31 research outputs found

    Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams

    Full text link
    We consider preprocessing a set SS of nn points in convex position in the plane into a data structure supporting queries of the following form: given a point qq and a directed line \ell in the plane, report the point of SS that is farthest from (or, alternatively, nearest to) the point qq among all points to the left of line \ell. We present two data structures for this problem. The first data structure uses O(n1+ε)O(n^{1+\varepsilon}) space and preprocessing time, and answers queries in O(21/εlogn)O(2^{1/\varepsilon} \log n) time, for any 0<ε<10 < \varepsilon < 1. The second data structure uses O(nlog3n)O(n \log^3 n) space and polynomial preprocessing time, and answers queries in O(logn)O(\log n) time. These are the first solutions to the problem with O(logn)O(\log n) query time and o(n2)o(n^2) space. The second data structure uses a new representation of nearest- and farthest-point Voronoi diagrams of points in convex position. This representation supports the insertion of new points in clockwise order using only O(logn)O(\log n) amortized pointer changes, in addition to O(logn)O(\log n)-time point-location queries, even though every such update may make Θ(n)\Theta(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n)o(n) amortized pointer changes per operation while keeping O(logn)O(\log n)-time point-location queries.Comment: 17 pages, 6 figures. Various small improvements. To appear in Algorithmic

    A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

    Full text link
    In the Hausdorff Voronoi diagram of a family of \emph{clusters of points} in the plane, the distance between a point tt and a cluster PP is measured as the maximum distance between tt and any point in PP, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider %El."non-crossing" \emph{non-crossing} clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, nn, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected O(nlog2n)O(n\log^2{n}) time and expected O(n)O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.Comment: arXiv admin note: substantial text overlap with arXiv:1306.583

    Voronoi diagrams in the max-norm: algorithms, implementation, and applications

    Get PDF
    Voronoi diagrams and their numerous variants are well-established objects in computational geometry. They have proven to be extremely useful to tackle geometric problems in various domains such as VLSI CAD, Computer Graphics, Pattern Recognition, Information Retrieval, etc. In this dissertation, we study generalized Voronoi diagram of line segments as motivated by applications in VLSI Computer Aided Design. Our work has three directions: algorithms, implementation, and applications of the line-segment Voronoi diagrams. Our results are as follows: (1) Algorithms for the farthest Voronoi diagram of line segments in the Lp metric, 1 ≤ p ≤ ∞. Our main interest is the L2 (Euclidean) and the L∞ metric. We first introduce the farthest line-segment hull and its Gaussian map to characterize the regions of the farthest line-segment Voronoi diagram at infinity. We then adapt well-known techniques for the construction of a convex hull to compute the farthest line-segment hull, and therefore, the farthest segment Voronoi diagram. Our approach unifies techniques to compute farthest Voronoi diagrams for points and line segments. (2) The implementation of the L∞ Voronoi diagram of line segments in the Computational Geometry Algorithms Library (CGAL). Our software (approximately 17K lines of C++ code) is built on top of the existing CGAL package on the L2 (Euclidean) Voronoi diagram of line segments. It is accepted and integrated in the upcoming version of the library CGAL-4.7 and will be released in september 2015. We performed the implementation in the L∞ metric because we target applications in VLSI design, where shapes are predominantly rectilinear, and the L∞ segment Voronoi diagram is computationally simpler. (3) The application of our Voronoi software to tackle proximity-related problems in VLSI pattern analysis. In particular, we use the Voronoi diagram to identify critical locations in patterns of VLSI layout, which can be faulty during the printing process of a VLSI chip. We present experiments involving layout pieces that were provided by IBM Research, Zurich. Our Voronoi-based method was able to find all problematic locations in the provided layout pieces, very fast, and without any manual intervention

    Sublinear Explicit Incremental Planar Voronoi Diagrams

    Full text link
    A data structure is presented that explicitly maintains the graph of a Voronoi diagram of NN point sites in the plane or the dual graph of a convex hull of points in three dimensions while allowing insertions of new sites/points. Our structure supports insertions in O~(N3/4)\tilde O (N^{3/4}) expected amortized time, where O~\tilde O suppresses polylogarithmic terms. This is the first result to achieve sublinear time insertions; previously it was shown by Allen et al. that Θ(N)\Theta(\sqrt{N}) amortized combinatorial changes per insertion could occur in the Voronoi diagram but a sublinear-time algorithm was only presented for the special case of points in convex position.Comment: 14 pages, 10 figures. Presented ant JCDCGGG 201

    Searching edges in the overlap of two plane graphs

    Full text link
    Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains one of which is convex in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n) time and O(n+m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n axis-aligned rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure

    Higher-order Voronoi diagrams of polygonal objects

    Get PDF
    Higher-order Voronoi diagrams are fundamental geometric structures which encode the k-nearest neighbor information. Thus, they aid in computations that require proximity information beyond the nearest neighbor. They are related to various favorite structures in computational geometry and are a fascinating combinatorial problem to study. While higher-order Voronoi diagrams of points have been studied a lot, they have not been considered for other types of sites. Points lack dimensionality which makes them unable to represent various real-life instances. Points are the simplest kind of geometric object and therefore higher- order Voronoi diagrams of points can be considered as the corner case of all higher-order Voronoi diagrams. The goal of this dissertation is to move away from the corner and bring the higher-order Voronoi diagram to more general geometric instances. We focus on certain polygonal objects as they provide flexibility and are able to represent real-life instances. Before this dissertation, higher-order Voronoi diagrams of polygonal objects had been studied only for the nearest neighbor and farthest Voronoi diagrams. In this dissertation we investigate structural and combinatorial properties and discover that the dimensionality of geometric objects manifests itself in numerous ways which do not exist in the case of points. We prove that the structural complexity of the order-k Voronoi diagram of non-crossing line segments is O(k(n-k)), as in the case of points. We study disjoint line segments, intersecting line segments, line segments forming a planar straight-line graph and extend the results to the Lp metric, 1<=p<=infty. We also establish the connection between two mathematical abstractions: abstract Voronoi diagrams and the Clarkson-Shor framework. We design several construction algorithms that cover the case of non-point sites. While computational geometry provides several approaches to study the structural complexity that give tight realizable bounds, developing an effective construction algorithm is still a challenging problem even for points. Most of the construction algorithms are designed to work with points as they utilize their simplicity and relations with data-structures that work specifically for points. We extend the iterative and the sweepline approaches that are quite efficient in constructing all order-i Voronoi diagrams, for i<=k and we also give three randomized construction algorithms for abstract higher-order Voronoi diagrams that deal specifically with the construction of the order-k Voronoi diagrams

    On the hausdorff and other cluster Voronoi diagrams

    Get PDF
    The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand various generalizations of this simple concept. While many generalized Voronoi diagrams have been well studied, many others still have unsettled questions. An example of the latter are cluster Voronoi diagrams, whose sites are sets (clusters) of objects rather than individual objects. In this dissertation we study certain cluster Voronoi diagrams from the perspective of their construction algorithms and algorithmic applications. Our main focus is the Hausdorff Voronoi diagram; we also study the farthest-segment Voronoi diagram, as well as certain special cases of the farthest-color Voronoi diagram. We establish a connection between cluster Voronoi diagrams and the stabbing circle problem for segments in the plane. Our results are as follows. (1) We investigate the randomized incremental construction of the Hausdorff Voronoi diagram. We consider separately the case of non-crossing clusters, when the combinatorial complexity of the diagram is O(n) where n is the total number of points in all clusters. For this case, we present two construction algorithms that require O(n log2 n) expected time. For the general case of arbitrary clusters, we present an algorithm that requires O((m + n log n) log n) expected time and O(m + n log n) expected space, where m is a parameter reflecting the number of crossings between clusters' convex hulls. (2) We present an O(n) time algorithm to construct the farthest-segment Voronoi diagram of n segments, after the sequence of its faces at infinity is known. This augments the well-known linear-time framework for Voronoi diagram of points in convex position, with the ability to handle disconnected Voronoi regions. (3) We establish a connection between the cluster Voronoi diagrams (the Hausdorff and the farthest-color Voronoi diagram) and the stabbing circle problem. This implies a new method to solve the latter problem. Our method results in a near-optimal O(n log2 n) time algorithm for a set of n parallel segments, and in an optimal O(n log n) time algorithm for a set of n segments satisfying some other special conditions. (4) We study the farthest-color Voronoi diagram in special cases considered by the stabbing circle problem. We prove O(n) bound for its combinatorial complexity and present an O(nlogn) time algorithm to construct it

    The localized Delaunay triangulation and ad-hoc routing in heterogeneous environments

    Get PDF
    Ad-Hoc Wireless routing has become an important area of research in the last few years due to the massive increase in wireless devices. Computational Geometry is relevant in attempts to build stable, low power routing schemes. It is only recently, however, that models have been expanded to consider devices with a non-uniform broadcast range, and few properties are known. In particular, we find, via both theoretical and experimental methods, extremal properties for the Localized Delaunay Triangulation over the Mutual Inclusion Graph. We also provide a distributed, sub-quadratic algorithm for the generation of the structure

    Efficient geometric algorithms for preference top-k queries, stochastic line arrangements, and proximity problems

    Get PDF
    University of Minnesota Ph.D. dissertation. June 2017. Major: Computer Science. Advisor: Ravi Janardan. 1 computer file (PDF); x, 150 pages.Problems arising in diverse real-world applications can often be modeled by geometric objects such as points, lines, and polygons. The goal of this dissertation research is to design efficient algorithms for such geometric problems and provide guarantees on their performance via rigorous theoretical analysis. Three related problems are discussed in this thesis. The first problem revisits the well-known problem of answering preference top-k queries, which arise in a wide range of applications in databases and computational geometry. Given a set of n points, each with d real-valued attributes, the goal is to organize the points into a suitable data structure so that user preference queries can be answered efficiently. A query consists of a d-dimensional vector w, representing a user's preference for each attribute, and an integer k, representing the number of data points to be retrieved. The answer to a query is the k highest-scoring points relative to w, where the score of a point, p, is designed to reflect how well it captures, in aggregate, the user's preferences for the different attributes. This thesis contributes efficient exact solutions in low dimensions (2D and 3D), and a new sampling-based approximation algorithm in higher dimensions. The second problem extends the fundamental geometric concept of a line arrangement to stochastic data. A line arrangement in the plane is a partition of the plane into vertices, edges, and faces. Surprisingly, diverse problems, including the preference top-k query and k-order Voronoi Diagram, essentially boil down to answering questions about the set of k-topmost lines at some abscissa. This thesis considers line arrangements in a new setting, where each line has an associated existence probability representing uncertainty that is inherent in real-world data. An upper-bound is derived on the expected number of changes in the set of k-topmost lines, taken over the entire x-axis, and a worst-case upper bound is given for k = 1. Also, given is an efficient algorithm to compute the most likely k-topmost lines in the arrangement. Applications of this problem including the most likely Voronoi Diagram in R^1 and stochastic preference top-k query are discussed. The third problem discussed is geometric proximity search in both the stochastic setting and the query-retrieval setting. Under the stochastic setting, the thesis considers two fundamental problems, namely, the stochastic closest pair problem and the k most likely nearest neighbor search. In both problems, the data points are assumed to lie on a tree embedded in R^2 and distances are measured along the tree (a so-called tree space). For the former, efficient solutions are given to compute the probability that the closest pair distance of a realization of the input is at least l and to compute the expected closest pair distance. For the latter, the thesis generalizes the concept of most likely Voronoi Diagram from R^1 to tree space and bounds its combinatorial complexity. A data structure for the diagram and an algorithm to construct it are also given. For the query-retrieval version which is considered in R^2, the goal is to retrieve the closest pair within a user-specified query range. The contributions here include efficient data structures and algorithms that have fast query time while using linear or near-linear space for a variety of query shapes. In addition, a generic framework is presented, which returns a closest pair that is no farther apart than the closest pair in a suitably shrunken version of the query range
    corecore