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Abstract

We propose a generative topographic mapping (GTM) based data visu-
alization with simultaneous feature selection (GTM-FS) approach which
not only provides a better visualization by modeling irrelevant features
(“noise”) using a separate shared distribution but also gives a saliency
value for each feature which helps the user to assess their significance.

This technical report presents a varient of the Expectation-Maximization
(EM) algorithm for GTM-FS.

1 GTM Architecture

In GTM-FS, the Gaussians in the constrained mixture of Gaussians have di-
agonal covariance. Roughly, GTM-FS Architecture can be displayed as below:
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Figure 1: Schematic representation of the GTM model.

Following are the important dimension variables and indexes:

*Please note that this is an ad-hoc technical note. More structured report with clear
notations will follow soon. Contact the author for a newer version.
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N = Number of input data points. Index used : n.

M = Number of components (latent grid points). Index used : m.

D = Number of features (dimension of the data space). Index used : d.
K = Number of basis function for RBF mapping. Index used : k.

2 GTM with Feature Selection (GTM-FS)

GTM has a non-linear transformation from the latent space to the data space
given by a linear combination of the basis functions. So that each point z,, in
latent space is mapped to a corresponding point ¢,, in the D-dimensional data
space (which acts as the centre of a Gaussian m) given by

T = &(z)W, (1)

where T is an M x D matrix, ® is an M x K matrix, and W is a K x D matrix.
If we denote the node locations in latent space by z,, then eq. (1) defines
a corresponding set of ‘reference vectors’ given by

K
tmd = Z Gmk (Zm )Wk, (2)

k=1

where t,,q5 is a scalar and it represents estimated the dth feature of the mth
component.

Each of the reference vectors then forms the centre of a Gaussian distribution
in data space. For feature saliency purpose, we have one dimensional Gaussian
for each feature,

1 Tnd — tmd)?
P(Tndltmd, Oma) = —=—== eXp{—(dgid)}. (3)

2
2704 20,4

The probability density function for the GTM model is obtained by summing
over all the Gaussian components, to give

p(x|T, %?) = Z P(m)p(x[tm, om) (4)

We assume that the features are conditionally independent given the (hidden)
component label, so

M D
p(x|®) = Z ame Znd|Omd) (5)
=1

m=1

where p(-|0mq is the pdf of the dth feature for the mth component. 6,4 =
{tma, 024} and ayy, is P(m) (prior).

The dth feature is irrelevant if its distribution is independent of the class
labels, i.e., if it follows a common density, denoted by q(znq|Aq). Let ¥ =
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(1, ...,%p) be an ordered set of binary parameters, such that ¢, = 1 if feature
d is relevant and ¢4 = 0, otherwise. The mixture density in eq. (5) is now:

M D
PO, s Ot Aa) = 3 o ] [ p(nalbma)] " [aenal )]0 (6)
m=1 =1

Our notion of feature saliency is summarised in the following steps:
1. We treat the 1¢4s as missing variables

2. We define the feature saliency as pg = P(¢q = 1), the probability that
the dth feature is relevant.

So the resulting model can be written as

p(xn|©®) = amH pap(Tnd|Oma) + (1 = pa)g(znalAa)) (7)
=1

m=1

where © = ayy,, Omd, A\a, pa 1S the set of all the parameters of the model.
The complete-data log-likelihood for the model in eq. (7) is

::]c

P(X'm Yn =M, 9) = (pdp(wnd|9md ((1 - pd)q(xnd|)\d))(1*¢d) (8)

1

We can define the following quantities

Unmd = P(yn = mv"/)d = 1|Xn)7 (10)
Unmd = P(yn == mv"/)d = O|Xn) (11)

They are calculated using the current parameter estimate ©™¢”. Now that

Unmd + Vnmd = Snm and Zn 1 Z _1 Wnm = N. The expected complete data
log-likelihood based on 04 we get

Egnew[In P(X,2,0)] Z anm In a,, +

Z Z Unmd hlp :End|9md

md n

ZZvnmdlnq(znd|>\d)+ (12)
d nm

Z (hl Pd Z Upmd + 111(1 - pd) Z Unmd)
d nm nm

The four parts in the equation above can be maximised separately.
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3 EM Algorithm

E-Steps: Compute the following quantities:

Anmd = P(wd = 1axnd|zn = m) = pdp(xnd|9md)a
bnmd = P(wd = 0,.’L’nd|2n = m) = (1 - Pd)Q(J?ndp\d),
Cnmd = P(znm|zn = m) = Upmd + bnmdv

Qm Hd Cnmd

Zm Qm Hd Cnmd 7

Apmd
Unmd = P(wd = 1,Zn = m|xn) = Cn—’mdsnm;
nm

Unmd = P(¢d = 07 Zn = m|xn) = Snm — Unmd-

Snm = P(zn = m|x,) =

(17)
(18)

To obtain re-estimation of the parameters, we consider complete log likeli-
hood (eq. (12)) and using eq. (3) and eq. (2), we get following for the second

term in eq. (12):

£2ndpart - Z Z Unmd 1np(znd|9md)7

md n
(xnd_tmd)2
L ndpart = nm \ T 5 2 ’
(znd*q)mwd)2
£2ndpartzzunmd|: ( CQI)) T :
md n d

Now differentiating above equation w.r.t w;q (where i € 1, ..., K, we get
8£2 dvart 1' d — Wd)
az}:;ar = Z Z Unmd — d m ¢mz )
setting above equation to 0 and solving it we get

NS timal(Ena — ®rWa)dini] = 0

This can be written in matrix notation in the form

T U x4 = ®7' Gy®,, Wy,

(19)

(20)

(23)

where ®,, is a 1 x K vector, wy is a K x 1 weight vector for the feature d, Ry
is a M x N responsibility matrix for the feature d, x4 is a N x 1 data vector for

the feature d, and G4 is a M x M diagonal matrix with elements

N
Immd = E Unmd-
n

(24)
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So for all i € {1,2, ..., K}, we have,
®TUx; = 8T G Pwy, (25)

Similarly, differentiating eq. (21) w.r.t og, we get
2

a‘CQndpart 1 (l‘nd — (I)mVAV)
_— = R — - @ 7 2
dor 22T 20

setting above equation to 0 and solving it, we get

Zm Zn unmd(xnd - ¢’de)2
Zm Zn Unmd

M-Steps: Reestimate the parameters according to following expressions:

 YonSnm Y onSnm
- - )

64 =

m 2
®TU x; = 8T GPw,, Solve this to find the updated wy (29)
Mean inf,g = e, (30)
o nm nd — (I)m va)?
Var inf,,q = L 2o Unmd(Tnd Wa) ; (31)
Zm Zn Unmd
Meam inrg = 2o Vnmd)Tnd, (32)
an Unmd
Vor g = 22nZm Vmd)nd, (33)
an Unmd
ﬁd _ Zn Unmd _ Zn Unmd (34)
an Upmd + an Unmd N

More later ...



