193 research outputs found

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Asynchronous design of Networks-on-Chip

    Get PDF

    An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    Get PDF
    The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0.13 µm CMOS standard cell instantiations of the architecture. I

    Interactive Debug of SoCs with Multiple Clocks

    Full text link

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz

    The Future of Formal Methods and GALS Design

    Get PDF
    AbstractThe System-on-Chip era has arrived, and it arrived quickly. Modular composition of components through a shared interconnect is now becoming the standard, rather than the exotic. Asynchronous interconnect fabrics and globally asynchronous locally synchronous (GALS) design has been shown to be potentially advantageous. However, the arduous road to developing asynchronous on-chip communication and interfaces to clocked cores is still nascent. This road of converting to asynchronous networks, and potentially the core intellectual property block as well, will be rocky. Asynchronous circuit design has been employed since the 1950's. However, it is doubtful that its present form will be what we will see 10 years hence. This treatise is intended to provoke debate as it projects what technologies will look like in the future, and discusses, among other aspects, the role of formal verification, education, the CAD industry, and the ever present tradeoff between greed and fear

    RTL Design Quality Checks for Soft IPs

    Get PDF
    Soft IPs are architectural modules which are delivered in the form of synthesizable RTL level codes written in some HDL (hardware descriptive language) like Verilog or VHDL or System Verilog. They are technology independent and offer high degree of modification flexibility. RTL is the complete abstraction of our design. Since SOC complexity is growing day by day with new technologies and requirement, it will be very much difficult to debug and fix issues after physical level. So to reduce effort and increase efficiency and accuracy it is necessary to fix most of the bugs in RTL level. Also if we are using soft IP, then our bug free IP can be used by third party. So early detection of bugs helps us not to go back to entire design and do all the process again and again. One of the important issue at RTL level of a design is the Clock Domain Crossing (CDC) problem. This is the issue which affects the performance at each and every stage of the design flow. Failure in fixing these issues at the earlier stage makes the design unreliable and design performance collapses. The main issue in real time clock designs are the metastability issue. Although we cannot check or see these issues using our simulator but we have to make preventions at RTL level. This is done by restructuring the design and adding required synchronizers. One more important area of consideration in VLSI design is power consumption. In modern low power designs low power is a key factor. So design consuming less power is preferred over design consuming more power. This decision should be made as early as possible. RTL quality check helps us on this aspect. Using different tools power estimation can be performed at RTL stage which saves lots of efforts in redesigning. This project aims at checking clock domain crossing faults at RTL stage and doing redesign of circuit to eliminate those faults. Also an effort is made to compare quality of two designs in terms of delay, power consumption and area

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF
    corecore