2,701 research outputs found

    GPU Prefilter for Accurate Cubic B-spline Interpolation

    Get PDF
    Achieving accurate interpolation is an important requirement for many signal-processing applications. While nearest-neighbor and linear interpolation methods are popular due to their native GPU support, they unfortunately result in severe undesirable artifacts. Better interpolation methods are known but lack a native GPU support. Yet, a particularly attractive one is prefiltered cubic-spline interpolation. The signal it reconstructs from discrete samples has a much higher fidelity to the original data than what is achievable with nearest-neighbor and linear interpolation. At the same time, its computational load is moderate, provided a sequence of two operations is applied: first, prefilter the samples, and only then reconstruct the signal with the help of a B-spline basis. It has already been established in the literature that the reconstruction step can be implemented efficiently on a GPU. This article focuses on an efficient GPU implementation of the prefilter, on how to apply it to multidimensional samples (e.g. RGB color images), and on its performance aspect

    MFA-DVR: Direct Volume Rendering of MFA Models

    Get PDF
    3D volume rendering is widely used to reveal insightful intrinsic patterns of volumetric datasets across many domains. However, the complex structures and varying scales of volumetric data can make efficiently generating high-quality volume rendering results a challenging task. Multivariate functional approximation (MFA) is a new data model that addresses some of the critical challenges: high-order evaluation of both value and derivative anywhere in the spatial domain, compact representation for large-scale volumetric data, and uniform representation of both structured and unstructured data. In this paper, we present MFA-DVR, the first direct volume rendering pipeline utilizing the MFA model, for both structured and unstructured volumetric datasets. We demonstrate improved rendering quality using MFA-DVR on both synthetic and real datasets through a comparative study. We show that MFA-DVR not only generates more faithful volume rendering than using local filters but also performs faster on high-order interpolations on structured and unstructured datasets. MFA-DVR is implemented in the existing volume rendering pipeline of the Visualization Toolkit (VTK) to be accessible by the scientific visualization community

    Volume rendering with multidimensional peak finding

    Get PDF
    Journal ArticlePeak finding provides more accurate classification for direct volume rendering by sampling directly at local maxima in a transfer function, allowing for better reproduction of high-frequency features. However, the 1D peak finding technique does not extend to higherdimensional classification. In this work, we develop a new method for peak finding with multidimensional transfer functions, which looks for peaks along the image of the ray. We use piecewise approximations to dynamically sample in transfer function space between world-space samples. As with unidimensional peak finding, this approach is useful for specifying transfer functions with greater precision, and for accurately rendering noisy volume data at lower sampling rates. Multidimensional peak finding produces comparable image quality with order-of-magnitude better performance, and can reproduce features omitted entirely by standard classification. With no precomputation or storage requirements, it is an attractive alternative to preintegration for multidimensional transfer functions

    Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields

    Get PDF
    A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given

    A Similarity Measure for GPU Kernel Subgraph Matching

    Full text link
    Accelerator architectures specialize in executing SIMD (single instruction, multiple data) in lockstep. Because the majority of CUDA applications are parallelized loops, control flow information can provide an in-depth characterization of a kernel. CUDAflow is a tool that statically separates CUDA binaries into basic block regions and dynamically measures instruction and basic block frequencies. CUDAflow captures this information in a control flow graph (CFG) and performs subgraph matching across various kernel's CFGs to gain insights to an application's resource requirements, based on the shape and traversal of the graph, instruction operations executed and registers allocated, among other information. The utility of CUDAflow is demonstrated with SHOC and Rodinia application case studies on a variety of GPU architectures, revealing novel thread divergence characteristics that facilitates end users, autotuners and compilers in generating high performing code

    Explicit Cache Management for Volume Ray-Casting on Parallel Architectures

    Get PDF
    A major challenge when designing general purpose graphics hardware is to allow efficient access to texture data. Although different rendering paradigms vary with respect to their data access patterns, there is no flexibility when it comes to data caching provided by the graphics architecture. In this paper we focus on volume ray-casting, and show the benefits of algorithm-aware data caching. Our Marching Caches method exploits inter-ray coherence and thus utilizes the memory layout of the highly parallel processors by allowing them to share data through a cache which marches along with the ray front. By exploiting Marching Caches we can apply higher-order reconstruction and enhancement filters to generate more accurate and enriched renderings with an improved rendering performance. We have tested our Marching Caches with seven different filters, e. g., Catmul-Rom, B- spline, ambient occlusion projection, and could show that a speed up of four times can be achieved compared to using the caching implicitly provided by the graphics hardware, and that the memory bandwidth to global memory can be reduced by orders of magnitude. Throughout the paper, we will introduce the Marching Cache concept, provide implementation details and discuss the performance and memory bandwidth impact when using different filters
    corecore