the joint 

data association probabilities under the stated assumptions at time k are calculated as 

 

where 

 

enforce consistency of the redundant association variables 𝑎𝑖(𝑘) and 𝑏𝑗(k) describing the same 

association configuration, and 𝜓𝑖  (𝑎𝑖(𝑘) = 0) = 1 and 𝜓𝑖  (𝑎𝑖(𝑘) = 𝑗 > 0) are the (unnormalized) 

single target data association probabilities obtained as explained in PDAF Section 3.3.1.3. 
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Equation (44) can be expressed as the formulation of SPA for a bipartite model illustrated in 

Figure 1 in which all target association variables ai(k) are connected to all measurement 

association variables 𝑏𝑗(k). In this case, LSPA may be implemented 

via two half iterations, alternating between the two sets of messages 𝜇𝑎𝑖(𝑘)→𝑏𝑗(𝑘)((𝑏𝑗(𝑗)) and 𝜇𝑏𝑗(𝑗)→𝑎𝑖(𝑘)(𝑎𝑖(𝑘)). The message updating equations according to Equations (39) and (40) can 

be given as 

 

and 

 

These messages can be further simplified as shown in [14,15]. Upon convergence of LSPA, the 

approximate marginal association probabilities can be given as 
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where 𝜇𝑏𝑗(𝑘)=0→𝑎𝑖(𝑘)(𝑎𝑖(𝑘)) ≜ 1 and 𝜇𝑎𝑖(𝑘)=0→𝑏𝑗(𝑘)(𝑏𝑗(𝑘)) ≜ 1. The marginal association 

probabilities are used to estimate target states as per PDAF Section 3.3.1.4. 

3.3.5 Distance-Weighting Loopy Sum-Product Algorithm 

Since the factor-graph representation for the MTT DA problem contains loops, and the 

convergence process of calculating the marginal data-association probabilities using LSPA is 

governed by some heuristically determined preset threshold, different initiation messages can 

lead to different final beliefs. These initiation messages for the convergence process happen to 

be the (unnormalized) single-target data-association probabilities. These probabilities directly 

influence the marginal data-association probabilities at the end of the convergence process 

and, consequently, the estimation of the target state. We would expect that a more accurate 

initial set of single-target probabilities leads to either more accurate final beliefs, a faster 

convergence to the final beliefs, or both. The distance-weight- based association probabilities 

have been proven to be more accurate for tracking a single target in densely cluttered 

environments [80]. We would expect this adjustment to the initial condition to change the 

calculation of the association probabilities and hence the overall tracking process in terms of 

tracking accuracy or computation time, and therefore worth exploring. 

Here we formulate a modification for the joint data association probabilities calculated using 

LSPA under the stated assumptions as described in Section 3.3.4. The distance-weight based 

joint data association probabilities at time k can be given as 
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where 

 

enforce consistency of the redundant association variables 𝑎𝑖(𝑘) and 𝑏𝑗(𝑘)  describing the 

same association configuration, and 𝜓𝑖(𝑎𝑖(𝑘) = 0, and 𝜓𝑖(𝑎𝑖(𝑘) = j > 0).   𝛽𝑡𝑖(𝑘) are the 

(unnormalized) distance-weight based single target data association probabilities obtained in 

Equation (22). The approximated marginal association probabilities are obtained from the joint 

DA probabilities as described in Section 3.3.4. 

3.4 Simulation and Analysis 

3.4.1 The Dynamic Model 

We assume a two-dimensional system where the target state vector consists of position and 

velocity in each of the two coordinates. For target 𝑖 at time k, the target state 𝑥𝑖(k) = [x(k), x˙(k), 

y(k), y˙(k)] has four components: The first and second components are the horizontal location 

and velocity, respectively, while the third and fourth components are the vertical location and 

velocity, respectively. The system is equipped with the nearly constant velocity (NCV) model 

(also sometimes called the constant velocity (CV) model). The system is described by Equations 

(1) and (2) with 
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where 𝑇 is the sampling interval. 

3.4.2 Simulation Parameters 

For our simulations, we set the probability of detection 𝑃𝐷 = 0.9, the gate threshold γ = 9.21 

corresponding to gate probability 𝑃𝐺  = 0.99, sampling interval 𝑇 = 1 s, the process noise 

variance q = 0.05, and the measurement noise variance r = 5. To better evaluate the accuracy of 

different algorithms under multiple conditions, we varied the clutter density generated 

according a Poisson point process from 𝜆 = 1.0 ×  10−4/scan/m2 to 𝜆 = 5.0 × 10−4//scan/m2. We also varied the number of tracked targets from 1 to 6.  The initial state of 

the first target is always set at 𝑥1(1) = [100 m, 30 m/s, 100 m, 30 m/s]. We set the initial state of 

each consecutive target by 𝑥𝑖  (1) = [100 m, 30 m/s, (100 − 𝑖 × 100 × 𝑐(𝑖))) m, (30 −𝑖 × 30 × 𝑐(𝑖)) m/s] where 𝑖 is the target index and 𝑐(𝑖) is a single uniformly distributed random 

number in the interval (0, 1) independent of each other. To compare the performance, we 

performed 500 Monte Carlo simulations on MATLAB (Natick, MA,USA) [97]. 
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3.4.3 Results and Discussion 

When choosing an optimal tracking algorithm, there is typically a tradeoff between tracking 

accuracy and computation time. Maintaining a high-level accuracy in complex scenarios where 

multiple targets need to be tracked simultaneously and the environment is particularly noisy 

requires significant computation time. Traditionally, the tracking accuracy of an estimator is 

calculated in terms of a miss-distance, or localization error, between a reference value and its 

estimated value. In our context, we are also interested in evaluating missed detections and 

false alarms. The generalized optimal sub-pattern assignment (GOSPA) metric has been 

designed to reflect this performance [22]. Informally, the GOSPA metric can be defined as 

 

(for a precise detailed description of GOSPA, see [98]). The localization error is for pairs of true 

targets and target estimates that are sufficiently close. A missed detection is declared if there is 

no corresponding target sufficiently close to it, and a false alarm is declared if there is no 

corresponding true target sufficiently close to it. To evaluate the performance of the different 

tracking algorithms described in Section 3.3 in terms of the miss-distance, the GOSPA metric, 

and computation time, we considered multiple scenarios with varying levels of complexities. 

[Figure 33 a,b] depict two such scenarios where the trajectories of three targets are shown for 

clutter densities 𝜆 = 1 × 10−4/𝑚2 and 𝜆 = 5 × 10−4/𝑚2, respectively. The scenario depicted 

in [Figure 33b] is more demanding because of the increased number of false alarms. [Figure 34 

a,b] compares the performance of LSPA and DWPDA in terms of tracking accuracy, 
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calculated using the root mean square (RMS) position error, over a period of 100-time intervals 

for the above two scenarios, respectively. We see that the RMS position errors for LSPA stay 

close to 0 over the entire period while they are always increasing for DWPDA 

as time progresses. We see similar results while tracking six crossing targets with clutter 

densities 𝜆 = 1 × 10−4/𝑚2 and 𝜆 = 5 × 10−4/𝑚2, as depicted in [Figure 35 a,b]. [Figure 36 

a,b] show that the computation times for the two clutter scenarios as the number of targets 

increases from one to six. We see that the computation times required for LSPA are only slightly 

higher than those of DWPDA. Finally, [Table 8] and [Table 9] summarize the results for the 

performance in terms of the GOSPA metric based on the Euclidean distance with a cutoff 

parameter of 30. [Table 8] shows the average GOSPA errors as we increase the number of 

targets from 1 to 6 while keeping the clutter density constant at 𝜆 = 3 × 10−4/𝑚2. We can see 

that irrespective of the number of targets that are being tracked, GOSPA errors for LSPA are 

only a fraction of the errors for DWPDA. We see a similar pattern in [Table 9]  where we 

increase the clutter density from 𝜆 = 1 × 10−4/𝑚2to 𝜆 = 5 × 10−4/𝑚2while keeping the 

number of targets fixed. The poor performance of DWPDA is expected, since the algorithm is ill-

equipped to deal with the problem of DA in MTT, and GOSPA appropriately penalizes any 

missed detections and false alarms. From the above results, it is evident that LSPA is superior to 

DWPDA in terms of tracking accuracy in all scenarios without trading off much computation 

time. This superior tracking accuracy can be attributed to the reduction in the association 

probabilities of false measurements in the overlapping validation regions from multiple targets 

and, at the same time, the increase in the association probabilities for actual target 
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measurements. From the above results, we know that LSPA can improve the tracking 

performance for MTT in densely cluttered environments. 

 

Figure 33: True target positions for three crossing targets with different clutter densities. (a) 

Clutter density 𝝀 = 𝟏 × 𝟏𝟎−𝟒/𝒎𝟐; and (b) clutter density 𝝀 = 𝟓 × 𝟏𝟎−𝟒/𝒎𝟐 

 

Table 8: Average generalized optimal sub-pattern assignment (GOSPA) errors for tracking 

multiple crossing targets with clutter density 𝝀 = 𝟏 × 𝟏𝟎−𝟒/𝒎𝟐. 

 

 

Table 9: Average GOSPA errors for tracking three targets with different clutter densities. 
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Figure 34: RMS position error for three crossing targets using DWPDA and LSPA with different 

clutter densities. (a) Clutter density 𝝀 = 𝟏 × 𝟏𝟎−𝟒/𝒎𝟐; and (b) clutter density 𝝀 =𝟓 × 𝟏𝟎−𝟒/𝒎𝟐. 

 

 

Figure 35: RMS position error for six crossing targets using DWPDA and LSPA with different 

clutter densities. (a) Clutter density 𝝀 = 𝟏 × 𝟏𝟎−𝟒/𝒎𝟐; and (b) clutter density 𝝀 =𝟓 × 𝟏𝟎−𝟒/𝒎𝟐. 

 

 

Figure 36: Average computation time for obtaining association probabilities using DWPDA 

and LSPA for tracking multiple crossing targets with different clutter densities.   (a) Clutter 
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density λ = 𝝀 = 𝟏 × 𝟏𝟎−𝟒/𝒎𝟐; and (b) clutter density 𝝀 = 𝟓 × 𝟏𝟎−𝟒/𝒎𝟐. Error bars indicate 

95% confidence intervals. 

 

Next, we compare the performance of LSPA with JPDA, in terms of computation time and RMS 

position error, as the number of targets increases from one to six. [Figure 37] and [Figure 38] 

show the results of this comparison for the two clutter scenarios. We can clearly see that the 

average computation time of LSPA is much smaller than that of JPDA, so much so that the LSPA 

computation times are not even visible in [Figure 37a] and [Figure 38a]. However, in contrast to 

the comparison of LSPA and DWPDA in terms of the RMS position error, in the case of LSPA 

compared with JPDA, [Figure 37b] and [Figure 38b] clearly show that there is little difference in 

RMS position error. The same observation applies in terms of computation time and RMS 

position error in [Figure 39 a,b] respectively when we compare LSPA with JPDA in scenarios 

involving a fixed number of targets as the clutter density increases from 𝜆 = 1 × 10−4/𝑚2to 𝜆 = 5 × 10−4/𝑚2. While there is little difference between LSPA and JPDA in terms of RMS 

position errors, [Table 8] and [Table 9] show that GOSPA errors for LSPA are less than 1/3rd of 

GOSPA errors for JPDA across almost all scenarios. These relatively higher GOSPA errors for 

JPDA can be explained by a few missed detections when multiple target paths overlap. These 

missed detections are rightly penalized in the GOSPA metric. These results show that LSPA 

dominates JPDA in terms of computation time while maintaining a high level of tracking 

accuracy. This dramatic reduction in computation time for LSPA can be explained by the 

implementation of the loopy factor graph, resulting in simultaneous updating of the joint 

association probabilities for multiple targets during each iteration of LSPA. The results show 

that LSPA scales well for real-time applications involving complex tracking scenarios. 
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Figure 37: Tracking multiple crossing targets using LSPA and JPDA with clutter density 𝝀 =𝟏 × 𝟏𝟎−𝟒/𝒎𝟐. (a) Average computation time for obtaining association probabilities; (b) 

average RMS position error. Error bars indicate 95% confidence intervals. 

 

 

Figure 38: Tracking multiple crossing targets using loopy sum-product algorithm (LSPA) and 

joint probabilistic data association (JPDA) with clutter density 𝝀 = 𝟓 × 𝟏𝟎−𝟒/𝒎𝟐. (a) Average 

computation time for obtaining association probabilities; (b) average root mean square 

(RMS) position error. Error bars indicate 95% confidence intervals. 

 

 

Figure 39: Tracking three crossing targets using LSPA and JPDA. (a) Average computation time 

for obtaining association probabilities; (b) average RMS position error. Error bars indicate 

95% confidence intervals 
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Finally, to see whether the integration of LSPA with the distance-weighting scheme has any 

effect on its performance, we compare LSPA with DWLSPA in terms of the same two metrics as 

above. [Figure 40] and [Figure 41] show the results of this comparison for two clutter scenarios 

respectively, as the number of targets increases from one to six. There is little difference 

between LSPA and DWLSPA in terms of computation times, as shown in Figure 40a] and [Figure 

41a]. Similarly, we can see that the RMS position errors for LSPA and DWLSPA are almost 

identical in Figure 40b] and Figure 41b]. [Figure 42 a,b] show that the difference between LSPA 

and DWLSPA remains negligible, in terms of both computation time and RMS position error, for 

scenarios with a fixed number of targets and varying clutter densities. [Table 8] and [Table 9] 

show that GOSPA errors for LSPA and DWLSPA are comparable across all tested scenarios. This 

means that in addition to the localization errors, the missed detections and false alarms remain 

consistent between LSPA and DWLSPA, and the potential advantage of DWLSPA with the 

additional distance-weighting information is not apparent. Surprisingly, LSPA and DWLSPA 

perform equally well in every scenario in terms of both tracking accuracy and computation 

time. The unchanged performance of DWLSPA can be explained by the initiation of LSPA with 

small improvements in single-target association probabilities having insignificant effect on joint 

association probabilities calculated at the end of a large number of iterations. However, this 

unexpected lack of improvement contrasts sharply with results reported in [78] showing 

significant improvement when introducing distance weighting relative to PDA. This result is 

interesting and useful because we can see that distance weighting does not always lead to 
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better performance. Moreover, the following important observation remains: LSPA is reliable 

and efficient for tracking multiple objects in cluttered environments. 

 

Figure 40: Tracking multiple crossing targets using LSPA and DWLSPA with clutter density 𝝀 =𝟏 × 𝟏𝟎−𝟒/𝒎𝟐.  (a) Average computation time for obtaining association probabilities; (b) 

average RMS position error. Error bars indicate 95% confidence intervals. 

 

 

Figure 41: Tracking multiple crossing targets using LSPA and DWLSPA with clutter density 𝝀 =𝟓 × 𝟏𝟎−𝟒/𝒎𝟐. (a) Average computation time for obtaining association probabilities; (b) 

average RMS position error. Error bars indicate 95% confidence intervals. 
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Figure 42:  Tracking three crossing targets using LSPA and DWLSPA. (a) Average computation 

time for obtaining association probabilities; (b) average RMS position error. Error bars 

indicate 95% confidence intervals. 

 

3.5 Conclusion 
 

In this chapter, we formulated a distance-weighting PDA approach for LSPA and examined its 

effect for tracking multiple objects in cluttered environments. It has been previously shown 

that a modification of PDA according to a weighting scheme based on distances between 

predicted and true target positions improves the tracking accuracy of PDA. LSPA is known to be 

better than PDA and JPDA and, since PDA constitutes a crucial building block of LSPA, we 

expected the integration of DWPDA with LSPA to boost the overall performance even further. 

We studied the performance of LSPA against DWPDA, JPDA, and DWLSPA for a wide range of 

tracking scenarios involving multiple targets and varying clutter densities. Our results confirm 

that LSPA is superior to DWPDA in terms of tracking accuracy and dominates JPDA in terms of 

computation time. However, contrary to expectations, we found that the distance-weighting 

approach, when integrated with LSPA, does not enhance the performance of LSPA in terms of 

either tracking accuracy or computation time. The simulation scenarios in the experiment could 

be made more realistic with the addition of appearing and disappearing targets and time-
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varying target velocities. These scenarios add extra layers of complexity to the DA without 

affecting the conclusions we draw in this paper. Regardless, we demonstrated the validity of 

LSPA having computational requirements suitable for real-time processing and accuracy of 

tracking multiple targets in cluttered environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

Dissertation Conclusion 

 

The rapid growth of digital data has challenged many analyst’s ability to store, process, 

and interpret Big Data.  If the information is not processed in a timely manner, the information 

may be lost forever due to storage challenges.  A Big Data Actionable Intelligence (BDAI) 

architecture was developed to overcome the challenge by transforming Big Data into a 

decision-making process.  This architecture provides a framework for machine-learning 

algorithms to learn and analyze streaming data from heterogenous data sources and transform 

data into actionable information for decision makers.  To overcome the challenges of detecting 

moving targets using Remote Sensing Big Data, a new real-time detection system was 

developed.  This patented approach has shown to be significantly better than the current 

existing state-of-the-art detection methods to detect far away objects that cannot be easily 

seen.  Finally, research was performed to gain major understanding on techniques that can 

support real-time tracking of large number quantity of targets.   For future research, a 

decentralized fusion architecture will be investigated to further reduce latency of Big Data 

processing.  
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