
Higher-Order Voronoi Diagrams
of Polygonal Objects

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Maksym Zavershynskyi

under the supervision of

Prof. Evanthia Papadopoulou

December 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43660929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation Committee

Prof. Kai Hormann Università della Svizzera italiana, Lugano, Switzerland
Prof. Michael Bronstein Università della Svizzera italiana, Lugano, Switzerland

Prof. Rolf Klein University of Bonn, Bonn, Germany
Prof. Vera Sacristan Universitat Politècnica de Catalunya, Barcelona, Spain

Dissertation accepted on December 2014

Research Advisor PhD Program Director

Prof. Evanthia Papadopoulou Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Maksym Zavershynskyi
Lugano, December 2014

ii

To Alexander Leonidovich Kamin aka AL
and Alexander Alexandrovich Kamin aka A2

iii

iv

Abstract

Higher-order Voronoi diagrams are fundamental geometric structures which en-
code the k-nearest neighbor information. Thus, they aid in computations that
require proximity information beyond the nearest neighbor. They are related
to various favorite structures in computational geometry and are a fascinating
combinatorial problem to study.

While higher-order Voronoi diagrams of points have been studied a lot, they
have not been considered for other types of sites. Points lack dimensionality
which makes them unable to represent various real-life instances. Points are
the simplest kind of geometric object and therefore higher-order Voronoi dia-
grams of points can be considered as the corner case of all higher-order Voronoi
diagrams.

The goal of this dissertation is to move away from the corner and bring the
higher-order Voronoi diagram to more general geometric instances. We focus
on certain polygonal objects as they provide flexibility and are able to represent
real-life instances. Before this dissertation, higher-order Voronoi diagrams of
polygonal objects had been studied only for the nearest neighbor and farthest
Voronoi diagrams. In this dissertation we investigate structural and combinato-
rial properties and discover that the dimensionality of geometric objects mani-
fests itself in numerous ways which do not exist in the case of points. We prove
that the structural complexity of the order-k Voronoi diagram of non-crossing
line segments is O(k(n−k)), as in the case of points. We study disjoint line seg-
ments, intersecting line segments, line segments forming a planar straight-line
graph and extend the results to the Lp metric, 1 ≤ p ≤∞. We also establish the
connection between two mathematical abstractions: abstract Voronoi diagrams
and the Clarkson-Shor framework.

We design several construction algorithms that cover the case of non-point
sites. While computational geometry provides several approaches to study the
structural complexity that give tight realizable bounds, developing an effective
construction algorithm is still a challenging problem even for points. Most of the
construction algorithms are designed to work with points as they utilize their

v

vi

simplicity and relations with data-structures that work specifically for points.
We extend the iterative and the sweepline approaches that are quite efficient
in constructing all order-i Voronoi diagrams, for i ≤ k and we also give three
randomized construction algorithms for abstract higher-order Voronoi diagrams
that deal specifically with the construction of the order-k Voronoi diagrams.

Acknowledgements

This research would not have been successful without the supervision of Evan-
thia Papadopoulou. I am thankful for her patience and kindness while guiding
me with her experience through the professional science. I am thankful to her
for inviting me in Lugano and giving me an opportunity to have an academic
experience.

Special thanks to the members of my dissertation committee – Rolf Klein,
Vera Sacristan, Kai Hormann, and Michael Bronstein – for dedicating their time
to evaluate my work, and providing very valuable feedback. I am also grateful
to Gill Barequet for reading through the journal paper on higher-order Voronoi
diagrams of line segments and providing useful comments.

I owe my thanks to the people who gave me valuable comments on the sub-
ject of the dissertation: Chih-Hung Liu, Cecilia Bohler, Rafel Jaume, Matthias
Henze, Birgit Strodthoff, Mario Kapl, Gabriela Majewska, and Gernot Walzl.

To the young members of our research group – Elena Khramtcova and Sandeep
Kumar Dey: It was a pleasure to have our discussions on algorithms and data-
structures. Our mutual support and encouragement was an important condition
for finishing this dissertation. I am waiting to see you both on the other side of
Ph.D.

I am also grateful to Konstantin Rubinov and Aibek Sarimbekov for the deep
conversations that we had: You are the people who were shaping my personality
during these four years. Thanks also to Iegor Nechyporenko, Ilya Markov, Kirill
Lykov, Ilya Yanok and Artiom Kovnatsky for having a finger in a pie.

Beyond any measure is my eternal gratitude to my parents who are always
by my side.

Maksym Zavershynskyi
December 2014

vii

viii

Contents

Contents ix

List of Figures xi

1 Introduction 1
1.1 Applications . 7

1.1.1 Critical Area Computation . 7
1.1.2 Other Applications . 9

1.2 Dissertation Goals and Contributions 9
1.2.1 Structural Properties and Complexity Bounds 10
1.2.2 Construction Algorithms . 12

1.3 Dissertation Outline . 13
1.4 Publications . 14

2 Literature Review 17
2.1 Voronoi Diagrams and Arrangements 17
2.2 Nearest Neighbor and Farthest Voronoi Diagrams 22
2.3 Construction Algorithms . 24
2.4 k-Sets and k-Levels . 30

3 Higher-Order Voronoi Diagrams of Line Segments 33
3.1 Properties of Voronoi Regions . 35
3.2 Structural Properties and Complexity 40
3.3 Intersecting Line Segments . 47
3.4 Extending to the Lp Metric . 49
3.5 Iterative Construction . 51
3.6 Summary . 57

4 Higher-Order Voronoi Diagrams of a Planar Straight-Line Graph 59
4.1 Augmenting the Definition of a Voronoi Region 62

ix

x Contents

4.2 Relation with Arrangements . 70
4.3 Structural Properties and Complexity 71
4.4 Extending the Iterative Construction 73
4.5 Summary . 75

5 Sweepline Algorithm 77
5.1 Sweeping Disjoint Line Segments . 78
5.2 Sweeping a Planar Straight-Line Graph 86

5.2.1 Processing Site-Events . 88
5.2.2 Processing Circle-Events . 92
5.2.3 Analysis . 95

5.3 Summary . 97

6 Algorithms for Higher-Order Abstract Voronoi Diagrams 99
6.1 Higher-Order Abstract Voronoi Diagrams 100
6.2 Randomized Divide and Conquer Algorithm 104

6.2.1 Refined Diagram . 105
6.2.2 Computing the Voronoi vertices 111
6.2.3 Analysis . 112

6.3 Iterative Construction . 114
6.4 Random Walk Method . 115
6.5 Summary . 117

7 Conclusions 119
7.1 Future Directions . 120

7.1.1 Simple Polygons . 120
7.1.2 Algorithms for Higher-Order Abstract Voronoi Diagrams . 122

Bibliography 123

Figures

1.1 The nearest neighbor Voronoi diagram of points. 1
1.2 The order-2 Voronoi diagram of points. 2
1.3 The nearest neighbor Voronoi diagram of line segments. 4
1.4 The order-2 Voronoi diagram of line segments. 5

2.1 1-level of functions in R2. 18
2.2 The 0-level of distance functions. 19
2.3 The lifting transformation of the points in the x y-plane. 20
2.4 Duality transformation performed on four points in convex position. 22

3.1 The order-2 Voronoi diagram of line segments. The shaded faces
correspond to the order-2 Voronoi region induced by the pair of
bold line segments. 34

3.2 The obstacles in between the long segments H induce n− k + 1
disconnectivities in the region of V3(H, S), H = {s1, s2, s3}, k = 3.
The face F ⊂ V3(H, S) is enclosed in between bisectors b(s3, s5),
b(s3, s4), b(s1, s5) and b(s1, s4). 37

3.3 During the rotation of the directed line, the positions in which
the open halfplane to the left of it intersects all non-degenerate
segments, alternate with the positions in which it does not. 38

3.4 The alternations produce bisectors that bound distinct unbounded
faces of the region V4(H, S). 38

3.5 Every endpoint of a segment s ∈ H can induce at most two sup-
porting halfplanes. 39

3.6 The part of the ray r(s, x) beyond ax entirely belongs to Vf (s, H). 42
3.7 (a) In the dual plane, the point p belongs to the 2-level and the

3-level of the arrangement W ; (b) In the primal plane, the half-
plane r(s2, s3) below T (p) defines the unbounded Voronoi edge
that separates V2({s2, s4}, S) and V2({s3, s4}, S). 46

xi

xii Figures

3.8 Examples of supporting quadrants of pairs of line segments in the
L∞ metric. 50

3.9 A face F of an order-2 Voronoi region V2({s1, s2}, S) and the parti-
tioning V1(F) of the face F , where S = {s1, s2, sa, . . . , sd}. 52

3.10 The order-1 Voronoi diagram of intersecting line segments s1, s2

and s3. The boundary of the face of the order-1 Voronoi region
V1({s1}, {s1, s2, s3}) has appearances of line segments s2, s3 which
form an order-4 Davenport-Schinzel sequence. 54

3.11 The proof of Lemma 3.5.1. 55

3.12 A face of an order-i Voronoi region induced by set H of line seg-
ments, for i = 3. The segment s1 contributes linear number of
subfaces. 56

3.13 Proof of Lemma 3.5.2. There is a point x ∈ r(s, y) that belongs to
P. 57

4.1 (a) A bisector containing a 2-dimensional portion; (b) Bisectors
intersecting non-transversely. 60

4.2 The degenerate area created by the endpoint of PSLG in case we
use the ordinary definition of the order-k Voronoi diagram, where
k = 2 and S = {s1, . . . , s6}. 61

4.3 The order-k Voronoi diagram of untangled line segments, where
k = 2 and S = {s1, . . . , s6}. Artificial faces are shown shaded. . . . 61

4.4 The order-1 Voronoi diagram of PSLG, where S = {s1, . . . , s8} are
the line segments and a, . . . , g are the endpoints. The Type-2
Voronoi regions are shown shaded. 63

4.5 The order-2 Voronoi diagram of PSLG, where S = {s1, . . . , s8} are
the line segments and a, . . . , g are the endpoints. The Type-2
Voronoi regions are shown shaded. 64

4.6 A Type-2 Voronoi region of representative p, denoted as V (p),
and an incident Voronoi vertex for various orders k. (a) k = 1;
(b) k = 2; (c) 2 < k ≤ |I(p)| (for k = |I(p)|, V (p) is Type-1);
(d) k = |I(p)|+ 1. (V (p, e1, . . . , em) stands for Vk(p, H, S), where
{e1, . . . , em}= H \ I(p).) . 68

xiii Figures

4.7 Top left: A Voronoi vertex in V1(S) incident to three Type-2 re-
gions; Top right: In V j+1(S), j = |I(q)|, region V (q) is split by
the representatives of the neighboring Type-2 regions; Bottom
left: In Vk+1(S), k = |I(r)|, region V (r) is split by the representa-
tives of the neighboring Type-2 regions; Bottom right: In Vs+1(S),
s = |I(p)|, region V (p) is split by the representatives of the neigh-
boring Type-2 regions. 69

4.8 Untangling abutting line segments at endpoint p. 72

4.9 Top: The order-2 Voronoi diagram of a PSLG (see Figure 4.5 for
more details). The partitioning V1(F) of the face F ⊆ V2({s7, s8}, S),
where SF = {s1, . . . , s6}; Bottom: The order-3 Voronoi diagram of
a PSLG, after the procedure is applied for every face F of V2(S). . 74

5.1 Constructing order-4 Voronoi diagram via sweepline technique. . 79

5.2 The site-event. 81

5.3 The circle-event on levels Abot , Amid , Atop. 84

5.4 Constructing the order-3 Voronoi diagram via the sweepline tech-
nique. The dotted lines depict the internal edges. The Type-2
regions are depicted shaded. 86

5.5 Wave-curves of the line segments I+(p) before (left figure) and
after (right figure) the site-event occurs. The 1-level is depicted
with bold. The labels show the sets Π0 of the waves. 90

5.6 Wave-curves of the line segments I+(p) before (left figures) and
after (right figures) the site-event occurs. Before the site-event
occurs, the 0-level is composed of the waves with the following
sets Π0: {w1}, {w2}. The 1-level is composed of the waves with
the following sets Π0: {w2}, {w1}. After the site-event occurs,
the 0-level is composed of the waves with the following sets Π0:
{w1}, {w1, w2}, {w2}. The 1-level is composed of the waves with
the following sets Π0: {w2}, {w1, w2}, {w1}. The way the topology
of the levels changes during the site-event does not depend on the
angles between the line segments in I+(p). 91

5.7 Wave-curves of the line segments I−(p) before (left figure) and
after (right figure) the site-event occurs. The 1-level is depicted
with bold. The labels show the sets Π0 of the waves. a1 and a2

are the wave-curves strictly below point p, before the site-event
occurs. 92

xiv Figures

5.8 Wave-curves of the line segments {s1} = I+(p), {t1} = I−(p) be-
fore (left figures) and after (right figures) the site-event occurs.
Before the site-event occurs, the 0-level is composed of a single
wave with the following set Π0: {w1}. What happens with the
waves after the site-event occurs depends on the angles between
the line segments. In the top case, after the site event occurs,
the 0-level is composed of the waves with the following sets Π0:
{w1}, {v1}. The 1-level is composed of the waves with the follow-
ing sets Π0: {v1}, {w1}. In the bottom case, after the site event
occurs, the 0-level is composed of the waves with the following
sets Π0: {v1}, {w1}. The 1-level is composed of the waves with the
following sets Π0: {w1}, {v1}. 93

5.9 Wave-curves before and after the general site-event. The 1-level
of wave-curves is bold. The way the topology of the 1-level changes
during the general site-event depends on the angles between the
line segments. 94

5.10 The case (1) of the circle-event in arrangement with non-transversal
intersections. The 1-level is depicted with bold. The waves of the
1-level are labeled with the pairs Π0,π−. 94

5.11 The case (2) of the circle-event in arrangement with non-transversal
intersections. The 1-level is depicted with bold. The waves of the
1-level are labeled with the pairs Π0,π−. 95

5.12 The case (3) of the circle-event in arrangement with non-transversal
intersections. The 1-level is depicted with bold. The waves of the
1-level are labeled with the pairs Π0,π−. 96

6.1 Trapezoid 4 of V4k (S). Vk(S) is depicted in shaded. 108
6.2 Trapezoid 4 ∈ V3(p1, {p2, p3, p4}), where p1, . . . , p7 are line seg-

ments. 109

7.1 Enclosed convex polygons. 121
7.2 Simple polygons enclosed in the “pockets”. 122

Chapter 1

Introduction

The Voronoi diagram is a powerful geometric structure. It represents the prox-
imity information of objects and has many applications in areas where such
information is important.

Figure 1.1. The nearest neighbor Voronoi diagram of points.

The classic Voronoi diagram is the nearest neighbor Voronoi diagram in the
plane, see Figure 1.1. The nearest neighbor Voronoi diagram of a set of objects
S in the plane, called sites, is the partitioning of the plane into regions, such
that every point within a fixed region has the same nearest site. For instance, for

1

2

points in the Euclidean metric,1 the Voronoi region of the site s can be defined
as:

V (s, S) = {x ∈ R2 | ∀t ∈ S \ {s} d(x , s)< d(x , t)}. (1.1)

The nearest neighbor Voronoi diagram is

V(S) =
⋃

s∈S

∂ V (s, S), (1.2)

where ∂ denotes the boundary.
We can define the nearest neighbor Voronoi diagram in different metrics and

space dimensions. In this dissertation we consider only 2-dimensional Voronoi
diagrams and mostly those in the Euclidean metric.

Figure 1.2. The order-2 Voronoi diagram of points.

Often, applications require more information, than just a nearest neighbor
information. For instance k-nearest neighbor information can be represented by
the order-k Voronoi diagram, which is an important generalization of the nearest
neighbor Voronoi diagram. The order-k Voronoi diagram of a set of sites S in
the plane is a partitioning of the plane into regions, such that each point within
a fixed region has the same closest k sites (see Figure 1.2). The order-k Voronoi

1In the Euclidean metric distance between points x = (x1, x2) and y = (y1, y2) is d(x , y) =
p

(x1 − y1)2 + (x2 − y2)2

3

diagram is also called the higher-order Voronoi diagram, if the order k is not
specified. The order-k Voronoi region of the set of sites H can be defined as:

Vk(H, S) = {x ∈ R2 | ∀s ∈ H ∀t ∈ S \H d(x , s)< d(x , t)}, (1.3)

where H ⊂ S and |H|= k. The order-k Voronoi diagram is

Vk(S) =
⋃

H⊂S,|H|=k

∂ Vk(H, S). (1.4)

For k = 1, the order-k Voronoi diagram is the nearest neighbor Voronoi diagram.
For k = n−1, it is the farthest Voronoi diagram, V f (S) – the partitioning of the
plane into regions, such that every point within a fixed region has the same
farthest site. The farthest Voronoi region of the site s can be defined as:

Vf (S) = Vn−1(S \ {s}, S).

The farthest Voronoi diagram has a tree structure and its structural complex-
ity bound is linear on the number of sites. The tree structure of the farthest
Voronoi diagram is the key in the structural complexity analysis of the higher-
order Voronoi diagrams, see Section 3.2.

The higher-order Voronoi diagram of points was introduced by Shamos and
Hoey [81]. For point sites the structural and combinatorial properties were stud-
ied by Lee [59], who first proved the O(k(n−k)) structural complexity bound
and proposed the iterative construction algorithm. The results of Lee can be
generalized to the Lp metric2, see [59]. The alternative proof of the structural
complexity was also done by Edelsbrunner [38]. In Chapter 2 we give a detailed
overview of the construction algorithms for higher-order Voronoi diagrams of
points.

A different way to define the Voronoi diagram is given by the abstract Voronoi
diagram. The abstract Voronoi diagram is agnostic to the geometric qualities of
Voronoi diagrams and is formulated in pure combinatorial and topological ter-
minology. Instead of considering the sites as geometric objects in a fixed metric
space, the abstract Voronoi diagram is defined in terms of bisecting curves satis-
fying some simple combinatorial properties. Once a concrete bisecting system is
shown to satisfy these axioms, combinatorial properties and algorithms to con-
struct the abstract Voronoi diagrams are directly applicable. The nearest neigh-
bor abstract Voronoi diagram was introduced by Klein [54], who proved the

2In Lp metric distance between points x = (x1, x2) and y = (y1, y2) is d(x , y) =
�

|x1 − y1|p + |x2 − y2|p
�1/p.

4

Figure 1.3. The nearest neighbor Voronoi diagram of line segments.

structural complexity bound and proposed construction algorithms. Later, the
concept of abstract Voronoi diagrams was generalized to higher-order abstract
Voronoi diagrams, see [17]. The number of faces in the higher-order abstract
Voronoi diagram is proved to be less than 2k(n−k). Non-disjoint line segments,
such as line segments forming a planar straight-line graph (PSLG for short) and
intersecting line segments, do not fall under the umbrella of abstract Voronoi
diagrams, as their bisectors do not comply with the axioms of the underlying
system of bisectors. In Chapter 6 we propose three construction algorithms for
higher-order abstract Voronoi diagrams.

Many concrete generalizations of Voronoi diagrams have been developed,
including Voronoi diagrams in different metrics, object types and space dimen-
sions (for a survey see [10]). The nearest neighbor Voronoi diagram was also
studied for sites other than points: line segments, polygons, curves, etc. (see [7,
52, 91]). For instance in the case of line segments the nearest neighbor Voronoi
regions are defined as in Eq.(1.1), where the distance between the point x and
the line segment s is measured as the minimum distance d(x , s) =miny∈s d(x , y)
(see Figure 1.3). For many cases of disjoint sites the structural complexity is lin-
ear and efficient construction algorithms exist. The farthest Voronoi diagram
was also studied for sites other than points, e.g. line segments and polygonal
objects, see [9, 29]. In both cases the diagram has a tree structure and a linear
structural complexity bound.

Surprisingly, the higher-order Voronoi diagram of points is the only concrete

5

higher-order Voronoi diagram that had been studied so far. However, a variant
of the higher-order Voronoi diagram of line segments was introduced in [69].

Figure 1.4. The order-2 Voronoi diagram of line segments.

In this dissertation we study higher-order Voronoi diagrams of polygonal ob-
jects in the plane, see Figure 1.4. The dissertation includes line segments, line
segments forming a planar straight-line graph and some cases of convex poly-
gons (as an application of the results of Chapter 6). We investigate structural
properties, prove combinatorial bounds and develop construction algorithms.
We investigate the phenomenon of disconnected regions and prove that a sin-
gle order-k Voronoi region may disconnect into Ω(n) faces, for k > 1. Al-
though an order-k Voronoi region may be disconnected “collectively” they re-
main connected, see Lemma 3.1.5 and its weaker but more general abstract
analog Lemma 6.1.1. Despite the disconnectivities the overall structural com-
plexity of the order-k Voronoi diagram of n disjoint line segments is O(k(n−k)).

The line segments that allow intersections introduce additional complica-
tions in the structure of the order-k Voronoi diagram. The number of intersec-
tions I can be quadratic, in the worst case. For the nearest neighbor Voronoi di-
agram of intersecting line segments, the structural complexity is O(n+I), while
the structural complexity of farthest Voronoi diagram is O(n) and does not de-
pend on the number of intersections. The intuition behind this phenomenon
is that the intersections can contribute to the low-order Voronoi diagrams and
their influence grows weaker with increasing k. Following the intuition we prove
that the structural complexity is O(k(n−k)+I) for k < n/2 and O(k(n−k)) for

6

k ≥ n/2.

The derived structural complexity bounds are also applicable in Lp metric,
for 1 ≤ p ≤ ∞. In fact, L1 and L∞ metrics allow tighter bounds for Voronoi
diagrams. The farthest Voronoi diagram of disjoint line segments in L1 and L∞
metrics has O(1) structural complexity. We prove that the structural complexity
of the order-k Voronoi diagram of disjoint line segments in L1 and L∞ metrics is
O(k(n−k)) for k < n/2 and O((n−k)2) for k ≥ n/2.

The line segments forming a planar straight-line graph can be used to repre-
sent solid structures; the dissertation dedicates a chapter to them. The endpoints
and the open portions of the planar straight-line graph can represent different
real-life instances and therefore we want to differentiate them on the definition-
level. We extend the definition of the order-k Voronoi region in such a way that
it respects the information represented by the endpoints of the planar straight-
line graph. We study the structural properties of the order-k Voronoi diagram
of line segments forming a planar straight-line graph and prove the O(k(n−k))
structural complexity bound.

On the algorithmic side of this dissertation we give several construction al-
gorithms for higher-order Voronoi diagrams of polygonal objects.

We extend the iterative algorithm for the construction of higher-order Voronoi
diagrams of line segments. In a separate chapter we discuss the sweepline tech-
nique for higher-order Voronoi diagrams of line segments. The iterative algo-
rithm and the sweepline technique have O(k2n log n) time complexity; these
algorithms can be used to construct all order-i Voronoi diagrams for i ≤ k. In
the case when the application requires all order-i Voronoi diagrams for i ≤ k
they are the methods of choice. The main advantage of the sweepline algorithm
is the low memory requirement. The sweepline algorithm does not need to keep
the entire Voronoi diagram and therefore it allows on-the-fly computations.

As mentioned above we provide three construction algorithms for higher-
order abstract Voronoi diagrams. These algorithms can be applied to a large vari-
ety of concrete sites including but not limited to: disjoint line segments and not-
enclosing convex polygons. The algorithms have O(k2n log n), O(n22α(n) log n)
and O(kn1+ε) expected construction time complexities. The first algorithm is
the randomized version of the iterative algorithm, which is efficient for small
k. The second algorithm is based on the traversal approach and is efficient for
values of k close to n. The third algorithm has time complexity which is more
suitable for the intermediate values of k that are neither extremely large nor
extremely small.

7 1.1 Applications

1.1 Applications

The area of applications of the order-k Voronoi diagram should not be confused
with the area of applications of the k-nearest neighbor data structures. Though
the order-k Voronoi diagram could be used as the data-structure that answers
the k-nearest neighbor queries, the purpose of the order-k Voronoi diagram
is different. Moreover, the k-nearest neighbor queries are often used in high-
dimensional space. The complexity of the order-k Voronoi diagram of points
grows exponentially with increasing number of space dimensions [30]. There
is however an extensive number of k-nearest neighbor data structures; for an
overview of data structures see [77]. Mount and Arya developed a library for
approximate nearest neighbor searching that can be also used for exact k-nearest
neighbor queries [65].

The order-k Voronoi diagram aggregates the k-nearest information on the
infinite number of points. The computation of the order-k Voronoi diagram can
be used to subdivide the space into regions where each has the same k-nearest
site. The order-k Voronoi diagram is the method of choice when we need a
k-nearest neighbor information in the infinite number of points. For instance,
we need to integrate a function on the plane the value of which depends on
the k-nearest neighbor information. We can do it by subdividing the plane with
the order-k Voronoi diagram and then integrating each of the order-k Voronoi
regions separately. In the following section we describe how this approach can
be used to analyze the vulnerability of the design in semiconductor manufacture.

1.1.1 Critical Area Computation

A variant of the order-k Voronoi diagram of line segments is used in the semi-
conductor manufacture, see [46, 68, 69, 71, 72]. During the manufacture of the
integrated circuits the wafers are prone to defects. We want to evaluate the de-
sign of the wafers with respect to the vulnerability to the potential defects. This
information can later be used to adjust the design of the wafers and improve the
efficiency of the manufacture process.

The defects can be classified as [46]:

• Random Defects – defects which are random by nature and could occur
because of particle contamination.

• Systematic Defects – defects which occur as a result of mechanical or chem-
ical treatment, e.g. polishing.

8 1.1 Applications

Both types of defects can cause either partial or complete loss of functionality.
There are a number of models which allow us to predict the loss due to ran-

dom defects. These models commonly measure the critical area that represents
the sensitivity of a design to random defects. The methods to compute the criti-
cal area include: statistical methods (e.g. Monte Carlo simulation), deterministic
iterative methods, the Voronoi deterministic method and others [46]. However,
only the Voronoi method allows us the exact computation of the critical area.

The particle contamination causes two major types of defects:

• A Short – an unwanted connection between different conducting regions.

• An Open – a broken conducting region.

Critical area measures the sensitivity of the design and is defined as:

Ac =

∫ ∞

0

A(r)D(r)dr,

where A(r) denotes the area in which the center of a defect of radius r must fall
in order to cause circuit failure and D(r) is the density function of the defect
size. D(r) can be estimated as:

D(r) =

(

crq/rq+1
0 , 0≤ r ≤ r0,

cr p−1
0 /r p, r0 ≤ r ≤∞,

where typically p = 3, q = 1, c = (q+1)(p−1)/(q+p), and r0 is some minimum
optically resolvable size.

Consider a defect centered at point t. The critical radius rc(t) of the defect
that causes the short is determined by the second nearest polygon to t. There-
fore t ∈ A(r) iff rc(t)≤ r. The order-2 Voronoi diagram partitions the plane into
regions where each point within a fixed region has the same pair of closest poly-
gons. The refinement of the order-2 Voronoi diagram gives us the partitioning of
the plane where within a fixed region every point t has the critical radiues rc(t)
measured to the same polygon. The order-2 Voronoi diagram allows computa-
tion of the critical area by computing it separately for every region [46].

The open defects can be modeled as the problem dual to the shorts. Then the
defect that causes an open can be seen as the defect that creates an unwanted
connection between the edges of the conducting region.

In order to increase the design reliability, designers are introducing redun-
dant loops that may vary in size, be local and span over a number of layers [69].

9 1.2 Dissertation Goals and Contributions

The loops are called to reduce the potential for open circuits, but make the criti-
cal area extraction more complicated. The defect may locally break a conducting
region without breaking the circuit. The second nearest neighbor information
is not sufficient to solve the dual problem. We need to construct the order-k
Voronoi diagram with larger values of k, see [69]. The experimental results
show that k = 4 is sufficient [69].

1.1.2 Other Applications

The Voronoi diagrams of polygonal objects have numerous applications. One of
the most interesting applications of the Voronoi diagrams of polygonal objects is
found in vectorization of raster images. When converting the raster image to a
vector format, some of the contour lines may acquire unnecessary connections
and others may break. The Voronoi diagram of the contour lines may reveal such
mistakes of the vectorizations, see [64]. Additionaly, the Voronoi diagram of a
polygon (a medial axis) is used in the shape analysis [14, 15, 16, 58], pattern
recognition [21, 44], image processing [56, 88], and mesh generation [36, 47].

The applications of the higher-order Voronoi diagrams are mostly limited
to the case of points (the exception is the critical area computation discussed
in Section 1.1.1). This is probably due to the fact that higher-order Voronoi
diagrams were studied only for points. In the case of points the applications
should allow to approximate the real-life instances with a point, which can be
done only for a narrow class of applications like: facility location problem [50],
retail trade area analysis [19], and spatial interpolation [87]. We hope that
the results of this dissertation will open the higher-order Voronoi diagrams to a
broad range of applications.

Interesting results are achieved in the applications which substitute the near-
est neighbor distance with the k-nearest distance. In some cases the k-nearest
distance has shown to be less sensitive to the noises. For instance, the applica-
tions on the normal estimation from the point cloud are much more robust to
noise if instead of the ordinary distance they use the k-nearest distance [32, 63].

For the full overview of applications see [67].

1.2 Dissertation Goals and Contributions

The goal of this dissertation is to study higher-order Voronoi diagrams of polyg-
onal objects in the plane. We investigate structural and combinatorial properties
of higher-order Voronoi diagrams of line segments, and we consider structural

10 1.2 Dissertation Goals and Contributions

complexity bounds for disjoint line segments, intersecting line segments and line
segments forming a planar straight-line graph, including non-Euclidean metrics.
We also develop several construction algorithms that can be used for higher-
order Voronoi diagrams of polygonal objects; this includes three algorithms for
higher-order abstract Voronoi diagrams. The rest of this section gives a detailed
overview of the results described in the dissertation.

1.2.1 Structural Properties and Complexity Bounds

We study structural properties of the higher-order Voronoi diagrams of polygonal
sites.

• We study the phenomenon of disconnected regions which manifests itself
only for non-point sites. We show that a single order-k Voronoi region may
disconnect into Ω(n) faces, for k > 1. We prove that the union of all faces
induced by the same segment is a connected region with the “weakly star-
shaped” structure.

• We investigate the structural and combinatorial properties of the higher-
order Voronoi diagram of disjoint line segments. We prove the visi-
bility property in a farthest Voronoi region and we count the number of
unbounded faces, which we later use to prove the structural complexity
bound:

O(k(n− k))

• We investigate the structural and combinatorial properties for inter-
secting line segments. Despite the fact that the number of intersections
I can be quadratic in the worst case, the intersections may influence only
the low-order Voronoi diagrams and the influence grows weaker with in-
creasing order. Namely, the structural complexity is:

O(k(n− k) + I), k < n/2
O(k(n− k)), k ≥ n/2

• We extend the results on the structural complexity to Lp metric. We
show that the same structural complexity bounds hold in any Lp metric,
1≤ p ≤∞. For non-crossing line segments in L1 and L∞ we derive sharper
bounds:

O(k(n− k)), k < n/2
O
�

(n− k)2
�

, k ≥ n/2

11 1.2 Dissertation Goals and Contributions

• We investigate the properties of the iterative construction. We show
that the portion of the order-(k+1) Voronoi diagram enclosed inside a
single face of the order-k Voronoi diagram forms a forest. We show that
appearances of the line segments along the boundary of the face of the
higher-order Voronoi region form a Davenport-Schinzel sequence3, for dis-
joint line segments it is order-2 and for intersecting line segments it is
order-4.

• We extend the definition of the Voronoi regions to cover the case of
line segments forming a planar straight-line graph. We investigate the
properties of the Type-1 and Type-2 regions to show the consistency of
the extended definition. We show that the extended definition has the
relation with 3-dimensional arrangements of distance functions, similarly
to the not-extended definition.

• Using the perturbation techniques we prove the structural complexity bounds
of the higher-order Voronoi diagram of line segments forming a planar
straight-line graph:

O(k(n− k))

• We establish the connection between two mathematical abstractions:
the Clarkson-Shor abstract framework and Klein’s abstract Voronoi
diagrams. We define the abstract notion of a “conflict” on the abstract
Voronoi diagrams in way that makes it possible to apply the results of the
Clarkson-Shor framework for the abstract Voronoi diagrams.

• We further investigate the properties of the higher-order abstract Voronoi
diagrams. We prove that the union of all faces induced by the same site is
a simply connected set4 and we show the properties of its boundary that
allow us to traverse it.

3 A finite sequence is said to be a Davenport-Schinzel sequence of order-s if: (1) No two
consecutive values are equal; (2) If x and y occur in the sequence and x 6= y , then the sequence
does not contain a subsequence . . . x , . . . y, . . . x , . . . y, . . . consisting of s+2 alternations between
x and y .

4The set is simply connected if it is path-connected and every path between two points can
be continuously transformed, staying within the set, into any other such path while preserving
the endpoints.

12 1.2 Dissertation Goals and Contributions

1.2.2 Construction Algorithms

We give several construction algorithms that can be applied to the case of line
segments, line segments forming a PSLG, abstract setting, certain specific cases
of convex polygons, additively weighted points2 and power diagrams2.

• We extend an iterative algorithm to the case of line segments and line
segments forming a PSLG. The algorithm is easy to implement and it has
the following time complexity

O
�

k2n log n
�

,

which is very efficient for small values of k. This algorithm is also very
efficient in case all order-i Voronoi diagrams are needed, for i ≤ k. The
time complexity may also be further improved.

• We give a sweepline algorithm for the case of line segments and line seg-
ments forming a PSLG. The algorithm has the following time complexity:

O
�

k2n log n
�

Similarly to the iterative algorithm, the sweepline algorithm is very effi-
cient in the construction of all order-i Voronoi diagrams, for i ≤ k. The
sweepline algorithm does not need to maintain the entire order-k Voronoi
diagram during the construction, which allows on-the-fly computations
during the constructions.

• For higher-order abstract Voronoi diagrams we develop a randomized it-
erative algorithm which has the following expected time complexity:

O
�

k2n log n
�

This algorithm is a natural generalization of the ordinary iterative algo-
rithm. It can be applicable to many concrete Voronoi diagrams, such as:
non-enclosed convex polygons, additively weighted points2 and power di-
agrams2.

• We also give a random walk method for the abstract setting that has the
following expected time complexity:

O
�

n22α(n) log n
�

,

2In power diagrams and additively weighted points the distance between the point p and the
weighted point s is measured as dpower(p, s) = d2(p, s) − w(s) and dadd(p, s) = d(p, s) − w(s),
respectively, where d(p, s) is the regular distance measure and w(s) is the weight of the point s.

13 1.3 Dissertation Outline

where α(n) is the inverse Ackermann function5, which is less than 5 for
any practical applications. This algorithm is an application of Har-Peled’s
walking technique [48] to the idea of Chazelle and Edelsbrunner [28].

• Using the randomized iterative algorithm and the random walk method
we extend Clarkson’s algorithm [30] and receive a randomized divide
and conquer algorithm for the higher-order abstract Voronoi diagrams
having the following time complexity:

O
�

kn1+ε
�

,

where ε > 0 is a constant. The application of the Clarkson-Shor framework
to higher-order abstract Voronoi diagrams is not trivial. In particular, the
application of the iterative approach of the Clarkson-Shor framework to
higher-order abstract Voronoi diagrams is stated as an open problem [61].

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows:

• Chapter 2 gives the literature overview which consists of the state of the
art and important results used in this dissertation;

• Chapter 3 focuses on the structural properties and the complexity bounds
of the higher-order Voronoi diagram of line segments. We also analyze the
cases of intersecting line segments and line segments in L1/L∞ metrics;

• Chapter 4 analyzes the case of line segments forming a planar straight-
line graph. We give structural properties, the complexity analysis and the
iterative algorithm;

• Chapter 5 presents a sweepline algorithm for the higher-order Voronoi
diagrams of disjoint line segments and line segments forming a planar
straight-line graph;

• Chapter 6 gives three randomized algorithms for the higher-order abstract
Voronoi diagrams: randomized divide and conquer algorithm, random-
ized iterative algorithm and random walk method. Any of these three
algorithms can be applied to a concrete higher-order Voronoi diagram as
long as the bisectors satisfy the standard assumptions;

5The inverse Ackermann function is an extremely slow-growing function, which is less than
5 for any practical input size.

14 1.4 Publications

• Chapter 7 concludes the dissertation and established the future directions.

1.4 Publications

The dissertation is based on several published and submitted works.
Chapters 3 and 4 are based on the results which first appeared as an abstract,

then as a conference paper and are going to appear as a journal publication:

• Papadopoulou, E. and Zavershynskyi, M. [2014]. The higher-order Voronoi
diagram of line segments. To appear in Algorithmica.

• Papadopoulou, E. and Zavershynskyi, M. [2012]. On higher-order Voronoi
diagrams of line segments, in Chao, K.-M., Hsu, T.-s., T. and Lee, D.-T.
(eds), ISAAC, Vol. 7676 of Lecture Notes in Computer Science, Springer.,
pp. 177–186.

– First appeared as an extended abstract. Papadopoulou, E. and Za-
vershynskyi, M. [2012]. On higher-order Voronoi diagrams of line
segments. The 28th European Workshop on Computational Geome-
try, Assisi, Italy, March 2012, pp. 233–236.

Chapter 5 is based on the paper which first appeared as an abstract then as a
conference paper and is currently in the process of being submitted to a journal:

• Zavershynskyi, M. and Papadopoulou, E. [2014]. A sweepline algorithm
for higher-order Voronoi diagrams of line segments. To be submitted to a
journal.

• Zavershynskyi, M. and Papadopoulou, E. [2013]. A sweepline algorithm
for higher-order Voronoi diagrams, ISVD, IEEE, pp. 16–22.

– First appeared as an extended abstract. Papadopoulou, E. and Zaver-
shynskyi, M. [2013]. A sweepline algorithm for higher-order Voronoi
diagrams. The 29th European Workshop on Computational Geome-
try, Braunschweig, Germany, March 2013, pp. 233–236.

Chapter 6 is based on a conference paper and will be submitted to a journal:

• Bohler, C., Liu, C.-H., Papadopoulou, E. and Zavershynskyi, M. [2014]. A
randomized divide and conquer algorithm for higher-order abstract Voronoi
diagrams. To be submitted to a journal.

15 1.4 Publications

• Bohler, C., Liu, C.-H., Papadopoulou, E. and Zavershynskyi, M. [2014]. A
randomized divide and conquer algorithm for higher-order abstract Voronoi
diagrams. To appear in the conference proceedings, ISAAC 2014.

– An abstract also appeared in the booklet of abstracts of EuroGIGA
final conference in Berlin. Bohler, C., Liu, C.-H., Papadopoulou, E.
and Zavershynskyi, M. [2014]. Randomized Algorithms for Higher-
Order Voronoi Diagrams.

Related are also the following publications:

• Bohler, C., Cheilaris, P., Klein, R., Liu, C.-H., Papadopoulou, E. and Zaver-
shynskyi, M. On the complexity of higher-order abstract Voronoi diagrams.
Submitted to Computational Geometry Theory and Applications journal,
first round of the revision.

• Bohler, C., Cheilaris, P., Klein, R., Liu, C.-H., Papadopoulou, E. and Zaver-
shynskyi, M. [2013]. On the complexity of higher-order abstract Voronoi
diagrams, in F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska and D. Pe-
leg (eds), ICALP (1), Vol. 7965 of Lecture Notes in Computer Science,
Springer, pp. 208–219.

16 1.4 Publications

Chapter 2

Literature Review

In this chapter we give a short literature review on Voronoi diagrams and related
topics. We start with the relation between Voronoi diagrams and arrangements
which is an important instrument used throughout this dissertation. We then
discuss construction algorithms for higher-order Voronoi diagrams of points and
we discuss their potential to be extended to cover the cases of polygonal objects.
Finally we discuss k-sets and k-levels which are companion topics to order-k
Voronoi diagrams.

2.1 Voronoi Diagrams and Arrangements

Higher-order Voronoi diagrams have a close relation with arrangements. An ar-
rangement is a fundamental structure in computational geometry. One can see
many problems related to Voronoi diagrams through the prism of arrangements.
By applying various mathematical transformations one can see the Voronoi di-
agram as the substructure of a particular arrangement. This method is widely
used for higher-order Voronoi diagrams. In this section we give the definition
of the k-level and the ≤ k-level of an arrangement in Rd . We also present the
most common transformations used for higher-order Voronoi diagrams which
are used throughout the dissertation. For an overview of geometric transforma-
tions used in computational geometry see [20].

We follow the framework introduced by Edelsbrunner and Seidel [41] to
define the k-level and the ≤ k-level. The framework allows us to describe ar-
rangements, including the arrangements with the non-transversal intersections
used in Chapters 4 and 5.

17

18 2.1 Voronoi Diagrams and Arrangements

ab

c

〈{a}, {b}, {c}〉

〈∅, {a, b}, {c}〉

〈{b}, {a}, {c}〉

〈{b}, {c}, {a}〉

〈∅, {b, c}, {a}〉

〈{c}, {b}, {a}〉

〈{c}, {a}, {b}〉

〈{a}, {c}, {b}〉
a

c

b

Figure 2.1. 1-level of functions in R2.

Note. The framework of Edelsbrunner and Seidel as well as other literature
defines the k-level in such a way that the lower envelope corresponds to the
1-level [22, 24, 25, 26, 38, 76]. On the other hand, in the literature the lower
envelope often corresponds to the 0-level [1, 2, 3, 4, 23, 27, 84, 85]. Moreover,
in the Clarkson-Shor technique, the lower envelope can be naturally associated
with the configurations with zero conflicts [30, 31, 82]. Since the Clarkson-Shor
technique is often used in this dissertation, we define the k-level in a way that
the lower envelope corresponds to the 0-level. Therefore, we slightly modify the
definition of the k-level in the framework of Edelsbrunner and Seidel so that the
lower envelope corresponds to the 0-level.

Let f ∈ F be a real valued function Rd−1→ R. We define the lower hemispace
of f , the upper hemispace of f , and the surface of f as:

f − = {(x , r) | r < f (x)},
f + = {(x , r) | r > f (x)},
f 0 = {(x , r) | r = f (x)},

respectively. For each point y ∈ Rd define a triple

Π(y) = 〈Π−(y),Π0(y),Π+(y)〉,

where
Π−(y) = { f ∈ F | y ∈ f −}, π−(y) = |Π−(y)|,
Π0(y) = { f ∈ F | y ∈ f 0}, π0(y) = |Π0(y)|,
Π+(y) = { f ∈ F | y ∈ f +}, π+(y) = |Π+(y)|.

For an integer k, 0 ≤ k < n we say that point y ∈ Rd belongs to the k-level
if π−(y) ≤ k and π−(y) + π0(y) > k, see Figure 2.1. The complexity of the

19 2.1 Voronoi Diagrams and Arrangements

Figure 2.2. The 0-level of distance functions.

k-level is the number of its connected components that have the same triple Π.
The ≤ k-level is the union of all i-levels, for 0 ≤ i ≤ k. The lower envelope is
the bottommost level, i.e. 0-level. The upper envelope is the topmost level, i.e.
(n−1)-level, where |F |= n.

We give two most commonly used transformations that allow us to map the
order-k Voronoi diagram of point-sites with the (k−1)-level. These transfor-
mations can also be used in higher dimensions; in this case, order-k Voronoi
diagram of point-sites in Rd dimensions is usually mapped to the (k−1)-level in
Rd+1 dimensions. However, in this dissertation we only consider arrangements
in R2 and R3.

Higher-Order Voronoi Diagrams and Arrangements of Distance Functions
One can easily see the relation between higher-order Voronoi diagrams and
the arrangements of distance functions. Let S be a set of points located in the
x y-plane of R3. For each point s = (sx , sy) ∈ S consider the distance function
fs : R2→ R:

fs(x) = d(s, x),

where d(·, ·) is the distance function between two points. Consider the edges
and the vertices of the (k−1)-level of the distance functions fs, s ∈ S. The
projection of the edges and the vertices on the x y-plane is then the order-k
Voronoi diagram of points S on that plane.

20 2.1 Voronoi Diagrams and Arrangements

Figure 2.3. The lifting transformation of the points in the x y-plane.

This transformation is often used in the construction of the nearest neighbor
Voronoi diagram of sites, see [3, 49, 80]. The transformation is not specific to
points, however; it is usually applied only for the construction of nearest neigh-
bor Voronoi diagrams. The reason is that the investigation of the (k−1)-level of
general functions is not easy, to the best of our knowledge; see Section 2.4.

Lifting Transformation Let S be a set of points located in the x y-plane of R3.
For each point s ∈ S consider its vertical projection s′ onto the paraboloid z =
x2+ y2. With every point s we associate a plane tangent to the paraboloid at the
point s′. The plane is described with the following function:

fs(x) = 2s · x − s2
x − s2

y ,

where · denotes the scalar product between s = (sx , sy , 0) and x , where x be-
longs to the x y-plane. Consider the (n−k−1)-level in the arrangement of planes
that correspond to the points S in the x y-plane. Vertically project the edges of
the (n−k−1)-level on the x y-plane. The projection will then coincide with the
order-k Voronoi diagram of the points S in the x y-plane. The nearest neighbor
Voronoi diagram of S corresponds to the upper envelope of the planes and the
farthest Voronoi diagram of S corresponds to the lower envelope of the planes.
The transformation can also be vertically flipped so that the (k−1)-level corre-
sponds to the order-k Voronoi diagram, like in the case of distance functions.

21 2.1 Voronoi Diagrams and Arrangements

For simplicity in this dissertation we assume the flipped transformation. This
transformation is widely used in studying Voronoi diagrams.

The lifting transformation is often used for the construction of higher-order
Voronoi diagrams of points; see Section 2.3. However, there is no similar trans-
formation that can be applied to the construction of the higher-order Voronoi
diagrams of non point-sites, to the best of our knowledge.

Point-Line Duality Transformation The following standard transformation T
maps a point in Rd to a hyperplane in Rd and vice versa. This transformation is
so common in the computational geometry that it sometimes fails to be explicitly
mentioned when used. We call point p “dual” to hyperplane T (p) and vice versa
(also T (T (p)) = p).

We can use the duality transformation when we transform the lower enve-
lope to the convex hull (or the opposite). Similarly, we use the duality transfor-
mation when we transform the (k−1)-level to the k-sets; see Section 2.4.

In the case when d = 2, it maps a point to a line in Rd and for this reason it
is often called a point-line duality transformation. For a 2D-case we map a point
T (p) = (a, b) in the primal plane to a line T (p) : y = ax − b in the dual plane.
Points transform to lines and lines transform to points by the formulas:

(a, b) → y = ax − b
y = ax + b → (a,−b)

In the 3D-case, points transform to planes and planes transform to points by the
formulas:

(a, b, c) → z = ax + b y − c
z = ax + b y + c → (a, b,−c)

In the general d-dimensional case, points transform to hyperplanes and hyper-
planes transform to points by the formulas:

(p1, . . . , pd) → xd =
∑d−1

i=1 pi x i − pd

xd =
∑d−1

i=1 pi x i + pd → (p1, . . . ,−pd)

The main property of the transformation is that it preserves the relative position
of the geometric objects. The point p is above the hyperplane h iff the point T (h)
is above the hyperplane T (p).

This transformation is also rich on useful properties. For instance, consider
the points p1, . . . , pn ∈ R2 in convex position, where each point belongs to the
upper part of the convex hull. Apply the duality transformation and receive the
lines T (p1), . . . , T (pn), where each line participates in the lower envelope. In

22 2.2 Nearest Neighbor and Farthest Voronoi Diagrams

p1

p2 p3

p4

ℓ1

ℓ2

ℓ3 T (p1)

T (p2)
T (p3)

T (p4)

T (ℓ1)

T (ℓ2)

T (ℓ3)

Figure 2.4. Duality transformation performed on four points in convex position.

this dissertation, we say that lines/planes/hyperplanes are in convex position if
they correspond to the points in the convex position, under the duality transfor-
mation, see Figure 2.4.

We use this transformation throughout the thesis.

2.2 Nearest Neighbor and Farthest Voronoi Diagrams

In this section we give a brief overview of nearest neighbor Voronoi diagrams
and farthest Voronoi diagrams. For k = 1 the order-k Voronoi diagram is the
nearest neighbor Voronoi diagram. For k = n−1 the order-k Voronoi diagram
is the farthest Voronoi diagram. We use these results as the corner cases in our
investigation of higher-order Voronoi diagrams of polygonal objects for general
k. In particular, we use the structural complexity bounds for k = 1 and k =
n−1 to derive the structural complexity bound for general k in the case of line
segments, see Chapter 3. The construction algorithms for higher-order Voronoi
diagrams discussed throughout the dissertation use the construction algorithms
for k = 1 and k = n−1 for subroutines.

The nearest neighbor Voronoi diagram of points is the oldest and the most
well-studied Voronoi diagram. The structural complexity is O(n), where n is
the number of points. In particular, the number of faces F1 is equal to n. The
lifting transformation (see Section 2.1) allows to study the nearest neighbor
Voronoi diagram of points as the projection of planes in R3. It is also dual to the
Delaunay triangulation. The unbounded faces of the nearest neighbor Voronoi
diagram correspond to sites that appear on the convex hull of points. Therefore
the number of unbounded faces U1 is equal to the size of the convex hull. There
are construction algorithms available with the best deterministic time complexity
O(n log n) and O(n) space complexity [43].

The farthest Voronoi diagram of points is a counterpart of the nearest neigh-

23 2.2 Nearest Neighbor and Farthest Voronoi Diagrams

bor Voronoi diagram of points. The structural complexity is also O(n). However,
the number of faces Fn−1 is less or equal to n. In fact all faces are unbounded
and therefore the number of unbounded faces Un−1 is equal to the total number
of faces Fn−1. Moreover, the structure of the farthest Voronoi diagram of points is
a tree. The unbounded faces of the farthest Voronoi diagram correspond to sites
that appear on the convex hull of points. This immediately implies U1 = Un−1 for
the same set of sites. This is a very useful property for the structural complexity
analysis. For instance, one can derive V1 + Vn−1 = 2(n−1), where V1 is the total
number of nearest neighbor Voronoi vertices and Vn−1 is the number of farthest
Voronoi vertices. This equality does not depend on the position of the sites. It is
used in the structural complexity analysis of the order-k Voronoi diagram [31].
For general k this property is known as symmetry property, see Chapter 3. There
are also construction algorithms available for the farthest Voronoi diagram of
points, with O(n log n) time complexity and O(n) space complexity [10, Sec-
tion 6.5.1].

The nearest neighbor Voronoi diagram of line segments is also well-studied.
For disjoint line segments and line segments forming a planar straight-line graph,
the structural complexity is O(n), see [52]. For intersecting line segments the
structural complexity is O(n+ I), where I is the number of intersections, which
can be quadratic. For line segments forming a planar straight-line graph there
are construction algorithms available with O(n log n) time complexity and O(n)
space complexity [52, 58, 91].

The farthest Voronoi diagram of line segments was studied only recently,
showing properties surprisingly different from the case of points [9]. For in-
stance, in the case of line segments the farthest Voronoi region may discon-
nect into Ω(n) faces. However, the overall structural complexity of the farthest
Voronoi diagram is O(n), same as for points. The structural complexity also re-
mains linear, O(n) even in the case of intersecting line segments. The structure
of the farthest Voronoi diagram is a tree, the same as for points. There is a con-
struction algorithm available with O(n log n) time complexity and O(n) space
complexity [9]. However, the number of unbounded faces Un−1 = Fn−1 of the
farthest Voronoi diagram is not equal to the number of unbounded faces of the
nearest neighbor Voronoi diagram U1. This narrows down the number of tech-
niques that can be used to study the order-k Voronoi diagram of line segments,
see Chapter 3.

The nearest neighbor Voronoi diagram was also studied for curved objects [7,
91]. The structural complexity is the same as in the case of line segments. Con-
struction algorithms with O(n log n) time complexity and O(n) space complexity
are also available.

24 2.3 Construction Algorithms

The farthest Voronoi diagram of simple polygons was also studied only re-
cently [29]. Simple polygons introduce additional complications in comparison
to points and line segments. In particular, the bisectors can be closed curves,
which happens even in the case of disjoint polygons that are not enclosed. Since
line segments are a special case of simple polygons, the farthest Voronoi dia-
gram of simple polygons can also have disconnected regions. The structural
complexity is O(n). A construction algorithm with O(n log3 n) time complexity
is available.

2.3 Construction Algorithms

In this Section we give an overview of construction algorithms for higher-order
Voronoi diagrams of points. Some of these algorithms use the lifting transfor-
mation. The lifting transformation allows us to reduce the construction of the
order-k Voronoi diagram of points in R2 to the construction of the (k−1)-level
of planes in R3. Planes have the following important properties that are used by
some of the algorithms:

• The plane is uniquely defined by the three points. For instance, this prop-
erty is used in Clarkson’s algorithm [30];

• We can triangulate an arrangement of planes in R3. For instance, this
operation is used by the algorithm of Agarwal et al. [2];

• We can consider the intersection of the rest of the 3D-arrangement with
one of the planes, which allows us to operate in 2D. This operation is used
by Chazelle and Edelsbrunner [28].

Moreover, the planes obtained by the lifting transformation are tangent to the
paraboloid and they are said to be in convex position (the dual points are in con-
vex position). The planes in convex position are naturally easier to investigate
than the planes in general position. Consequently, the lifting transformation is
often the method of choice.

Lee’s Iterative Algorithm The iterative algorithm by Lee [59] was the first
construction algorithm for higher-order Voronoi diagrams of points. Starting
with the nearest neighbor Voronoi diagram of points, the algorithm iteratively
constructs the order-i Voronoi diagram using the order-(i−1) Voronoi diagram,
until i = k is reached. The iterative algorithm has O(k2n log n) time complexity,

25 2.3 Construction Algorithms

which is greater than the complexity of the order-k Voronoi diagram, O(k(n−k)).
However, the algorithm constructs not only the order-k Voronoi diagram but all
order-i Voronoi diagrams for i ≤ k. For some applications, the construction of
all order-i Voronoi diagrams is needed, i ≤ k. In this case the iterative algorithm
is very close to efficient. The iterative algorithm is also very efficient for small
values of k. The simplicity of the iterative algorithm makes it easy to implement.
The fact that the algorithm does not use any point-specific transformations al-
lows it to be extended to some non-point sites, see Sections 4.4 and 6.3.

The Improvement of the Iterative Algorithm of Aggarwal et al. The nature of
the iterative algorithm implies the construction of all order-i Voronoi diagrams
for i ≤ k. Their total complexity is O(k2n). Therefore we may try to improve
the running time of the algorithm by reducing the logarithmic factor. The con-
struction of the order-i Voronoi diagram is done by subdividing the face F of the
order-(i−1) Voronoi diagram with the nearest neighbor Voronoi diagram V(SF),
where SF is the set of the sites defined by the neighboring faces. Lee’s version
of the iterative algorithm constructs V(SF) using the ordinary construction al-
gorithm for the nearest neighbor Voronoi diagrams in O(|SF | log |SF |) time. We
can improve the subdivision step using the properties of V(SF). Namely, V(SF)
has a tree structure inside the face F and the ordering of the sites SF along the
boundary of F is known. This allows the deterministic linear time construction
of V(SF); see the algorithm by Aggarwal et al. [5]. The total construction time
is therefore O(k2n+n log n), since we still need to construct the order-1 Voronoi
diagram using the O(n log n) algorithm. The original description of the algo-
rithm by Aggarwal et al. is specific to points, since it uses the fact that the points
are in convex position. However, this property can be extended to the “tree-like”
structures that include non-point sites, see [51].

The Sweepline Algorithm of Rosenberger Rosenberger proposed a sweepline
algorithm for higher-order Voronoi diagrams of weighted points [76]. His al-
gorithm refers to the surfaces represented by the distance functions; however
this transformation is not essential for the algorithm. The algorithm extends
the idea of Fortune’s algorithm [43] to higher-order Voronoi diagrams. The
algorithm sweeps the plane with the horizontal line while maintaining the ≤ k-
level of parabolas. Similarly to the iterative algorithm, it constructs not only the
order-k Voronoi diagram, but all order-i Voronoi diagrams for i ≤ k. The time
complexity is O(k2n log n).

26 2.3 Construction Algorithms

The Zone Algorithm of Chazelle and Edelsbrunner Chazelle and Edelsbrun-
ner proposed the first algorithm which constructs the order-k Voronoi diagram
directly, without constructing the diagrams of lower orders [28]. We refer to this
as “the zone algorithm” because it reduces the problem to computing the zone of
a certain arrangement. The algorithm is an improvement of the algorithm pro-
posed by Edelsbrunner [37]. The algorithm performs the lifting transformation
and constructs the (k−1)-level of planes in R3. However, the transformation
is not essential for the algorithm and in Section 6.4 we show how to use the
same idea without the transformation. The algorithm takes one of the planes
and considers the intersection of the (k−1)-level with it. It then constructs the
intersection and the process is repeated n times for each of the planes. Depend-
ing on the data structures used in the construction process, the algorithm can
have O(n2 log n+ k(n−k) log2 n) or O(n2 + k(n−k) log2 n) time complexity. The
intersection of the plane and the rest of the arrangement can also be considered
without the geometric transformations. In this case it becomes the boundary of
the k-neighborhood described in the Sections 3.1 and 6.4.

The Semi-dynamic Randomized Algorithm of Boissonat et al. The algorithm
of Boissonnat et al. [18] allows us to add points after the order-k Voronoi dia-
gram is constructed. This is the first algorithm that allows us to add the points
without reconstructing the entire order-k Voronoi diagram. It introduces the k-
Delaunay tree data structure, which can be used to deduce all order-i Voronoi
diagrams for i ≤ k. With the insertion of the new point, the algorithm updates
the k-Delaunay tree. The k-Delaunay tree contains all successive versions of all
order-i Voronoi diagrams for i ≤ k and it allows fast point location. The total
expected construction time is O(n log n+ k3n).

The Algorithm of Aurenhammer Aurenhammer introduced a beautiful trans-
formation for higher-order Voronoi diagrams of points S in Rd [8]. The transfor-
mation maps a set of points in Rd to a single point in Rd+1. Each subset H ⊂ S
of size k is associated with the point ξ(H) = (ξ1, . . . ,ξd+1), where

(ξ1, . . . ,ξd) =
∑

p∈H

p,

ξd+1 =
∑

p∈H

p2.

The lower part of the convex hull of the set of points Ξ = {ξ(H) | H ⊂ S, |H|= k}
in Rd+1 corresponds to the order-k Voronoi diagram of points S in Rd . Since the

27 2.3 Construction Algorithms

number of points in Ξ is
�n

k

�

and the complexity of the order-k Voronoi diagram
is O(k(n−k)), it is clear that the majority of the points in Ξ do not contribute
to the lower part of the convex hull. The transformation is obviously specific
to points. The algorithm constructs the order-k Voronoi diagram of n points in
O(k2n log n) time.

The On-Line Randomized Incremental Algorithm of Aurenhammer and
Schwarzkopf Based on the previous algorithm Aurenhammer and Schwarzkopf
developed an on-line randomized incremental algorithm [11]. An on-line ran-
domized incremental algorithm constructs the order-k Voronoi diagram adding
the points one by one, while maintaining the intermediate order-k Voronoi di-
agram. Thus it can be used in a dynamic setting. The time complexity of the
algorithm is O(k2n log n+ nk log3 n).

In addition to the construction algorithm, Aurenhammer and Schwarzkopf
investigated why it is so difficult to devise an efficient randomized incremental
algorithm for higher-order Voronoi diagrams of points and derived the following
result:

If the n sites are added at random while their order-k Voronoi diagram is
maintained, the expected number of Voronoi vertices that appear at some

intermediate stage during the algorithm is Θ(nk2). [11]

Suppose we have an algorithm that constructs the order-k Voronoi diagram
by adding points one by one and updating the entire order-k Voronoi di-
agram. The above result implies that during this process we encounter
Θ(nk2) expected number of vertices. Since all of these vertices have to
be constructed, the running time of the algorithm can not be better than
Θ(nk2).

Therefore we need to avoid maintaining the entire intermediate order-
k Voronoi diagram in incremental algorithms. For instance, the algorithm
of Agarwal et al. (see below) maintains only the necessary parts of the
intermediate order-k Voronoi diagrams.

The Algorithm of Mulmuley Mulmuley proposed an output sensitive random-
ized algorithm to construct the order-k Voronoi diagram of points [66]. The
algorithm also constructs all order-i Voronoi diagrams for i ≤ k, and it is output-

28 2.3 Construction Algorithms

sensitive with respect to their total size, which is O(k2n). The expected running
time of the algorithm is O(k2n+ n log n). The algorithm constructs the order-k
Voronoi diagram by applying the lifting transformation and then constructing
the ≤ k-level of planes in R3. It can also be used for higher-dimensions where
output sensitivity is important.

The Randomized Divide and Conquer Algorithm of Clarkson Clarkson de-
veloped an abstract framework for the random sampling technique [30]. The
framework provided a number of new combinatorial results as well as the con-
struction algorithm for higher-order Voronoi diagrams of points. Later this frame-
work was extended and generalized by Clarkson and Shor, and since then it is
called the Clarkson-Shor framework [31]. Clarkson’s algorithm lifts the points
on the paraboloid and finds all possible k-sets in R3 (see the definition of k-set
in the Section 2.4). It is a randomized divide and conquer algorithm which uses
the algorithms of Lee [59], Chazelle and Edelsbrunner [28] to solve the prob-
lem for small subinstances. The time complexity analysis uses the combinatorial
results of the Clarkson-Shor framework. The algorithm has O(kn1+ε) expected
time complexity, where ε > 0 is a constant.

The main idea of Clarkson’s algorithm is to cut the set of points into smaller
subsets that allow independent construction. This is achieved through defining
the notion of a conflict that allows us to “bracket” the space. The subsets may
however overlap. Moreover, the “conquer” step of the divide and conquer ap-
proach requires verification of the results of the computation for smaller subsets.
However, the complicated expected time complexity analysis proves that the ex-
pected running time is good enough, O(kn1+ε). The analysis uses the following
trick: it performs both the lower and the upper bound complexity analysis at the
same time. Thus the conflicts are said to “bracket” the space. It allows to bound
the size of the subsets and the depth of the recursion at the same time.

Despite the fact that the algorithm exploits the lifting transformation and the
properties of the planes in R3, we have developed an extension of the algorithm
to the case of higher-order abstract Voronoi diagrams, see Chapter 6.

The Algorithm of Agarwal et al. Agarwal et al. proposed the first construction
algorithm with eO(kn) time complexity [2], where eO-notation hides a polyloga-
rithmic factor in this dissertation. The algorithm does the lifting transformation
and then constructs the k-level of planes in R3. It inserts the planes one by one;
however, it does not maintain the complete k-level in between. Instead it main-
tains those parts of the intermediate k-levels that can potentially contribute to

29 2.3 Construction Algorithms

the final k-level. The algorithm also performs a triangulation of the arrangement
of the planes to achieve the representation of the arrangement through the sim-
plices. In the process the simplices are evaluated with respect to their possible
contribution to the final k-level, and those simplices that can not contribute are
discarded. The expected running time of the algorithm is O(n log3 n+ nk log n).

The Algorithm of Chan Chan presents the following result [23]:

Given an algorithm that constructs a k-level of n planes in R3 in O(f (n)) time
(where f (n) is a regular function) we can construct the k-level in

O(n log n+ (n/k) f (k)) expected time.

We can use the lifting transformation to reduce the problem of constructing the
order-k Voronoi diagram of points to constructing the k-level of planes in R3.
Chan plugs the algorithm of Agarwal et al. [2] in the above formula and derives
the algorithm with O(n log n+ nk log k) expected running time complexity.

Chan’s result is extremely important since it allows us to speed up almost
any construction algorithm for higher-order Voronoi diagrams of points.

The Randomized Divide and Conquer Incremental Algorithm of Ramos
Ramos proposed a randomized construction algorithm that combines the divide
and conquer approach with incremental construction [74]. For small subin-
stances of the problem it uses the bruteforce method. It also combines the results
of Agarwal et al. [2] to subdivide the arrangement. This implies O(n log3 n +
nk2c log∗ n) time complexity1. Plugging this result into Chan’s result, Ramos re-
ceives an algorithm with O(n log n+nk2c log∗ k) expected running time complexity,
where c is a constant.

The Zone Algorithm of Chan In the remarks on the k-level algorithm on the
plane [22] Chan discusses the possibility of applying the new algorithms and
data structures to the old approach of Chazelle and Edelsbrunner [28]. Using
the algorithm for constructing the k-level of lines in R2 [22], Chan’s algorithm
can construct the order-k Voronoi diagram of points in O(n2 log n+m log1+ε n)
deterministic time, where m is the structural complexity of the diagram. One
can combine this approach with the results of the other paper of Chan [23] to
achieve the best deterministic time O(nk log1+ε k · (log n/ log k)O(1)).

The following tables summarize the running time of the algorithms.

1The iterated logarithm, log∗ is the number of times the logarithm function must be iteratively
applied before the result is ≤ 1, for most practical applications it is less than 6.

30 2.4 k-Sets and k-Levels

Time complexity Author(s)
O(k2n log n) Lee [59]
O(k2n+ n log n) Aggarwal et al. [5]
O(k2n log n) Rosenberger [76]
O(k(n−k)

p
n log n) Edelsbrunner [37]

O(n2 log n+ k(n− k) log2 n) Chazelle and Edelsbrunner [28]
O(n2+ k(n− k) log2 n) Chazelle and Edelsbrunner [28]
O(n log n+ k3n) Randomized Semi-dynamic Boissonnat et al. [18]

Table 2.1. The algorithms that do not use the transformations or the usage is
not essential.

Time complexity Author(s)
O(k2n log n) Aurenhammer [8]
O(k2n log n+nk log3 n) On-line Ran-
domized Incremental

Aurenhammer and Schwarzkopf [11]

O(k2n+ n log n) Randomized Mulmuley [66]
O(kn1+ε) Randomized Clarkson [30]
O(n log3 n+ nk log n) Randomized Agarwal et al. [2]
O(n log n+ nk log n) Randomized Chan [23]
O(n log n+ nk2c log∗ k) Randomized Ramos [74]
O(nk log1+ε k · (log n/ log k)O(1)) Chan [22]

Table 2.2. The algorithms that use the transformations

Whether the usage of point-specific transformations is essential or not in a par-
ticular algorithm is an arguable question. However, one can be sure that there
is no simple way to generalize the algorithms in Table 2.2 to general sites other
than points. This is due to the fact that there is no transformation for sites like
line segments that maps them to a simple geometric object like a plane, to the
best of our knowledge.

2.4 k-Sets and k-Levels

In this section we present important results on k-sets and k-levels. The combi-
natorial and algorithmic results on k-sets and k-levels are used in most of the
construction algorithms discussed in Section 2.3. We use the results on the k-
levels of curves in every chapter of this dissertation. Moreover, the combinatorial

31 2.4 k-Sets and k-Levels

problems of the k-sets/k-levels bear close resemblance to the problem of finding
the optimal construction algorithm for order-k Voronoi diagrams, as we will see
later in this section.

Consider a set of points S in R2. We call H a k-set, |H| = k if there is a line
that separates H and S \ H. The duality transformation implies the immediate
relation between the k-sets of points in R2 and the k-level of lines in R2. Namely,
the number of k-sets of a set of points is the total complexity of the k-level and
(n−k)-level of the dual lines (see the duality transformation in Section 2.1).

The k-sets can be similarly defined for d-dimensions. In Rd we call H a k-
set, |H| = k if there is a hyperplane that separates H and S \ H. The k-set then
corresponds to a k-level of hyperplanes in Rd .

The structural complexity of the k-level of curves/surfaces in Rd is an open
question for d ≥ 2. Moreover, even the structural complexity of the k-level of
lines (or equivalently, k-sets) in R2 is a long-standing open problem. Erdős,
Lovász, Simmons and Straus conjectured that the number of k-sets of n points
in R2 is bounded by O(n(k+ 1)ε), for every fixed ε > 0 [42].

k-sets and k-levels are important tools for higher-order Voronoi diagrams.
The usage of k-sets and k-levels in construction algorithms is described in de-
tail in Section 2.3. However, while using the lifting transformation to reduce the
problem of constructing the higher-order Voronoi diagram of points to construct-
ing the k-level of planes it is absolutely necessary to take into account the fact
the the produced planes are tangent to the paraboloid. Otherwise constructing
the k-level of general planes is a hard problem.

Counting the number of k-sets in R2 is a long-standing open problem. How-
ever, counting the number of ≤ k-sets is relatively easy. We call H a ≤ k-set
if it is a i-set, where i ≤ k. Goodman and Pollack showed that for k < n/2 the
number of ≤ k-sets is less than 2nk−2k2−k, see [45]. Alon and Györi improved
later the upper bound to kn, see [6]. The bounds are mostly derived by study-
ing the cyclic sequences which are more general than the k-sets. The results are
very important for the structural complexity analysis of the higher-order Voronoi
diagrams of points. Both Lee’s [59] and Edelsbrunner’s [38] derivations of the
O(k(n−k)) structural complexity bound for higher-order Voronoi diagrams of
points use the results on ≤ k-sets.

The looser bounds are also available for structural complexity of the ≤ k-
levels in the arrangements of general Jordan curves. The Clarkson-Shor frame-
work provides an important result that implies the following result:

g≤k(n) = O
�

(k+ 1)d g0

�� n

k+ 1

���

,

32 2.4 k-Sets and k-Levels

where g≤k(n) is the structural complexity of the ≤ k-level in the arrangement of
n Jordan curves, g0(n) is the structural complexity of the lower envelope in the
arrangement of n Jordan curves and d = 2. The bound can also be applied in
general d-dimensions. If a pair of curves intersects O(1) number of times then
the Davenport-Schinzel Sequences can be used to bound g0(n), see [84].

Unfortunately, there is a lack of tight bounds for k-sets and k-levels. It is sur-
prising how the problem of bounding the structural complexity of the k-level (as
opposed to ≤ k-level) bears close resemblance with the problem of construct-
ing only the order-k Voronoi diagram (as opposed to constructing all order-i
Voronoi diagrams for i ≤ k). In the following tables we summarize the most
recent results on the structural complexity of the k-level.

Class of objects Best upper bound

Lines in R2 O(nk1/3) [35]
Planes in R3 O(nk3/2) [86]
Hyperplanes in R4 O(n2k2−1/18) [1, 27, 83]
Hyperplanes in Rd O(nbd/2cdd/2e−αd), [1, 12, 27]
2-intersecting curves in R2 O(n3/2 log n) [26]
3-intersecting curves in R2 O(n2−1/(3+

p
7)) = O(n1.823) [26]

s-intersecting curves in R2 O(n2− 1
2s−(s−1)αs) [26]

Pseudo-planes in R3 O(nk1.9966) [1, 27]

Table 2.3. The most recent results on the upper bounds of the complexity of
the k-level.

Class of objects Best lower bound

Lines in R2 n2Ω(
p

log k) [89]

Planes in R3 nk2Ω(
p

log k) [89]

Table 2.4. The most recent results on the lower bounds of the complexity of
the k-level.

In Table 2.3, αs is a function of s, see [26], αd is equal to 1/(2d)d . Pseudo-
planes are surfaces where each triple intersects at most once. The upper bound
of Dey on the lines in R2 is hard to improve, since Dey’s proof works for a more
general problem than k-sets, for which there is a matching lower bound [25, 35].

For the historical overview of the k-level in R2, see [22, 90]. For complexity
bounds of the k-level in higher dimensions, see [27].

Chapter 3

Higher-Order Voronoi Diagrams of
Line Segments

Among all possible types of polygonal objects, line segments are the simplest,
but also the most interesting. Surprisingly, the order-k Voronoi diagram was
investigated only for the case of points. In this chapter we are going to fill this
gap.

We define the order-k Voronoi diagram of line segments S as a partitioning
of the plane into regions, such that each point within a fixed region has the
same closest k line segments, similarly to the definition of the order-k Voronoi
diagram of points. For instance, the order-k Voronoi region of H can be defined
as:

Vk(H, S) = {x | ∀s ∈ H,∀t ∈ S \H d(x , s)< d(x , t)}, (3.1)

where H ⊂ S and |H|= k.
The partitioning of the plane into order-k Voronoi regions gives the order-k

Voronoi diagram of S:

Vk(S) =
⋃

H⊂S,|H|=k

∂ Vk(H, S). (3.2)

The distance between a point p and a line segment s is measured as the minimum
distance, d(p, s) =minq∈s d(p, q).

Unlike points, line segments have a dimension which allows them to stretch
across the plane and exert their influence in multiple places. The dimensionality
of the line segments manifests itself in disconnected regions which represents
the phenomenon of the same k line segments inducing faces in multiple areas
on the plane. In fact, as we will see in Section 3.1, a single order-k Voronoi

33

34

Figure 3.1. The order-2 Voronoi diagram of line segments. The shaded faces
correspond to the order-2 Voronoi region induced by the pair of bold line seg-
ments.

region may disconnect into Ω(n) faces, for k > 1. Figure 3.1 illustrates an order-
2 Voronoi diagram of line segments. Surprisingly, the union of all faces induced
by the same segment is a connected set, nevertheless.

The order-k Voronoi diagram of line segments has even more properties dif-
ferent from its counterpart for points.

• In the case of points the faces are convex polygons. In the case of line
segments they are not convex and the edges are composed of line segments
and parabolic arcs.

• In the case of points the unbounded faces of the order-k Voronoi diagram
correspond to the k-sets, see Section 2.4. In the case of line segments we
have to use the relation with k-level, which is a more general structure
than k-sets, see Section 3.2.

• For points, the relation with k-sets implies the symmetry property: the
number of unbounded faces of the order-k Voronoi diagram is equal to the
number of faces of the order-(n−k) Voronoi diagram. For line segments
this property does not hold.

However, despite all these differences, the structural complexity for disjoint
line segments is the same as for points, O(k(n − k)). This property gives us
a reason to think that some of the construction algorithms for points can be
extended to handle the case of disjoint line segments, while preserving their

35 3.1 Properties of Voronoi Regions

time and space complexity. This however is not trivial and is discussed in detail
in every chapter of this dissertation.

Intersecting line segments allow additional complication which is not pos-
sible in the case of points. Since each pair of line segments may produce an
intersection, the total number of intersections is quadratic. This is expected to
bring input in the overall structural complexity of the higher-order Voronoi di-
agram. For instance, for the nearest neighbor Voronoi diagram the structural
complexity is O(n + I), where I is the number of intersections. However, de-
spite the influence of the intersections on the low-order Voronoi diagrams, the
influence grows weaker as the order increases. In fact, it converges to linear
when approaching the farthest Voronoi diagram. For general k the structural
complexity is:

O(k(n− k) + I), k < n/2
O(k(n− k)), k ≥ n/2

The structural properties remain the same even for the general Lp metric, for
1 ≤ p ≤ ∞. The cases of L1 and L∞ are the corner cases that have additional
interesting properties. For instance, in L1/L∞ the farthest Voronoi diagram of
disjoint line segments has O(1) structural complexity. As an implication, the
structural complexity of the order-k Voronoi diagram of disjoint line segments
allows tighter bounds:

O(k(n− k)), k < n/2
O
�

(n− k)2
�

, k ≥ n/2

The standard method to construct the order-k Voronoi diagram is the itera-
tive method, see Section 3.5. It is simple and efficient if we need to construct all
order-i Voronoi diagrams for i ≤ k. It is also useful when we need to construct
only the order-k Voronoi diagram for small values of k. The standard iterative
algorithm has O(k2n log n) deterministic time complexity and O(kn) space com-
plexity.

3.1 Properties of Voronoi Regions

Let S = {s1, s2, . . . , sn} be a set of n line segments in R2. Line segments are as-
sumed disjoint in this section and Section 3.2, but in subsequent sections they
may touch at endpoints or intersect. Unless stated otherwise, we make the gen-
eral position assumption (applicable to disjoint line segments) that no more than
three sites touch the same circle and no more than two endpoints lie on the same
line.

36 3.1 Properties of Voronoi Regions

The bisector of two segments si and s j is the locus of points equidistant from
both segments, i.e., b(si, s j) = {x | d(x , si) = d(x , s j)}. For two disjoint line
segments in the Euclidean plane, b(si, s j) is a curve, which consists of a constant
number of line segments, rays, and parabolic arcs. Unlike the bisectors of points,
the bisectors of line segments can intersect a multiple number of times or not
intersect at all.

The important part of the structural complexity analysis of the higher-order
Voronoi diagram is the analysis of the unbounded faces. We use the structural
properties of unbounded faces to show the lower bound for the number of dis-
connected faces of a single Voronoi region. The combinatorial properties of the
unbounded faces are very important for the analysis of the structural complexity
of the entire diagram, see Section 3.2.

The following lemma gives the main property of the unbounded faces. It is
a simple generalization of [9] for 1≤ k ≤ n− 1.

Lemma 3.1.1. Consider a face F of region Vk(H, S). F is unbounded (in the direc-
tion r) iff there exists an open halfplane (normal to r) that intersects all segments
in H but no segment in S \H.

Proof. (⇒) Let F be an unbounded face of region Vk(H, S). Let x ∈ Vk(H, S), and
let r be a ray emanating from x to an unbounded direction of the face. Since
x ∈ Vk(H, S), x is the center of the open disk that intersects all segments in H
and does not intersect segments in S \ H. While we move x along r towards
infinity, the disk expands until it becomes an open halfplane that intersects all
segments in H but no segment in S \H. Thus, such a halfplane exists.
(⇐) Let h be an open halfplane that intersects all segments in H but no

segment in S \ H. Let h′ be the open halfplane h translated parallel to itself
until one of the segments s ∈ H stops intersecting h. At this moment, s touches
the boundary of h′ at some point x . Consider the ray r in h emanating from x
orthogonal to the boundary of h. Let D be a disk centered at an arbitrary point
y on r, which intersects all segments in H. Then, D ⊂ h, which means that D
does not intersect any segment in S\H. Therefore, y ∈ Vk(H, S). Since the point
y ∈ r was taken arbitrarily, the ray r is entirely enclosed in Vk(H, S), i.e., the
Voronoi region is unbounded in this direction.

Definition 1. A supporting halfplane of segments s1, s2 ∈ S and H ⊆ S, where
s1, s2 6∈ H, is an open halfplane h whose boundary passes through endpoints of
s1, s2 (at least one endpoint of each segment), with the property that h intersects all
segments in H but no segment in S \H.

37 3.1 Properties of Voronoi Regions

s1
s2

s3

F

s4
s5

s6 s7

b(s3, s5) b(s3, s4)

b(s1, s4)b(s1, s5)

Figure 3.2. The obstacles in between the long segments H induce n− k + 1
disconnectivities in the region of V3(H, S), H = {s1, s2, s3}, k = 3. The face
F ⊂ V3(H, S) is enclosed in between bisectors b(s3, s5), b(s3, s4), b(s1, s5) and
b(s1, s4).

Corollary 3.1.2. (of Lemma 3.1.1) There is an unbounded Voronoi edge separat-
ing regions Vk(H ∪ {s1}, S) and Vk(H ∪ {s2}, S) if and only if there is a halfplane
supporting s1, s2, and H.

For line segments, a single order-k Voronoi region may be disconnected and it
may consist of multiple disjoint faces, unlike its counterpart for points. For exam-
ple in Figure 3.1, the order-2 Voronoi region of the pair of line segments shown
in bold, consists of two faces, which are shown shaded. This phenomenon was
first pointed out by Aurenhammer et al [9] for the farthest line segment Voronoi
diagram, where a single Voronoi region was shown possible to disconnect into
Θ(n) faces in the worst case.

Lemma 3.1.3. For k > 1, an order-k region of Vk(S) can have Ω(n) disconnected
faces in the worst case.

Proof. We first describe an example where an order-k Voronoi region is discon-
nected into n−k−1 bounded and two unbounded faces. Consider a set H of k
almost parallel long segments. These segments induce a region Vk(H, S). Con-
sider the minimum disk that intersects all segments in H, and moves along their
length. We place the remaining n−k segments of S \ H in such a way that they
create obstacles for the disk. While the disk moves along the tree of V f (H), it
intersects the segments of S\H one by one and creates Ω(n−k) disconnectivities
(see Figure 3.2).

In particular, Vk(H, S) has n−k−1 bounded and two unbounded faces.
We now follow [9] and describe an example in which an order-k Voronoi

region is disconnected into k unbounded faces. Consider n − k segments in

38 3.1 Properties of Voronoi Regions

s1

s2

s3
s4s5, s6, s7

Figure 3.3. During the rotation of the directed line, the positions in which the
open halfplane to the left of it intersects all non-degenerate segments, alternate
with the positions in which it does not.

s1

s2
s3s4

s5, s6, s7

g(s5, s4)g(s5, s3)

b(s5, s4)

b(s5, s3)

F

Figure 3.4. The alternations produce bisectors that bound distinct unbounded
faces of the region V4(H, S).

S \ H, degenerated into points and placed close to each other. The remaining
k non-degenerate segments in H are organized in a cyclic fashion around them
(see Figure 3.3).

Consider a directed line g through one of the degenerate segments s. Rotate
g around s and consider the open halfplane to the left of g. During the rotation,
the positions of g, in which the halfplane intersects all k segments, alternate
with the positions in which it does not (see Figure 3.3). The positions at which
the halfplane touches endpoints of non degenerate segments correspond to un-
bounded Voronoi edges, such as g(s5, s3) and g(s5, s4) in Figure 3.4, that define
an unbounded Voronoi face of Vk(H, S). Each pair of consecutive unbounded
Voronoi edges bounds a distinct unbounded face. Each unbounded edge corre-
sponds to a halfplane that touches an endpoint of a line segment in H. Thus, the

39 3.1 Properties of Voronoi Regions

t1 t2
s

h2 h1

p

t3

h3

Figure 3.5. Every endpoint of a segment s ∈ H can induce at most two support-
ing halfplanes.

number of unbounded faces of Vk(H, S) is |H|= k.
For small k, 1< k < n/2, the number of faces in the first example (n− k+1)

is Ω(n), while for large k, n/2 ≤ k ≤ n− 1, the number of faces in the second
example k is also Ω(n).

It may seem as if disconnected regions are present because of the crossings
between segments; however, this is not the case. In the example of Figure 3.4,
we can untangle the segments to form a non-crossing configuration, while the
same phenomena remain. Consider a segment s ∈ H whose endpoints define two
supporting halfplanes. We can move the endpoints of s along the boundaries
of the halfplanes away from the rest of the line segments in H, and untangle
all line segments in H, while maintaining the same halfplanes that define the
corresponding unbounded Voronoi edges. For k = n − 1, this was illustrated
in [9].

Lemma 3.1.4. An order-k region Vk(H, S) has O(k) unbounded disconnected faces.

Proof. We show that an endpoint p of a segment s ∈ H may induce at most two
unbounded Voronoi edges bordering Vk(H, S) (see Figure 3.5).

Consider two such unbounded Voronoi edges. By Corollary 3.1.2, there are
open halfplanes h1, h2, such that the boundary of h1 and h2 pass through point
p and the endpoints of the line segments t1 and t2, respectively. The open
halfplanes h1 and h2 intersect all line segments in H and do not intersect line
segments in S \ H. Thus, any other supporting halfplane h3, with boundary
passing through point p and an endpoint of some line segment s3 ∈ S \ H, must
intersect either t1 or t2. Since |H| = k and a segment has two endpoints, the
claim follows.

Although an order-k Voronoi region may be disconnected, the union of all

40 3.2 Structural Properties and Complexity

faces induced by a segment s is a connected region which encloses s. In particu-
lar, let

V N k(s, S) =
⋃

H⊂S,s∈H

Vk(H, S),

where X denotes the topological closure of the set X .
A set X is said to be weakly star-shaped with respect to a line segment s if for

every point x ∈ X there exists a point y ∈ s, such that the line segment x y is
entirely enclosed in X .

Lemma 3.1.5. Consider the order-k Voronoi diagram Vk(S). The union of all faces
in Vk(S) affiliated with a segment s, V N k(s, S), is weakly star-shaped with respect
to s (s ∈ V N k(s, S)).

Proof. Let x be an arbitrary point in V N k(s, S). Denote by Dk(x) the minimum
disk, centered at x , that intersects at least k line segments, and by Ds(x) the min-
imum disk, centered at x , that touches the line segment s. Since x ∈ V N k(s, S), x
must be in one of the regions Vk(H, S), where s ∈ H. Therefore, Ds(x)⊆ Dk(x).

Let y be a point on the line segment s that is closest to x . Consider an
arbitrary point a on the line segment x y . Then, Ds(a) ⊆ Ds(x) ⊆ Dk(x). This
implies that the line segment s is the ith-closest line segment from point a, where
i ≤ k. Therefore, a ∈ V N k(s, S). Since a is taken arbitrarily, the entire line
segment x y is enclosed in V N k(s, S).

3.2 Structural Properties and Complexity

In this section we show structural properties of the order-k Voronoi diagram of n
disjoint line segments and prove that its combinatorial complexity is O(k(n−k)),
despite the presence of disconnected regions.

We first prove Theorem 3.2.7, which is a generalization to line segments of
the formula in [59, Theorem 2], which counts the total number of faces of Vk(S)
as a function of n, k, and the number of unbounded faces. To this aim, we exploit
the fact that the farthest line-segment Voronoi diagram is a tree structure [9].
Then in Lemma 3.2.8, we analyze the number of unbounded faces in the order-k
Voronoi diagram in a dual setting (see e.g. [20]) by using the results on arrange-
ments of wedges [9, 40] and (≤k)-level in arrangements of Jordan curves [84].
We derive the result by combining Theorem 3.2.7 and Lemma 3.2.8.

The definition of an order-k Voronoi region implies that two adjacent order-k
Voronoi faces must differ in exactly two sites. Therefore, any point on a Voronoi
edge separating two faces, must be the center of a disk that intersects k+1 and

41 3.2 Structural Properties and Complexity

touches two line segments. Under the general position assumption, an order-k
Voronoi vertex v is incident to three Voronoi edges and to three faces. There are
two cases [59]:

1. The incident order-k Voronoi regions are Vk(H ∪ {a}, S), Vk(H ∪ {b}, S),
Vk(H ∪ {c}, S);

2. The incident order-k Voronoi regions are Vk(H∪{a, b}, S), Vk(H∪{b, c}, S),
Vk(H ∪ {c, a}, S).

In the first case, |H|= k− 1 and v is called a new order-k Voronoi vertex. In the
second case, |H| = k− 2 and v is called an old order-k Voronoi vertex. In both
cases, v is the center of the disk whose interior intersects all the line segments
in H, and whose boundary touches the line segments a, b and c. Thus, Voronoi
vertices in Vk(S) are classified into new and old. A new Voronoi vertex in Vk(S) is
an old Voronoi vertex in Vk+1(S), and it appears for the first time in the order-k
diagram. Under the general position assumption, an old Voronoi vertex in Vk(S)
is a new Voronoi vertex in Vk−1(S).

Lemma 3.2.1. Consider a face F of the region Vk+1(H, S) (|H| = k + 1). The
portion of Vk(S) enclosed in F is exactly the portion of the farthest Voronoi diagram
V f (H) enclosed in F.

Proof. Let x be a point in F . Suppose x belongs to the region Vk(H j, S) of Vk(S).
Then H j is the set consisting of the k line segments closest to x . Let {s j}= H\H j;
then s j is the k+1-closest line segment to x . Therefore, s j is the line segment
farthest from x , among all segments in H. Therefore, x ∈ Vf (s j, H).

Suppose x belongs to the edge separating regions Vk(H j, S) and Vk(Hr , S) of
Vk(S). Then we can show in a similar way that x belongs to the edge separating
farthest regions Vf (s j, H) and Vf (sr , H), where {s j} = H \ H j and {sr} = H \
Hr .

Consider a region Vf (s, H) of the farthest line-segment Voronoi diagram,
V f (H). This region has the following visibility property, see Figure 3.6.

Lemma 3.2.2 (Visibility property in a farthest Voronoi region). Let x be a point
in a farthest Voronoi region Vf (s, H) of V f (H). Let r(s, x) be the ray realizing
the distance d(s, x), emanating from point p ∈ s such that d(p, x) = d(s, x), and
extending to infinity. The ray r(s, x) must intersect the boundary of Vf (s, H) at
a point ax , and the unbounded portion of r(s, x) beyond ax must lie entirely in
Vf (s, H).

42 3.2 Structural Properties and Complexity

Fi

Fi−1. . .

Fi+1

x

p

Vf (s,H)

s

y
Dy

Dx

ax

Figure 3.6. The part of the ray r(s, x) beyond ax entirely belongs to Vf (s, H).

Proof. Consider a point y along r(s, x), which is a slight translation of the point
x towards p. Let Dx (resp., Dy) be the minimum disk centered at x (resp., y),
that intersects all segments in H. Then, Dy ⊂ Dx . The disk Dy intersects all
segments in H and touches s at point p, which implies that y ∈ Vf (s, H). If we
continue to move y towards p, the disk Dy will eventually touch some segment
in H \ {s}, at position y = ax . Therefore, the point ax belongs to an edge of the
farthest Voronoi diagram V f (H). Now, if we move y , starting from x and away
from p, then the disk Dy will continue to contain Dx and touch s. Therefore, the
part of the ray r(s, x) beyond ax must entirely belong to Vf (s, H).

Using this property, we derive the following lemma.

Lemma 3.2.3. Let F be a face of a region Vk+1(H, S) in Vk+1(S). The graph struc-
ture of Vk(S) enclosed in F is a tree that consists of at least one edge. Each leaf of
the tree is incident to an old Voronoi vertex on the boundary of F (see Figure 3.6).

Proof. Consider a point x in F (see Figure 3.6) and let s be the segment in H
farthest away from x . Consider the ray r(s, x), and the point ax as defined
in Lemma 3.2.2. Lemma 3.2.2 implies that ax is a point in the interior of F ,
therefore, F must contain a portion of the tree of V f (H), and, thus Lemma 3.2.1
implies that F must contain at least one edge of Vk(S).

Now we prove that the portion of Vk(S) enclosed in F is connected. Lemma 3.2.1
implies that this portion is equal to the portion of V f (H) enclosed in F . Assume,
to the contrary, that the portion of V f (H) enclosed in F is disconnected. Then,

43 3.2 Structural Properties and Complexity

there is a subface Fi of F that separates two disconnected subtrees of V f (H), say,
T1 and T2. Let Fi ⊆ Vf (s, H), v be a point on the boundary of Vf (s, H) between
T1 and T2, and r(s, v) be the ray that realizes the distance from s to v extending
to infinity. The visibility property of Vf (s, H) in Lemma 3.2.2 implies that the
portion of r(s, v) beyond v belongs entirely to Vf (s, H). Since T1 and T2 bound
Fi, the ray r(s, v) must intersect Fi beyond the point v. Consider the minimum
disk centered at v, that intersects all segments in H. The disk must also intersect
some segments in S \ H because v does not belong to F . If we move the center
of the disk along r(s, v) away from s, the new minimum disk will contain the
previous disk, and, therefore, it will also intersect the same segments in S \ H.
Thus, no portion of r(s, v) can be in F , which is a contradiction.

Corollary 3.2.4. Consider a face F of the Voronoi region Vk+1(H, S). Let m be the
number of Voronoi vertices in the portion of Vk(S) enclosed in the interior of F.
Then, F encloses 2m+1 Voronoi edges of Vk(S).

Let Fk, Ek, Vk, and Uk denote the number of faces, edges, vertices and un-
bounded faces in Vk(S) respectively. By the Euler’s formula we derive the fol-
lowing lemma.

Lemma 3.2.5.

Ek = 3(Fk − 1)− Uk (3.3)

Vk = 2(Fk − 1)− Uk (3.4)

Proof. Consider Vk(S) and connect every unbounded edge with an artificial point
at infinity. Then Euler’s formula implies that Fk − Ek + Vk = 1.

Consider the dual graph of Vk(S). Connect every vertex of the dual graph,
representing an unbounded face of Vk(S), with an artificial point at infinity.
Then, under the general-position assumption, every face in the dual graph must
have exactly three edges, and every edge is adjacent to exactly two faces. There-
fore, 3(Vk + Uk) = 2(Ek + Uk). The combination of these equations proves the
lemma.

Lemma 3.2.6. The total number of unbounded faces in the order-k Voronoi dia-
gram of all orders is

n−1
∑

i=1

Ui = n(n− 1).

Proof. Consider an arbitrary pair of segments s1 and s2. There are exactly two
open halfplanes r1 and r2 that touch s1 and s2. Corollary 3.1.2 implies that these

44 3.2 Structural Properties and Complexity

open halfplanes define unbounded Voronoi edges for some order-(k1+1) and
order-(k2+1) Voronoi diagrams, where k1 and k2 are the numbers of segments
that r1 and r2 intersect, respectively. In addition, any unbounded Voronoi edge
is induced by such a halfplane. Thus,

∑n−1
i=1 Ui = 2

�n
2

�

= n(n− 1).

Theorem 3.2.7. The number of faces in the order-k Voronoi diagram of n disjoint
line segments is

Fk = 2kn− k2− n+ 1−
k−1
∑

i=1

Ui (3.5)

or, equivalently, Fk = 1− (n− k)2+
n−1
∑

i=k

Ui (3.6)

Proof. Let Vk, V ′k and V ′′k be the number of Voronoi vertices, new Voronoi vertices,
and old Voronoi vertices in Vk(S), respectively. (Notation follows [59].) Then,
Vk = V ′k + V ′′k = V ′k + V ′k−1.

Following [59], we obtain a recursive formula for the number of faces Fk of
the order-k Voronoi diagram. Assuming that segments do not intersect, F1 =
n, since each segment induces exactly one face in V1(S). In V2(S), each face
encloses exactly one edge of V1(S), thus, F2 = E1. Then by Lemma 3.2.5 we
derive F2 = 3(F1− 1)− U1, thus, F2 = 3(n− 1)− U1.

We now prove that Fk+2 = Ek+1 − 2V ′k (Claim 1). Note that V ′1 = V1 and
V1 = 2(n − 1) − U1 (using Eq. (3.4) of Lemma 3.2.5). The definition of old
Voronoi vertices implies that old Voronoi vertices of Vk+1(S) lie in the interior of
the faces of Vk+2(S). Consider a face Fi of Vk+2(S). Let mi be the number of old
Voronoi vertices of Vk+1(S) enclosed in the interior of Fi. Then, Fi encloses ei =
2mi+1 Voronoi edges of Vk+1(S) (see Corollary 3.2.4). Summing up the numbers
of all faces in Vk+2(S), we obtain that

∑Fk+2

i=1 ei = 2
∑Fk+2

i=1 mi + Fk+2. However,
∑Fk+2

i=1 mi = V ′′k+1 = V ′k and
∑Fk+2

i=1 ei = Ek+1. Therefore, Fk+2 = Ek+1 − 2V ′k , and,
Claim 1 follows.

We now use Claim 1 to obtain a recursive formula for Fk. Summing up Fk+2

and Fk+3, we obtain Fk+3 = Ek+2 + Ek+1 − Fk+2 − 2V ′k+1 − 2V ′k = Ek+2 + Ek+1 −
Fk+2 − 2Vk+1. We then substitute Eqs. (3.3) and (3.4) in the last formula and
obtain

Fk+3 = 2Fk+2− Fk+1− 2− Uk+2+ Uk+1. (3.7)

where, F1 = n and F2 = 3(n− 1)− U1. Because F2 = E1, Eq. (3.7) can also be
derived for F3, i.e. the formula applies to k ≥ 0.

45 3.2 Structural Properties and Complexity

By induction, using Eq. (3.7) and the above base cases, we derive Eq. (3.5).
Lemma 3.2.6 implies that

∑k−1
i=1 Ui +

∑n−1
i=k Ui =

∑n−1
i=1 Ui = n(n− 1). Combining

this result with Eq. (3.5), we derive Eq. (3.6).

Lemma 3.2.8. Given a set S of n line segments,

n−1
∑

i=k

Ui = O(n(n− k)).

Proof. We use the well-known point-line duality transformation T that maps a
point p = (a, b) in the primal plane to a line T (p) : y = ax− b in the dual plane,
and vice versa (see [9]). We call the set of points above both lines T (p) and
T (q) the wedge of s = (p, q). Consider a line ` and a segment s = (p, q). The
segment s is above the line ` if and only if the point T (`) is strictly above lines
T (p) and T (q) [9].

Consider the arrangement W of the wedges wi, i = 1, . . . , n, corresponding to
the segments in S = {s1, . . . , sn}. For our purposes in this section, the complexity
of the r-level and the (≤r)-level is the number of their vertices, excluding the
wedge apices. We denote the maximum complexity of the r-level and the (≤r)-
level of n wedges by gr(n) and g≤r(n), respectively. We first prove the following
claim.

Claim 3.2.9. The number of unbounded Voronoi edges of Vk(S), unbounded in
direction φ ∈ [π, 2π], is exactly the number of vertices shared by the (n−k−1)-
level and the (n−k)-level of W. Thus, Uk = O(gn−k−1(n)).

Proof of Claim. Let si, s j be two line segments that define an unbounded bisector
in a direction φ ∈ [π, 2π]. Then, there is a line ` passing through their end-
points, such that the open halfplane `− below ` intersects k−1 line segments and
does not intersect si nor s j. Then, ` passes strictly below n−(k−1)−2= n−k−1
line segments. Thus, ` corresponds to a point p in the arrangement of wedges
shared by the (n−k−1)-level and (n−k)-level (see Figure 3.7). By the above
claim

n−1
∑

i=k

Ui = O(g≤n−k−1(n)). (3.8)

Since the arrangement of wedges is a special case of arrangements of Jordan
curves, we use a formula from [84] to bound the complexity of the (≤r)-level
in such an arrangement:

g≤r(n) = O
�

(r + 1)2 g0

�� n

r + 1

���

(3.9)

46 3.2 Structural Properties and Complexity

w1

w2

w3

w4
w5

p q

T (p)

T (q)
s5s1

s2

s3
s4

r(s2, s3)

Figure 3.7. (a) In the dual plane, the point p belongs to the 2-level and the
3-level of the arrangement W ; (b) In the primal plane, the halfplane r(s2, s3)
below T (p) defines the unbounded Voronoi edge that separates V2({s2, s4}, S)
and V2({s3, s4}, S).

The complexity of the lower envelope of such wedges g0(n) is O(n) [9, 40].
(In [84] one can find the weaker bound g0(n) = O(n log n)). Therefore, g≤r(n) =
O(n(r+1)). By substituting this into Eq. (3.8) we obtain that

∑n−1
i=k Ui = O(n(n−

k)).

By combining Lemma 3.2.8 and Theorem 3.2.7, we obtain the following re-
sult.

Theorem 3.2.10. The combinatorial complexity of the order-k Voronoi diagram of
n disjoint line segments is

Fk = O(k(n− k)).

Proof. For 1≤ k < n/2, Eq. (3.5) implies that Fk = O(k(n− k)).
For n/2 ≤ k ≤ n − 1, Lemma 3.2.8 implies that

∑n−1
i=k Ui = O(n(n − k)) =

O(k(n− k)). The dual formula (3.6) implies that Fk = 1− (n− k)2+
∑n−1

i=k Ui ≤
∑n−1

i=k Ui, which is O(k(n− k)).

47 3.3 Intersecting Line Segments

3.3 Intersecting Line Segments

In this section we extend our complexity results of Section 3.2 to intersecting line
segments with a total of I intersection points, I = O(n2). We show that segment-
intersections influence the Voronoi diagram for small k and the influence grows
weaker as k increases. For k ≥ n/2, intersections no longer affect the asymptotic
complexity of the order-k Voronoi diagram.

In the following, we extend Lemma 3.2.6, Theorem 3.2.7, and Theorem 3.2.10
to intersecting line segments as Lemma 3.3.1, Theorem 3.3.2, and Theorem 3.3.3,
respectively. To simplify the analysis, we assume that no two segments share a
common endpoint and that no more than two segments intersect at the same
point. Recall that the numbers of faces, edges, vertices, and unbounded faces of
Vk(S) are denoted as Fk, Ek, Vk, and Uk, respectively.

Lemma 3.3.1. The total number of unbounded faces in the order-k Voronoi dia-
gram for all orders is

n−1
∑

i=1

Ui = n(n− 1) + 2I .

Proof. Consider a pair of line segments. If the pair does not intersect, then it
defines exactly two open halfplanes, such that each halfplane induces exactly
one unbounded Voronoi edge in Vk(S) for some order k (see Lemma 3.2.6). If
the pair intersects, then it induces exactly four such unbounded Voronoi edges.
Thus, each pair of intersecting segments induces exactly two additional un-
bounded Voronoi edges, in addition to those counted in Lemma 3.2.6. There-
fore, the total number of unbounded faces in all orders is

∑n−1
i=1 Ui = 2

�n
2

�

+2I =
n(n− 1) + 2I .

Theorem 3.3.2. The number of faces in the order-k Voronoi diagram of a set S of
n line segments with I intersections is:

Fk = 2kn− k2− n+ 1−
k−1
∑

i=1

Ui + 2I (3.10)

or equivalently Fk = 1− (n− k)2+
n−1
∑

i=k

Ui (3.11)

Proof. Consider the partitioning of segments into pieces as obtained by their in-
tersection points. Every component of a segment induces exactly one face in
V1(S), thus, V1(S) has two types of vertices: (1) I intersection points, which
are incident to exactly four Voronoi edges each; and (2) V1 − I regular Voronoi

48 3.3 Intersecting Line Segments

vertices, which are incident to three Voronoi edges each (under the general po-
sition assumption). Regular Voronoi vertices are the new vertices of V1(S), thus,
V ′1 = V1− I .

Consider the dual graph of V1(S), augmented with a vertex at infinity to
connect the dual of unbounded faces. Using standard arguments, 2E1 = 4I +
3(V1− I) + U1 (see also the proof of Theorem 3.2.10). Note that the dual graph
consists of faces of four edges each that correspond to intersections, and faces
of three edges each that correspond to regular Voronoi vertices of V1(S). Euler’s
formula and the latter equation imply E1 = 3(F1 − 1) − U1 − I . Thus, E1 =
3n− 3− U1 + 5I . By Euler’s formula, V1 = 1+ E1 − F1 = 1+ E1 − n− 2I , thus,
V1 = 2n− 2− U1+ 3I .

Consider now V2(S), which has two types of faces: faces that contain exactly
one edge of V1(S) and faces that contain an intersection point of V1(S). As a
result, the total number of faces in V2(S) is F2 = (E1−4I)+I = E1−3I . Therefore,
F2 = 3(F1−1)−U1−4I = 3(n−1)−U1+2I . Since all Voronoi vertices of V2(S)
have degree three, Lemma 3.2.5 implies that E2 = 3F2− 3− U2. Plugging in the
formula for F2, we obtain E2 = 9n− 12− 3U1− U2+ 6I .

For an order i-diagram, i ≥ 3, every vertex of the diagram and every vertex
of the farthest subdivision is incident to exactly 3 edges, and thus, Claim 1 in
the proof of Theorem 3.2.7 and its proof remain identical. Thus, the recursive
formula of Eq. (3.7) remains valid for any k ≥ 1.

Using Claim 1 of Theorem 3.2.7, F3 = E2−2V ′1 = E2−2(V1− I). Plugging in
the formulas obtained for E2 and V1, we obtain F3 = 5n− 8− U1− U2+ 2I .

Since the recursive formula in Eq. (3.7) remains valid for any k ≥ 1, we can
use induction, with bases cases the above formulas for F2 and F3, and derive
Eq. (3.10). Note that the main difference with the derivation of Theorem 3.2.7
are the base cases F1, F2, and F3, where F3 is no longer obtained by Eq. (3.7).
Then Eq. (3.11) can be derived from Eq. (3.10) using Lemma 3.3.1.

Theorem 3.3.3. The combinatorial complexity of the order-k Voronoi diagram of
n properly intersecting line segments with I intersections is

O(k(n− k) + I), for 1≤ k < n/2;

O(k(n− k)), for n/2≤ k ≤ n− 1.

Proof. For 1 ≤ k < n/2, Eq. (3.10) of Theorem 3.3.2 directly implies Fk =
O(k(n− k) + I). The proof of Lemma 3.2.8 remains valid for any set of arbi-
trary line segments, including intersecting ones. Thus, for n/2 ≤ k ≤ n − 1,
Eq. (3.11) of Theorem 3.3.2 and Lemma 3.2.8 imply Fk = O(k(n− k)).

49 3.4 Extending to the Lp Metric

3.4 Extending to the Lp Metric

The results of Sections 3.2 and 3.3, extend naturally to the general Lp, 1 ≤ p ≤
∞, metric.

Consider the disk n(x , r) centered at point x of radius r in the Lp metric,

n(x , r) = {y | d(x , y) ≤ r}, where d(x , y) =
�

|x1− y1|p + |x2− y2|p
�1/p and

x = (x1, x2), y = (y1, y2). As the radius r tends to the infinity the disk tends
to become a halfplane [57], for 1 < p < ∞. This observation implies that
any observations on supporting halfplanes and the unbounded order-k Voronoi
regions remain identical for any p, 1 < p < ∞, see Lemma 3.1.1, Def. 1 and
Corollary 3.1.2. Similarly, Lemmas 3.2.6 and 3.3.1 also remain the indentical.

The results of Lemmas 3.2.1-3.2.3 in Section 3.2 are proved using the tech-
niques of expanding the moving disks. The following lemma shows the key
observation used in the proofs of these lemmas.

Lemma 3.4.1. Let x , y, z be the three points placed from left to right along the line.
Consider the disk n(y, d(y, x)) centered at the point y and the boundary passing
through the point x. Consider the disk n(z, d(z, x)) centered at the point z and
the boundary passing through the point x. Then the former disk is enclosed in the
latter, i.e. n(y, d(y, x))⊂ n(z, d(z, x)).

Proof. The proof is straightforward if one uses the property that the disk n(x , r)
is convex in Lp metric, 1≤ p ≤∞.

Lemma 3.4.1 explicitly uses the fact that for 1 ≤ p ≤∞ the metric is convex
and it does not hold for p < 1. Thus the results of Lemmas 3.2.1-3.2.3 hold in
general Lp metric, for 1≤ p ≤∞. Therefore, the formulas of Theorem 3.2.7 and
the O(k(n− k)) complexity bound of Theorem 3.2.10 remain the same in Lp for
1< p <∞.

Similarly for Lemma 3.3.1, and Theorems 3.3.2, 3.3.3, in case of intersecting
line segments. Thus, all structural properties of the order-k Voronoi diagram in
the Euclidean metric remain the same in Lp, for 1< p <∞.

In the remaining of this section, we extend our results to the L∞ metric
(equiv. L1). In the L∞ metric, as the radius r tends to the infinity, the disk
n(x , r) tends to become a quadrant. A quadrant is the common intersection of
two halfplanes, which are defined by axis parallel perpendicular lines. Therefore
in L∞ metric, the equivalent of a supporting halfplane (see Def. 1) is a supporting
quadrant. Thus, Corollary 3.1.2 is adapted as follows: There is un unbounded
Voronoi edge separating the L∞ unbounded regions Vk(H ∪ {s1}, S) and Vk(H ∪
{s2}, S) if and only if there is an open quadrant that touches s1 and s2, intersects

50 3.4 Extending to the Lp Metric

Figure 3.8. Examples of supporting quadrants of pairs of line segments in the
L∞ metric.

all line segments in H, but no line segment in S \H. Such a quadrant is called a
supporting quadrant (see e.g., Figure 3.8).

In L∞, a pair of disjoint line segments admits two supporting quadrants and
a pair of intersecting line segments admits four supporting quadrants. Thus,
Lemmas 3.2.6 and 3.3.1 remain valid. We now extend Lemma 3.2.8 to the L∞
metric.

Lemma 3.4.2. In L∞ (resp. L1), for a given set of n line segments,

n−1
∑

i=k

Ui = O(n(n− k)).

If segments are disjoint then

n−1
∑

i=k

Ui = O
�

(n− k)2
�

.

Proof. The duality transformation in the proof of Lemma 3.2.8 is not extendible
to the L∞ metric. Instead, we use the abstract framework presented in [30, 31,
82].

51 3.5 Iterative Construction

Let a supporting quadrant be called a configuration. A configuration is de-
fined by two line segments s1 and s2 if there is a quadrant whose boundary
touches s1, s2 and its interior does not intersect s1, s2. A configuration is said to
be in conflict with line segment s′ if its supporting quadrant does not intersect
s′. The weight of a configuration is the number of its conflicts. The maximum
number of configurations of weight i in a set of n line segments is denoted as
Ni(n), and the maximum number of configurations of weight at most i is denoted
as N≤i(n). The configurations with weight i correspond to unbounded Voronoi
edges in the order-(n−i−1) Voronoi diagram, thus Un−i−1 ≤ Ni(n). The configu-
rations with weight 0 correspond to unbounded edges in the farthest Voronoi di-
agram. The Clarkson-Shor abstract framework implies N≤i(n) = O

�

i2N0(n/i)
�

.
Substituting i = n− k− 1, we derive

n−1
∑

i=k

Ui ≤ N≤n−k−1(n) = O
�

(n− k− 1)2N0

� n

n− k− 1

��

(3.12)

In L∞, N0(n) is O(n) for arbitrary line segments, and O(1) for non-crossing
line segments [34, 70]. Substituting these values in Eq. (3.12), we derive
∑n−1

i=k Ui = O(n(n− k)) for arbitrary line segments, and
∑n−1

i=k Ui = O
�

(n− k)2
�

for non-crossing line segments.

Using Lemma 3.4.2 in place of Lemma 3.2.8, we can extend the proofs of
Theorems 3.2.10 and 3.3.3 to the L∞ metric in a straightforward way. For non-
crossing line segments, Lemma 3.4.2 directly implies a tighter bound. The same
tighter bound was shown for points in [60] by a different derivation based on
a Hanan grid, which is not applicable to line segments. We summarize in the
following theorem.

Theorem 3.4.3. The structural complexity of order-k Voronoi diagram of n arbi-
trary line segments, with I intersections, in the Lp metric, 1≤ p ≤∞, is:

O (k(n− k) + I) , for 1≤ k < n/2;

O (k(n− k)) , for n/2≤ k ≤ n− 1;

O
�

(n− k)2
�

, for n/2≤ k ≤ n− 1, non-crossing segments and p = 1,∞.

3.5 Iterative Construction

To compute the diagram, we can use the standard iterative approach to con-
struct higher-order Voronoi diagrams (see e.g., [59]). The iterative construction

52 3.5 Iterative Construction

is basic, and although not very efficient for arbitrary k, it can be valuable to
applications, where lower order diagrams are required in any case, see Sec-
tion 1.1.1.

The iterative construction can be described as follows:

• Construct V1(S) using any available algorithm with O(n log n) time com-
plexity.

• For i = 1, . . . , k− 1 do:

– For every face F of every region Vi(H, S) of Vi(S) compute the part of
V1(S \H) enclosed within F .

– Remove/Disregard the edges of Vi(S).

Given a face F of region Vi(H, S), let SF denote the collection of segments in
S\H that define edges along the boundary of F , ∂ F . Let V1(F) denote the portion
of V1(SF) in the interior of F . By the definition of an order-(i+1) region, V1(F)
corresponds exactly to V1(S \ H) within F . The main operation of the iterative
construction is to compute V1(F). Figure 3.9 illustrates an unbounded face F and
its internal subdivision by V1(F). If F is unbounded, V1(F) is augmented with
an artificial point at infinity, which is assumed to be incident to all unbounded
Voronoi edges, see Figure 3.12.

Because order-k Voronoi regions may be disconnected, a segment s ∈ SF may
appear multiple times along ∂ F . However, the appearances of the line segments
along ∂ F form an order-2 Davenport-Schinzel sequence (DSS) and therefore the
complexity of ∂ F is linear on |SF |, see the following lemma.

Lemma 3.5.1. The appearances of disjoint line segments in SF along ∂ F form an
order-2 DSS. The appearances of intersecting line segments in SF along ∂ F form an
order-4 DSS.

Proof. Consider a pair of disjoint line segments sa and sb. Denote as a and b
their appearances along ∂ F . Then we want to prove that there is no a, b, a, b
subsequence along ∂ F , see Figure 3.9. Suppose there is a subsequence a, b, a
then we prove that b cannot occur another time after a. Consider line segment
sa and consider a pair of points x1 and x2 on ∂ F that belong to the left and right
appearance of sa in a, b, a sequence. Let y1, y2 ∈ sa be a pair of points closest to
points x1 and x2, respectively. Consider a pair of line segments x1 y1 and x2 y2.
Points x1, x2 correspond to the appearances of sa and line segments x1 y1, x2 y2

realize the shortest distance to sa. Thus line segments x1 y1, x2 y2 do not intersect
the line segment sb. The line segment sb does not also intersect the line segment

53 3.5 Iterative Construction

sa

sb

a

b

a

x1

x2

s1

s2
V2({s1, s2}, S)

y1

y2

Figure 3.9. A face F of an order-2 Voronoi region V2({s1, s2}, S) and the parti-
tioning V1(F) of the face F , where S = {s1, s2, sa, . . . , sd}.

sa and the boundary ∂ F . Moreover, there is an appearance of the line segment
sb along the boundary of ∂ F between the points x1 and x2. Therefore, the line
segment sb is enclosed within the region bounded by the segments sa, x1 y1, x2 y2

and the boundary ∂ F .

For the sake of contradiction suppose the line segment sb has an appearance
on ∂ F to the right of the point x2. Let x3 be a point that belongs to the ap-
pearance. Consider a point y3 ∈ sb closest to x3. Since line segment sb is inside
the region and the point x3 is outside the region, the line segment x3 y3 must
intersect either sa or x2 y2. Suppose that x3 y3 intersects x2 y2 (the case when it
intersects sa is similar).

Consider a disk D(x , s) of minimum radius centered at a point x that inter-
sects a line segment s. For any z ∈ x3 y3 D(z, sb) ⊆ D(x3, sb). Since x3 is closer
to sb than to sa the disk D(x3, sb) does not intersect sa; therefore D(z, sb) does
not intersect sa, z ∈ x3 y3. Similarly, for any z′ ∈ x2 y2 D(z′, sa) ⊂ D(x2, sa), and
D(z′, sa) does not intersect sb, z′ ∈ x2 y2. Let z′′ be an intersection point of x2 y2

and x3 y3. Then there a disk D(z′′, sa) which intersects a line segment sa but does
not intersect sb, and a disk D(z′′, sb) which intersects a line segment sb but does
not intersect sa. First means that sa is closer to z′′ than sb and second means that
sb is closer to z′′ than sa, a contradiction. Therefore the appearances of the line
segments in SF along ∂ F form an order-2 DSS 3.9.

54 3.5 Iterative Construction

s1

s2

s3

Figure 3.10. The order-1 Voronoi diagram of intersecting line segments
s1, s2 and s3. The boundary of the face of the order-1 Voronoi region
V1({s1}, {s1, s2, s3}) has appearances of line segments s2, s3 which form an order-
4 Davenport-Schinzel sequence.

We want to prove that the appearances of intersecting line segments along
∂ F form an order-4 DSS. Consider a pair of line segments s2 and s3 that intersect
at point a. The bisector of s2 and s3 has four unbounded branches. We want to
prove that only two following cases are possible: (1) ∂ F intersects each of the
branches at most once; (2) ∂ F intersects one of the branches twice and does not
intersect other branches. The first case immediately implies that the appearances
of s2 and s3 form an order-4 DSS, because of the following observation: Since
each branch intersects ∂ F at most once, there are at most five alternations of
the appearances of line segments s2 and s3, which implies that the sequence is
of order-4, see Figure 3.10. The second case also implies that the apperances of
s2 and s3 form an order-4 DSS, because there can be at most three alternations
of the appearances of line segments s2 and s3.

Now let us prove that only these two cases can happen (the proof follows
Figure 3.11). Suppose the first case does not happen, which means that ∂ F
intersects some branch at least once. Then we want to prove that ∂ F does
not intersect other branches. Consider two intersection points of the branch
with ∂ F , and consider two disks centered at the points and are touching line
segments s2 and s3. Let D1 be the greater disk and D2 be the smaller disk. D1

touches a line segment s1 which induces the face F . D2 intersects or touches the
line segment s1, because D2 is centered on the boundary of the face F induced
by the line segment s1. Disk D1 touches the line segments s2 and s3 at two points

55 3.5 Iterative Construction

s1

s2

s3

D1

D2

x2

x3

c1

a

Figure 3.11. The proof of Lemma 3.5.1.

x2 and x3. Points x2 and x3 split the boundary of D1 into two arcs. Since D2

intersects or touches s1, s1 touches the arc which is closer to D2. Let c1 be the
center of the disk D1. We want to prove that the face F is enclosed in polygon
c1 x2ax3. There is obviously a part of F inside the polygon c1 x2ax3 and F does
not intersect s2 and s3. Consider a disk of minimum radius that intersects at
least k line segments that is centered at a point on line segments c1 x2 or c1 x3. If
we move the center of the disk slightly outside the polygon it stops intersecting
s1. Therefore there are no points of the face F outside c1 x2ax3. Therefore the
face F is enclosed is the polygon c1 x2ax3. Therefore the boundary ∂ F does not
intersect any other branches of the bisector between line segments s2 and s3.
Therefore only the two cases discussed above can happen, which implies that
the appearances of s2 and s3 form an order-4 DSS.

A single line segment may appear Θ(|SF |) times as illustrated in Figure 3.12.
Nevertheless, V1(F) always remains a tree structure as shown in the following
lemma. In fact, using the visibility property of Lemma 3.5.2, it is not hard to see
that the sequence of segment appearances along ∂ F form a DSS of order-2, if
segments do not intersect.

Lemma 3.5.2. The graph structure of V1(F) is a tree1. Any face P of V1(F) has the
following visibility property: For every point x in P, there exists a point ax on ∂ F
such that the open segment xax lies entirely in P, where ax is the first intersection

1In case of an unbounded face F , we assume an artificial vertex at infinity incident to all
unbounded edges

56 3.5 Iterative Construction

V1({s1}, SF)

V1({s2}, SF)

s1

H

s2 s3 s4 s5 s6

V1({s3}, SF) V1({s4}, SF) V1({s5}, SF) V1({s6}, SF)

V1({s1}, SF)

Figure 3.12. A face of an order-i Voronoi region induced by set H of line
segments, for i = 3. The segment s1 contributes linear number of subfaces.

of ∂ F and the ray r(s, x) emanating from s, which realizes d(s, x), where s is the
line segment that induces the face P in V1(F) (see Figure 3.12).

Proof. Let Di+1(x) be the order-(i+1) disk centered at point x in P. Di+1(x)
touches segment s and intersects all segments in H. Let y be an arbitrary point
along segment xax . Since y ∈ F , disk Di+1(y) must intersect all line segments
in H. Furthermore, since y is closer to s than x and Di+1(x) touches s, Di+1(y)
must also touch s. Thus, y ∈ P. Since y is taken arbitrarily, the segment xax

must lie entirely in P.
Since every face of V1(F)must touch ∂ F , the graph structure T of V1(F)must

be a tree or a forest. To prove that T is a tree it is enough to show that every
occurrence of a segment s ∈ SF along ∂ F corresponds to a distinct face of V1(F).
To this aim, consider a point y on ∂ F between two consecutive occurrences of
segment s on ∂ F . Ray r(s, y) cannot intersect any face P of s because for any
point x along the portion of r(s, y) in P segment xax is not entirely contained
in P. Thus, if x was in a face of s the above visibility property would not hold
for x , see Figure 3.13. Thus, the two distinct occurrences of s along ∂ F must
correspond to distinct faces of s at opposite sides of r(s, y). Therefore, T must
be a tree.

V1(F) can be computed in O(|SF | log |SF |+ |∂ F |) time by computing V1(SF)

57 3.6 Summary

P
y

s

x

Figure 3.13. Proof of Lemma 3.5.2. There is a point x ∈ r(s, y) that belongs to
P.

independently and truncating it within the interior of F . This results in the stan-
dard O(k2n log n)-time iterative construction (assuming non-crossing segments).
The space complexity corresponds to the size of the largest diagram among all
order-i Voronoi diagrams for i ≤ k. Thus the space complexity is O(kn). It was
recently shown that V1(F) can be computed directly in linear time, linear in the
complexity of ∂ F [51], thus, Vk(S) can be computed in O(k2n+ n log n) time.
This complexity bound has been known for points [5], however, the repetition
of site appearances along ∂ F , as shown in [51], makes the adaptation of this
result to line segments far from trivial.

3.6 Summary

In this chapter we have investigated the higher-order Voronoi diagram of line
segments. The case of line segments had not been studied before; however,
there is an obvious need for such investigation, see Section 1.1.1.

We have investigated the phenomenon of disconnected Voronoi regions and
proved that a single order-k Voronoi region may disconnect into Ω(n) faces, for
k > 1. We have also proven that the union of all faces induced by the same line
segment is a connected set with the “weakly star-shaped” property.

We have investigated the structural properties of the higher-order Voronoi
diagram of line segments. We have proven the visibility property in the farthest
Voronoi region. Using the point-line duality transformation and the results on
the complexity of ≤ k-level (see Section 2.4), we have bounded the number of
unbounded faces. Combining these two results we have derived the structural
complexity bound for disjoint line segments, O(k(n− k)).

We have investigated the case of intersecting line segments and proved the

58 3.6 Summary

following structural complexity bounds: O(k(n−k)+ I) for k < n/2 and O(k(n−
k)) for k ≥ n/2. The result is very interesting since it shows that the intersections
influence only the low-order Voronoi diagrams and the influence grows weaker
with increasing order.

We have extended the results to general Lp metric, for 1 ≤ p ≤ ∞. For L1

and L∞ we have derived a tighter structural complexity bound: O((n− k)2), for
k ≥ n/2.

We have also investigated the extension of the standard iterative construction
technique to the case of line segments. The iterative technique gives a very
simple way to construct the order-k Voronoi diagram of line segments. The
running time of the algorithm is O(k2n log n) and the space complexity is O(kn).
The algorithm is very useful in the case when all order-i Voronoi diagrams for i ≤
k are required. We have also discussed possible improvements of the algorithm.

Chapter 4

Higher-Order Voronoi Diagrams of a
Planar Straight-Line Graph

Line segments provide much more flexibility than points. However, in order to
make them useful in real-life applications they should be allowed to form com-
plicated solid structures. One of the most fundamental structures that can be
formed with line segments is a planar straight-line graph (or PSLG for short).
A PSLG is a graph in which the edges do not intersect and each edge is a line
segment. This is important for applications involving polygonal objects in the
plane, for an example see Section 1.1.1. Also, the PSLG can be used to approx-
imate curved structures to a certain extent. In this chapter we investigate the
higher-order Voronoi diagram of line segments forming PSLG.

Unlike disjoint or intersecting line segments, line segments forming a PSLG
introduce inconsistency in the definition of the order-k Voronoi region. Consider
a pair of line segments that share a common endpoint, see Figure 4.1(a). There
is a region of the plane which is equidistant from both line segments and thus
it cannot “favour” any of them, see also Figure 4.2. In terms of the bisectors it
means that a bisector is not a curve, but a two-dimensional object. Since the
edges of the higher-order Voronoi diagrams are composed of bisectors, we do
not want the bisectors to be two-dimensional, because this will alter the nature
of an edge. Furthermore, bisectors in PSLG may intersect non-transversely, see
Figure 4.1(b).

There is a large variety of perturbation methods dealing with the degen-
eracies, but not all of them are applicable in this case. For k = 1, a standard
convention to cope with the high-degree vertices of a PSLG, is to consider el-
ementary sites as distinct entities, see e.g., [52]. A segment consists of three
elementary sites: two endpoints and an open line segment. For k > 1, this stan-

59

60

s1 s2

b(s1, s2)

b(s1, s2)

s1

s2
s3

s4

b(s1, s4)
b(s2, s4)
b(s3, s4)b(s1, s4)

b(s2, s4), b(s3, s4)

(a) (b)

Figure 4.1. (a) A bisector containing a 2-dimensional portion; (b) Bisectors
intersecting non-transversely.

dard convention is not sufficient because the issue of equidistant regions from
multiple elementary sites remains, and it is independent of k. Moreover, the
standard convention, alters the definition of the problem under consideration.
For example, for k = n− 1, the farthest Voronoi diagram of the elementary sites
is the farthest-point Voronoi diagram of the segment endpoints, and not the far-
thest line-segment Voronoi diagram as defined in [9]. Similarly, this issue is not
addressed by other standard techniques, which deal with two-dimensional bi-
sectors, such as assigning a priority to sites while offering an entire equidistant
region to the segment of higher priority (e.g. [54]), or using an angular bisector
to split equidistant regions [9]. Perturbation techniques (see e.g., [79]) to trans-
form the PSLG into a set of disjoint line segments, may create artificial faces and
tedious decompositions that are unrelated to the problem under consideration,
see e.g., Figure 4.3. Moreover, these techniques eliminate the entire presence
of endpoints with a high degree of incidence. In applications such endpoints
represent some instances and thus we want to preserve all information related
to them.

Instead of altering the structure of a planar straight-line graph, we extend
the definition of the Voronoi regions, see Section 4.1. The extended definition is
compatible with the ordinary definition meaning that in the case of disjoint line
segments, they are equivalent. This achieves simplicity in the resulting order-k
decomposition, avoiding the tedious regions that would be created if we per-
turbed the PSLG into a set of disjoint line segments. It also reveals the exact

61

s1

s2

s3
s4

s5

s6

V2({s1, s2}, S)

V2({s5, s6}, S)

V2({s2, s3}, S)
V2({s3, s4}, S)

V2({s4, s5}, S)

degenerate area
of 2-dimensional

bisectors
?

Figure 4.2. The degenerate area created by the endpoint of PSLG in case we
use the ordinary definition of the order-k Voronoi diagram, where k = 2 and
S = {s1, . . . , s6}.

s1

s2

s3
s4

s5

s6

V2({s1, s2}, S)

V2({s5, s6}, S)

V2({s4, s6}, S)

V2({s1, s6}, S)
V2({s1, s4}, S) V2({s2, s4}, S)

V2({s2, s3}, S)
V2({s3, s4}, S)

V2({s4, s5}, S)

Figure 4.3. The order-k Voronoi diagram of untangled line segments, where
k = 2 and S = {s1, . . . , s6}. Artificial faces are shown shaded.

elementary site, which actually defines the order-k distance for every point in
the plane, similarly to the standard convention for k = 1 of considering distinct
elementary sites.

In Section 4.2 we show that the extended definition preserves the relation
between Voronoi diagrams and the arrangements of distance functions (see Sec-
tion 2.1). In Section 4.3 we prove that the asymptotic structural complexity does
not increase in the case of a planar straigh-line graph. In Section 4.4 we extend
the iterative algorithm and study its properties in the case of line segments.

62 4.1 Augmenting the Definition of a Voronoi Region

4.1 Augmenting the Definition of a Voronoi Region

In this chapter we make a weak general position assumption that no more than
three elementary sites are tangent or touch the same circle. In case the line
through a segment s is tangent to a circle C at one of the segment endpoints,
only the endpoint is considered to touch the disk C .

Definition 2. Let Dk(x) be the disk of minimum radius, centered at point x, which
intersects (or touches) at least k line segments. Dk(x) is called an order-k disk. If
Dk(x) touches exactly one elementary site p then it is called a proper order-k disk
and it is denoted as Dp

k(x). The set of line segments in S that have a non-empty
intersection with an order-k disk Dk(x) is denoted as Sk(x).

For every point x in the plane, Dk(x), and thus, Sk(x), are unique. If Dk(x)
is proper then x must be a point in the interior of a Voronoi region. Otherwise,
x must be a point along the bisector of two elementary sites.

For segments forming a PSLG, we extend the notion of a subset of S of car-
dinality k to an order-k subset, which may have cardinality greater than k.

Definition 3. A set H ⊆ S is called an order-k subset if

1. |H|= k (Type-1); or

2. |H| > k (Type-2), and there exists a proper order-k disk Dp
k(x), such that

Sk(x) = H and p is an endpoint common to at least two segments in H.
Point p is called a representative of H. An order-k subset of representative p
is denoted as Hp. The set of segments incident to p is denoted as I(p).

Remark. A set of segments H may have two (or more) representatives p, q,
resulting in two distinct order-k subsets Hp and Hq, where each has a distinct
region in Vk(S).

An order-k Voronoi region can now be defined in terms of order-k subsets
of S instead of cardinality-k subsets. For a Type-1 subset H, its order-k Voronoi
region Vk(H, S) is defined in the ordinary way Eq. (3.1) and it is referred to as
Type-1. This is equivalent to Vk(H, S) = {x | Sk(x) = H}. For a Type-2 order-k
subset H with representative p, its order-k Voronoi region Vk(Hp, S) is referred
to as Type-2 and it is defined as follows.

Vk(Hp, S) = {x | Sk(x) = Hp ∧ Dk(x) = Dp
k(x)}

o, (4.1)

where X o denotes the interior of a set X .

63 4.1 Augmenting the Definition of a Voronoi Region

s1

s2

s3

s4
s5s6

s7

s8

V1({s5, s6}a, S)

V1({s1, s6, s7}d, S)

V1({s1, s2}f , S) V1({s2, s3, s8}g , S)

V1({s3, s4}b, S)

V1({s5}, S) V1({s4}, S)

V1({s3}, S)

V1({s2}, S)

V1({s1}, S)

V1({s6}, S)

V1({s7}, S)

V1({s8}, S)

V1({s4, s5}c, S)V1({s7, s8}e, S)

a
b

c

d

e

f g

Figure 4.4. The order-1 Voronoi diagram of PSLG, where S = {s1, . . . , s8} are the
line segments and a, . . . , g are the endpoints. The Type-2 Voronoi regions are
shown shaded.

64 4.1 Augmenting the Definition of a Voronoi Region

V2({s1, s2}, S)

V2({s6, s5}, S) V2({s3, s4}, S)

V2({s3, s8}, S)

V2({s2, s8}, S)

V2({s4, s5}, S)

V2({s7, s5}, S)

V2({s7, s8}, S)

V2({s3, s4, s5}c, S)

V2({s4, s5, s8}c, S)

V2({s5, s7, s8}e, S)

V2({s2, s7}, S)

V2({s1, s6, s7}d, S)

V2({s2, s3, s8}g , S)

V2({s1, s7}, S)

V2({s6, s7}, S)

s1

s2

s3

s4
s5s6

s7

s8

a
b

c

d

e

f
g

Figure 4.5. The order-2 Voronoi diagram of PSLG, where S = {s1, . . . , s8} are the
line segments and a, . . . , g are the endpoints. The Type-2 Voronoi regions are
shown shaded.

65 4.1 Augmenting the Definition of a Voronoi Region

The order-k Voronoi diagram remains the partitioning of the plane into order-
k Voronoi regions and their boundaries, which reveal the graph structure of the
diagram consisting of Voronoi edges and vertices. Figures 4.4 and 4.5 illustrate
the 1st and 2nd order Voronoi diagrams of a PSLG. Type-2 Voronoi regions are
illustrated shaded. The following lemma gives the main property of a Type-2
Voronoi region.

Lemma 4.1.1. Let Vk(Hp, S) be a Type-2 order-k Voronoi region. For any point x in
Vk(Hp, S), and for any segments s ∈ Hp and t ∈ S\Hp, d(x , s)≤ d(x , p)< d(x , t).
Furthermore, Sk(x) = Sk+1(x). Vk(Hp, S) contains no graph elements of Vk−1(S)
nor of Vk+1(S).

Proof. The first claim directly derives by the definitions of Vk(Hp, S) and Dp
k(x)

for any point x in Vk(Hp, S). Since this is a Type-2 region, |Sk(x)|> k, thus, Sk(x)
must equal Sk+1(x). The last claim derives by the fact that Dk(x) is a proper
order-k disk, i.e., Dk(x) = Dp

k(x), for any point x in Vk(Hp, S), by its definition,
while a graph element of Vk−1(S) and Vk+1(S) must always correspond to a non-
proper order-k disk.

By Lemma 4.1.1, each Type-2 Voronoi region is assigned to exactly one end-
point of the PSLG and d(x , Hp) = d(x , p) for every point x in Vk(Hp, S). Con-
sequently there is no farthest subdivision inside a Type-2 Voronoi region. For
the same reason, a Type-2 order-k Voronoi region can only enlarge in the order-
(k + 1) diagram, spreading its influence into neighboring Type-1 regions. At
order k = |H|, Vk(Hp, S) becomes Type-1. Figures 4.6 and 4.7 illustrate the evo-
lution of a Type-2 region as the order of the diagram increases. Non-shaded
and shaded regions are Type-1 and Type-2 respectively. Details of the figures are
discussed below.

We now consider the properties of Voronoi edges and vertices in the presence
of Type-2 regions. A Voronoi edge bounding a Type-2 region is an ordinary
bisector between the region representative and one element of the neighboring
k-subset. A Voronoi vertex v is the intersection point of three ordinary bisectors,
under the weak general position assumption. Thus it can have a degree between
3 and 6. The following lemma summarizes.

Lemma 4.1.2. Consider a Type-2 Voronoi region Vk(Hp, S), a neighboring Voronoi
face Vk(J , S), and their incident boundary e.

• If Vk(J , S) is Type-1, then J ∪ I(p) = {y} ∪ Hp, and e belongs to bisector
b(p, y).

66 4.1 Augmenting the Definition of a Voronoi Region

• If Vk(J , S) is Type-2, with representative q 6= p (J = Jq), then e belongs to
b(p, q) and Hp \ I(p) = Jq \ I(q).

• If Vk(J , S) is Type-2, with the same representative p (J = Jp), then e belongs
to b(p, y), where {y}= Hp4Jp.

Proof. Let e be incident to a Type-1 region Vk(J , S). Consider an order-k disk cen-
tered at the point x on the edge e. If we move slightly the disk inside Vk(Hp, S)
it will touch the endpoint p and it will intersect line segments in Hp. If we move
slightly the disk inside Vk(J , S) it will touch some line segment y ∈ J and it
will intersect line segments in J . Thus when the disk is centered on the edge it
touches the line segment y and the endpoint p, i.e. x ∈ b(p, y).

Let e be incident to a Type-2 region Vk(Jq, S). Suppose p 6= q, then similarly
to the previous case, the order-k disk that is centered on the edge e, should
touch two endpoints p and q, i.e. x ∈ b(p, q). Suppose p = q, then consider the
order-k disk that is centered on the edge e. If we center the disk at the point x ′ ∈
Vk(Jp, S) it will touch the endpoint p and will intersect the line segments in J .
Similarly, if center the disk at the point x ′′ ∈ Vk(Hp, S) it will touch the endpoint
p and will intersect the line segments in H. Since Vk(Hp, S) and Vk(Jp, S) are not
equal the interiors of the order-k disks Dk(x ′) and Dk(x ′′) intersect different sets
of line segments. Therefore as we continuously move the order-k from x ′ to x ′′

some line segment y escapes the interior of the disk. Therefore when the disk
is centered at the point x it touches the line segment y and the endpoint p, i.e.
x ∈ b(p, y). y ∈ Hp4Jp, where 4 denotes the symmetric difference.

In the ordinary case of Type-1 Voronoi regions, the degree of a Voronoi ver-
tex is always 3, or 6 for an old vertex if we consider the augmented diagram
that includes the farthest subdivision within each region (i.e., Vk(S) and Vk−1(S)
superimposed). However, Voronoi vertices incident to Type-2 Voronoi regions
can have degree any number between 3 and 6. Examples are illustrated in Fig-
ures 4.6 and 4.7.

Lemma 4.1.3. The order-k Voronoi diagram of a PSLG is a tessellation, i.e. each
point on the plane belongs either to the interior of a single order-k Voronoi region
or to the boundary of an order-k Voronoi region.

Proof. Let x be an arbitrary point on the plane. Consider the order-k disk cen-
tered at x . If Sk(x) as exactly k elements then x belongs to the interior of the
Type-1 Voronoi region Vk(Sk(x), S).

Otherwise Sk(x) has more than k elements. Since order-k disk is the disk
of minimum radius which intersects at least k line segments it means that we

67 4.1 Augmenting the Definition of a Voronoi Region

cannot reduce the radius of the disk while intersecting at least k line segments.
This can happen in two cases: (a) either the radius is zero; or (b) any disk of
smaller radius will intersect less than k line segments. If the disk has zero radius
and it intersects at least k line segments then the center of the disk is an endpoint
of the PSLG that is incident to at least k line segments. In this case if we move x
slightly in any direction it will belong either to the interior of the Voronoi region
or to the edge of the Voronoi region as described by the cases below. Therefore
in the case (a) x belongs to the boundary of a Voronoi region.

Consider the case (b) in this case the order-k disk is of minimal radius be-
cause any disk of smaller radius will intersect less than k line segments. This
implies that the disk touches some line segments. Consider the case when the
disk touches exactly one elementary site. This should be an endpoint, because
otherwise we can reduce the disk and still intersect k line segments. Let this be
the endpoint p. Consider the bisectors between the endpoint p and the open
portions of the line segments in I(p). If the center x of the disk does not belong
to any of these bisectors than x belongs to the interior of the Type-2 Voronoi
region Vk(Hp, S), Hp = Sk(x), because we can slightly move the center in any
direction and the order-k disk will intersect the same line segments. Suppose x
belongs to one of the bisectors b(p, s), then the boundary of the disk touches an
endpoint e and the open portion of the segment s is tangent to the disk. Denote
as So

k(x) ⊂ Sk(x) the set of line segments that intersect the interior of the disk.
If So

k(x) has exactly k−1 line segments then we can move the center of the disk
slightly so the interior intersects the open portion. Then we can shrink the disk
so it intersects exactly k line segments: So

k(x) and s. In this case x belongs to
the edge between the Type-2 region Vk(Hp, S), Hp = Sk(x) and Type-1 region
Vk(So

k(x)∪{s}, S). Note that this is the reason why we have to explicitly exclude
the boundary in Def. 4.1. Otherwise the Type-2 region would include the part
of the bisector b(p, s) and the region would not be an open set. If So

k(x) has
less than k−1 line segments then even if we move the center of the disk slightly
around and the open portion of s may come inside the interior of the disk, it will
not be enough for this disk to shrink and exclude the endpoint p. So in this case
the neighborhood of the point x belongs to the interior of Vk(Hp, S), Hp = Sk(x).

Consider the case when the disk touches more than one elementary site.
Then clearly if we move the disk slightly around it will touch one elementary
site and become one of the cases described above.

Therefore in all the cases the point x belongs either to the interior of the
Type-1 or Type-2 Voronoi region or the boundary.

Figure 4.6(a) depicts a vertex v incident to a Type-2 region V1(Hp, S) and two

68 4.1 Augmenting the Definition of a Voronoi Region

p

1 2

V (p)

V (1) V (2)

p

1 2

V (p)

V (p, 1) V (p, 2)

V (1, 2)

p

1 2

V (p)

V (p, 1) V (p, 2)

V (p, 1, 2)

p

1 2

V (p, 1) V (p, 2)

V (p, 1, 2)

(a) (b) (c) (d)

Figure 4.6. A Type-2 Voronoi region of representative p, denoted as V (p),
and an incident Voronoi vertex for various orders k. (a) k = 1; (b) k = 2; (c)
2< k ≤ |I(p)| (for k = |I(p)|, V (p) is Type-1); (d) k = |I(p)|+1. (V (p, e1, . . . , em)
stands for Vk(p, H, S), where {e1, . . . , em}= H \ I(p).)

Type-1 regions. Figure 4.6(b) shows how p spreads into its neighboring regions
and transforms them into Type-2 in V2(S). Figure 4.6(c) shows the diagram
for several orders k, 3 ≤ k ≤ |I(p)|. At k = |I(p)|, Vk(Hp, S) becomes Type-1.
Figure 4.6(d) illustrates the diagram for k = |I(p)|+ 1. Under the weak general
position assumption, a vertex v incident to a Type-2 region can have degree
between 3 and 6, as a result of being the intersection point of three bisectors
intersecting at v. Figure 4.7 illustrates an example of a vertex initially incident
to three Type-2 Voronoi regions with representatives p, r, and q, respectively as
shown in Figure 4.7(a). As the order increases, the Voronoi region of q (q has
the smallest degree) becomes Type-1; in the next order it is split between two
Type-2 regions of representatives r and p respectively, as shown in Figure 4.7(b).
In Figure 4.7(c), after the region of r becomes Type-1 for k = |I(r)|, it is split
by the representatives of the neighboring Type-2 regions at order k = |I(r)|+ 1.
This creates a Voronoi vertex of degree 5 incident to portions of three bisectors.
Later, the Voronoi region V (p) will be split by its two neighbors and the incident
Voronoi vertex will obtain degree 6.

Type-2 Voronoi regions illustrate the peculiarities listed above, however, they
pose no difficulty in the construction of the diagram. In fact, their presence sim-
plifies the diagram as compared with one that could be obtained by perturbing
the PSLG into a set of disjoint segments. The complexity of the diagram remains
O(k(n− k)) as shown in the following subsection.

69 4.1 Augmenting the Definition of a Voronoi Region

p

qr

V (q)V (r)

V (p)

V (p, I(q))

V (r, I(q))

V (r)

V (p)

p

q
r

V (p, I(q))

V (r, I(q))V (q, I(r))

V (p, I(r))

V (p)

p

q
r

V (r, I(p))

V (p, I(q))

V (r, I(q))V (q, I(r))

V (p, I(r))

V (q, I(p))
p

qr

Figure 4.7. Top left: A Voronoi vertex in V1(S) incident to three Type-2 regions;
Top right: In V j+1(S), j = |I(q)|, region V (q) is split by the representatives of the
neighboring Type-2 regions; Bottom left: In Vk+1(S), k = |I(r)|, region V (r) is
split by the representatives of the neighboring Type-2 regions; Bottom right: In
Vs+1(S), s = |I(p)|, region V (p) is split by the representatives of the neighboring
Type-2 regions.

70 4.2 Relation with Arrangements

4.2 Relation with Arrangements

In case of line segments forming a PSLG the definition of the Type-2 order-k
Voronoi region is given through the notion of the order-k disk. This is different
from the way the order-k Voronoi region is defined for point sites, see Eq. (1.3),
disjoint line segments, see Eq. (3.1) or Type-1 Voronoi regions in case of a PSLG.
In these cases the definition uses the notion of distance functions, which natu-
rally implies relation between Voronoi diagrams and the arrangements of dis-
tance functions, see Section 2.1. Since relation with arrangements of distance
functions is a favorite property of Voronoi diagrams, we want to preserve it for
the case of line segments forming a PSLG.

In this section we show that the definition of the Type-2 order-k Voronoi
region preserves the relation with arrangements of distance functions. Following
Section 2.1, let fs(x) = d(s, x) be the distance function between points on a
plane and the line segment s. We consider the arrangement of the surfaces
in R3 that correspond to the distance functions. Consider the (k−1)-level and
take a point x on the x y-plane. Let x k−1 be the point x projected vertically
on the (k−1)-level. The definition of the i-level implies that π−(x k−1) ≤ k−1
and π−(x k−1) +π0(x k−1) > k−1. Since the surfaces correspond to the distance
functions the distance between the point x and the projection x k−1, d(x , x k−1) is
equal to to the distance between point x and the line segments that correspond
to the surfaces in Π0(x k−1), i.e. d(x , s) = d(x , x k−1) for every fs ∈ Π0(x k−1).
Similarly, the surfaces strictly below point x k−1, Π−(x k−1) correspond to the
sites that are closer to x than point x k−1, i.e. d(x , s) < d(x , x k−1) for every
fs ∈ Π−(x k−1). Therefore the disk on the x y-plane with the center at point x
and the radius equal to d(x , x k−1) will intersect > k−1 line segments and its
interior will intersect ≤ k−1 line segments, i.e. this will be an order-k disk.
Therefore by slightly abusing the notation and considering the point x on the
x y-plane in R3 is as if it is a point in R2 we derive the following equation:

Sk(x) =
¦

s ∈ S | fs ∈ Π−
�

x k−1
�

∪Π0
�

x k−1
�©

Consider now two points x k−1 and yk−1 on the (k−1)-level. We say that they
are equivalent if Π−(x k−1) ∪ Π0(x k−1) = Π−(yk−1) ∪ Π0(yk−1) or, equivalently
Sk(x) = Sk(y). The equivalence relation induces the subdivision of the (k−1)-
level into sets with equal equivalence classes. If we project this subdivision onto
the x y-plane we receive the subdivision of the x y-plane which will be a coarsing
of the order-k Voronoi diagram Vk(S). More precisely, this coarsing is agnostic
with respect to the elementary site that defines the radius of the order-k disk.
This may result in the situation when two neighboring Type-2 order-k Voronoi

71 4.3 Structural Properties and Complexity

regions that have the same set Sk but have different representative are merged
in the coarsing. Since the representative of the Type-2 Voronoi region may corre-
spond to some real-life instance that carries important information (see [69])we
may want to distinguish these Type-2 Voronoi regions. Therefore the definition
of the Type-2 Voronoi region includes the notion of the representative.

Therefore there is a relation between the order-k Voronoi diagram of a PSLG
and the (k−1)-level of distance functions, the projection of the latter is the coars-
ing of the former.

4.3 Structural Properties and Complexity

Let S(ε) be a set of disjoint line segments as obtained from S by a small pertur-
bation ε > 0 of the incident segment endpoints, see Figure 4.8(a). In particular,
for every endpoint p, with |I(p)| > 1, and for every line segment s ∈ I(p), move
the endpoint of s incident to p along the line through s by a small amount δs < ε,
remaining within n(p,ε), n(p,ε) = {x | d(x , p)< ε}. By using variable amounts
for δs, and given the weak general-position assumption, the general-position as-
sumption can be maintained. Despite many artificial faces (see Figure 4.3), The
structural complexity of Vk(S(ε)) is O(k(n− k)), however, many artificial faces
are created (see Figure 4.3).

In the following we show that the number of faces in Vk(S) cannot exceed
those of Vk(S(ε)) for certain ε, and thus, the complexity of Vk(S) is also O(k(n−
k)). To this aim, we use the refined versions of Vk(S) and Vk(S(ε)), where all
regions are subdivided into the finest sub-faces by superimposing their respective
order-(k−1) diagrams. The faces of Vk(S(ε)) are further subdivided by their
elementary sites, such that for every point x in a fine face, Dk(x) = Dp

k(x) for
exactly one elementary site p.

Lemma 4.3.1. There is an injection from the (fine) faces of Vk(S) to the (fine) faces
of Vk(S(ε)), for some ε > 0.

Proof. For a given ε > 0, we define the mapping in the following way. For
every (fine) face F j of Vk(S), consider an arbitrary point a j in the interior of F j,
and map a j to the face F ′j in Vk(S(ε)) where it belongs. This creates a function
from the faces of Vk(S) to the faces of Vk(S(ε)). Our goal is to find a value of
ε for which the mapping is guaranteed to be injective. The difficulty is due to
the presence of disconnected regions. Since the perturbation may change the
adjacency relations in the diagram, different faces in Vk(S) that belong to the
same Voronoi region may merge into the same face in Vk(S(ε)).

72 4.3 Structural Properties and Complexity

p

n(p, ε)

Figure 4.8. Untangling abutting line segments at endpoint p.

Consider Vk(S). To avoid the merging, we surround each face F j of Vk(S)
with a closed curve γ j that passes around F j without touching it and intersects
all the faces adjacent to F j. For each face F j we consider the set D j of the
order-k disks which consists of: (1) the order-k disk with center at a j; (2) all
order-k disks with centers on γ j. For each order-k disk D in D j consider two
sets of line segments: line segments that intersect the interior of the disk, but do
not touch the disk, and line segments that neither touch nor intersect the disk.
Since neither of these sets touch the boundary of D, there is a non-zero value
δ(D) by which we can shrink or expand the disk, until one of the line segments
leaves one of the two sets. If we choose ε > 0 such that each disk D shrinks
or expands by less than δ(D), for every D in D j and every face F j of Vk(S),
then the mapping becomes injective. The choice of γ j ensures that the face F ′j
of Vk(S(ε)) assigned to a j is completely surrounded by faces of Voronoi regions
that belong to order-k subsets that are different from the one of F j. Since we
also consider the order-k disk centered at a j, the face F ′j can not merge with any
of the neighbors intersected by the curve γ j. Thus, no two faces of Vk(S) can
map to the same face of Vk(S(ε)) for the this choice of ε.

By Lemma 4.3.1, we conclude.

Theorem 4.3.2. The structural complexity of the order-k Voronoi diagram of n
line segments forming a planar straight-line graph is O(k(n− k)).

Proof. Lemma 4.3.1 implies that there is an injection from fine faces of Vk(S) to
fine faces of Vk(S(ε)), for some ε > 0. The refined diagram Vk(S) is obtained by
superimposing Vk(S) and Vk−1(S). The refined diagram Vk(S(ε)) is obtained by
superimposing Vk(S(ε)) and Vk−1(S(ε)) and further subdividing by elementary
sites. Since S(ε) is the set of disjoint line segments, the structural complexity
of the refined Vk(S(ε)) is O(k(n−k)) + O((k−1)(n−k+1)) = O(k(n−k)). The

73 4.4 Extending the Iterative Construction

additional subdivision by elementary sites does not increase the structural com-
plexity since every line segment has three elementary sites.

Therefore the structrual complexity of Vk(S) is bounded by O(k(n−k)).

4.4 Extending the Iterative Construction

The iterative construction is the universal approach to construct the order-k
Voronoi diagram. It can be also applied to the case of line segments forming
a PSLG. In Section 3.5 we have discussed the iterative construction and its ex-
tension to the case of line segments. In this section we will show how to extend
the iterative construction to the case of line segments forming a PSLG.

In the case of a PSLG the Type-2 faces may remain for several orders until
they become Type-1 as we have seen in Section 4.1. As a result we should skip
the Type-2 faces during the subdivision step. Moreover, some of the Voronoi
edges that bound Type-2 faces may also remain for several orders. The iterative
algorithm can be described as follows:

• Construct V1(S) using any available algorithm with O(n log n) time com-
plexity.

• For i = 1, . . . , k− 1 do:

– For every Type-1 face F of every region Vi(H, S) of Vi(S) compute the
part of V1(S \H) enclosed within F .

– Remove/Disregard every edge of Vi(H, S) that does not remain in
Vi+1(H, S).

In Figure 4.9 we show the one iteration of the algorithm. We take a Type-1
face F of V2(S) and subdivide it with the nearest neighbor Voronoi diagram.
Let V2(H, S) be the Voronoi region of F , where H = {s7, s8}. We only need to
consider the line segments SF that are not in H and contribute to the boundary
of the face F , SF = {s1, s2, s3, s4, s5, s6} (see Section 3.5). In Figure 4.9 the order-1
Voronoi diagram V1(SF) contains one Type-2 Voronoi region V1({s4, s5}c, SF). The
corresponding edge of the face F should not be removed since it remains in the
order-3 Voronoi diagram.

Despite the minor differences described above, the iterative construction can
be easily applied to the case of line segments forming a PSLG.

74 4.4 Extending the Iterative Construction

s1

s2

s3

s4

s5

s6

s7

s8

a

b

c

d

e

f

g

V1({s4, s5}c, SF)

V1({s5}, SF)

V1({s6}, SF)
V1({s1}, SF)

V1({s2}, SF)

V1({s3}, SF)

V3({s2, s3, s8}, S)

V3({s3, s4, s8}, S)V3({s3, s4, s5}, S)

V3({s4, s5, s6}, S)

V3({s1, s5, s6, s7}d, S)

V3({s5, s6, s7}, S)

V3({s1, s6, s7}, S)
V3({s1, s2, s6, s7}d, S)

V3({s1, s2, s3, s8}g , S)
V3({s1, s2, s8}, S)

V3({s1, s2, s7}, S)

V3({s2, s7, s8}, S)

V3({s1, s7, s8}, S)

V3({s3, s7, s8}, S)V3({s4, s5, s8}, S)

V3({s4, s5, s7}, S)

V3({s5, s7, s8}, S)

V3({s6, s7, s8}, S)

V3({s4, s5, s7, s8}e, S)

V3({s3, s4, s5, s8}c, S)

s1

s2

s3

s4

s5

s6

s7

s8

a

b

c

d

e

f

gV3({s4, s5, s7, s8}c, S)

Figure 4.9. Top: The order-2 Voronoi diagram of a PSLG (see Figure 4.5 for
more details). The partitioning V1(F) of the face F ⊆ V2({s7, s8}, S), where SF =
{s1, . . . , s6}; Bottom: The order-3 Voronoi diagram of a PSLG, after the procedure
is applied for every face F of V2(S).

75 4.5 Summary

4.5 Summary

In this chapter we have investigated the higher-order Voronoi diagram of line
segments forming a planar straight-line graph. Line segments forming a PSLG
have very important applications, e.g. see Section 1.1.1.

We have extended the definition of the order-k Voronoi region to the case
of line segments forming a PSLG and investigated the properties of the Type-2
Voronoi regions to show the consistency of the extended definition. We have also
shown that the relation between the order-k Voronoi diagram and the (k−1)-
level of distance functions remains under the extended definition. Using the
perturbation technique, we have shown that the structural complexity of the
order-k Voronoi diagram of a PSLG is O(k(n− k)), as in the case of disjoint line
segments and points. Moreover, the proof shows that there is an injection from
the faces of the order-k Voronoi diagram of a PSLG to the faces of the perturbed
order-k Voronoi diagram, which implies that the structural complexity of the
former is less than that of the latter.

Finally, we have shown how to extend the standard iterative construction
algorithm to the case of line segments forming a PSLG.

76 4.5 Summary

Chapter 5

Sweepline Algorithm

In this chapter we discuss the sweepline algorithm for the higher-order Voronoi
diagram of line segments. The algorithm sweeps the plane with the horizon-
tal line while constructing the Voronoi diagram from top to bottom. The algo-
rithm constructs all order-i Voronoi diagrams for i ≤ k in O(k2n log n) time and
O(kn) space. The sweepline algorithm does not need to keep the entire Voronoi
diagram and it stores only those parts which are close to the horizontal line.
Therefore the algorithm can be used for on-the-fly computations.

The sweepline is a standard technique in computational geometry [13]. It al-
lows us to sequentially construct the structures while moving from top to bottom
(the direction is not important). The space above the horizontal line contains
the structure already constructed while the space below the horizontal line cor-
responds to the part yet to be processed. We discretize the movement of the
horizontal line and consider the discrete event points that are used to do the
computation.

The main difficulty with constructing Voronoi diagrams using the sweepline
technique is that the sites may contribute to the structure of the Voronoi dia-
gram even before the sweepline encounters them. Fortune solved this problem
by introducing a transformation that allows us to construct the diagram that
has the same topology as the nearest neighbor Voronoi diagram [43]. Subse-
quently, Seidel described a way to avoid the transformation and construct the
nearest neighbor Voronoi diagram directly by introducing an additional curve,
called a beach line [78]. The beach line is the lower envelope of an arrangement
of parabolas that continuously change shape as the horizontal line sweeps the
plane. The vertices of the beach line move along the edges of the Voronoi di-
agram, and every time a pair of vertices coincide, a Voronoi vertex is created.
By processing the discrete event points that change the topology of the lower

77

78 5.1 Sweeping Disjoint Line Segments

envelope, one can construct the nearest neighbor Voronoi diagram by sweeping
the plane with the horizontal line. Interestingly, the beach line can be viewed as
an intersection between an arrangement of distance functions in R3 and a plane
with a 45-degree angle with the x y-plane. From this perspective we can say that
we actually sweep an arrangement of distance functions with a tilted plane in
R3. For more information on the sweepline approach and the Voronoi diagrams
see [33].

Based on the duality of Voronoi diagrams and arrangements, Rosenberger
proposed a sweepline algorithm for the construction of order-k Voronoi diagrams
of weighted points [76]. The idea of the method is due to Herbert Edelsbrun-
ner [76] and it generalizes the Fortunes sweepline algorithm. In this method,
one maintains an array of k x-monotone curves that move one after another
and the last curve is used to construct the order-k Voronoi diagram, where the
curves correspond to the first k levels of the arrangement of parabolas (see the
definition in Section 2.4).

The principles of our algorithm are similar to Rosenberger’s,[76] but it pro-
vides a simpler way to process the events without geometric transformations.
Our algorithm can also be used to construct the order-k Voronoi diagram of
polygonal objects such as: line segments and a planar straight-line graph.

In Section 5.1 we describe the sweepline algorithm for the higher-order
Voronoi diagram of line segments. We investigate the properties of the algo-
rithm and perform the time and space complexity analysis. In Section 5.2 we
extend the algorithm to the line segments forming a PSLG.

5.1 Sweeping Disjoint Line Segments

In this section we describe the sweepline algorithm for disjoint line segments.
We make a general position assumption: not more than three line segments touch
the same disk and there are no endpoints that have the same horizontal or ver-
tical coordinate.

Let ` be a horizontal line such that the halfplane `+ above ` intersects at least
k line segments in S+ ⊆ S.

Definition 4. The wave-curve w(s) is the locus of points equidistant from the line
segment s ∩ `+ and the line ` (see Figure 5.1).

Consider the arrangement A of wave-curves w(s), s ∈ S+. Following the
definition of the i-level given in Section 2.1 a point x belongs to i-level Ai if there
are at most i wave-curves passing strictly below and more than i wave-curves

79 5.1 Sweeping Disjoint Line Segments

A3

A2

A1

A0

`

x

s

A4

Figure 5.1. Constructing order-4 Voronoi diagram via sweepline technique.

passing below or through the point, i.e. π−(y) ≤ i and π−(y) + π0(y) > i.
The function Π defines an equivalence relation, making two points x and y
equivalent iff Π(x) = Π(y). The relation partitions the i-level into connected
components of the equivalence classes.[41]

Definition 5. The wave w is a connected component of the i-level that consists of
more than a single point. The breakpoint is a connected component of the i-level
that is a single point.

Every point x on a fixed wave w has the same sets Π−(x) and Π0(x). Let
Π−(w) = Π−(x), Π0(w) = Π0(x), π−(w) = π−(x), and π0(w) = π0(x), where
x is any point on the wave w. Disjoint line segments correspond to the wave-
curves that intersect transversely and each wave w of Ai has exactly i wave-
curves below, i.e. π−(w) = i− 1.

Note. It may look like we are giving an overcomplicated definition of the
breakpoints and the waves. However, this definition will be useful for arrange-
ments with non-transversal intersections in Section 5.2.

The algorithm sweeps the plane with the horizontal line while maintaining
the levels A0, . . . , Ak−1. We store each level as an ordered list of waves that

80 5.1 Sweeping Disjoint Line Segments

allows search/insertion/deletion in logarithmic time. We store only the adja-
cency information of the waves and avoid storing their explicit shapes. Follow-
ing the standard sweepline technique for the Voronoi diagrams[43, 76] there
are two types of events that change the topology of the levels: site-events and
circle-events. Site-events occur when the horizontal line encounters new sites, see
Figure 5.2. Circle-events occur when the topology of the arrangement changes
locally, which corresponds to a moment when the horizontal line touches the
bottommost point of the disk that touches three sites, see Figure 5.3. The events
are kept in a priority queue Q that allows insertion/deletion in logarithmic time.
Inside Q the site-events are ordered by the y-coordinate of the topmost endpoint
and the circle-events are ordered by the y-coordinate of the bottommost end-
point of the disk. We process events one by one as they appear in Q. Algorithm 1
summarizes the plane sweep at a high level.

Algorithm 1 Sweepline

1: function Sweepline(S, k)
2: Let V be empty set of vertices
3: Let Q be S sorted by the y-coordinate of topmost endpoint
4: Let Ai = (), for i = 0, . . . , k− 1
5: while Q not empty do
6: x ← TopMost(Q)
7: if x is a site-event then
8: ProcessSi teEvent(x , k, A)
9: else

10: ProcessC ircleEvent(x , k, A, V)
11: end if
12: end while
13: return V
14: end function

A site-event occurs when a new wave-curve is introduced into the levels
A0, . . . , Ak−1. A circle-event occurs when two or more breakpoints coincide. We
keep track of circle-events by computing them in advance for every triple of
consecutive waves. For every change in the topology of the arrangement we
recompute the circle-events of the waves that are affected by the change. We
encapsulate this procedure in the operation U pdateTriples which is used in the
Procedures 2 and 3. U pdateTriples(Ai, r, m) adds circle-events that correspond
to the newly created consecutive triples and removes those that do not corre-
spond to consecutive triples anymore, where Ai is the level and r, . . . , m are the

81 5.1 Sweeping Disjoint Line Segments

s
s

s

a

Figure 5.2. The site-event.

positions that should be considered during the update. We skip those triples that
corresponds to the disks that are completely above the current position of the
horizontal line.

We process site-events and circle-events by performing substitutions of waves
in levels A0, . . . , Ak−1, see Procedures 2 and 3. The operation
Subst i tute(Ai, r, (a, b, c), (d, e, f)) substitutes in level Ai at position r the subse-
quence a, b, c of waves with the subsequence d, e, f . The function
F indPosi t ion(Ai, x) finds the position of the event x in level Ai and returns
the position and the wave at this position. If x is a circle-event, then the func-
tion returns the index of the leftmost wave and the leftmost wave involved in
the event.

As the horizontal line moves down the breakpoints of the (k−1)-level that
do not belong to the (k−2)-level trace the edges of the order-k Voronoi diagram.
The collision of two such breakpoints is a circle-event which has the center of
the circle incident to two edges of the order-k Voronoi diagram. Subsequently
the center of such a circle-event is an order-k Voronoi vertex. Note, however,
that only some of the circle-events correspond to the order-k Voronoi vertices.

We can construct the order-k Voronoi diagram by maintaining the (k−1)-
level. The levels 0, . . . , k−2 are needed to correctly maintain the topology of the
(k−1)-level.

The following lemmas establish the correctness of the approach by showing
that the portion of the order-k Voronoi diagram above the (k−1)-level does not

82 5.1 Sweeping Disjoint Line Segments

change as the sweepline moves down and the breakpoints of the (k−1)-level
move along the edges of the order-k Voronoi diagram.

Lemma 5.1.1. Let x ∈ `+ and let w(s1), . . . , w(sm) be the wave-curves below or
passing through the point x, and m > 0. Then line segments s1, . . . , sm are the m
closest line segments to point x among the line segments in S.

Proof. Consider the disk centered at the point x that touches the horizontal line
` at the point y . Let p1, . . . , pm be the intersection points of the wave-curves with
the line segment x y . For each p j, j = 1, . . . , m consider the disk D j centered at
the point p j and touching the horizontal line `. The definition of the wave-curve
implies that the line segment s j touches the disk D j, D j ⊆ D j+1 and D j ⊂ `+.
Therefore, the disk Dm touches or intersects the line segments s1, . . . , sm.

Consider the ray emanating from point y through point x . Let w(s′) be the
wave-curve that intersects the ray at point p′ above x . Consider the disk D′

centered at p′ and touching the horizontal line `. Dm ⊂ D′ and therefore the line
segment s′ does not touch or intersect the disk Dm.

The line segments S \ S+ are below the horizontal line ` and since Dm ⊂
`+, they do not touch or intersect the disk Dm. Therefore, disk Dm touches or
intersects the line segments s1, . . . , sm and does not touch or intersect any other
line segments.

Lemma 5.1.1 implies a relation between the waves of the (k−1)-level and
the regions of the order-k Voronoi diagram. Suppose x belongs to a wave on the
level Ak−1. Let H be the set of sites that correspond to the wave-curves that pass
below or through the point x , then Lemma 5.1.1 implies that H are the k closest
sites to x , i.e. x belongs to the region Vk(H, S).

Similarly, we can show a relation between the breakpoints of the (k−1)-
level and the edges of the order-k Voronoi diagram. Suppose x is a breakpoint
common to the levels Ak−1 and Ak. Suppose x is an intersection point of two
wave-curves w(s) and w(t). Let H be the set of sites strictly below point x , then
Lemma 5.1.1 implies that H ∪ {s, t} are the k+1 nearest sites to x . Moreover,
sites s and t are equidistant to point x and further from point x than the rest of
the sites in H. Therefore, x belongs to the edge of the regions Vk(H ∪{s}, S) and
Vk(H ∪ {t}, S).

Suppose x is an intersection point of three wave-curves w(s), w(t) and w(r)
and it belongs to the levels Ak−1, Ak, Ak+1. Let H be the set of sites strictly below
point x , then Lemma 5.1.1 implies that H∪{s, t, r} are the k+2 nearest sites to x .
Since s, t, r are equidistant to x , x is a new order-k Voronoi vertex that is incident
to the order-k Voronoi regions Vk(H ∪ {s}, S), Vk(H ∪ {t}, S) and Vk(H ∪ {r}, S).

83 5.1 Sweeping Disjoint Line Segments

Procedure 2 Process Site-Event
1: procedure ProcessSiteEvent(x , k, A)
2: Let a be the site associated with event x
3: s, r ← F indPosi t ion(A0, x)
4: Subst i tute(A0, r, (s), (s, a, s))
5: U pdateTriplets(A0, r, r + 2)
6: s′← s
7: for i← 1, . . . , k− 1 do
8: if Li is empty then
9: Ai = (x , s′, x)

10: exit for loop
11: else
12: s, r ← F indPosi t ion(Ai, a)
13: Subst i tute(Ai, r, (s), (s, a, s′, a, s))
14: U pdateTriples(Ai, r, r + 4)
15: s′← s
16: end if
17: end for
18: end procedure

Similarly, one can show that if x belongs to the levels Ak−2, Ak−1, Ak then it is
an old order-k Voronoi vertex. In Figure 5.1 x is an intersection point of three
levels A3, A4, A5, and therefore x is a new Voronoi vertex of the order-4 Voronoi
diagram.

The following lemma shows that the circle-events cause the waves to disap-
pear from the lower levels and as the result appear on the upper levels.

Lemma 5.1.2. Consider a circle-event at point v ∈ Ai−1 such that v is a new
Voronoi vertex of Vi(S). At this event a single wave disappears from Ai−1 and
appears in Ai+1. Moreover two adjacent waves swap their positions in Ai.

Proof. Let v be an intersection point of the wave-curves w(s), w(t) and w(r).
Consider the arrangement A′ of the three wave-curves w(s), w(t) and w(r).
The part of the (i−1)-level in the arrangement A around point v corresponds
to the 0-level in the arrangement A′. The 0-level in the arrangement A′ is the
beach line of the Fortune’s algorithm.[43] According to Fortune’s algorithm the
circle-event makes a wave disappear from the beach line. Therefore, during the
circle-event a single wave disappears from Ai−1. If now one considers the three
wave-curves separately from the rest of the wave-curves, then the rest of the

84 5.1 Sweeping Disjoint Line Segments

a

b
c

c

c
b

b a

a

a

b

c

a
c b

b
c a

Figure 5.3. The circle-event on levels Abot , Amid , Atop.

claim will follow.

Lemma 5.1.2 implies that a new wave may be introduced to the i-level by a
site-event or from the levels below the i-level. This proves that the maintenance
of the (k−1)-level requires only the maintenance of the levels below it. There-
fore the first k levels are sufficient for the construction of the order-k Voronoi
diagram.

The rest of this section provides space and time complexity bounds for the
algorithm.

Lemma 5.1.3. The maximum size of queue Q and the maximum total complexity
of levels A0, . . . , Ak−1 are O(nk).

Proof. Since the wave-curves are Jordan curves the following bound holds:[30,
84]

g≤k−1(n) = O
�

(k− 1)2 g0 (bn/(k− 1)c)
�

(5.1)

where g≤k−1(n) is the maximum complexity of levels A0, . . . , Ak−1 and g0(m) is
the maximum complexity of the lower envelope of m wave-curves. The lower
envelope of waves corresponds to beach line of the order-1 Voronoi diagram,[43]
therefore g0(m) = O(m). Thus the maximum complexity of A0, . . . , Ak−1, g≤k−1(n)
is equal to O(nk).

The number of site-events is O(n). Every circle-event in event queue Q cor-
responds to a triple of adjacent waves at some level Ai, 0≤ i ≤ k− 1. Therefore
the number of circle-events is proportional to the total size of levels A0, . . . , Ak−1,
which is O(nk). Thus Q is of size O(nk).

85 5.1 Sweeping Disjoint Line Segments

Procedure 3 Process Circle-Event
1: procedure ProcessCircleEvent(x , k, A, V)
2: Let Abot , Amid , Atop be the three levels that involve the event x , from bot-

tom to top
3: a, botPos← F indPosi t ion(Abot , x)
4: b, midPos← F indPosi t ion(Amid , x)
5: c, topPos← F indPosi t ion(Atop, x)
6: if bot = k− 1 or bot = k− 2 then
7: V = V ∪ {x} . vertex of x with the three associated edges
8: Subst i tute(Abot , botPos, (a, b, c), (a, c))
9: U pdateTriples(Abot , botPos, botPos+ 2)

10: else if bot ≤ k− 2 then
11: Subst i tute(Amid , midPos, (b, a, c, b), (b, c, a, b))
12: U pdateTriplets(Amid , midPos, midPos+ 3)
13: else if bot ≤ k− 3 then
14: Subst i tute(Atop, topPos, (c, a), (c, b, a))
15: U pdateTriplets(Atop, topPos, topPos+ 2)
16: end if
17: end procedure

Theorem 5.1.4. The algorithm can be implemented to run in O(k2n log n) time
and O(nk) space.

Proof. The site-events correspond to the insertion of the new wave-curves in
levels A0, . . . , Ak−1. The number of site-events is bounded by the number of sites,
O(n). When a new line segment intersects a halfplane `+ we insert it in lists
A0, . . . , Ak−1. This requires a binary search on every list and therefore it takes
O(log |Ai|) per list, where |Ai| denotes the size of the list. Since the maximum
complexity of Ai is bounded by the structural complexity of the order-i Voronoi
diagram, we need O

�

log (i(n− i))
�

= O(log n) per level Ai, or O(k log n) for all
levels. Therefore it takes O(nk log n) time to process all the site-events.

The circle-events correspond to the Voronoi vertices of the order-i Voronoi
diagrams, i = 0, . . . , k − 1. Every such event requires constant time. Since the
number of order-i Voronoi vertices is bounded by O(i(n − i)) thus it implies
that the total number of circle-events is bounded by

∑k
i=1 O(i(n− i)) = O(k2n).

Every site-event and circle-event requires an update of the triples that involve
the line segments that are adjacent to the places where the changes occurred.
Insertions and deletions into the event queue Q require O(log |Q|) time per each
inserted/removed circle-event, where |Q| - is the size of the queue. Lemma 5.1.3

86 5.2 Sweeping a Planar Straight-Line Graph

A0

A1

A2

`

Figure 5.4. Constructing the order-3 Voronoi diagram via the sweepline tech-
nique. The dotted lines depict the internal edges. The Type-2 regions are
depicted shaded.

implies that the size of the queue is O(nk). Therefore it takes O(log (nk)) =
O(log n) time per event. And the total running time is O

�

k2n log n
�

.
During the execution of the algorithm we store the event queue Q, lists

A0, . . . , Ak−1 and we output the order-k Voronoi diagram Vk(S). Then Lemma
5.1.3 implies the total space complexity.

5.2 Sweeping a Planar Straight-Line Graph

In this section we adopt the algorithm for a PSLG. The line segments forming a
PSLG correspond to the wave-curves that may intersect non-transversely. There
are two types of breakpoints (see Figure 5.11):

• X-breakpoints are incident to four waves;

• Y-breakpoints are incident to three waves.

Note, however, that some of the breakpoints of Ak−1 do not move along the edges
of the order-k Voronoi diagram. The breakpoints may move along the bisectors

87 5.2 Sweeping a Planar Straight-Line Graph

between the elementary sites that do not correspond to the edges of the order-k
Voronoi diagram.

The plane sweep construction for a PSLG requires to explicitly distinguish
two types of Voronoi edges.

• External Voronoi edges bound the order-k Voronoi regions.

• Internal Voronoi edges belong to the interior of the order-k Voronoi regions
and they represent the farthest subdivision inside the order-k Voronoi re-
gions.

In Figure 5.4 some of the external edges of the order-2 Voronoi diagram are
the internal edges of the order-3 Voronoi diagram in Figure 5.4 (see the dotted
lines). Type-2 Voronoi regions do not contain internal edges, since there is no
farthest subdivision inside the Type-2 faces, see Chapter 4.

The same wave may appear on multiple levels. We store each wave sepa-
rately and only link it with the corresponding positions at each level. With each
wave w we store: the set Π0(w) of the wave-curves that pass through the wave,
and the number π−(w) of the wave-curves strictly below the wave. The follow-
ing lemma states that this information is enough to determine the type of the
order-k Voronoi edge.

Lemma 5.2.1. Let x be a breakpoint on the (k−1)-level which is incident to waves
w1, . . . , wr , where r equals 3 or 4. Suppose we know the sets Π0(w1), . . . ,Π0(wr)
and the numbers π−(w1), . . . ,π−(wr). Then we can determine whether the point x
belongs to an edge of the order-k Voronoi diagram, and if it does whether it is an
internal or an external edge.

Proof. Consider the disk centered at point x that touches the horizontal line
`. Using the sets Π0(w1), . . . ,Π−(wr) of the incident waves we can determine
the line segments that touch the disk. We can also determine the number
of line segments intersected by the interior of the disk by using the numbers
π−(w1), . . . ,π−(wr) of the incident waves. Here we describe the possible cases
that may occur and the corresponding type of the order-k Voronoi edge.

Point x belongs to the internal edge if: (1) The interior of the disk intersects
k−2 line segments and the boundary touches two line segments at different
points; (2) The interior of the disk intersects k−2 line segments and the bound-
ary touches two line segments at the same endpoint, but one of the line segments
is also tangent to the disk.

Point x belongs to the external edge if: (3) The disk touches or intersects at
least k+1 line segments and the boundary of the disk touches at least two line

88 5.2 Sweeping a Planar Straight-Line Graph

segments in two different points; (4) The interior of the disk intersects k−1 line
segments and the boundary touches two line segments at the same endpoint,
but one of the line segments is also tangent to the disk.
(5) Point x does not belong to an edge of the order-k Voronoi diagram if the

disk touches or intersects at least k+1 line segments and the boundary touches
the line segments at the same point (and it is not the case (4)).

While the sweep is performed the neighboring breakpoints may collide pro-
ducing a circle-event. If a pair of breakpoints of the (k−1)-level that correspond
to external or internal edges meet at the point x then x is an order-k Voronoi
vertex. If the circle-event involves only internal Voronoi edges then the corre-
sponding Voronoi vertex is internal, i.e. belongs to the interior of the order-k
Voronoi region.

To summarize, the algorithm sweeps the plane with the horizontal line, while
maintaining k levels A0, . . . , Ak−1. The breakpoints of the (k−1)-level move along
the external and the internal edges of the order-(k−1) Voronoi diagram of a pla-
nar straight-line graph. We use Lemma 5.2.1 to determine the type of the edge
associated with every breakpoint on the (k−1)-level. When the circle-event oc-
curs, several breakpoints meet at a common point. We can determine the type
of the vertex that is created during the circle-event using the knowledge of the
type of the associated edges. The algorithm outputs Voronoi vertices and inci-
dent Voronoi edges every time it handles events at which Voronoi edges meet. In
order to process the events the algorithm computes the small subarrangements
of wave-curves separately and then inserts them into the main arrangement.

A high-level description of the sweepline algorithm for a planar straight-line
graph is the same as for disjoint line segments, see Algorithm 1. However, there
is a major difference in how we process the events. Since the line segments are
abutting the site-events may involve more than a single line segment. Moreover,
the non-transversal intersections may cause the circle-events to involve more
than three levels. In the following we describe in detail the different cases that
may occur with site-events and circle-events.

5.2.1 Processing Site-Events

Unlike disjoint line segments where it is sufficient to process only the top end-
point of the line segment, in the case of line segments forming a planar straight-
line graph we need to process all vertices of the PSLG, i.e. all segment endpoints.

89 5.2 Sweeping a Planar Straight-Line Graph

With every site-event p we store: (1) The y-coordinate of the endpoint p;
(2) The set of line segments I(p) incident to p.

Let p be an endpoint that corresponds to a site-event. Let I(p) be the set
of line segments incident to the point p. Let I−(p) and I+(p) be the sets of
line segments incident to point p that are below and above the horizontal line
through p, respectively. Let s1, . . . , sm be the line segments in I+(p) ordered from
left to right, t1, . . . , t r be the line segments in I−(p) ordered from left to right
and w1, . . . , wm and v1, . . . , vr be the corresponding wave-curves. Then before
the line ` hits endpoint p the line segments in I−(p) do not contribute the wave-
curves to the arrangement. First, we describe the two special cases (I−(p) = ;
and I+(p) = ;) which give us an insight on the general case that we describe
later.

Site-Events with Empty Bottom
Consider the case when the set I−(p) is empty. The way the topology changes
at the moment of the site-event depends only on the ordering of the line segments
s1, . . . , sm and does not depend on the angles between them, i.e. if we rotate
the line segments s1, . . . , sm while preserving their order, the topology will not
change. Figure 5.7 shows a site-event with empty bottom, where m = 4 and
i = 1 and the labels denote the sets Π0 of the waves on the i-level.

Consider also Figure 5.6 which shows two site-events with empty bottoms.
The two top figures show the waves before and after the first site event occurs.
The two bottom figures show the waves before and after the second site event
occurs. Note in both cases the number of line segments involved is the same,
however, the angles between the line segments are different. However, the way
the topology changes in both cases is the same.

Site-Events with Empty Top
Consider the case when the set I+(p) is empty. As in the previous case, the topo-
logical changes do not depend on the angles between the line segments t1, . . . , t r .
The difference with the previous case is that the line segments t1, . . . , t r do
not contribute to the arrangement before the site-event occurs. See Figure 5.7,
where r = 4, i = 1 and a1, a2 are the wave-curves of the waves above the point
p, before the site-event occurs.

General Site-Events
Consider the general case, when I−(p) and I+(p) are not empty. Unfortunately,
in this case the site-event creates the topological changes that depend not only on

90 5.2 Sweeping a Planar Straight-Line Graph

w1

w2
w3

w4
w2 w3

w2
w3

{w2, w3, w4}

{w1, . . . , w4} {w1, w2, w3}

Figure 5.5. Wave-curves of the line segments I+(p) before (left figure) and after
(right figure) the site-event occurs. The 1-level is depicted with bold. The labels
show the sets Π0 of the waves.

the ordering of the line segments in I−(p) and I+(p) but on the angles between the
line segments. Figure 5.9 illustrates the general site-event. The 1-level is shown
in bold, and its structure after the event occurs depends on the angles between
the line segments.

Consider also the Figure 5.8 which shows two general site-events. In both
cases the number of line segments involved is the same: there is one line seg-
ment s1 in I+(p) and one line segment t1 in I−(p). The difference is in the angles
between s1 and t1. In both cases the 0-level is the same before the site-event oc-
curs. However, the 0-level is different after the site-event occurs. In the first
case, 0-level is composed of two waves with the following sets Π0: {w1}, {v1}.
In the second case, 0-level is composed of two waves with the following sets Π0:
{v1}, {w1}. The 1-level is also different in both cases.

In this case we do not try to derive the changes from the order of the line
segments in I−(p) and I+(p). Instead we consider the moment in time right
after the site-event occurs and compute the arrangement L of wave-curves in
I(p). Then we remove those waves that correspond to the line segments in
I−(p) and insert the arrangement L in the arrangement A.

91 5.2 Sweeping a Planar Straight-Line Graph

s1
s2

{w1}

{w2}

{w1}

{w2}

s1
s2

{w1}

{w2}

{w1}

{w2}

{w1, w2}

s1 s2

{w1} {w2}

{w2}
{w1}

s1

{w1}

s2

{w1}
{w2}

{w2}

{w1, w2}

Figure 5.6. Wave-curves of the line segments I+(p) before (left figures) and
after (right figures) the site-event occurs. Before the site-event occurs, the 0-
level is composed of the waves with the following sets Π0: {w1}, {w2}. The
1-level is composed of the waves with the following sets Π0: {w2}, {w1}. After
the site-event occurs, the 0-level is composed of the waves with the following
sets Π0: {w1}, {w1, w2}, {w2}. The 1-level is composed of the waves with the
following sets Π0: {w2}, {w1, w2}, {w1}. The way the topology of the levels
changes during the site-event does not depend on the angles between the line
segments in I+(p).

92 5.2 Sweeping a Planar Straight-Line Graph

a1

a2
a2

a2

{v1, v2, v3, v4}

{v2, v3, v4}
{v1, v2, v3}

v2 v3

v1 v4
v3 v2

Figure 5.7. Wave-curves of the line segments I−(p) before (left figure) and after
(right figure) the site-event occurs. The 1-level is depicted with bold. The labels
show the sets Π0 of the waves. a1 and a2 are the wave-curves strictly below
point p, before the site-event occurs.

5.2.2 Processing Circle-Events

During the circle-event the topological change is local and it involves a number
of levels equal to the number of line segments that touch the disk. For instance,
in Figure 5.10 there are 6 levels involved.

With every circle-event we store: (1) The y-coordinate of the bottommost
point of the disk; (2) The line segments that touch the disk; (3) The pointers to
the levels that involve the event.

Under the weak general position assumption a circle-event involves at most
one Y-breakpoint. The circle-event may involve face appearance or disappear-
ance in the arrangement. During the circle-event two or three breakpoints meet
and are replaced with two or three other new breakpoints. Consequently, there
are five cases (two pairs of which are symmetric with respect to the y-axis) of
circle-events that can be characterized by the topological changes associated to
them:

1. Three X-breakpoints are replaced with other three X-breakpoints, see Fig-
ure 5.10;

2. One Y-breakpoint and two X-breakpoints (considered from left to right) are

93 5.2 Sweeping a Planar Straight-Line Graph

s1

t1

{w1}
s1

t1

{w1}

{w1}

{v1}

{v1}

t1

s1
{w1}

t1

s1

{v1}

{v1}{w1}

{w1}

Figure 5.8. Wave-curves of the line segments {s1} = I+(p), {t1} = I−(p) before
(left figures) and after (right figures) the site-event occurs. Before the site-event
occurs, the 0-level is composed of a single wave with the following set Π0:
{w1}. What happens with the waves after the site-event occurs depends on the
angles between the line segments. In the top case, after the site event occurs,
the 0-level is composed of the waves with the following sets Π0: {w1}, {v1}. The
1-level is composed of the waves with the following sets Π0: {v1}, {w1}. In the
bottom case, after the site event occurs, the 0-level is composed of the waves
with the following sets Π0: {v1}, {w1}. The 1-level is composed of the waves
with the following sets Π0: {w1}, {v1}.

94 5.2 Sweeping a Planar Straight-Line Graph

Figure 5.9. Wave-curves before and after the general site-event. The 1-level of
wave-curves is bold. The way the topology of the 1-level changes during the
general site-event depends on the angles between the line segments.

s1

s2

s3

s4

s5 s6

{w2, w3}, 0
{w4, w5, w6}, 0

{w4, w5, w6}, 1

s1

s2

s3

s4

s5 s6

{w2, w3}, 0

{w4, w5, w6}, 1

{w2, w3}, 1

Figure 5.10. The case (1) of the circle-event in arrangement with non-transversal
intersections. The 1-level is depicted with bold. The waves of the 1-level are
labeled with the pairs Π0,π−.

95 5.2 Sweeping a Planar Straight-Line Graph

s1

s2
s3

{w2, w3}, 0 w3, 1

w1, 1 w2, 1

s1

s2
s3

{w2, w3}, 0
w2, 1

{w2, w3}, 1

Figure 5.11. The case (2) of the circle-event in arrangement with non-transversal
intersections. The 1-level is depicted with bold. The waves of the 1-level are
labeled with the pairs Π0,π−.

replaced with one X-breakpoint and one Y-breakpoint. A face disappears,
see Figure 5.11;

3. One X-breakpoint and one Y-breakpoint (considered from left to right) are
replaced with one Y-breakpoint and two X-breakpoints. A face appears, see
Figure 5.12.

We process the circle-event in the following way: First, we remove all waves
that are incident to any two breakpoints of the circle-event. Then we update
the adjacency relations between the waves that are incident to one breakpoint
of the circle-event. Finally, we consider those wave-curves that participate in the
circle-event and compute their arrangement after the circle-event occurs. Then
we insert the new computed waves that are incident to any two breakpoints of
the circle-event.

5.2.3 Analysis

The sweepline algorithm can be applied to any kind of planar straight-line graph.
However, it is useful only for the case when the vertices of PSLG have O(1) de-
gree. For instance, consider the case when n line segments are all incident to the
same endpoint. In this case the vertex of the Voronoi diagram that corresponds

96 5.2 Sweeping a Planar Straight-Line Graph

s1

s3
s2

w3, 1
{w2, w3}, 1

{w2, w3}, 0 s1

s3
s2

w3, 1

{w2, w3}, 1
w2, 1 w1, 1

Figure 5.12. The case (3) of the circle-event in arrangement with non-transversal
intersections. The 1-level is depicted with bold. The waves of the 1-level are
labeled with the pairs Π0,π−.

to the endpoint contributes the major complexity of the Voronoi diagram. How-
ever if we process PSLG with a sweepline approach we should do all the compu-
tations associated with the vertex at the same moment of time. This negates the
benefits of the sweepline approach which performs the sequential construction
of the Voronoi diagram.

Theorem 5.2.2. If the vertices of a PSLG have O(1) degree then the algorithm can
be implemented to run in O(k2n log n) time.

Proof. The structural complexity in case of a PSLG is O(k(n−k)). However, most
of the results on the structural complexity of the k-level of Jordan curves require
tranvsersality, to the best of our knowledge.[39, 84] Therefore, in the case of
the wave-curves that correspond to the line segments of a PSLG we use a naive
structural complexity bound of the k-level, O(n2). Since we assume that the
vertices of a PSLG have O(1) degree it implies that the time required to process
the events is not greater than in the case of disjoint line segments. Therefore it
takes O(nk log n2) = O(nk log n) total time to process all site-events.

The number of circle-events is bounded by the number of Voronoi vertices
in order-i Voronoi diagrams, for i = 1, . . . , k. Since the structural complexity
of the order-i Voronoi diagram is O(i(n− i)) the total number of circle-events
is bounded by

∑k
i=1 O(i(n− i)) = O(k2n). The processing takes O(log n2) time

97 5.3 Summary

per each circle-event. Therefore the total time complexity of the algorithm is
O(k2n log n).

5.3 Summary

In this chapter we have presented a sweepline algorithm for higher-order Voronoi
diagrams of line segments. The sweepline algorithm has O(k2n log n) time com-
plexity and O(kn) space complexity, similarly to the iterative algorithm. The idea
of the algorithm is similar to that of Rosenberger’s, but has a different way of
processing the events and it can be applied to the case of line segments. It con-
structs not only the order-k Voronoi diagram, but all order-i Voronoi diagrams
for i ≤ k. The algorithm is simple to implement and it allows the top-to-bottom
sequential construction of the diagram. It does not require to maintain the entire
diagram during the construction and it can therefore be applied for on-the-fly
computations (see Section 1.1.1).

We have also adopted the algorithm to handle the case of line segments
forming a planar straight-line graph. The algorithm can be applied to any pla-
nar straight-line graph. However, when PSLG has vertices of an arbitrary degree,
the benefits of the sweepline algorithm can be negated by the high-degree ver-
tices. We provide the time complexity analysis for the case of a PSLG with the
O(1) vertices degree and prove O(k2n log n) time complexity and O(n2) space
complexity.

98 5.3 Summary

Chapter 6

Algorithms for Higher-Order
Abstract Voronoi Diagrams

In this chapter, we develop a randomized divide and conquer algorithm, a ran-
dom walk algorithm and a randomized iterative algorithm to compute the order-
k abstract Voronoi diagram in O(kn1+ε), O(n22α(n) log n) and O(nk2 log n) ex-
pected time complexities, respectively.

Abstract Voronoi diagram is a high-level framework for Voronoi diagrams
suggested by Klein [53] and later improved by Klein et al. [54]. In this frame-
work the Voronoi diagram is defined in terms not dependent on the concrete
geometry, metric space or shapes of the sites. Instead abstract Voronoi diagrams
are defined using bisecting curves. For a set of n abstract sites we know nothing
except their pairwise bisectors. We assume that these bisecting curves are nice,
in the sense that they assume the axioms listed below. Once a bisector system
of a concrete Voronoi diagram is shown to satisfy these axioms, combinatorial
properties and algorithms to construct abstract Voronoi diagrams are directly
applicable.

Let us assume for a set of n sites S the following bisecting system J =
{J(p, q) | p, q ∈ S, p 6= q}. A bisector J(p, q) partitions the plane into two do-
mains D(p, q) and D(q, p) where D(p, q) are points considered to be closer to p
than q.

Definition 6. The nearest neighbor Voronoi region of site p is

V (p, S) =
⋂

q∈S,q 6=p

D(p, q).

99

100

The nearest neighbor Voronoi diagram is

V(S) =
⋃

p∈S

∂ V (p, S),

where ∂ denotes the boundary.

The bisector system J satisfies the following axioms for any S′ ⊆ S:

(A1) Each first-order Voronoi region V1(p, S′) is pathwise connected.

(A2) Each point in the plane belongs to the closure of V1(p, S′), for a site p ∈ S′.

The axioms are strong enough to prove that for any three different sites p, q, r
the following holds [53, 54]:

D(p, q)∩ D(q, r)⊆ D(p, r) (6.1)

This property is enough to prove that the structural complexity of the abstract
Voronoi diagram is linear, O(n).

Without any further assumptions one can apply a randomized incremental
approach to construct the abstract Voronoi diagram, see [55, 61]. The algorithm
has O(n log n) expected time complexity and O(n) expected space complexity.

The abstract counterpart for the farthest Voronoi diagram was studied by
Rasch [75] and Mehlhorn et al. [62]. The farthest abstract Voronoi diagram has
a tree structure and O(n) structural complexity. It can be also constructed with
a randomized algorithm in O(n log n) expected time.

The axioms (A1)–(A2) are satisfied for many concrete Voronoi diagrams, like:
power diagrams1, additively weighted points1, non-intersecting line segments,
disjoint convex polygons. Therefore, the structural complexity bound and the
randomized incremental algorithm are applicable to all these concrete cases.

There are other concrete Voronoi diagrams which are not covered by the
abstract Voronoi diagrams framework, because their bisectors do not satisfy the
axioms (A1)–(A2). For example, multiplicatively weighted points1, intersecting
line segments, line segments forming a planar straight-line graph, intersecting
convex polygons, intersecting circles, etc. Also disjoint simple polygons do not
satisfy the axioms, since they may have closed bisectors.

1In power diagrams, additively weighted points and multiplicatively weighted points the dis-
tance between the point p and the weighted point s is measured as dpower(p, s) = d2(p, s)−w(s),
dadd(p, s) = d(p, s)−w(s) and dmult(p, s) = d(p, s)/w(s), respectively, where d(p, s) is the regular
distance measure and w(s) is the weight of the point s.

101 6.1 Higher-Order Abstract Voronoi Diagrams

6.1 Higher-Order Abstract Voronoi Diagrams

Higher-order abstract Voronoi diagrams were recently introduced by Bohler et
al. [17]. The concept of the higher-order abstract Voronoi diagram extends the
ordinary abstract Voronoi diagram to an arbitrary order k. In addition to axioms
(A1)–(A2) the extended framework assumes the following axioms for any S′ ⊆ S:

(A3) No first-order Voronoi region V1(p, S′) is empty.

(A4) Each curve J(p, q), where p 6= q, is unbounded. After stereographic projec-
tion to the sphere, it can be completed to be a closed Jordan curve through
the north pole.

(A5) Any two curves J(p, q) and J(s, t) have only finitely many intersection
points, and these intersections are transversal.

Definition 7. The order-k Voronoi region associated with H is

Vk(H, S) =
⋂

p∈H,q∈S\H

D(p, q).

The order-k Voronoi diagram is

Vk(S) =
⋃

|H|=k

∂ Vk(H, S),

where ∂ denotes the boundary.

The number of faces in the order-k abstract Voronoi diagram of n sites is less
or equal than 2k(n−k) and the bound is tight [17].

Even though we are working in an abstract setting where no notion of dis-
tance is defined, it is sometimes easier to think in “nearest” terms about a par-
ticular site. Therefore we define the following relation that establishes a linear
order on the sites in S for a fixed point x ∈ R2.

Definition 8. For a point x ∈ R2 and two sites p, q ∈ S, p <x q, p =x q, or p >x q
if x ∈ D(p, q), x ∈ J(p, q), or x ∈ D(q, p), respectively.

Eq. (6.1) implies the transitivity of the ≤x relation. Suppose p ≤x q and
q ≤x r, then x ∈ D(p, q) and x ∈ D(q, r). Since D(p, q)∩ D(q, r) ⊆ D(p, r), x ∈
D(p, r) and thus p ≤x r. We define an ordered sequence on S, πS

x = (s1, . . . , sn),
given x , satisfying s1 ≤x s2 ≤x . . .≤x sn. We say that site s is k-nearest to point x
if s occupies the k-th position in the sequence πS

x .

102 6.1 Higher-Order Abstract Voronoi Diagrams

For each point x ∈ Vk(H, S) and πS
x = (s1, . . . , sn), H = {s1, . . . , sk}, and sk <x

sk+1. If Vk(H1, S) and Vk(H2, S) share an edge e, then for any point x ∈ e, H1 ∩
H2 = {s1, . . . , sk−1} and sk−1 <x sk =x sk+1, see [17, Lemma 5]. For simplicity,
throughout this chapter, we make a general position assumption that the degree
of any Voronoi vertex is exactly three.

Similarly to Section 3.2 we define two types of Voronoi vertices:

Definition 9. Let v be a Voronoi vertex among Vk(H1, S), Vk(H2, S), and Vk(H3, S),
and let H = H1 ∩ H2 ∩ H3 then v can be categorized into two types: new when
|H|= k− 1 and old when |H|= k− 2.

A new Voronoi vertex of Vk(S) is an old Voronoi vertex of Vk+1(S).
Let v be a Voronoi vertex as in the Def. 9, we can show that H = {s1, . . . , st}

and st <v st+1 =v st+2 =v st+3 <v st+4, where t = |H| and πS
v = (s1, . . . , sn). Each

Voronoi vertex is defined by the three sites st+1, st+2, st+3.
The following is the definition of the key substructure of the higher-order

Voronoi diagram which is going to be used by the algorithm in Section 6.4.

Definition 10. The k-neighborhood of a site p in S, denoted by V N k(p, S), is the
union of closures of Vk(H, S) for all H ⊂ S, such that p ∈ H and |H|= k, i.e.,

V N k(p, S) =
⋃

p∈H,H⊂S,|H|=k

Vk(H, S),

where X denotes the topological closure of the set X .

Each edge of ∂ V N k(p, S) belongs to J(p, q) for a site q ∈ S \ {p}, and each
edge of Vk(S) belongs to ∂ V N k(p, S) for a site p ∈ S, the latter implies

Vk(S) =
⋃

p∈S

∂ V N k(p, S). (6.2)

Unlike order-k Voronoi regions of point-sites, abstract order-k Voronoi re-
gions may be disconnected. In fact one region may disconnect into Ω(n) disjoint
faces, for k > 1 (see e.g. Section 3.1 for line segments). Nevertheless, the
k-neighborhood is connected, and this is the major property used in Section 6.4.

Lemma 6.1.1. V N k(p, S) is simply connected and there is no finite set of points
whose removal would make V N k(p, S) disconnected.

Proof. First we show that V N k(p, S) is path connected. For the sake of con-
tradiction suppose there exists a curve L that contains at most finitely many

103 6.1 Higher-Order Abstract Voronoi Diagrams

points of V N k(p, S) and separates parts of it. Consider point x ∈ V N k(p, S).
Site p is one of the k closest sites to point x , therefore there are at least n−k
sites {q1, . . . , qn−k} = Q ⊂ S that are further from x than the site p, i.e. x ∈
⋂n−k

i=1 D(p, qi) = V1(p,Q ∪ {p}). The region V1(p,Q ∪ {p}) does not intersect L,
otherwise L would intersect more than finitely many points of V N k(p, S). Since
L separates parts of V N k(p, S) there are at least two regions V1(p,Q ∪ {p}) and
V1(p,Q′ ∪ {p}) separated by L and Q 6= Q′. Since V1(p, S) ⊆ V1(p,Q ∪ {p}) ∩
V1(p,Q′ ∪ {p}), the region V1(p, S) is empty, which is a contradiction to (A3).

Next we show that there can be no holes in V N k(p, S). For the sake of
contradiction suppose there is a hole F entirely surrounded by V N k(p, S). Then
the boundary ∂ F is a subset of ∂ V N k(p, S). Therefore the edges on the boundary
∂ F correspond to the bisectors J(p, g), g ∈ G ⊂ S. If one of the bisectors J(p, g ′)
goes through the interior of F then consider F∩D(g ′, p), which is not empty, and
so on until we have F ′ bounded by edges of the bisectors J(p, g), g ∈ G′ ⊆ G.
The construction of F ′ implies that F ′ ⊆

⋂

g∈G′ D(g, p). Consider the farthest
Voronoi diagram Vm(G′ ∪ {p}), where m = |G′|. Set F ′ is a bounded face of the
farthest Voronoi region

⋂

g∈G′ D(g, p) = Vm(G, G ∪ {p}), which contradicts the
fact that there are no bounded faces in farthest Voronoi diagrams [17, Lemma
7].

Alternatively we can prove the part of Lemma 6.1.1 about the path connec-
tivity in the following way. The definition of V N k(p, S) implies that p is at most
k-nearest for every point in V N k(p, S). Therefore

V N k(p, S) =
⋃

p∈H,H⊂S,|H|=k

V1(p, {p} ∪ (S \H)).

Axiom (A1) implies that V1(p, {p} ∪ (S \ H)) is path connected. Thus V N k(p, S)
is also path connected as the union of path connected sets.

Axiom (A5) implies that any two bisectors have finitely many intersection
points. However, the following lemma states that if two bisectors have a site in
common then they intersect at most twice.

Lemma 6.1.2. Let J(p, q) and J(p, r) be a pair of bisectors, where r 6= q, then the
bisectors intersect at most twice.

Proof. Consider the order-1 Voronoi diagram V1({p, q, r}). Axiom (A1) implies
that there are exactly 3 faces in V1({p, q, r}). Euler’s formula implies that there
are at most two Voronoi vertices in V1({p, q, r}). Axiom (A3) implies that bisec-
tor J(q, r)must pass through every intersection point of bisectors J(p, q), J(p, r)

104 6.2 Randomized Divide and Conquer Algorithm

and each intersection point corresponds to a Voronoi vertex of V1({p, q, r}).
Since the number of Voronoi vertices is at most two, bisectors J(p, q) and J(p, r)
intersect at most twice.

6.2 Randomized Divide and Conquer Algorithm

Despite the recent results on nearest neighbor Voronoi diagrams, no efficient al-
gorithmic techniques have been available that are directly applicable to compute
the order-k abstract Voronoi diagrams. The standard iterative approach [59],
which is directly applicable, is efficient for small values of k only. There are
efficient randomized algorithms for point sites in the Euclidean metric, most of
them depend on specific geometric transformations, see Section 2.3. It is non-
trivial to get rid of the geometric transformations and to extend them to the
abstract version.

For nearest neighbor Voronoi diagrams Mehlhorn et al. [61] proposed a ran-
domized incremental construction algorithm, which is based on the Clarkson-
Shor incremental construction technique [31]. The extension of this approach
to handle higher-order abstract Voronoi diagrams is stated as an open prob-
lem [61].

In this chapter, we develop a randomized divide and conquer algorithm to
compute the order-k abstract Voronoi diagram in expected O(kn1+ε) basic op-
erations, based on Clarkson’s random sampling technique and one additional
axiom:

(A6) The number of vertical tangencies of a bisector is a constant.

We assume the existence of a sufficiently large closed curve Γ such that no
two bisectors intersect outside Γ. Γ can be viewed as J(∞, p), for any p ∈ S.
The usage of Γ is to deal with unbounded Voronoi edges and faces. Hereafter
we consider only the part of the Voronoi diagram enclosed inside Γ, without
explicit indication.

We consider the following basic operations:

1. For an arbitrary point x , determine if x is in D(p, q), J(p, q) or D(q, p).

2. Given a point x on J(p, q), determine the next vertical tangent point or
the next intersection with J(s, t) or a straight line along one direction of
J(p, q).

3. For two points x , y on J(p, q), determine the in-front/behind relation
along one direction of J(p, q);

105 6.2 Randomized Divide and Conquer Algorithm

4. Compare two points x , y by x-coordinate, where x , y are the intersection
points or the points of vertical tangency of the bisectors.

The first two operations allow to compute the Voronoi diagram for a constant
number of sites in O(1) time, the second one allows a vertical trapezoidal de-
composition of a region, and the last one allows to link Voronoi vertices along
one bisector. For point sites in any convex distance metric or the Karlsruhe met-
ric, and for disjoint line segments or disjoint convex polygons of constant size
in the Lp norms or under the Hausdorff metric, our algorithm achieves expected
O(kn1+ε) time, as all basic operations take O(1) time.

In order to apply Clarkson’s technique [30], we define a vertical decompo-
sition of the order-k Voronoi diagram. Then, we prove that our vertical trape-
zoidal decomposition of Vk(H, S) allows a divide and conquer algorithm and an
expected time analysis. To compute the sub-diagram when the sub-instance is
small enough we propose two sub-algorithms for order-k abstract Voronoi dia-
grams. For the first one, we combine Lee’s [59] iterative method for point sites
in the Euclidean metric and randomized incremental construction for first-order
abstract Voronoi diagrams [55] to achieve expected O(k2n log n) operations. For
the second one, we first prove that certain properties for points in the Euclidean
metric also hold for the abstract version, and then adopt Har-Peled’s random
walk technique [48] to make an O(n22α(n) log n)-operation randomized algo-
rithm, where α(·) is the inverse of the Ackermann function.

Our algorithm displays the essence of Clarkson’s randomized divide and con-
quer algorithm for Euclidean order-k Voronoi diagrams [30], but does not re-
quire many geometric constraints. Clarkson’s method depends on many proper-
ties of planes in 3D space, which correspond to circles in the plane, and thus,
would be more restricted in geometric sites and distance metrics. Instead, our
algorithm uses the viewpoint of Voronoi diagrams to define all the sub-structures
and conflict relations, and thus, it relies on the properties of a bisector system
that satisfies the 6 axioms, rather than geometric sites and distance measures.

6.2.1 Refined Diagram

We first define a refined version of the order-k Voronoi diagram and then parti-
tion it into vertical decomposition.

Definition 11. The refined order-k Voronoi diagram Vk(S) of S is derived by su-
perimposing Vk(S) and Vk+1(S). It is defined as:

Vk(S) = Vk(S)∪
⋃

H⊂S,|H|=k

V1(S \H)∩ Vk(H, S).

106 6.2 Randomized Divide and Conquer Algorithm

A region Vk(p, H, S) of Vk(S) is associated with a site p ∈ S, which is called the
dominator, and a k-element subset H ⊂ S. For any point x ∈ Vk(p, H, S), H is the
set of k nearest sites to x and p is the (k+1)-nearest site to x.

This definition is also equivalent to

Vk(S) = Vk(S)∪ Vk+1(S). (6.3)

Subsequently the following lemma implies time complexity bounds for the con-
struction of Vk(S) from Vk(S).

Lemma 6.2.1. V j+1(S) can be computed from V j(S) in expected O(j(n− j) log n)
operations.

Proof. Consider a face F of V j(S). Suppose F is a face of the region Vj(H, S).
Consider ` regions Vj(Hi, S) adjacent to the face F , i = 1, . . . ,`. For every edge e
on the boundary ∂ F we can determine in O(1) time the site that belongs to Hi

but does not belong to H in the following way: suppose the edge e corresponds
to the bisector J(p, q) then if F ⊆ D(p, q) then take q otherwise take p. The set
Q =

⋃

i=1,...,`Hi \H can be computed in O(|∂ F |) operations, where |∂ F | denotes
the number of edges along the boundary of F .

We want to show that V1(Q)∩ F = V j+1(S)∩ F , which is also equal to V1(S \
H)∩ F . Consider V1(S \ H)∩ F . Take an arbitrary point x ∈ F and suppose x ∈
V1(s, S\H). For the sake of a contradiction assume s /∈Q. This means that for any
q ∈Q, s <x q. Therefore q is the (j+1)-closest site to the point x among the sites
in S, i.e. x ∈ Vj+1(H ∪ {s}, S). Let F ′ be the face of Vj+1(H ∪ {s}, S) that contains
x . Since s /∈ Q, F ′ does not intersect ∂ F . Thus F ′ is completely enclosed in F
and does not intersect any edge of V j(S), i.e. F ′ ∩V j(S) is empty. The portion of
V j(S) enclosed in F ′ is exactly the farthest Voronoi diagram V j(H ∪{s}) enclosed
in F ′ [17, Lemma 12], which is not empty [17, Lemma 13], a contradiction.
Hence s ∈ Q, and since x is taken arbitrarily in F , V1(S \ H) ∩ F = V1(Q) ∩ F
= V j+1(S)∩ F .

Therefore, we can construct V j+1(S) by constructing V1(Q) ∩ F for each of
the faces in V j(S). The algorithm in [55] computes V j+1(S) ∩ F in expected
O(|Q| log |Q|) = O(|∂ F | log |∂ F |) operations. Therefore, the expected number of
operations for computing V j+1(S) from V j(S) is bounded by

∑

F face of V j(S)

O(|∂ F | log |∂ F |) = O(|V j(S)| log |V j(S)|),

where |V j(S)| is the structural complexity of V j(S). Since the structural com-
plexity of V j(S) is O(j(n− j)) [17], the O((j(n− j) log n) expected running time
follows.

107 6.2 Randomized Divide and Conquer Algorithm

Definition 12. The vertical decomposition of Vk(S), denoted by V4k (S), is the
subdivision of the plane into (pseudo-)trapezoids obtained by shooting vertical rays
up and down from each vertex in Vk(S) and each vertical tangent point of each
edge in Vk(S), until the intersection with an edge or all the way to infinity.

Lemma 6.2.2. Let A be a subset of the arrangement of curves J . The vertical
trapezoidal decomposition A4 can be constructed from A in O(m log m) operations,
where m is the complexity of A.

Proof. Because each bisector has a constant number of points of vertical tan-
gency, we can take O(m) operations to compute all points of vertical tangency in
A. Thus in O(m log(m)) operations we can create a list sorted according to the x-
coordinate v1, . . . , vm′ , m′ ∈ O(m) of all points of interest, intersections between
bisectors and points of vertical tangency, of V(S). Further let v1 be the leftmost
point among v1, . . . , vm′ . Now we sweep the plane with a sweepline L from left
to right and keep the edges intersected by the sweepline, which for each time
step stores the edges intersected by L sorted by their y-coordinate.

Each time the sweepline hits a point vi we have an event where a vertical line
segment from vi to the next edge above and below vi is inserted into A4. Further
the edges incident to vi to the left are deleted from the sweepline structure
and the edges to the right are inserted into the sweepline structure. Using a
balanced binary tree with connected leaves to store the order of the edges along
the sweepline, insertion and deletion of edges in the takes O(log m) operations,
the insertion of vertical line segments in A4 takes constant time. Thus the whole
algorithm takes O(m log m) operations.

Lemma 6.2.3. V4k (S) can be constructed from Vk(S) in expected O(k(n−k) log n)
operations.

Proof. By Lemma 6.2.1, Vk(S) can be constructed from Vk(S) in expected O(k(n−
k) log n) operations. Eq. 6.3 implies that the structural complexity of Vk(S) and
Vk(S) are asymptotically the same, i.e. O(k(n− k)). Therefore by Lemma 6.2.2
the expected number of operations to compute V4k (S) from Vk(S) is

O(k(n− k) log(k(n− k))) = O(k(n− k) log n).

A trapezoid 4 of V4k (S) in Vk(p, H, S) is defined by the dominator p and
1-4 other sites. Vertical boundaries of the trapezoid may be defined either by an
intersection point or by a point of vertical tangency. Moreover, one of the vertical

108 6.2 Randomized Divide and Conquer Algorithm

4

p

p

p
p

q

s

h

h

4

V4
k (S)

Figure 6.1. Trapezoid 4 of V4k (S). Vk(S) is depicted in shaded.

boundaries may be degenerate. Let d(4) be the dominator of the trapezoid and
B(4) be the set of sites that together with the dominator define the boundaries
of the trapezoid 4. Then 1≤ |B(4)| ≤ 4 and for any point x ∈4, H \ B(4) are
the k− |H ∩ B(4)| nearest sites to x .

In Figure 6.1, the top and bottom edges of 4 are defined by J(p, q) and
J(p, h), respectively, and the left and right edges are defined by a vertical tangent
point of J(p, h) and an intersection between J(p, q) and J(p, s), respectively. In
other words, B(4) = {q, h, s} and d(4) = p.

In order to apply Clarkson’s abstract framework [30] to the abstract Voronoi
diagrams framework we define the notion of conflicts between the trapezoids
and the sites in such a way that it efficiently “brackets” the space. The property
of the conflict relations to “bracket” the space is the essential part of the divide
and conquer algorithm.

Definition 13. For a trapezoid 4 of V4k (S), a site s 6∈ B(4) strongly conflicts
with 4, if 4 ⊂ D(s, d(4)). A site s 6∈ B(4) weakly conflicts with 4, if 4 ∩
D(s, d(4)) 6= ;. The set of sites X ⊆ S that strongly, resp. weakly conflict with 4
is denoted by X ∧s4, resp. X ∧w4.

In general, the set of strong conflicts is different from the set of weak conflicts,
and X ∧s 4 ⊆ X ∧w 4. In Figure 6.2, set S = {p1, . . . , p7, s1, . . . , s4} is the set of
line segments in Euclidean space. R = {p1, . . . , p7} is the subset of S and 4
is the trapezoid of V43 (R) in V3(p1, {p2, p3, p4}, R). The dominator d(4) of the
trapezoid 4 is p1. The set of the sites B(4) that define the boundaries of the
trapezoid 4 is {p2, p3, p5, p6}. Since the sites p2, p3, p5, p6 define the boundary
of the trapezoid they cannot conflict with the trapezoid. However, the site p4

109 6.2 Randomized Divide and Conquer Algorithm

4

p1

p2

p3

p4

p5

p6
p7

s1

s2

s3

D(s1, p1)

D(s2, p1)

s4

Figure 6.2. Trapezoid 4 ∈ V3(p1, {p2, p3, p4}), where p1, . . . , p7 are line seg-
ments.

strongly conflicts with 4, since 4 ⊂ D(p4, p1). Sites that do not belong in R
can also conflict with the trapezoid. Here, site s1 strongly conflicts with4, since
4⊂ D(s1, p1). However, site s2 weakly conflicts with 4, because the dominance
region D(s2, p1) does not enclose 4, but only intersects 4. Thus, S ∧s 4 =
{p4, s1}, S ∧w 4 = {p4, s1, s2}. In Lemmas 6.2.4, 6.2.5 we use weak and strong
conflicts for the upper and lower bounds, respectively.

Lemma 6.2.4. Let R be a subset of S and β be a positive integer. Then for any
trapezoid 4 of V4β (R),

1. |R∧s4| ≥ β − 4,

2. |R∧w4| ≤ β .

Proof. Let 4 be a trapezoid enclosed in the region Vβ(H, R). We want to prove
that H \ B(4) ⊆ R ∧s 4 and R ∧w 4 ⊆ H, which will immediately imply the
statement of the lemma, since |B(4)| ≤ 4 and |H|= β .

For each point x in the trapezoid 4, H is the set of β nearest sites and d(4)
is the (β+1)-nearest site. Therefore for each site p ∈ H \ B(4), p is closer to x
than d(4), thus4⊂ D(p, d(4)). We also include the boundary of the trapezoid
since we have excluded sites in B(4) that define the boundary. Therefore sites in
H \B(4) are in the strong conflict with the trapezoid4, i.e. H \B(4)⊆ R∧s4.

110 6.2 Randomized Divide and Conquer Algorithm

Let p be the site in R ∧w 4. The definition of the weak conflict implies that
there is a point x in 4 such that p <x d(4). If x belongs in 4 then p is one
of the β nearest sites to x , i.e. p ∈ H. If x is in ∂4 then p can not be a site
that defines the boundary, because the dominance region D(p, d(4)) does not
include the bisector J(p, d(4)) that corresponds to the boundary. Thus p is one
of the β nearest sites to x , i.e. p ∈ H. Therefore R∧w4⊆ H.

Lemma 6.2.4 and [30, Corollaries 4.3 and 4.4] imply the following.

Lemma 6.2.5. Let R be an r-element random sample of S. Then with probability
at least 1/2, as r →∞, for any trapezoid 4 of V4β (R),

1. |S ∧s4| ≥ |S|/(r − 5),

2. |S ∧w4| ≤ α|S|,

where β = O(log r/ log log r) and α= O(log r/r).

Proof. The proof follows [30, Lemma 5.4]. Let FR be the family of trapezoids
defined by at most 5 sites in R. First we want to prove that |FR| = O(r5). Each
trapezoid is defined by the dominator and 1-4 other sites. Let p be the dominator
of the trapezoid4, then the boundary of the trapezoid is defined by the bisectors
J(p, q), where q ∈ B(4). Lemma 6.1.2 implies that the bisectors that define the
boundary intersect O(1) number of times, i.e. there are O(1) ways to define a
trapezoid given a dominator and 1-4 other sites. Thus there are O(1) ways to
define a trapezoid given 2-5 sites. Therefore |FR|= O(r5).

Consider the following probability:

Prob{∃4 ∈ V4β (R) |S ∧s4|< n/(r − 5)}.

Lemma 6.2.4 implies that for every trapezoid 4 in V4β (R) the number of strong
conflicts with R is at least β − 4. Therefore, we can apply [30, Corollary 4.3] to
derive

Prob{∃4 ∈ FR |R∧s4| ≥ β−4 and |S∧s4|< n/(r−5)} ≤ O(r5)(e/(β−4))β−4.

Similarly consider the following probability:

Prob{∃4 ∈ V4β (R) |S ∧w4|> αn}.

Lemma 6.2.4 implies that every trapezoid 4 in V4β (R) is in weak conflict with at
most β sites in R. [30, Corollary 4.4] implies

Prob{∃4 ∈ FR |R∧w4| ≤ β and |S ∧w4|> αn} ≤ O(r5)e−αr(eαr/β)β .

For suitable α = O(log r/r) and β = O(log r/ log log r) these two probabilities
are less than 1/4 each. Therefore the claim of the lemma follows.

111 6.2 Randomized Divide and Conquer Algorithm

Lemma 6.2.6. Let R be a subset of S such that for any trapezoid 4 of V4β (R),
|S ∧s 4| > k. Let v be a Voronoi vertex of Vk(S). Then there exists a trapezoid
4∈ V4β (R) such that v is also a Voronoi vertex of Vk(S ∧w4).

Proof. Let v be a Voronoi vertex incident to three Voronoi regions Vk(H1, S),
Vk(H2, S) and Vk(H3, S). Consider the trapezoidal decomposition V4β (R). There

is a trapezoid 4 of V4β (R) such that 4 contains v. We want to prove that H1 ∪
H2 ∪H3 ⊆ S ∧w4.

Let H be H1 ∪ H2 ∪ H3 and t = |H|. By Definition 8 and Definition 9, v is
either a new or an old vertex, therefore t is either k+ 1 or k+ 2. Consider the
sequence πS

v , in the sequence the sites have the following relations: s1 ≤v . . .≤v

st−3 <v st−2 =v st−1 =v st <v st+1 . . ., where H = {s1, . . . , st}.
Definition 13, implies that for each site p ∈ S ∧s4, p <v d(4). Therefore in

the sequence πS
v the sites in S ∧s4 are to the left of the site d(4). Denote as d

the index of the dominator in the sequence, i.e. sd = d(4). Then d > k+1 since
all the sites in S ∧s4 are to the left of the dominator and |S ∧s4|> k.

Take a site si, where i < d. Site si has index less than d, therefore si ≤v d(4),
or v ∈ D(si, d(4)). Since v ∈ 4, v ∈ 4∩ D(si, d(4)) and therefore si is in weak
conflict with the trapezoid 4. Therefore for any site si, for i < d, si ∈ S ∧w4.

Consider now the sites s1, . . . , st . Since t can be equal to k + 1 or k + 2,
t ≤ k + 1 < d. Therefore s1, . . . , st ∈ S ∧w 4. Recall that H = H1 ∪ H2 ∪ H3 =
{s1, . . . , st} then H ⊆ S ∧w4.

Consider now two order-k Voronoi diagrams: Vk(S) and Vk(S ∧w 4). Since
the order-k Voronoi vertex v is defined by the sites in H1, H2 and H3 it is also
present in the second diagram, because H1 ∪H2 ∪H3 ⊆ S ∧w4.

6.2.2 Computing the Voronoi vertices

Lemma 6.2.6 indicates that if for any 4 trapezoid of V4β (R), |S ∧s4| > k, then
computing the Voronoi vertices of Vk(S) can be transformed into computing the
Voronoi vertices of Vk(S ∧w4) for each 4 trapezoid of V4β (R).

Lemma 6.2.5 states that on average it takes two trials to generate the sample
R such that |S ∧s 4| ≥ |S|/(r − 5), where the size r of the random sample R is
any sufficiently large constant. Therefore, if |S|/(r − 5) > k, then we need two
trials on average to generate a random sample that satisfies the conditions of
Lemma 6.2.6. The condition |S ∧w 4| ≤ α|S| in Lemma 6.2.5 bounds the depth
of the recursion. Following Clarkson [30], the algorithm to compute the Voronoi
vertices of Vk(S) is summarized as follows:

112 6.2 Randomized Divide and Conquer Algorithm

• If |S|/(r − 5) ≤ k, compute the Voronoi vertices of Vk(S) by the algorithm
in Section 6.4.

• Otherwise (|S|/(r − 5)> k)

1. Choose R⊂ S of size r until R satisfies the conditions of Lemma 6.2.5

(a) Construct Vβ(R) by the algorithm in Section 6.3 and Compute
V4β (R) from Vβ(R) (Lemma 6.2.3).

(b) Check each trapezoid inV4β (R) to satisfy the conditions of Lemma 6.2.5.

2. For each trapezoid 4∈ V4β (R)

(a) Recursively compute the Voronoi vertices Vk(S ∧w4).
(b) Select vertices of Vk(S ∧w4) that are vertices of Vk(S).

Here we address the question of choosing the constant r. Lemma 6.2.5 states
that as r tends to infinity with probability at least 1/2 the numbers of weak
and strong conflicts are bounded by some values. Therefore we can find a large
value of r such that the probability is at least 1/2. This value can be computed
by solving O(r5)(e/(β − 4))β−4 < 1/4 and O(r5)e−αr(eαr/β)β < 1/4. In the
time analysis we also sometimes consider r to be tending to infinity. This is done
in order to simplify the analysis and allow some terms to dominate over another.
The larger the value of r is taken, the greater is the chance to successfully gen-
erate the sample R. The larger the value of r, the smaller is the value of ε and as
the result, the smaller is the asymptotic running time of the algorithm. However,
the larger the value of r, the larger is the constant hidden in the O-notation of
the running time, see the next section.

6.2.3 Analysis

Lemma 6.2.7. Vk(S) can be computed from its Voronoi vertices in O(k(n−k) log n)
operations.

Proof. For points-sites, a vertex is uniquely defined by three sites [59]. Also for
point-sites two vertices are adjacent iff their corresponding triples of sites have
two sites in common. However, in the abstract setting, three sites may define one
or two vertices and the adjacency property does not hold. Therefore, we cannot
solve this problem by just using radix sort as it was done for point-sites [30].

Here, in the abstract setting, we use radix sort to extract for each bisector
all Voronoi vertices that lie on it, in total O(|V |) operations, where V is the set

113 6.2 Randomized Divide and Conquer Algorithm

of vertices in Vk(S). We also assume the existence of a sufficiently large closed
curve Γ such that no two bisectors intersect outside Γ. Γ can be viewed as
J(∞, p), for any p ∈ S.

Consider a set of mJ > 0 Voronoi vertices that belong to bisector J (including
the artificial Voronoi vertices formed by the intersection between Vk(S) and Γ).
mJ must be even; otherwise, at least one Voronoi vertex has no Voronoi edge.
We can sort the mJ Voronoi vertices along one direction of J as v1, v2, . . . , vmJ

in O(mJ log mJ) operations, and then link v2i−1 with v2i for 1 ≤ i ≤ mJ/2 as
Voronoi edges in O(mJ) operations. Therefore, we can compute all the Voronoi
edges on J in O(mJ log mJ) operations. Since |V | is O(k(n−k)), the total number
of operations is

O (|V |) +
∑

J∈J ,mJ>0

O(mJ log mJ) = O
�

|V | log |V |
�

= O
�

k(n− k) log n
�

.

Theorem 6.2.8. Vk(S) can be computed in expected O(kn1+ε) operations, where
ε > 0, and the constant factor of the asymptotic bound depends on ε.

Proof. The proof follows [30, Lemma 6.4]. Recall that r is a sufficiently large
constant, α= O(log r/r) and β = O(log r/ log log r). There are two cases:

1. If |S|/(r − 5) ≤ k, then we use the algorithm from Section 6.4 to compute
the vertices of the order-k Voronoi diagram in expected O(n22α(n) log n)
operations. Since n= |S| ≤ k(r − 5), it is less than O(r2k2 log2 r log2 k);

2. If |S|/(r − 5)> k then the algorithm proceeds as follows:

(a) Choose a random sample that satisfies the conditions of Lemma 6.2.5.
Do the check by constructing Vβ(R) and computingV4β (R) from Vβ(R).
The construction of Vβ(R) takes expected O(rβ2 log r) operations (see
Section 6.3), and computingV4β (R) takes additional expected O(β(r−
β) log r) operations.

The number of the trapezoids in V4β (R) is O(rβ), and the number
of operations required to check the sample is O(nrβ) ⊂ O(nr log r).
This dominates both O(rβ2 log r) and O(β(r − β) log r).

(b) For each trapezoid in V4β (R) compute the order-k vertices using re-
cursion. The number of recursive calls is the number of trapezoids
in V4β (R) which is O(rβ) ⊂ O(r log r). Lemma 6.2.5 implies that
each recursive call inputs O(αn) sites. The structural complexity

114 6.3 Iterative Construction

bound of the higher-order Voronoi diagrams implies that each recur-
sive call outputs O(αnk) vertices. Therefore the total number of the
vertices received from the output of the recursion is O(αnkr log r)
which is O(nk log2 r). Thus the time required to validate the vertices
is O(nk log2 r).

Therefore, the expected number t(n) of operations for computing the Vononoi
vertices of Vk(S) is

t(n)≤ O
�

rk log r log k
�2 , n≤ k(r − 5)

t(n)≤ O
�

nr log r
�

+O
�

nk log2 r
�

+O(r log r)t
�

O(n log r/r)
�

, n> k(r − 5),

and the depth of the recursion is D = O(log(n/k)/ log(r/ log r)). Where the
asymptotic bounds are given as r → ∞. Since O(nr log r) + O(nk log2 r) =
O(nkr log r) we can derive the following upper bound for t(n):

t(n) = (k log k)2(r log r)2(r log r)D + nkO(r log r)(log r)2(D+1).

If we take ε = O(log log r/ log r) we receive

t(n) = O
�

n1+εk1−ε log2 k+ n1+εk1−ε
�

= O
�

kn1+ε
�

,

as n → ∞, where the constant factor depends on ε, see [30, Lemma 6.4].
Since Vk(S) can be constructed from the Voronoi vertices of Vk(S) in expected
O(k(n − k) log n) operations (Lemma 6.2.3), Vk(S) can be constructed in ex-
pected O(kn1+ε) operations.

6.3 Iterative Construction

The order-k abstract Voronoi diagram can be computed iteratively similarly to
point sites in the Euclidean metric [59]. First we construct the nearest neighbor
Voronoi diagram V1(S). Then we iteratively construct V j+1(S) from V j(S) until
we receive the order-k Voronoi diagram.

Theorem 6.3.1. Vk(S) can be computed in expected O(k2n log n) operations.

Proof. Since the algorithm in [55] can compute V1(S) in expected O(n log n)
operations, by Lemma 6.2.1, the expected number of operations is bounded by

O(n log n) +
k−1
∑

j=1

O(j(n− j) log n) = O(k2n log n)

115 6.4 Random Walk Method

6.4 Random Walk Method

We construct Vk(S) by computing ∂ V N k(p, S) for every p ∈ S, i.e., all the
Voronoi edges of Vk(S) belonging to J(p, q), see Eq. 6.2. Chazelle and Edels-
brunner [28] computed ∂ V N k(p, S) based on dynamic convex hulls and the fact
that V N k(p, S) is simply connected. However, dynamic convex hulls are not ap-
plicable in the abstract setting. Since V N k(p, S) is simply connected, we can
adopt Har-Peled’s [48] random walk algorithm to compute ∂ V N k(S).

Given an arrangement of n x-monotone curves, each pair of which inter-
sects at most t times, and a curve γ, Har-Peled’s [48] random walk algorithm
computes the zone of γ, i.e. the faces of the arrangement intersected by γ. Con-
sider the vertical decomposition of the arrangement. The algorithm traverses
the curve γ while maintaining the trapezoids of the faces that were already en-
countered.
∂ V N k(p, S) is a substructure of the arrangement of n−1 bisectors J (p) =

{J(p, q) | q ∈ S \ {p}}, where the bisectors in J (p) are not x-monotone, but
they have constant number of vertical tangency points. Therefore, the structural
complexities of the arrangement and its vertical decomposition are of the same
asymptotic magnitude. We view ∂ V N k(p, S) as γ and compute ∂ V N k(p, S) using
the same technique. We construct ∂ V N k(p, S) in the following way:

1. For each connected component of ∂ V N k(p, S) compute a starting point.

2. For each starting point, traverse the corresponding part of ∂ V N k(p, S).

As we walk we can determine the next direction in O(1) time (see Lemma 6.4.2).

Lemma 6.4.1. The starting points of ∂ V N k(p, S) for each of its connected compo-
nents can be computed in total O(n log n) expected time.

Proof. Consider the function σp(x), x ∈ R2:

σp(x) =
�

�

�

s ∈ S | s 6= p, x ∈ D(s, p)
	

�

� .

For a continuous walk in the plane, σp(x) changes by 1 when the walk hits or
leaves the curve from J (p). For each edge e of ∂ V N k(p, S) and each point x
in e, p is the k-nearest site of x in S such that σp(x) = k − 1. Moreover, by
Definition 9, for each vertex v of ∂ V N k(p), σv(p) is k− 1 or k− 2, depending
on whether v is a new or an old order-k Voronoi vertex.

Recall that we assume the existence of a sufficiently large closed curve Γ
such that no two bisectors intersect outside Γ. We first collect starting points of

116 6.4 Random Walk Method

unbounded edges of ∂ V N k(p, S), and if there does not exist one, V N k(p, S) is
bounded.

Suppose V N k(p, S) is unbounded. There are 2n−2 intersections between the
extremely large closed curve Γ and J (p), and it takes O(n log n) operations to
sort them along Γ. Let v1, v2, . . . , v2n−2 be the intersections of Γ and J (p) sorted
along the Γ. We can compute σp(v1) in O(n) operations by checking whether
v1 ∈ D(p, q) or v1 ∈ D(q, p) for each q ∈ S \ {p}. Then we traverse Γ and every
time we encounter the new intersection point we either increase or decrease
σp by 1, depending on the orientation test. The traversal takes additional O(n)
operations and it computes σp(vi) for 2 ≤ i ≤ 2n− 2. The starting points are
those vi that have σp(vi) = k− 1. If during the traversal we did not encounter
any of the starting points then V N k(p, S) is bounded and we proceed with the
following.

Suppose ∂ V N k(p, S) is bounded, i.e., for 1 ≤ i ≤ 2n − 2, σp(vi) 6= k −
1. We compute V1({p}, S), which takes expected O(n log n) operations by the
algorithm in [55]. We take any edge e on the boundary of V1({p}, S). Assume
that e belongs to J(p, q). It is clear that for each point x in e, σp(x) = 0. We
compute the intersection points between J(p, q) and the rest of curves in J (p).
Since bisectors in J (p) intersect pairwise at most twice, the total number of
intersections is at most 2n− 4. We sort the intersection points along J(p, q) in
O(n log n) time. We pick a point x in e, and traverse J(p, q) from x along one
direction. Since ∂ V N k(p, S) is bounded and encloses V1({p}, S), the traversal
will find the intersection point v such that σp(v) is k− 1 or k− 2, which is the
starting point. Therefore the starting points can be computed in total O(n log n)
expected time.

Lemma 6.4.2. During the traversal of ∂ V N k(p, S) each time the algorithm en-
counters a new intersection point of the bisectors, the next traversal direction can
be determined in O(1) time.

Proof. Let e = (u, v) be an edge of ∂ V N k(p, S). Suppose e belongs to J(p, q) and
v is an intersection point between J(p, q) and J(p, t). Let e′ = (v, w) be the next
edge to be traversed, i.e. e′ belongs to ∂ V N k(p, S). Since e′ corresponds to the
bisector J(p, t) this leaves us with two directions to choose.

By Definition 10, for each point x ∈ e, p and q are both the k-nearest sites of
x , and for each point y ∈ e′, p and t are both the k-nearest site of y . Therefore,
if e ∈ D(p, t) then e′ ∈ D(p, q). Otherwise, e′ ∈ D(q, p). Therefore we can test in
O(1) time both directions and choose the one belonging to ∂ V N k(p, S).

Following [48], the expected number of operations required to compute the
boundary of the k-neighborhood by the random walk is O(λt+2(n + m) log n),

117 6.5 Summary

where t is the maximum number of intersections between two bisectors, and m
is the complexity of ∂ V N k(p, S). Lemma 6.1.2 implies that a pair of bisectors in
J (p) intersects at most twice, therefore t = 2.

The main difference between computing the zone in the original version of
the algorithm [48] and computing ∂ V N k(p, S) is that the latter is additionally
augmented by the vertical rays from the points of vertical tangency. However,
since by the axiom (A6) each bisector allows only a constant number of points
of vertical tangency, the expected number of operations increases only by a con-
stant factor.

Theorem 6.4.3. Vk(S) can be computed in O(n22α(n) log n) expected operations.

Proof. Consider the site si and its k-neighborhood ∂ V N k(si, S). The boundary of
the k-neighborhood can be computed in expected O(λ4(n+mi) log n) operations,
where mi is the complexity of the boundary. We compute Vk(S) by computing the
boundary of the k-neighborhood for every site si ∈ S. Therefore, the expected
overall number of operations is

n
∑

i=1

O(λ4(n+mi) log n).

Eq. 6.2 implies that every edge of ∂ V N k(si, S) is an edge of Vk(S), therefore
∑n

i=1 mi = O(k(n− k)). We apply well-known bounds for λ4(·) [84] and receive

n
∑

i=1

O
�

�

n+mi
�

2α(n+mi) log n
�

=
n
∑

i=1

O
�

�

n+mi
�

2α(n) log n
�

= O
��

n2+ k(n− k)
�

2α(n) log n
�

,

which implies the claim.

Theorems 6.3.1 and 6.4.3 bound the running time of the two algorithms that
are used for the subroutines in the divide and conquer algorithm, see Theo-
rem 6.2.8. In fact, we can use any eO(n2) algorithm that constructs the zone in
the arrangement of Jordan curves instead of the random walk method, where in
this dissertation eO-notation hides a polylogarithmic factor.

6.5 Summary

The abstract Voronoi diagram is a powerful unification of the properties of the
concrete Voronoi diagrams in a single mathematical abstraction. It assumes sev-

118 6.5 Summary

eral axioms for the bisecting system and once a concrete Voronoi diagram satis-
fies the axioms, all the structural, combinatorial and algorithmic results become
applicable. The higher-order abstract Voronoi diagram is an extension of the
abstract Voronoi diagram to an arbitrary k, 1≤ k < n.

In this chapter we have discussed a unification of two abstract frameworks:
Klein’s abstract Voronoi diagrams [53] and the Clarkson-Shor technique [30,
31]. The unification has been achieved by defining the notion of a “conflict”
for higher-order abstract Voronoi diagrams that allows application of some of
the results of the Clarkson-Shor framework. This results in a randomized divide
and conquer construction algorithm for higher-order abstract Voronoi diagrams,
which has O(kn1+ε) expected time complexity for any constant ε > 0. The al-
gorithm uses the other two algorithms for solving small subproblems during
the divide and conquer process. The randomized incremental algorithm has
O(k2n log n) expected time complexity and is very useful for small orders. The
random walk method has O(n22α(n) log n) expected time complexity and is use-
ful for large orders close to n. The random walk method is based on the idea
of Chazelle and Edelsbrunner [28] and it uses Har-Peled’s random walk tech-
nique [48].

The algorithms described in this chapter provide the improvement of the
construction time for the following concrete Voronoi diagrams:

• Disjoint line segments in Lp metric, for 1< p <∞. The previous construc-
tion algorithms provide O(k2n log n) construction time, see Chapter 3;

• Disjoint non-enclosed convex polygons of constant size. Previously the
construction could be done by generalizing the iterative O(k2n log n)-time
construction algorithm [59, 73];

• Additively weighted points with non-enclosed circles. In Voronoi diagrams
of additively weighted points the distance between a point p and a weighted
point s is measured as dw(p, s) = d(p, s)− w(s), where w(s) is the weight
of the point s and d(p, s) is the regular distance. The previous result due to
Rosenberger allowed to do the deterministic construction in O(k2n log n)
time [76];

• Power diagrams with non-enclosed circles. This restricted class of power
diagrams can be constructed through the construction of the k-level of
planes in 3D. Though the general planes in 3D are more complex than the
power diagram with non-enclosed circles, these algorithms provide the
best running so far which is O(n log n+ nk2) [23].

Chapter 7

Conclusions

Higher-order Voronoi diagrams of non-point sites are generally harder to inves-
tigate than higher-order Voronoi diagrams of point sites. A point is the simplest
kind of geometric object, with zero dimensions, thus allowing the use of multi-
ple techniques including but not limited to geometric transformations and du-
alities with other fundamental geometric objects. Consequently the major part
of theoretical results in computational and combinatorial geometry is related to
points. The higher-order Voronoi diagram had been studied only for the case
of points. The most advanced algorithmic results for higher-order Voronoi di-
agrams of points utilize the simplicity of points and thus they are not easy to
extend to other kinds of sites. Until recently, higher-order Voronoi diagrams of
non-point sites had been studied only for two border cases: nearest neighbor
and farthest Voronoi diagrams.

In this dissertation we have studied higher-order Voronoi diagrams of polyg-
onal objects. The greater part of the investigation is dedicated to line segments,
including intersecting line segments and line segments forming a planar straight-
line graph. The results include investigation of structural properties, combina-
torial complexity bounds and construction algorithms, most of which are appli-
cable in the Lp metric, 1 ≤ p ≤ ∞. The construction algorithms include the
extensions of the iterative algorithm, a sweepline algorithm, and randomized
algorithms for the higher-order abstract Voronoi diagrams. The sweepline algo-
rithm allows on-the-fly computations, is simple to implement, useful for small
orders and it can be used to construct all order-i Voronoi diagrams for i ≤ k.
The randomized algorithms for higher-order abstract Voronoi diagrams can be
applied to any concrete Voronoi diagrams satisfying several basic assumptions:
disjoint line segments, power diagrams, additively weighted points, disjoint con-
vex polygons, etc. The randomized divide and conquer algorithm is the result

119

120 7.1 Future Directions

of the unification of two mathematical abstractions: abstract Voronoi diagrams
and the Clarkson-Shor framework. It has the best running time among the algo-
rithms investigated in this dissertation. The random walk algorithm is useful for
values of k = Ω(n). The complete list of the contributions of this dissertation is
given in Section 1.2.

The applications of higher-order Voronoi diagrams have been mostly limited
to points, with the exception of [69]. Unfortunately, points are not always well-
suited to represent real-life instances. We hope that the results of this disserta-
tion will initiate the investigation of higher-order Voronoi diagrams of polygonal
objects in computation geometry as well as in real-life applications.

7.1 Future Directions

The investigation of higher-order Voronoi diagrams of polygonal sites opens a
number of research directions. Our results can be used as the foundation for
investigations of other non-trivial cases, including generalizations of sites, spaces
and distance functions. In the following section we discuss some of the possible
future directions.

7.1.1 Simple Polygons

In this section we discuss possible future investigations of the higher-order Voronoi
diagram of simple polygons. We also assume that the boundaries of the polygons
are disjoint. Simple polygons have been studied for farthest Voronoi diagrams by
Cheong et al. [29]. These results can be used in the analysis of the higher-order
Voronoi diagrams of polygonal objects.

The case of convex polygons is an interesting special case of general sim-
ple polygons. Convex polygons in a general setting may: (1) Intersect; (2) Be
enclosed in one another.

In the case when the convex polygons intersect, their bisectors become non-
Jordan curves. This creates issues in the structural complexity analysis, which
can be treated similarly to the intersection of line segments, see Section 3.3.

Closed Bisectors More interesting is the case of the convex polygons which
are allowed to be enclosed. Consider a pair of convex polygons, where one is
enclosed inside another. The bisector between two enclosed convex polygons is
a locus of points equidistant from their boundaries, which is a closed curve.

121 7.1 Future Directions

a
b c

d e
f

Figure 7.1. Enclosed convex polygons.

Closed bisectors bring problems into the structural complexity analysis. In
particular, the edges of the Voronoi diagram form no longer a connected struc-
ture. A direct consequence is that Euler’s formula has to include an additional
variable that represents the number of the connected components. Each order-
i Voronoi diagram will have its own variable Ci representing the number of
connected components in the graph structure of the order-i Voronoi diagram,
where 1≤ i < n. The variables C1, . . . , Cn−1 can be related to the way the convex
polygons are enclosed. Additionaly, the enclosed convex polygons influence the
number of unbounded faces in the order-k Voronoi diagram. This influence may
be related to the variables C1, . . . , Cn−1.

The inclusions of convex polygons have the following important property. Let
aEb denote the relation in which polygon b is enclosed in a. Then the following
property holds:

aEc ∧ bEc→ (aEb ∨ bEa)

For instance, in Figure 7.1, polygon c is enclosed in polygons a and b, which
means that either b is enclosed in a or a is enclosed in b. The relation E then
forms a forest-like structure, which can be used to prove many properties. For
instance one can probably prove that C1+ . . .+ Cn−1 ≤ 2n.

General Simple Polygons General simple polygons introduce additional com-
plications. Consider a simple polygon A and its convex hull conv(A). We say
that simple polygon B is in the pocket of the simple polygon A if B is not en-
closed in A, but is enclosed in conv(A). In this case, the bisector between A and
B is a closed curve. The closed bisectors created by the pocket inclusions have
the same complications as the closed bisectors created by the regular inclusions.
Unlike the regular inclusions, the pocket inclusions are related in a much more
complicated way. Let aP b denote the relation in which polygon b is enclosed in
the pocket of polygon a. Then aPc and bPc does not imply aP b or bPa.

aPc ∧ bPc 6→ (aP b ∨ bPa)

122 7.1 Future Directions

a

b

c

d

e

f

g

Figure 7.2. Simple polygons enclosed in the “pockets”.

For instance, in Figure 7.2, the polygon d is in the pocket of c and the pocket of
b. However, neither is c in the pocket of b, nor is b in the pocket of c.

7.1.2 Algorithms for Higher-Order Abstract Voronoi Diagrams

In Chapter 6 we presented three randomized construction algorithms for higher-
order abstract Voronoi diagrams. These algorithms are the extensions of the
construction algorithms for points to the abstract case, see Section 2.3 for an
overview. A possible future direction is the extension of the algorithms for points
to the abstract case. We consider the result of Chan [23] to be the best candi-
date. The most interesting part of the result described by Chan is the following
theorem:

Given an algorithm that constructs a k-level of n planes in R3 in O(f (n)) time
(where f (n) is a regular function) we can construct the k-level in

O(n log n+ (n/k) f (k)) expected time.

This result is based on the range reporting data structure described in the Sec-
tion 2.3. If we could apply this data structure in the abstract case we would
significantly improve the running time of the algorithms described in Chapter 6.
In particular, if we could apply the result of Chan to the randomized divide and
conquer algorithm we would obtain an algorithm with O(n log n + nk1+ε) ex-
pected time complexity. If we could apply the result of Chan to the random walk
method we would obtain an algorithm with O(n log n+ nk2α(k) log k) expected
time complexity.

The data structure of Chan operates with simplices. In the case of the abstract
Voronoi diagrams we could use the trapezoidal decomposition similarly as in the
Section 6.2.1.

Bibliography

[1] Agarwal, P. K., Aronov, B., Chan, T. M. and Sharir, M. [1998]. On levels in
arrangements of lines, segments, planes, and triangles, Discrete & Compu-
tational Geometry 19(3): 315–331.

[2] Agarwal, P. K., de Berg, M., Matousek, J. and Schwarzkopf, O. [1998].
Constructing levels in arrangements and higher-order Voronoi diagrams,
SIAM J. Comput. 27(3): 654–667.

[3] Agarwal, P. K., Schwarzkopf, O. and Sharir, M. [1996]. The overlay of
lower envelopes and its applications, Discrete & Computational Geometry
15(1): 1–13.

[4] Agarwal, P. K. and Sharir, M. [2000]. Arrangements and Their Applications,
Elsevier Science Publishing, chapter V, pp. 49–120. SFB Report F003-092,
TU Graz, Austria, 1996.

[5] Aggarwal, A., Guibas, L. J., Saxe, J. B. and Shor, P. W. [1989]. A linear-
time algorithm for computing the Voronoi diagram of a convex polygon,
Discrete & Computational Geometry 4: 591–604.

[6] Alon, N. and Györi, E. [1986]. The number of small semispaces of a finite
set of points in the plane, J. Comb. Theory, Ser. A 41(1): 154–157.

[7] Alt, H., Cheong, O. and Vigneron, A. [2005]. The voronoi diagram of
curved objects, Discrete & Computational Geometry 34(3): 439–453.

[8] Aurenhammer, F. [1990]. A new duality result concerning Voronoi dia-
grams, Discrete & Computational Geometry 5: 243–254.

[9] Aurenhammer, F., Drysdale, R. L. S. and Krasser, H. [2006]. Farthest line
segment Voronoi diagrams, Inf. Process. Lett. 100(6): 220–225.

123

124 Bibliography

[10] Aurenhammer, F., Klein, R. and Lee, D.-T. [2013]. Voronoi Diagrams and
Delaunay Triangulations, World Scientific.

[11] Aurenhammer, F. and Schwarzkopf, O. [1992]. A simple on-line random-
ized incremental algorithm for computing higher-order Voronoi diagrams,
Int. J. Comput. Geometry Appl. 2(4): 363–381.

[12] Bárány, I., Füredi, Z. and Lovász, L. [1990]. On the number of halving
planes, Combinatorica 10(2): 175–183.

[13] Berg, M., Cheong, O., Kreveld, M. and Overmars, M. [2008]. Computa-
tional Geometry: Algorithms and Applications, third edn, Springer.

[14] Blum, H. [1967]. A Transformation for Extracting New Descriptors of
Shape, in W. Wathen-Dunn (ed.), Models for the Perception of Speech and
Visual Form, MIT Press, Cambridge, pp. 362–380.

[15] Blum, H. [1973]. Biological shape and visual science (part I), Journal of
Theoretical Biology 38(2): 205–287.

[16] Blum, H. and Nagel, R. N. [1978]. Shape description using weighted sym-
metric axis features, Pattern Recognition 10(3): 167–180.

[17] Bohler, C., Cheilaris, P., Klein, R., Liu, C.-H., Papadopoulou, E. and Zaver-
shynskyi, M. [2013]. On the complexity of higher-order abstract Voronoi
diagrams, in F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska and D. Peleg
(eds), ICALP (1), Vol. 7965 of Lecture Notes in Computer Science, Springer,
pp. 208–219.

[18] Boissonnat, J.-D., Devillers, O. and Teillaud, M. [1993]. A semidynamic
construction of higher-order Voronoi diagrams and its randomized analy-
sis, Algorithmica 9(4): 329–356.

[19] Boots, B. and South, R. [1997]. Modelling retail trade areas using higher-
order, multiplicatively weighted Voronoi diagrams, Journal of Retailing
73(4): 519–536.

[20] Brown, K. Q. [1979]. Geometric Transforms for Fast Geometric Algorithms,
PhD thesis, Pittsburgh, PA, USA. AAI8012772.

[21] Calabi, L. and Hartnett, W. E. [1968]. Shape recognition, prairie fires,
convex deficiencies and skeletons, The American Mathematical Monthly
75(4): pp. 335–342.

125 Bibliography

[22] Chan, T. M. [1999]. Remarks on k-level algorithms in the plane., Technical
report.

[23] Chan, T. M. [2000]. Random sampling, halfspace range reporting,
and construction of ≤ k-levels in three dimensions, SIAM J. Comput.
30(2): 561–575.

[24] Chan, T. M. [2003]. On levels in arrangements of curves, Discrete & Com-
putational Geometry 29(3): 375–393.

[25] Chan, T. M. [2005]. On levels in arrangements of curves, ii: A sim-
ple inequality and its consequences, Discrete & Computational Geometry
34(1): 11–24.

[26] Chan, T. M. [2008]. On levels in arrangements of curves, iii: further im-
provements, in M. Teillaud (ed.), Symposium on Computational Geometry,
ACM, pp. 85–93.

[27] Chan, T. M. [2012]. On levels in arrangements of surfaces in three dimen-
sions, Discrete & Computational Geometry 48(1): 1–18.

[28] Chazelle, B. and Edelsbrunner, H. [1987]. An improved algorithm
for constructing k th-order Voronoi diagrams, IEEE Trans. Computers
36(11): 1349–1354.

[29] Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard,
S., Lee, M. and Na, H.-S. [2011]. Farthest-polygon Voronoi diagrams,
Comput. Geom. 44(4): 234–247.

[30] Clarkson, K. L. [1987]. New applications of random sampling in computa-
tional geometry, Discrete & Computational Geometry 2: 195–222.

[31] Clarkson, K. L. and Shor, P. W. [1989]. Application of random sampling
in computational geometry, ii, Discrete & Computational Geometry 4: 387–
421.

[32] Cuel, L., Lachaud, J.-O., Mérigot, Q. and Thibert, B. [2014]. Robust normal
estimation using order-k Voronoi covariance, 30th European Workshop on
Computational Geometry (EuroCG 2014) .

[33] Dehne, F. K. H. A. and Klein, R. [1997]. “The Big Sweep”: On the power of
the wavefront approach to Voronoi diagrams, Algorithmica 17(1): 19–32.

126 Bibliography

[34] Dey, S. K. and Papadopoulou, E. [2012]. The L∞ (L1) farthest line-segment
Voronoi diagram, ISVD, IEEE, pp. 49–55.

[35] Dey, T. K. [1998]. Improved bounds for planar k-sets and related problems,
Discrete & Computational Geometry 19(3): 373–382.

[36] Division, I. B. M. C. R., Srinivasan, V., Nackman, L., Tang, J. and Meshkat,
S. [1990]. Automatic Mesh Generation Using the Symmetric Axis Transfor-
mation of Polygonal Domains, Research report, IBM T.J. Watson Research
Center.

[37] Edelsbrunner, H. [1986]. Edge-skeletons in arrangements with applica-
tions, Algorithmica 1(1): 93–109.

[38] Edelsbrunner, H. [1987]. Algorithms in Combinatorial Geometry, Vol. 10 of
EATCS Monographs on Theoretical Computer Science, Springer.

[39] Edelsbrunner, H., Guibas, L. J., Pach, J., Pollack, R., Seidel, R. and Sharir,
M. [1992]. Arrangements of curves in the plane - topology, combinatorics
and algorithms, Theor. Comput. Sci. 92(2): 319–336.

[40] Edelsbrunner, H., Maurer, H. A., Preparata, F. P., Rosenberg, A. L., Welzl, E.
and Wood, D. [1982]. Stabbing line segments, BIT 22(3): 274–281.

[41] Edelsbrunner, H. and Seidel, R. [1986]. Voronoi diagrams and arrange-
ments, Discrete & Computational Geometry 1: 25–44.

[42] Erdős, P., Lovász, L., Simmons, A. and Straus, E. G. [1973]. Dissection
graphs of planar point sets, A Survey of Combinatorial Theory (Proc. Inter-
nat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971). Amsterdam:
North-Holland. pp. 139–149.

[43] Fortune, S. [1987]. A sweepline algorithm for Voronoi diagrams, Algorith-
mica 2: 153–174.

[44] Fujii, A. [1976]. Activity Contour Lines, PhD thesis, Department of Archi-
tecture, University of Tokyo [in Japanese].

[45] Goodman, J. E. and Pollack, R. [1984]. On the number of k-subsets of a
set of n points in the plane, J. Comb. Theory, Ser. A 36(1): 101–104.

[46] Gupta, P. and Papadopoulou, E. [2008]. Yield Analysis and Optimization,
Taylor & Francis CRC Press, chapter 7.3.

127 Bibliography

[47] Gürsoy, H. N. and Patrikalakis, N. M. [1992]. An automatic coarse and
fine surface mesh generation scheme based on medial axis transform: Part
ii implementation, Engineering with Computers 8(4): 179–196.

[48] Har-Peled, S. [2000]. Taking a walk in a planar arrangement, SIAM J.
Comput. 30(4): 1341–1367.

[49] Huttenlocher, D. P., Kedem, K. and Sharir, M. [1993]. The upper envelope
of Voronoi surfaces and its applications, Discrete & Computational Geometry
9: 267–291.

[50] Keeney, R. [1972]. A method for districting among facilities, Operations
Research 20: 613–618.

[51] Khramtcova, E., Dey, S. K. and Papadopoulou, E. [2014]. Linear-time al-
gorithms for the farthest-segment voronoi diagram and related tree struc-
tures, CoRR abs/1411.2816.

[52] Kirkpatrick, D. G. [1979]. Efficient computation of continuous skeletons,
FOCS, IEEE Computer Society, pp. 18–27.

[53] Klein, R. [1989]. Concrete and Abstract Voronoi Diagrams, Vol. 400 of
Lecture Notes in Computer Science, Springer.

[54] Klein, R., Langetepe, E. and Nilforoushan, Z. [2009]. Abstract Voronoi
diagrams revisited, Comput. Geom. 42(9): 885–902.

[55] Klein, R., Mehlhorn, K. and Meiser, S. [1993]. Randomized incremental
construction of abstract Voronoi diagrams, Comput. Geom. 3: 157–184.

[56] Lantuéjoul, C. and Maisonneuve, F. [1984]. Geodesic methods in quanti-
tative image analysis, Pattern Recognition 17(2): 177–187.

[57] Lee, D. T. [1980]. Two-dimensional Voronoi diagrams in the Lp-metric, J.
ACM 27(4): 604–618.

[58] Lee, D. T. [1982a]. Medial axis transformation of a planar shape, IEEE
Trans. Pattern Analysis & Machine Intelligence 4(4): 363–369.

[59] Lee, D.-T. [1982b]. On k-nearest neighbor Voronoi diagrams in the plane,
IEEE Trans. Computers 31(6): 478–487.

128 Bibliography

[60] Liu, C.-H., Papadopoulou, E. and Lee, D. T. [2011]. An output-sensitive
approach for the L1/L∞ k-nearest-neighbor Voronoi diagram, in C. Deme-
trescu and M. M. Halldórsson (eds), ESA, Vol. 6942 of Lecture Notes in
Computer Science, Springer, pp. 70–81.

[61] Mehlhorn, K., Meiser, S. and Ó’Dúnlaing, C. [1991]. On the construction
of abstract Voronoi diagrams, Discrete & Computational Geometry 6: 211–
224.

[62] Mehlhorn, K., Meiser, S. and Rasch, R. [2001]. Furthest site abstract
Voronoi diagrams, Int. J. Comput. Geometry Appl. 11(6): 583–616.

[63] Mérigot, Q., Ovsjanikov, M. and Guibas, L. J. [2009]. Robust Voronoi-
based curvature and feature estimation, in W. F. Bronsvoort, D. Gonsor,
W. C. Regli, T. A. Grandine, J. H. Vandenbrande, J. Gravesen and J. Keyser
(eds), Symposium on Solid and Physical Modeling, ACM, pp. 1–12.

[64] Mizutani, N., Watanabe, T., Yoshida, Y. and Okabe, N. [1993]. Extraction
of contour lines by identification of neighbor relationships on a Voronoi
line graph, Systems and Computers in Japan 24(1): 57–68.

[65] Mount, D. M. and Arya, S. [2005]. ANN: A Library for Approximate Near-
est Neighbor Searching http://www.cs.umd.edu/∼mount/ANN/.

[66] Mulmuley, K. [1993]. Output sensitive and dynamic constructions of
higher-order Voronoi diagrams and levels in arrangements, J. Comput.
Syst. Sci. 47(3): 437–458.

[67] Okabe, A., Boots, B., Sugihara, K. and Chiu, S. [2000]. Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams, second edn, Wiley
Series in Probability and Statistics.

[68] Papadopoulou, E. [2001]. Critical area computation for missing material
defects in VLSI circuits, IEEE Trans. on CAD of Integrated Circuits and Sys-
tems 20(5): 583–597.

[69] Papadopoulou, E. [2011]. Net-aware critical area extraction for opens in
VLSI circuits via higher-order Voronoi diagrams, IEEE Trans. on CAD of
Integrated Circuits and Systems 30(5): 704–717.

[70] Papadopoulou, E. and Dey, S. K. [2012]. On the farthest line-segment
Voronoi diagram, in K.-M. Chao, T. sheng Hsu and D.-T. Lee (eds), ISAAC,
Vol. 7676 of Lecture Notes in Computer Science, Springer, pp. 187–196.

http://www.cs.umd.edu/~mount/ANN/

129 Bibliography

[71] Papadopoulou, E. and Lee, D. T. [1999]. Critical area computation via
Voronoi diagrams, IEEE Trans. on CAD of Integrated Circuits and Systems
18(4): 463–474.

[72] Papadopoulou, E. and Lee, D. T. [2001]. The L∞-Voronoi diagram of seg-
ments and VLSI applications, Int. J. Comput. Geometry Appl. 11(5): 503–
528.

[73] Papadopoulou, E. and Zavershynskyi, M. [2014]. The higher-order
Voronoi diagram of line segments, CoRR abs/1405.3806.

[74] Ramos, E. A. [1999]. On range reporting, ray shooting and k-level con-
struction, Symposium on Computational Geometry, pp. 390–399.

[75] Rasch, R. [1994]. Abstrakte inverse Voronoidiagramme, PhD thesis,
Saarbrücken, Germany.

[76] Rosenberger, H. [1991]. Order-k Voronoi diagrams of sites with additive
weights in the plane, Algorithmica 6(4): 490–521.

[77] Samet, H. [2005]. Foundations of Multidimensional and Metric Data Struc-
tures (The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[78] Seidel, R. [1988]. Constrained Delaunay triangulations and Voronoi dia-
grams, Report 260 IIG-TU, Graz, Austria pp. 178–191.

[79] Seidel, R. [1998]. The nature and meaning of perturbations in geometric
computing, Discrete & Computational Geometry 19(1): 1–17.

[80] Setter, O., Sharir, M. and Halperin, D. [2010]. Constructing two-
dimensional Voronoi diagrams via divide-and-conquer of envelopes in
space, Transactions on Computational Science 9: 1–27.

[81] Shamos, M. and Hoey, D. J. [1975]. Closest-point problems, Proceedings of
the Sixteenth IEEE Symposium on Foundations of Computer Science pp. 151–
162.

[82] Sharir, M. [2003]. The Clarkson-Shor technique revisited and extended,
Combinatorics, Probability & Computing 12(2): 191–201.

[83] Sharir, M. [2011]. An improved bound for k-sets in four dimensions, Com-
binatorics, Probability & Computing 20(1): 119–129.

130 Bibliography

[84] Sharir, M. and Agarwal, P. K. [1995]. Davenport-Schinzel sequences and
their geometric applications, Cambridge University Press.

[85] Sharir, M. and Smorodinsky, S. [2003]. Extremal configurations and levels
in pseudoline arrangements, in F. K. H. A. Dehne, J.-R. Sack and M. H. M.
Smid (eds), WADS, Vol. 2748 of Lecture Notes in Computer Science, Springer,
pp. 127–139.

[86] Sharir, M., Smorodinsky, S. and Tardos, G. [2001]. An improved bound for
k-sets in three dimensions, Discrete & Computational Geometry 26(2): 195–
204.

[87] Sibson, R. [1980]. A vector identity for the Dirichlet tessellation, Mathe-
matical Proceedings of the Cambridge Philosophical Society 87: 151–155.

[88] Smith, R. W. [1987]. Computer processing of line images: A survey, Pattern
Recognition 20(1): 7–15.

[89] Tóth, G. [2001]. Point sets with many k-sets, Discrete & Computational
Geometry 26(2): 187–194.

[90] Wagner, U. [2008]. k-sets and k-facets, Discrete and Computational Ge-
ometry - 20 Years Later (Eli Goodman, János Pach, and Ricky Pollack, eds.),
Contemporary Mathematics 453, American Mathematical Society pp. 443–
514.

[91] Yap, C.-K. [1987]. An O(n log n) algorithm for the Voronoi diagram of a set
of simple curve segments, Discrete & Computational Geometry 2: 365–393.

	Contents
	List of Figures
	Introduction
	Applications
	Critical Area Computation
	Other Applications

	Dissertation Goals and Contributions
	Structural Properties and Complexity Bounds
	Construction Algorithms

	Dissertation Outline
	Publications

	Literature Review
	Voronoi Diagrams and Arrangements
	Nearest Neighbor and Farthest Voronoi Diagrams
	Construction Algorithms
	k-Sets and k-Levels

	Higher-Order Voronoi Diagrams of Line Segments
	Properties of Voronoi Regions
	Structural Properties and Complexity
	Intersecting Line Segments
	Extending to the Lp Metric
	Iterative Construction
	Summary

	Higher-Order Voronoi Diagrams of a Planar Straight-Line Graph
	Augmenting the Definition of a Voronoi Region
	Relation with Arrangements
	Structural Properties and Complexity
	Extending the Iterative Construction
	Summary

	Sweepline Algorithm
	Sweeping Disjoint Line Segments
	Sweeping a Planar Straight-Line Graph
	Processing Site-Events
	Processing Circle-Events
	Analysis

	Summary

	Algorithms for Higher-Order Abstract Voronoi Diagrams
	Higher-Order Abstract Voronoi Diagrams
	Randomized Divide and Conquer Algorithm
	Refined Diagram
	Computing the Voronoi vertices
	Analysis

	Iterative Construction
	Random Walk Method
	Summary

	Conclusions
	Future Directions
	Simple Polygons
	Algorithms for Higher-Order Abstract Voronoi Diagrams

	Bibliography

