3 research outputs found

    Data visualization with simultaneous feature selection

    Get PDF
    Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE

    EM algorithm for GTM-FS

    Get PDF
    We propose a generative topographic mapping (GTM) based data visualization with simultaneous feature selection (GTM-FS) approach which not only provides a better visualization by modeling irrelevant features ("noise") using a separate shared distribution but also gives a saliency value for each feature which helps the user to assess their significance. This technical report presents a varient of the Expectation-Maximization (EM) algorithm for GTM-FS

    Visualisation of heterogeneous data with simultaneous feature saliency using Generalised Generative Topographic Mapping

    Get PDF
    Most machine-learning algorithms are designed for datasets with features of a single type whereas very little attention has been given to datasets with mixed-type features. We recently proposed a model to handle mixed types with a probabilistic latent variable formalism. This proposed model describes the data by type-specific distributions that are conditionally independent given the latent space and is called generalised generative topographic mapping (GGTM). It has often been observed that visualisations of high-dimensional datasets can be poor in the presence of noisy features. In this paper we therefore propose to extend the GGTM to estimate feature saliency values (GGTMFS) as an integrated part of the parameter learning process with an expectation-maximisation (EM) algorithm. The efficacy of the proposed GGTMFS model is demonstrated both for synthetic and real datasets
    corecore