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Abstract. Most machine-learning algorithms are designed for datasets with fea-
tures of a single type whereas very little attention has been given to datasets with
mixed-type features. We recently proposed a model to handle mixed types with
a probabilistic latent variable formalism. This proposed model describes the data
by type-specific distributions that are conditionally independent given the latent
space and is called generalised generative topographic mapping (GGTM). It has
often been observed that visualisations of high-dimensional datasets can be poor
in the presence of noisy features. In this paper we therefore propose to extend
the GGTM to estimate feature saliency values (GGTMFS) as an integrated part
of the parameter learning process with an expectation-maximisation (EM) algo-
rithm. The efficacy of the proposed GGTMFS model is demonstrated both for
synthetic and real datasets.

1 Introduction

Type-specific data analysis has been well studied in the machine learning commu-
nity [6]. In the recent couple of decades, the need to analyse mixed-type data is gaining
a lot of attention from machine learning experts because of the fact that real world
processes often generate a data of mixed-type. An example of such a mixed-type data
could be a hospital’s patients’ dataset where typical fields include age (discrete or con-
tinuous), gender (binary), test results (binary or continuous), height (continuous) etc. In
practice a number of ad-hoc solutions are used to handle mixed-type data [6]. However,
the ideal general solution for analysing such heterogeneous data is to specify a model
that builds a joint distribution with the assumption of an appropriate noise distribution
for each type of feature set (for example a Bernoulli for modelling binary, a multino-
mial for modelling multi-category features and a Gaussian for modelling continuous
features) and then fitting the model to data where the parameter estimates are used to
draw inferences [6].

In the literature there is no multivariate distribution that can model random vari-
ables of different types. However, one possible way of jointly modelling discrete and
continuous features is using a latent variable approach to understand the correlation be-
tween features of different types in combination. Type-specific latent variable models
have already been proposed such as a generative topographic mapping (GTM) appro-
priate for continuous features and a latent trait model (LTM) appropriate for discrete
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type features [7] (an LTM was proposed as a generalisation of GTM model). This has
encouraged us to recently propose to combine GTM and LTM [13] in a probabilistic
non-linear latent variable model in a principled way to visualise mixed-type data on a
single continuous latent space under a unified proposed framework of conditional inde-
pendence criteria: we called this model a generalised-GTM (GGTM).

In principle, the machine learning algorithms assume to perform well in cases where
we have more information about data instances. This suggests that the use of more
features is important for the learning algorithms. However, in practice it is observed
that not all the features are important. It is therefore useful to select a subset of features
which are relevant thereby ignoring the irrelevant (noisy) features which compromise
performance of the learning algorithm [8,9]. An understanding of which features are
relevant is valuable in its own right. In the exploratory phases of analysis (which is
when data visualisation is most used) it is usual to measure as many variables as is
feasible, since it is not known which features are relevant to the task. Feature selection
then plays an important role in simplifying the task and making data collection cheaper
and faster.

Feature selection (FS) has been widely used in supervised learning problems where
the search is guided by the known target values. FS methods can be categorized into
four classes [1,14]: filters, wrappers, hybrid and embedded. Details of each of them are
given in [10,14]. FS for unsupervised learning algorithms is a challenging task as there
are no target values to guide the search. Very few attempts have been made to estimate
the importance of features in the unsupervised learning algorithms. A brief review of
feature selection in a clustering perspective is given in [1,4,8,14,18] and details of some
previous attempts in the latent variable formalism are given in [5,9,11,15,16,17]. To the
best of our knowledge, there is no similar approach in the literature for estimating fea-
ture saliency when modelling mixed-type data, though [4] did discuss this as a possible
extension in the clustering perspective.

Our focus in this paper is to demonstrate an extension of the GGTM model to esti-
mate feature saliency values not only for discrete type features but also for mixed-type
features in a dataset, as an integrated part of the parameter learning process, under the
latent variable formalism. The structure of the remainder of the paper is as follows.
In Section 2, we explain our proposed GGTMFS model and derive the EM parameter
learning process. Section 3 describes our experiments to demonstrate the effectiveness
of the proposed approach. We conclude the paper in Section 4.

2 A GGTM with Simultaneous Feature Saliency (GGTMFS)

The main goal of a latent variable model is to find an M -dimensional manifold, H,
(usually M = 2) for the distribution p(x) in a high-dimensional data space,D, with D-
dimensions. We write each observation vector, xn in terms of sub-vectors xRn , xBn and
xCn for continuous, binary and multi-category features respectively. In the rest of this
paper we use superscript R for continuous features, superscript B for binary features
and superscript C for categorical features. The symbol |.| is used to indicate the number
of features in each type of data space. We also useM to indicate eitherR or B or C.



In this paper, we now propose an extension of the GGTM visualisation model de-
scribed in [10] to simultaneously estimate feature saliencies (we call this extension
GGTMFS) and learn the model parameters. To estimate feature saliency values, we
assume that each feature is independent of the component label under the appropriate
noise model distribution. As a special case for the Gaussian noise model, the feature in-
dependence assumption is modelled by adopting diagonal covariance matrices (as used
in [8,9]) instead of spherical covariance (as used in [3] and GGTM). Now the probabil-
ity density function of the GGTMFS model takes the form

p(xn|π,Θ) =

K∑
k=1

πk

∏
M

|M|∏
d=1

p(xMnd|ΘMkd )


 , (1)

where p(.|ΘMkd ) is the probability density functions of the dth feature for the kth com-
ponent and πk is the mixing coefficient of the kth component and is taken to be fixed to
1
K for all the components in the mixture model andM ∈ {R,B, C}) indicates type of
data space (and the corresponding distributional assumption).

We make the definition that ΨM = (ψM1 , · · · , ψM|M|) (whereM ∈ {R,B, C}), is
the set of binary indicators ψMd = 1 for a relevant feature and ψMd = 0 otherwise.
Combining ψMd for each type of variable, we obtain Ψ = {ΨR, ΨB, ΨC}. Now the
probability density of our mixture model takes the form

p(xn|π,Θ, λ, Ψ) =
K∑
k=1

πk

∏
M

|M|∏
d=1

[p(xMnd|ΘMkd )]ψ
M
d [q(xMnd|λMd )](1−ψ

M
d )


 . (2)

The common distribution q(xMnd|λMd ) is designed to explain all the data that is poorly
explained by the GGTM model. The notion of feature saliency is modelled as follows:
we first treat ψMd as a missing variable in the EM algorithm and as a second step we
estimate the feature saliency, ρMd = p(ψMd = 1), which is the probability that the dth
feature is relevant. The resulting model now takes the form,

p(xn|Ω) =

K∑
k=1

πk

∏
M

|M|∏
d=1

[ρMd p(xMnd|ΘMkd )] + [(1− ρMd )q(xMnd|λMd )]


 , (3)

whereΩ =
{
πk,
{
ΘMkd

}
,
{
λMd
}
,
{
ρMd
}}

is the set of all the parameters of the model.

A simple way to understand how Equation (3) is obtained is to observe that [p(xMnd|ΘMkd )]ψ
M
d

[q(xMnd|λMd )]1−ψ
M
d can be re-written as ψMd [p(xMnd|ΘMkd )] + (1 − ψMd )[q(xMnd|λMd )]

given thatψMd is a binary indicator variable (see the proof in [10,12]). The log-likelihood
now takes the form

L(Ω) =

N∑
n=1

ln p(xn|Ω). (4)



2.1 An EM algorithm for GGTMFS

The latent structure of the GGTM model can be exploited to estimate feature saliencies,
in a similar way as previously exploited for the standard GTM [9]. For this purpose, we
consider flipping of a biased coin with probability ρMd ; if the coin is a head then the
feature is generated from the mixture component, p(.|ΘMkd ), otherwise the ‘background
component’ , q(.|λMd ), is responsible.

We treat Y (i.e. component labels) and Ψ as missing variables and we can derive
an EM algorithm for estimating model parameters (see details in [10,12]). In the E-
step, we use the current set of parameters, Ω, to compute the posterior probability (i.e.
responsibility) rnk = p(yn = k|xn) using Bayes’ theorem,

πk

[∏
M

[∏|M|
d=1[ρ

M
d p(xMnd|ΘMkd )] + [(1− ρMd )q(xMnd|λMd )]

]]
∑K
k=1 πk

[∏
M

[∏|M|
d=1[ρ

M
d p(xMnd|ΘMkd )] + [(1− ρMd )q(xMnd|λMd )]

]] . (5)

The responsibility matrix, R, is used to compute uMnkd = p(ψMd = 1, yn = k|xMn ),
which is a measure of the importance of the nth data point relating to the kth component
using the dth feature of theM type observation space and vMnkd = p(ψMd = 0, yn =
k|xMn ).

uMnkd =
ρMd p(xMnd|ΘMkd )

ρMd p(xMnd|ΘMkd )] + [(1− ρMd )q(xnd|λMd )
rnk, (6)

vMnkd = rnk − uMnkd. (7)

M-step: We can use UM to re-estimate the weight matrix WM (i.e.M indicate type
of observation space) using a set of linear equations. Both for binary and multinomial
cases we use gradient-based approach as used in [7]. The weight vector wMd of each
dth feature can be updated using

ŵRd = (ΦTERd Φ)−1ΦTURd x
R
d , (8) ∆wBd ∝ ΦT

[
UBdx

B
d −EBd g

B(ΦwBd )
]
,

(9)

∆WC
Sd
∝ ΦT

[
UCdX

C
Sd
−ECdg

C(ΦWC
Sd
)
]
, (10)

where Φ is a K×L matrix, UMd is a K×N matrix calculated using Equation (6), xMd
is an N × 1 data vector of real/binary values (the XCSd

is binary encoded matrix of dth
multi-category feature) and the diagonal matrix EMd has values eMkkd =

∑N
n=1 u

M
nkd.

Now we can straightforwardly re-estimate parameters of the mixture model using
the re-estimated weight matrix of each type, ŴM: first we re-estimate the centres (for
each type features) of the mixture model in the data space (see Equations (11), (12) and
(13))

̂MeanΘRk = m̂Rk = Φ(zk)ŴR, (11)



m̂Bk = gB(Φ(zk)ŴB), (12) m̂CkSd
= gC(Φ(zk)w

C
Sd
), (13)

where m̂Mk is a 1× |M| vector, gB(.) is a logistic sigmoid and gC(.) is a softmax func-
tion. We use re-estimated centre to update the diagonal Gaussian width in each direction
(for each continuous feature): see Equation (14) (similar to standard GTMFS [9])

1

β̂Rd

=

∑
k

∑
n u
R
nkd(x

R
nd − m̂Rkd)2∑

k

∑
n u
R
nkd

. (14)

Common density parameters, λRd , can be updated using

̂MeanλRd =

∑
n(
∑
k v
R
nkd)x

R
nd∑

nk v
R
nkd

. (15)

M̂eanλBd =

∑
n(
∑
k v
B
nkd)x

B
nd∑

nk v
B
nkd

. (16) ̂MeanλCSd
=

∑
n(
∑
k v
C
nkd)x

C
nSd∑

nk v
C
nkd

. (17)

V̂ arλRd =

∑
n(
∑
k v
R
nkd(x

R
nd − ̂MeanλRd )

2∑
nk v

R
nkd

. (18)

For the feature saliency parameter update, we use prior distributions for each type of
variable separately as explained in [12]. The resultant feature saliency updates are

ρ̂Rd =
max(

∑
nk u

R
nkd − KP

2 , 0)

max(
∑
nk u

R
nkd −

KP
2 , 0) + max(

∑
nk v

R
nkd −

T
2 , 0)

, (19)

where P and T are the number of parameters in ΘRkd and λRd respectively.

ρ̂Bd =
max(

∑
nk u

B
nkd + αd − 1, 0)

max(
∑
nk u

B
nkd + αd − 1, 0) + max(

∑
nk v

B
nkd + βd − 1, 0)

. (20)

ρ̂Cd =
max

(∑
nk u

C
nkd −

K(cd−1)
2 , 0

)
max

(∑
nk, u

C
nkd −

K(cd−1)
2 , 0

)
+max

(∑
nk v

C
nkd −

(cd−1)
2 , 0

) , (21)

where cd represents number of categories for the dth feature. We also extend GGTMFS
by deriving an expectation-maximisation (EM) variant to incorporate missing values
(for details see the technical report [12]).

3 Experiments

A series of experiments was performed to demonstrate the effectiveness of the proposed
GGTMFS model for both synthetic and real datasets. Each weight sub-matrix (i.e. WR,
WB and WC) was initialised using principal component analysis (PCA). On average,
500 iterations of EM were sufficient for convergence. We used a latent grid of size 8×8
and an RBF grid of size 4× 4.



3.1 Synthetic data
A synthetic data was used to assess the GGTMFS model: a combination of continuous
and binary features. A comparison of the resulting projections with those given by the
GGTM model is also shown on both complete and incomplete data where 10% of the
data was removed at random for each observation space. We first generated 2 feature
dataset with 2000 data points from an equiprobable mixture of four Gaussians (for
details see technical report [12]) and then generated 8 noisy features (where each feature
was sampled independently from N (0, I) distribution) and combined them yielding a
10-feature dataset. We then generated a binary dataset of 100 features where the first
40 features were drawn from four equiprobable clusters and the remaining 60 features
are noisy (with random distribution of 1s). A small amount of noise (5%) was added
by inserting random 0s in the informative features. For the uninformative features, we
added a random distribution of 1s with different percentages by 20%, 40%, 60%, 80%
and also with no or all 1s in the uninformative features (and we report here results
of binary uninformative features with no 1s). We then combined both continuous and
binary features yielding a dataset with 110 features.

Visualisation results for GGTM and GGTMFS and saliency values estimated from
the GGTMFS are presented in Figure 1 for both complete and incomplete data.

(a) GGTM (complete) (b) GGTMFS (com-
plete)

(c) GGTM (missing) (d) GGTMFS (miss-
ing)

(e) Complete data (f) Complete data (g) Missing data (h) Missing data

Fig. 1. GGTM and GGTMFS visualisations and saliencies of the synthetic mixed-type complete
and missing datasets with 10 continuous and 100 binary features. 10% of the continuous and
binary complete data have been randomly removed to produce the missing data. GGTMFS visu-
alisations quite often show more compact clusters compared to GGTM visualisations. Saliencies
plots show results as error bars from our cross-validation results. (e) and (g) show FS values of
continuous features whereas (f) and (h) show FS values of binary features.

3.2 Real-world data: oil exploration
We applied the GGTMFS to two sets of oil exploration data from the Barents Sea:
oil maturity and environmental parameters. The maturity data consists of 17 continu-



ous features with a large fraction (34%) of missing values and the environment data
contains 13 continuous features with 16% of missing values. Both datasets consist of
168 samples. All the variables in the maturity dataset are important except feature 7,
which has an environment influence that might make it behave differently, and feature
17, which is an environmental parameter. The features in the environment data are a
combination of geochemical properties with variable importance. Features 6, 7, 11 and
12 are more influenced by maturity than environment and hence their saliency values
should be low.

The resulting GGTMFS visualisation and saliency values plots are shown in Fig-
ure 2. The GGTMFS plots are superimposed with magnification factor plots which en-
able the user to observe the amount of stretching of the data-space manifold at different
parts of the latent space [2]. This is useful to understand how the data is embedded in
the data space, detect outliers and separate clusters. The magnification factors are rep-
resented by colour shading in the projection manifold: the lighter the colour, the more
stretch in the projection manifold. The GGTMFS visualisations on the oil data show

(a) Projection (matu-
rity)

(b) Projection (envi-
ronment)

(c) Saliencies (matu-
rity)

(d) Saliencies (envi-
ronment)

Fig. 2. GGTMFS plot of the maturity (see (a)) and environment data (see (b)) and estimated
feature saliency values of continuous features (see (c) and (d)).
that there is relatively little discrete structure (no clear clusters) in the data. The model
was able to give a sensible saliency value (0.675) to the feature 17 in the maturity data
as this variable is actually an environmental parameter. However, feature 1 should have
a high saliency value according to the domain experts. In the environment data, the low
saliency values of the features 6 and 7 make sense given that these features have a strong
maturity influence. However, features 11 and 12 should also have low saliecny values,
and feature 10 should have a high saliency value.

4 Conclusion

We derived a non-linear model for visualising a mixed-type dataset to simultaneously
estimate saliency values both for complete and incomplete datasets. We called this
model a generalised GTM with simultaneous feature saliency estimation (GGTMFS).
Experimental visualisation results for both synthetic and real mixed-type datasets have
shown that this model, unlike GGTM, provided more compact clusters especially in
the presence of missing values and irrelevant features. More detailed results with other
datasets are available in a technical report [12].
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