
Efficient geometric algorithms for preference top-k queries,
stochastic line arrangements, and proximity problems

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Yuan Li

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Advisor: Prof. Ravi Janardan

June, 2017

c© Yuan Li 2017

ALL RIGHTS RESERVED

Acknowledgements

There are numerous people I would like to express my great gratitude for their contri-

butions over these years.

First, my deepest gratitude goes to my advisor Professor Ravi Janardan. This

dissertation would not be possible without his continuous support and guidance. As

an amazing mentor, Professor Janardan always enlightened and encouraged me with

patience. I greatly appreciate the countless time and effort he spent on me, discussing

problems, brainstorming new ideas, and revising manuscripts. I have also learned a lot

from his extreme self-discipline, which I believe would be tremendously beneficial for

my future career.

I would also like to thank Professor John Gunnar Carlsson, Professor Volkan Isler,

Professor George Karypis, Professor Mohamed F. Mokbel, and Professor Victor Reiner

for serving as my committee members and for providing me valuable feedback and

advice.

My sincere thanks go to my lab mates for their friendship, support, and continuous

brainstorming and discussions. In particular, I am grateful to Akash Agrawal, Rahul

Saladi, and Jie Xue. I also appreciate the chance to collaborate with Professor Ahmed

Eldawy. In addition, I want to express my thanks and wishes for all the friends I met at

the University of Minnesota in my entire Ph.D. life. Their help and support are much

appreciated.

Finally, I would like to thank the Department of Computer Science and Engineering

at the University of Minnesota for the generous funding support over the years.

i

Dedication

To my parents, Weixiang Li and Jianhe Zhang.

ii

Abstract

Problems arising in diverse real-world applications can often be modeled by geometric

objects such as points, lines, and polygons. The goal of this dissertation research is to

design efficient algorithms for such geometric problems and provide guarantees on their

performance via rigorous theoretical analysis. Three related problems are discussed in

this thesis.

The first problem revisits the well-known problem of answering preference top-k

queries, which arise in a wide range of applications in databases and computational

geometry. Given a set of n points, each with d real-valued attributes, the goal is to

organize the points into a suitable data structure so that user preference queries can be

answered efficiently. A query consists of a d-dimensional vector w, representing a user’s

preference for each attribute, and an integer k, representing the number of data points

to be retrieved. The answer to a query is the k highest-scoring points relative to w,

where the score of a point, p, is designed to reflect how well it captures, in aggregate,

the user’s preferences for the different attributes. This thesis contributes efficient exact

solutions in low dimensions (2D and 3D), and a new sampling-based approximation

algorithm in higher dimensions.

The second problem extends the fundamental geometric concept of a line arrange-

ment to stochastic data. A line arrangement in the plane is a partition of the plane into

vertices, edges, and faces. Surprisingly, diverse problems, including the preference top-k

query and k-order Voronoi Diagram, essentially boil down to answering questions about

the set of k-topmost lines at some abscissa. This thesis considers line arrangements in a

new setting, where each line has an associated existence probability representing uncer-

tainty that is inherent in real-world data. An upper-bound is derived on the expected

number of changes in the set of k-topmost lines, taken over the entire x-axis, and a

worst-case upper bound is given for k = 1. Also, given is an efficient algorithm to com-

pute the most likely k-topmost lines in the arrangement. Applications of this problem

including the most likely Voronoi Diagram in R1 and stochastic preference top-k query

are discussed.

iii

The third problem discussed is geometric proximity search in both the stochastic

setting and the query-retrieval setting. Under the stochastic setting, the thesis considers

two fundamental problems, namely, the stochastic closest pair problem and the k most

likely nearest neighbor search. In both problems, the data points are assumed to lie

on a tree embedded in R2 and distances are measured along the tree (a so-called tree

space). For the former, efficient solutions are given to compute the probability that

the closest pair distance of a realization of the input is at least ` and to compute the

expected closest pair distance. For the latter, the thesis generalizes the concept of most

likely Voronoi Diagram from R1 to tree space and bounds its combinatorial complexity.

A data structure for the diagram and an algorithm to construct it are also given.

For the query-retrieval version which is considered in R2, the goal is to retrieve

the closest pair within a user-specified query range. The contributions here include

efficient data structures and algorithms that have fast query time while using linear

or near-linear space for a variety of query shapes. In addition, a generic framework is

presented, which returns a closest pair that is no farther apart than the closest pair in

a suitably shrunken version of the query range.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Problem motivation and statement . 2

1.1.1 Preference top-k query . 2

1.1.2 Stochastic line arrangement in R2 4

1.1.3 Stochastic closest-pair problem and most-likely nearest-neighbor

search in tree space . 6

1.1.4 Range closest pair search in R2 7

1.2 Related work . 8

1.3 Summary of contributions . 10

1.4 Organization . 13

2 Preference top-k query 15

2.1 Problem formulation . 15

2.2 Algorithm in 2D . 16

2.2.1 Preliminary algorithm . 16

v

2.2.2 Applying fractional cascading . 17

2.2.3 An optimal algorithm . 21

2.3 Extensions . 21

2.3.1 Preference top-k query with range restriction on data points . . 22

2.3.2 Preference top-k query with a fuzzy weighting vector 24

2.4 Algorithm in 3D . 27

3 Approximate preference top-k query 30

3.1 Problem formulation . 30

3.2 Our sampling algorithm . 31

3.2.1 Reducing top-k to top-1 . 31

3.2.2 Critical detection vectors . 32

3.2.3 Overall framework . 35

3.3 Theoretical analysis in 2D . 36

3.4 Experimental results in 2D and higher dimensions 40

3.5 Proofs . 43

3.5.1 Proof of Theorem 3.1 . 43

3.5.2 Proof of Theorem 3.2 . 44

3.5.3 Proof of Theorem 3.3 . 44

3.5.4 Proof of Theorem 3.4 . 46

3.5.5 Proof of Corollary 3.1 . 49

3.5.6 Proof of Theorem 3.5 . 50

4 Stochastic line arrangement in R2 52

4.1 Problem definition and main result . 52

4.2 Proof of Theorem 4.1 . 56

4.3 An algorithm for computing the most likely k-topmost lines 61

4.3.1 Algorithm for one strip . 61

4.3.2 Algorithm over the entire line arrangement 62

4.4 Application: Stochastic Voronoi Diagram in R1 66

4.4.1 The staircase graph and the worst-case example 67

4.4.2 Reduction from stochastic Voronoi Diagram to stochastic line ar-

rangement . 72

vi

4.5 Application: Stochastic preference top-k query in R2 74

4.6 Proofs . 75

4.6.1 Proof for Lemma 4.1 . 75

4.6.2 Proof for Lemma 4.2 . 77

4.6.3 Proof for Lemma 4.3 . 79

4.6.4 Proof for Equation 4.3 . 80

4.6.5 Proof for Lemma 4.4 . 81

5 Stochastic closest pair problem and most likely nearest neighbor search

in tree space 84

5.1 Preliminaries . 84

5.2 The stochastic closest pair problem . 85

5.2.1 Computing the threshold probability 85

5.2.2 Computing the expected closest pair distance 91

5.3 The most likely nearest neighbor search problem 94

5.3.1 The size of the tree-space LVD 95

5.3.2 Constructing LVD and answering queries 99

5.4 Proofs . 101

5.4.1 Proof of Theorem 5.1 . 101

5.4.2 Proof of Lemma 5.1 . 101

5.4.3 Proof of Lemma 5.2 . 102

5.4.4 Proof of Lemma 5.3 . 103

5.4.5 Proof of Lemma 5.4 . 103

5.4.6 Proof of Lemma 5.5 . 103

5.4.7 Proof of Lemma 5.6 . 104

5.4.8 Proof of Theorem 5.3 . 104

5.4.9 Proof of Lemma 5.7 . 105

5.4.10 Proof of Lemma 5.8 . 106

5.4.11 Proof of Lemma 5.9 . 108

5.4.12 Proof of Lemma 5.10 . 108

5.5 Details for constructing LVD data structure 109

5.5.1 Computing and sorting the centers 109

vii

5.5.2 Constructing the LVD during the walk 110

6 Range closest pair queries 112

6.1 Axes-aligned rectangle query . 113

6.1.1 Quadrant query . 113

6.1.2 Strip query . 114

6.1.3 3-sided rectangular query . 116

6.1.4 4-sided rectangular query . 119

6.1.5 Connection to range min-gap query 119

6.2 Halfplane query . 121

6.2.1 Complexity of the arrangement A 121

6.2.2 Preprocessing and query algorithms 126

6.2.3 The refinement . 129

6.3 Radius-fixed disc query . 130

6.3.1 Handling long queries . 130

6.3.2 Handling short queries . 130

6.3.3 Putting both cases together . 136

6.4 A general approximation framework . 136

6.5 Answering offline range min-gap query 140

7 Conclusion and future work 142

7.1 Summary of contributions . 142

7.2 Future work . 143

References 145

viii

List of Tables

1.1 Summary of our results. Here ζ and ε are positive reals. The first seven

results correspond to exact closest pairs and the last three to approximate

closest pairs. 13

3.1 Experimental results in 2D: the average sizes of the sampling sets 41

3.2 Experimental results in 3D: the average sizes of the sampling sets 42

3.3 Experimental results in 4D: the average sizes of the sampling sets 43

4.1 List of main symbols used . 61

4.2 A four-point example where each line corresponds to an n-element se-

quence of the corresponding cell. There are 7 cells in total due to
(4
2

)
midpoints. The moving element of each cell is in the box, and the winner

is marked by underscore. 71

ix

List of Figures

1.1 Illustrating the preference top-1 query. The points are hotels near the

UMN campus, and the attributes for each hotel are the distance to the

campus and the room rate. A visitor might prefer being closer to campus

for convenience or may prefer a lower price for financial reasons, which

results in different query results. (Figures in the thesis are best viewed

in color.) . 3

1.2 Illustrating the line arrangement of four stochastic lines in the plane. The

conventional 2-topmost lines w.r.t. x-coordinate q are clearly f3 and f4,

but they only have .052 = .0025 ≈ 0 probability to be present. However,

the probability for lines f2 and f1 to be the true 2-topmost lines at q is

.952× .952 ≈ .815, i.e., f2 and f1 must be present, and f3 and f4 must not

be present. Obviously, the latter likelihood is significantly larger, even

though at q f2 and f1 are below other lines. 5

1.3 An example of a tree space with two stochastic points x and y in it. Since

here x and y are at the midpoints of edges, the distance between them is

1.4 + 4.5 + 1 = 6.9. 7

2.1 The score of point p w.r.t. weight vector w is ||Op′||. 16

2.2 Illustrating the search for the top-k points for weight vector w. 18

2.3 Illustrating the fractional cascading technique. 20

2.4 The maximal point p and minimal point p′ in layer-1 with respect to

weighting vector w; point p (resp. p′) has the maximum (resp. minimum)

score on layer-1. 22

2.5 Example to show the fractional cascading structure in the 2D range tree. 25

x

2.6 Illustrating the approach for answering a preference top-k query with a

fuzzy weighting vector lying anywhere between w1 and w2. The sets P1-

P3 are defined by weighting vectors w1 and w2 that make angles θ1 and

θ2, respectively, with the positive x-axis. 27

2.7 Illustrating how to reduce finding extreme points in 3D to planar point

location. 29

3.1 Sampling algorithm in 2D . 38

3.2 Generating two new blind triangles from an old one 39

3.3 The first round of expanding S . 46

4.1 An example of a stochastic line arrangement 54

4.2 An example illustrating that the difference between two consecutive se-

quences can be huge. 55

4.3 Two examples illustrating the probability distribution 57

4.4 Illustrate the underlying meaning of the recursive form of u(d) 59

4.5 Maintaining the information between two consecutive strips, where the

entries that will change are marked in red. (The figure is best viewed in

color.) . 64

4.6 An example for illustrating the staircase graph 68

4.7 The statistics table and the corresponding staircase graph 69

4.8 A recursive view of the worst case example where n = 4 70

4.9 Worst case data set. Note that the y-axis is in log scale. 72

4.10 The reduction, where we lift all the points to y = x2. 73

4.11 Two examples illustrating the proof of Lemma 4.2 78

5.1 A tree space and the unique simple path (in blue) between x and y. Since

x and y are the midpoints of the edges they lie on, the length of the path

is 0.5 · 2.8 + 4.5 + 0.5 · 2 = 6.9. 85

5.2 An illustration of witness . 87

5.3 An example of chains. 90

5.4 A tree-space 1-LVD with 3 cells . 95

5.5 A degree-3 center involving 5 points. 95

5.6 A walk in tree visiting each edge exactly twice. 100

6.1 Illustrating weighted quadrants and their induced subdivision. 114

xi

6.2 An example of eight points, recursively showing three groups whose sizes

decrease at each step by a factor of 2. The left, middle, and right group

contributes at least 7, 3, and 1 candidate pairs, respectively. 115

6.3 A worst-case example for a 3-sided rectangular query 117

6.4 Illustrating the three cases of Lemma 6.3 118

6.5 Illustrating the various cases in Theorem 6.4. 123

6.5 Illustrating the various cases in Theorem 6.4 (continued). 124

6.6 A 2α× 2α grid covering Q . 131

6.7 Illustrating the proof of Lemma 6.5. 132

6.8 Illustrating Observation 6.1, where lune ` is shaded gray. 133

6.9 Illustrating Observation 6.2, where the fixed branch ϕ of `2 is shown bold.134

6.10 Illustrating cases 3 and 4. 139

xii

Chapter 1

Introduction

Consider the following questions that are typical of many modern-day applications:

How might a tourist in a large city use her smartphone to identify hotels that meet her

preferences in terms of cost, convenience, ratings, and safety? How should a climate

scientist interpret data gathered from a collection of sensors if there is uncertainty in

their precise locations and/or in their level of activity due to ambient conditions? How

might a traffic control center keep monitoring real-time vehicle positions to detect or

predict potential traffic collisions in hot-spot areas of a city, where hot-spots are changing

dynamically on an hourly basis?

While diverse in nature, these questions can be unified under the umbrella of geo-

metric computing. For example, hotels can be modeled as points and user preferences

as query vectors. Sensors can be modeled as polygons with an associated probability

density function to model potential locations; or, if the sensor locations are known pre-

cisely, then as points with associated existence probabilities. Vehicles can be modeled

as points in the road map, and the minimum Euclidean distance between any pair of

points can be a reasonable measure to the traffic density. Also, certain areas on the

map, hot-spots for instance, are often specified by the user as query regions, and the

goal is to compute quantities of interest (e.g., closest pair distance) relative to the data

objects lying in the query region.

Given the huge volume and sheer diversity of the datasets generated by modern

applications, it is imperative to develop algorithms that can model and process the un-

derlying geometric representation efficiently. This dissertation aims to develop efficient

1

2

algorithms for fundamental geometric problems that are motivated by practical appli-

cations. The goal is to obtain algorithms that are efficient with respect to both run

time and the amount of storage used, as demonstrated by formal theoretical analysis.

1.1 Problem motivation and statement

In this thesis we investigate three problems. They are the preference top-k query, the

stochastic line arrangement, and geometric proximity search. In the remainder of this

section, we discuss these problems in more details.

1.1.1 Preference top-k query

An important requirement of a database query engine is that it allows users to perform

queries that retrieve a small amount of relevant information from a potentially large

search space, where the information is tailored to the individual preferences of each

user.

For example, consider a real-estate database that contains information about thou-

sands of houses for sale in a major metropolitan area, such as (say) Chicago. The

information might include attributes such as asking price, age, number of bedrooms,

distance to nearest school, etc. Prospective buyers are interested in extracting from

this dataset only a small subset of (say) ten houses meeting their criteria that can be

further researched, rather than search through all of the information in the database.

Furthermore, different buyers often have different levels of preferences (i.e., weights) for

the associated attributes and each buyer will want to retrieve only the ten houses that

score highest on a (linear) combination of the attributes based on his/her preferences.

(The ability to perform such queries is all the more crucial if buyers are interrogating

the database on mobile devices, as these tend to have small screen sizes and bandwidth

limitations.) Other examples of where such queries arise include students wishing to

rank colleges based on tuition, graduation rate, enrollment, etc.; shoppers using a rec-

ommender system at an online retailer to buy a product (e.g., choosing a laptop based

on price, CPU speed, memory, and weight); ecologists grading nature preserves based

on amount of water, elevation, diversity of flora and fauna; and so on.

Based on the above observations, the underlying database should have the ability to

3

answer a so-called preference top-k query, i.e., given a set of multidimensional objects

(where the dimension is the number of attributes), retrieve the k best objects with

respect to the preferences given by the user. See Figure 1.1.1 for a quick example of

the preference top-1 query for a visitor to select her desired hotel near the campus with

respect to her preference on the attributes of price and distance.

Furthermore, a user may also wish to restrict the query to a subset of the dataset,

by specifying a range for each attribute, and retrieve the top-k objects in the restricted

subset. For example, a user may be interested in houses in a certain neighborhood or

in laptops in a certain price and weight range.

As another extension, sometimes it may be difficult for a user to specify preferences

exactly. It is more reasonable to specify preferences “fuzzily”, as a set of several (possibly

infinitely-many) candidate preferences. For instance, a fuzzy preference in 2D can be

given as an interval of angles, and all the preferences that are inside this interval are

candidates. Based on this fuzzy preference, the score of each object is redefined as the

best (minimum or maximum) linear combination with respect to any preference in the

given region, and the database should output the top-k objects according to this score.

Figure 1.1: Illustrating the preference top-1 query. The points are hotels near the UMN
campus, and the attributes for each hotel are the distance to the campus and the room
rate. A visitor might prefer being closer to campus for convenience or may prefer a
lower price for financial reasons, which results in different query results. (Figures in the
thesis are best viewed in color.)

4

1.1.2 Stochastic line arrangement in R2

A problem defined on points in the xy-plane can be mapped, via a certain geometric

transformation, to an equivalent dual problem defined on a set of lines in the plane.

These lines induce a partition of the plane into vertices, edges, and faces; this partition

is called an arrangement. The dual problem is sometimes easier to handle because,

intuitively, “non-local” properties in the primal problem become “local” in the dual. For

example, for the preference top-k problem, points (e.g., hotels) with two attributes map

to lines in the plane. The user’s preference vector w can be shown to map to a vertical

line. Furthermore, the top-k points relative to w happen to be exactly the topmost k

lines that are intersected by this vertical line. As another example, Voronoi Diagrams

are used widely in operations research to solve proximity problems, e.g., finding the

facility closest to a query location. Remarkably, it turns out that the Voronoi-based

framework can be mapped (using a different transformation) to the problem of finding

the topmost line in a certain arrangement that is intersected by a vertical line.

Many such diverse problems essentially boil down to answering the following ques-

tions efficiently: “In a given line arrangement, what are the topmost k lines intersected

by some vertical line with x-coordinate q? Moreover, as the line sweeps over the ar-

rangement from left to right, how many times does the set of topmost k lines change?”

Owing to their many applications, these questions have been investigated extensively

and have been well-settled.

We investigate this problem in a new setting, where the lines are stochastic. That is,

the lines do not exist with certainty but instead each line, fi, has an associated existence

probability pi that is inherited from the underlying primal point. Such stochasticity

arises naturally, due to noise or imprecision, when data is gathered in the real world

using GPS, sensors or other probabilistic systems or measurements.

For a given vertical line with x-coordinate q, the likelihood associated with the

topmost k lines that exist at q can be extremely small and is thus not very meaningful.

Instead, it is more relevant to compute, for a given q, the set of k lines that have the

greatest likelihood of being the topmost, i.e., the most-likely k-topmost lines. However,

data uncertainty often invalidates many of the known results for conventional (i.e.,

non-stochastic) arrangements and makes the corresponding problems far more difficult.

Indeed, it turns out that any k lines (even those at the very bottom) could be most-likely

5

k-topmost lines. (See Figure 1.2.) Also, unlike the conventional case, as the vertical line

sweeps from left to right over the entire x-axis, the most likely k-topmost lines w.r.t.

q can change arbitrarily with no apparent pattern, which complicates the situation.

Therefore, we study the underlying combinatorial complexity of the line arrangement

under uncertainty in both the worst case and the average case. Efficient algorithms

for computing the most-likely k-topmost lines over the entire line arrangement are also

useful to solve related problems in the stochastic setting (via duality).

f2

f3

f4 q

p1 = .95

p2 = .95

p3 = .05

p4 = .05

f1

Figure 1.2: Illustrating the line arrangement of four stochastic lines in the plane. The
conventional 2-topmost lines w.r.t. x-coordinate q are clearly f3 and f4, but they only
have .052 = .0025 ≈ 0 probability to be present. However, the probability for lines
f2 and f1 to be the true 2-topmost lines at q is .952 × .952 ≈ .815, i.e., f2 and f1

must be present, and f3 and f4 must not be present. Obviously, the latter likelihood is
significantly larger, even though at q f2 and f1 are below other lines.

As mentioned earlier, there is a close connection between line arrangements and the

preference top-k problem. We now elaborate on this briefly by showing a link between

stochastic line arrangements and a stochastic version of the preference top-k problem.

In the latter problem, we are given a set of data points in the plane, where each input

data point hi (say a hotel) has fixed attributes and a probability pi related to (say) its

user rating. (A hotel with a low rating has low probability to be visited by a tourist.)

The goal is to retrieve the most-likely top-k hotels corresponding to a user’s preference

vector. This problem can be modeled, via the aforementioned duality transform, as the

stochastic line arrangement problem and can hence be solved by retrieving the most-

likely 2-topmost lines at the position corresponding to the user’s preference in the dual

space.

On the other hand, as we shall see later, this result can also be used to solve the

6

so-called stochastic Voronoi Diagram problem in R1 and hence the most likely nearest

neighbor search in R1. However, further generalization of this idea to higher dimen-

sions (even to R2), while still preserving good theoretical bounds, appears to be very

challenging. Thus, we consider a special, but natural, version of this problem where the

input points are constrained to be in a so-called tree space. We elaborate more below.

1.1.3 Stochastic closest-pair problem and most-likely nearest-neighbor

search in tree space

The closest-pair problem and nearest-neighbor search are two interrelated fundamental

problems, which have numerous applications. The uncertain versions of both the prob-

lems have also been studied recently in [6, 41, 44, 46, 58] and have generated significant

interest in the database and data structures communities.

Let S be a set of n stochastic points in some metric space X . For the closest

pair problem, a basic question one may ask is how to compute elementary statistics

about the stochastic closest-pair (SCP) of S, e.g., the probability that the closest-pair

distance of a realization of S is at least `, or the expected closest-pair distance, etc.

Unfortunately, most problems of this kind have been shown to be NP-hard or #P-hard

for general metrics, and some of them remain #P-hard even when X = Rd for d ≥ 2

[41, 44]. For nearest-neighbor search, an important problem is to find the most-likely

nearest-neighbor (LNN) [58], i.e., the data point in S with the greatest probability of

being the nearest-neighbor of a query point q. The LNN search introduces the concept

of most-likely Voronoi diagram (LVD), which decomposes X into connected cells such

that the query points in the same cell have the same LNN. However, as in [46, 58], the

size of LVD in Rd is high even on average. Due to the difficulties of both problems

in general and Euclidean space, it is then natural to ask whether these problems are

relatively easier in other metric spaces such as a tree space. Informally, a tree space

consists of an edge-weighted tree embedded in the plane. Each point of S is constrained

to lie somewhere in the tree and distances are measured along the tree. (See Figure 1.3

for a simple example of a tree space. Formal definitions will be given later.) Indeed,

further exploring these problems in tree space will be helpful and interesting since any

finite metric (say a road network in practice) can be embedded in a tree space under

some reasonable distortions [34]. With the above motivations, we study the stochastic

7

closest-pair (SCP) problem and k most-likely nearest-neighbor (k-LNN) search in tree

space, where use the same uncertainty model as before, that is, each stochastic input

point has a fixed location (in the tree space) with an associated (independent) existence

probability.

2

1.42.2

4.5

2.8

4.1

3.2
x

y

dist(x, y) = 6.9

Figure 1.3: An example of a tree space with two stochastic points x and y in it. Since
here x and y are at the midpoints of edges, the distance between them is 1.4 + 4.5 + 1 =
6.9.

1.1.4 Range closest pair search in R2

The conventional closest pair search problem has many applications in collision detec-

tion, similarity search, traffic control, and so on; see the survey [57] for a collection

of related topics. However, in many cases, it is too expensive and also unnecessary to

compute the closest pair with respect to the entire data set. Instead, it is more useful to

zoom into a smaller region of interest and compute the closest pair only for the points

in that region. For instance, consider a scenario where one wishes to monitor traffic

patterns and potential collisions/near-misses in a large city. Instead of computing the

closest pair information for all vehicles in the entire city in real-time, it is better to

run the algorithm on the hot-spot areas only. As another example mentioned in [55],

VLSI designers often need to zoom in to a sub-screen of the VLSI layout editor and

check whether certain features violate the separation rule (i.e., they are too close). This

again reduces to the problem of finding the closest pair in a certain range if we treat the

features of interest as points in the plane. Both examples motivate the so-called range

closest pair search problem, which has drawn a lot of attention recently.

In this thesis, we revisit this topic (in R2) and study the exact and approximate

solutions for a variety of query shapes. For each type of query, our goal is to design

8

efficient data structures and algorithms that have fast query time while using linear or

near-linear space. (We pay more attention to the storage and the query time as the

former is permanent and the latter must be real-time, whereas the preprocessing time

is of less concern as it is a one-time cost.)

We remark that while both sets of problems in this subsection pertain to geometric

proximity, they are investigated in different settings. The first set addresses proximity

questions for stochastic points in the tree space whereas the second set considers prox-

imity problem in query-retrieval mode in R2. The latter sets the stage for future work

on stochastic query-retrieval problems.

1.2 Related work

The preference top-k query problem is studied in a multimedia context [31, 32]. Subse-

quently, the so-called Threshold Algorithm (TA) is given in [33] which works for not only

linear preferences but also other monotone preference functions (i.e., the preferences are

represented as monotone functions on the attributes rather than as weight vectors).

TA maintains a threshold value to help prune a lot of data points with low scores and

terminate the algorithm early, which allows it to work much more efficiently than the

näıve (brute-force) algorithm in most cases. Another work known as Onion Index [18] is

based on the notion of convex layers. Besides the Onion Index, other indexing methods

have also been studied recently, which include Robust Index [61] and Cube Index [22].

Recently, an efficient algorithm for the 3D half-space range reporting problem has been

established in [4]. This algorithm can also be used to solve, within the same bounds,

the preference top-k problem in 3D by transforming the problem to its dual version.

For a good survey of the top-k problem, please see [42].

As for the approximation algorithms, in the last several decades, many general ap-

proximate query processing techniques such as [15, 16, 19] have been proposed. Some of

them can also be used to do approximate preference top-k reporting. Furthermore, some

exact top-k algorithms we mentioned previously, such as TA, also have approximate vari-

ants. A recent approach to sampling-based approximate preference top-k algorithms is

a coreset algorithm proposed in [63]. For any accuracy requirement parameter given

by the user, this algorithm can sample a corresponding small subset (called coreset) of

9

data points from the original dataset satisfying that accuracy requirement. Theoreti-

cal bounds are also given in [63] to guarantee the size of the sampling set in various

dimensions.

Next, we first briefly review some of the existing work on the arrangement of lines

and line levels then give a broad sampling on data uncertainty and stochastic closest

pair related problems. The conventional arrangement of lines as well as the related

concept of k-level/≤k-level are fundamental structures that have a rich and long history.

Readers can refer to [12] for a good survey about arrangements and their applications;

see [5, 8, 12] for more information about k-level/≤k-level and its applications. In terms

of the combinatorial complexity of k-level, both the lower and upper bound are still

open even in 2D; see [28, 30, 48, 60] for a chain of improvements in the past. Also,

see [17] for a more detailed summary and for the bounds beyond 2D. The maximum

complexity of the ≤k-level is precisely Θ(nbd/2ckdd/2e) in Rd, by using a probabilistic

argument [56].

The topic of uncertain data has received significant attention in various areas such

as computational geometry, algorithms, databases, etc. Many classical problems have

been studied in stochastic settings, including convex hull [10, 47, 59], minimum spanning

tree [43], range search [7, 11], linear separability [35, 62], top-k queries [23, 38], etc. See

also [14] and [26] for two survey papers.

More relevantly, the stochastic versions of the closest-pair problem and nearest-

neighbor search have also been investigated in [6, 9, 41, 44, 58]. Kamousi et al. [44]

show that computing the `-threshold probability of the closest-pair distance and some

variants of the problem are #P-hard under existential uncertainty even in R2. The

nearest-neighbor search is also considered in [44] under existential uncertainty, but the

problem considered is that of finding the point minimizing the expected distance to the

query point instead of the LNN. Huang et al. [41] give hardness results and random-

ized approximation algorithms for some stochastic closest-pair related problems under

general metric. It is shown in [41] that computing the expected closest-pair distance

under existential uncertainty is #P-hard in a general metric space. Agarwal et al.

[6, 9] study the uncertain nearest-neighbor search, but their main focus is locational

uncertainty (where each point can exist at any of several possible locations according

to some probability distribution) and the problems studied are quite different from the

10

LNN search. Suri et al. [58] investigate the LNN search and give upper bounds for the

complexity of the LVD as well as the way to construct the LVD. However, only the case

of 1-LNN search in R1 is studied in [58]. The problem in general Euclidean space and

non-Euclidean metric spaces is quite open, as is the k-LNN search.

Finally, we list several prior work on the range closest pair query in R2. The rectangle

query was first considered by Shan et al. in [54], where they gave an R-tree based

solution that performs well in practice; there is no theoretical analysis for this approach,

though. The same problem with theoretical guarantee is mainly studied by [40, 55].

In [55], Sharathkumar and Gupta propose a solution with O(log3 n) query time and

O(n log3 n) space. Gupta et al. improve the query time to O(log2 n) in [40], but the

space occupied is O(n log5 n). They also give variety results for other query shapes under

different assumptions. For halfplane queries, Abam et al. gave in [2] two solutions based

on Semi-Separated Pair Decomposition. One has O(n0.5+ε) query time using O(n log n)

space and can be built in O(n2 log2 n) time. The other has O(n3/4+ε) query time using

O(n log2 n) space with O(n1+ε) preprocessing time.

1.3 Summary of contributions

Preference top-k query: We present a series of progressively more efficient exact

algorithms in 2D, culminating in an optimal algorithm that uses O(n) space and has

query time O(log n + k). We also propose two useful extensions of the basic problem

to enable the user to restrict the search (in different ways) to a user-specified subset of

the dataset. In the first extension, the user’s focus is on a subset of the data points

(as might be the case if the user wishes to “zoom into” a small geographic location

in a spatial dataset) and the goal is to identify the top-k points in this subset based

on the user’s preferences. In the second extension, the user’s preference vector may be

known only roughly (which is often the case) and the goal is to report the top-k data

points under this set of fuzzy preferences. We show how to use our basic algorithm in

conjunction with suitable range trees [27] and priority search trees [49] to solve each of

these problems efficiently.

We consider the preference top-k query in 3D and demonstrate how to generalize

our 2D algorithm, based on convex layers, efficiently to 3D via gnomonic projection [25],

11

planar point location [27], and an appropriate grouping of points in each layer to help

speed up certain steps.

In addition, we propose a new sampling-based algorithm, in which the idea used for

sampling data points is rather different from the coreset method. Our algorithm first

reduces the top-k sampling task into k iterations of top-1 sampling, in which the so-called

“critical detection vectors” are introduced to help judiciously sample the dataset while

upper-bounding the error. Specifically, for any maximum allowable error parameter α

(which is given by the user), a sampling set with a top-1 error smaller than α can be

always constructed. Theoretical analysis of our sampling algorithm is given to prove

that the size of the final sampling set obtained by our algorithm is well-bounded by

O(kα−0.5) in 2D. Although the bounds of our algorithm are difficult to analyze in

higher dimensions, experimental results on different datasets are presented to show that

our algorithm works very well in dimensions 2, 3, and 4.

Stochastic line arrangement in R2: Given a collection of stochastic lines in R2,

we give a formal definition of the most likely k-topmost lines at a certain x-coordinate

q. We also study the combinatorial behavior of how these most likely k-topmost lines

change when q moves continuously from −∞ to∞. Specifically, we show, by a concrete

example, that in the worst case such a structure can change quadratic times even when

k = 1. On the other hand, we also give a detailed combinatorial analysis proving that the

expected number of changes is O(nk) if the probabilities of all lines are independently

drawn from any fixed probability distribution. An efficient algorithm is also designed

to compute the most likely k-topmost lines of n stochastic lines over the entire x-axis

in O(n2 log n+ nk2 log k) time, which can be directly leveraged to answer the so-called

stochastic preference top-k query. Finally, as another application we also apply our

results to bound the combinatorial complexity of the stochastic Voronoi Diagram in R1.

Stochastic closest-pair problem and most-likely nearest-neighbor search in

tree space: Let T be a tree space represented by a t-vertex weighted tree T , and S

be the given set of n stochastic points in T each of which is associated with an existence

probability. A realization of S refers to a random sample of S in which each point is

sampled with its existence probability.

12

For the SCP problem, define κ(S) as a random variable indicating the closest-pair

distance of a realization of S. We first show that the `-threshold probability of κ(S) (i.e.,

the probability that κ(S) is at least `) can be computed in O(t+ n log n+ min{tn, n2})
time for any given positive threshold `. Based on this, we immediately obtain an

O(t + min{tn3, n4})-time algorithm for computing the expected closest-pair distance,

i.e., the expectation of κ(S). We then further show that one can approximate the

expected closest-pair distance within a factor of (1 + ε) in O(t+ ε−1 min{tn2, n3}) time,

by arguing that the expected closest-pair distance can be approximated via O(ε−1n)

threshold probability queries.

For the LNN search, we first study the size of the the k-LVD ΨST of S on T . A

matching O(n2) upper bound for the worst-case size of ΨST is given. More interestingly,

we show that (1) the worst-case size of ΨST is O(kn), if the existence probabilities of

the points in S are constant-far from 0; and (2) the average-case size of ΨST is O(kn), if

the existence probabilities are i.i.d. random variables drawn from a fixed distribution.

These results further imply the existence of an LVD data structure which answers k-

LNN queries in O(log n + k) time using average-case O(t + k2n) space, and worst-

case O(t + k2n) space if the existence probabilities of the points are constant-far from

0. Finally, we give an O(t + n2 log n + n2k)-time algorithm to construct such a data

structure.

Range closest pair search: Given a set S of n points in R2, we show how to design

efficient data structures and algorithms such that, given a query range Q, the closest

pair in S ∩Q can be reported quickly.

For Q being a p-sided rectangle query, compared to the existing results in [40, 55]

we improve the space for quadrant and strip queries by a log n factor and, for p ≥ 2,

improve both the space and query time by log n factors if the input points satisfy a

certain flatness property defined later. For Q being a halfplane, the existing result in [2]

has O(n0.5+ε) (resp. O(n3/4+ε)) query time using O(n log n) (resp. O(n log2 n)) space

with O(n2 log2 n) (resp. O(n1+ε)) preprocessing time. We improve significantly these

bounds. Specifically, we show that there is an optimal solution that can answer each

query in O(log n) time, using only O(n) space. For Q being a radius-fixed disc, we

present a solution that answers each query in O(log2 n) time and uses O(n log n) space.

13

To our best of knowledge, there is no existing work with good theoretical guarantee for

disc (of any radius) query.

Finally, we propose a general approximation framework for the range closest pair

query. Given a query range type, the algorithm returns a closest pair that is no farther

apart than the closest pair in a suitably shrunken version of the query range, where

the shrinkage is controlled by a user-specified positive real ε. The framework uses two

fundamental structures in computational geometry, namely, a range reporting structure

and a range minimum query structure. By plugging in suitable black boxes, we can

handle a variety of query shapes.

We summarize our results on range closest pair search in Table 1.1.

Type of query Space Query time

Quadrant O(n) O(log n)
Strip O(n log n) O(log n)
Strip with O(1)-flat input O(n) O(log n)
3-sided rectangle with O(1)-flat input O(n log n) O(log2 n)
4-sided rectangle with O(1)-flat input O(n log3 n) O(log2 n)
Halfplane O(n) O(log n)
Disc with fixed radius O(n log n) O(log2 n)

Disc O(n1+ζ) O(log2 n+ (1/ε2) log(1/ε))
Fat 4-sided rectangle O(n log n) O(log n+ (1/ε2) log(1/ε))
Fat convex shape of O(1) complexity O(n log2 n) O(log2 n+ (1/ε2) log(1/ε))

Table 1.1: Summary of our results. Here ζ and ε are positive reals. The first seven
results correspond to exact closest pairs and the last three to approximate closest pairs.

1.4 Organization

The remainder of this thesis is organized as follows. We formulate and solve the pref-

erence top-k query in Chapter 2. Thereafter, we present our approximation solution to

the same problem in Chapter 3. The stochastic line arrangement and its related appli-

cations are discussed in Chapter 4. The following two chapters are related to extensions

on the proximity search. Specifically, we study in Chapter 5 the stochastic closest-pair

problem and most-likely nearest-neighbor search in tree space. In Chapter 6, we revisit

14

the range closest pair problem. Finally, we conclude in Chapter 7 with a summary of

our contributions and a discussion of directions for possible future work.

We note that for the sake of clarity in the exposition and in order to not impede

the flow of the discussion, most of the proofs in Chapters 3-5 are deferred to the ends

of these chapters. Also, the figures in the thesis are best viewed in color.

Chapter 2

Preference top-k query

In this chapter, we present our solution to the preference top-k problem in R2 and R3.

We also discuss solutions to some extensions of the problem in R2.

2.1 Problem formulation

An object with d real-valued attributes can be written as a point p = (x1, x2, · · · , xd) in

(R+)d. A weighting vector is represented as a unit vector w = (w1, w2, · · · , wd), where

wi ≥ 0 and ||w|| = 1. We can treat w as a point on the d − 1 dimensional unit sphere

Sd−1. Define the score of a point p with respect to a weighting (i.e., preference) vector

w to be
∑d
i=1 xiwi, i.e., p ·w if we treat p as a vector as well. In other words, the score

of p is length of the projection of p on the line through w. Figure 2.1 shows a 2D case,

where line l passes through p, and is normal to w. The score of p with respect to w is

||Op′||. It is easy to see that in general, for any weighing vector w, all the points on

the line l have the same score. Now assume that we have n different objects (points)

P = {p1, p2, · · · , pn} ⊂ (R+)d. A preference top-k query on P specifies a weight vector

w and an integer k (1 ≤ k ≤ n) and the goal of the query is to report the k objects of

P that have the highest score w.r.t. w.

15

16

O x

y

l

w

p

p′

Figure 2.1: The score of point p w.r.t. weight vector w is ||Op′||.

2.2 Algorithm in 2D

In this section we propose a preliminary algorithm in 2D, based on convex layers [20],

which uses O(n) space and has query time O(k log n). Then we improve the query time

to O(log n + k log k) by propagating information about extreme points on each layer.

Finally we use the special selection technique given in [37] to get an optimal query time

of O(log n+ k).

The convex layers of P are defined as follows: The first layer is the convex hull of P .

The second layer is the convex hull of the set obtained by deleting from P the points in

the first layer. And so on until there are no more points left.

2.2.1 Preliminary algorithm

Consider a unit weight vector w in the 2D plane. If we sweep a line l perpendicular to

w over P , from +∞ to −∞, the first k points that we encounter correspond to the top

k objects in decreasing order of score. Based on this, the top-1 point must lie on the

convex hull of P , and that point, called extreme point, is just at the position where l is

the tangent of the hull (see Figure 2.2a). To move one step further, the candidates for

the point with second largest score are p’s two neighbors on the convex hull and one

point inside the convex hull (see Figure 2.2b). Formally, let p be the point with rank

i, based on score, and let Cand be the set containing all the possible candidate points

with rank i+ 1. We maintain the following invariant.

1. If p is the extreme point in the current layer, Cand← Cand ∪ {q, p′, p′′}, where q

is the extreme point in the next inner layer, and p′, p′′ are p’s two neighbors on its

17

layer (if they exist).

2. Else, Cand ← Cand ∪ {p′}, where p′ is p’s left or right neighbor on its layer, as

appropriate (if it exists).

Based on this invariant, we use a binary heap to maintain all the possible candidates,

and report the top-k objects one by one in non-increasing ordering of score. In case 1,

we delete one element from the heap, and insert at most three elements; in case 2, we

delete one element and insert one more. Hence, the size of the heap is O(k), and O(k)

heap operations done (insertion and deletion) take O(k log k) time.

Since w lies in the first quadrant, the extreme point on each convex layer must lie

between the topmost and rightmost vertex on the layer (vertices p1, p2, p3 for the first

layer in Figure 2.2c).

If we shoot rays which are perpendicular to each segment of this part, we partition

the range of angles of all the vectors (0◦−90◦) into several parts. For a given weighting

vector, the interval in which it lies yields the corresponding extreme point. For instance,

in Figure 2.2c, if the weighting vector lies in [0, θ1], (θ1, θ2], or (θ2, θ3 = 90◦], the

corresponding extreme point will be p1, p2, or p3, respectively. If the angle of weighting

vector is equal to some θi, we can arbitrarily choose either pi or pi+1 to break the tie.

Hence finding the extreme point on a layer requires only one binary search, if the angles

are stored in sorted order in an array, and takes O(log n) time. We only need to find at

most k such points, hence the total query time is O(k log n+ k log k) = O(k log n). The

total space used is O(n).

2.2.2 Applying fractional cascading

We note that finding the extreme points in different layers requires a sequence of binary

searches, whose total cost is O(k log n). This cost can be reduced to O(log n+ k log k),

without affecting the O(n) space bound, by using the fractional cascading technique

[21]. This technique stores appropriate pointers (called bridges) between consecutive

arrays of angles. With this approach, we need to perform one O(log n) time binary

search to find the first extreme point; subsequent extreme points are found in O(1) time

each by following the stored pointers. Hence, the total time improves to O(k + log n).

18

O x

y

w

p

l

(a) Line l is normal to unit vec-
tor w, and l is the tangent of the
convex hull. Point p on the hull
ranks as the top-1 point in this
situation.

O x

y

w

p

l

q

p

p′′

(b) The candidates for the
points with the second largest
score can be p′, p′′, and the ex-
treme point q in the inner convex
hull.

O x

y

p2

l

p1

p3

θ1

θ2
θ3 = 90◦

(c) The extreme point can only
lie in the red region. The green
lines, which are perpendicular
to the red segments, divide the
range [0◦, 90◦] into three inter-
vals that can be searched for the
extreme point as discussed in the
text.

Figure 2.2: Illustrating the search for the top-k points for weight vector w.

Here are details. Initially we have m angle arrays, denoted by angle[1][.], angle[2][.],

· · · , angle[m][.], as well as information about the corresponding nodes (extreme points)

as arrays node[1][.], node[2][.], · · · , node[m][.], where m is the number of convex layers.

(Layers are numbered from 1 (outermost) to m (innermost).) We will construct the

fractional cascading data structure in two steps. Figure 2.3a shows an example of three

convex layers, and we will use it to illustrate the construction.

Step 1: Extending arrays. First, we take every other element from angle[m][.],

i.e., angle[m][1], angle[m][3], angle[m][5], · · · , and merge them into angle[m − 1][.] in

linear time. While merging, we can calculate the node information for each added entry

very easily. Then we take every other element from the extended angle[m − 1][.], and

merge them into angle[m− 2][.]. We repeat the above process m− 1 times from bottom

to top to extend the array information of the first m− 1 layers (see Figure 2.3b). Note

that it is unnecessary to have identical numbers in an array, so if there exist two identical

numbers after an extension, we will just keep only one of them (and the corresponding

node).

Step 2: Building pointers. We start at layer 1 and proceed to layer m, as follows.

For each element in current layer, we set a pointer to the smallest element (with odd

19

index) in the next layer which is larger than or equal to it (if such element does not

exist, then we take the largest element in the next layer instead). Formally, for the j-th

element in i-th layer (1 ≤ i < m), i.e., angle[i][j], we point it to angle[i + 1][j′], where

(1) j′ is odd, or j′ is the last element of angle[i + 1][.]; (2) angle[i + 1][j′] ≥ angle[i][j];

and (3) j′ = 1 or angle[i+ 1][j′ − 2] < angle[i][j] (see Figure 2.3c).

We can analyze the total space used via the accounting method of amortized analysis

[24]. We assign each element of each original angle[.][.] array 1 credit. Throughout, we

maintain the invariant that each element in the array where elements are currently being

propagated has 1 credit available. This is true for angle[m][.] by the above assignment.

Let angle[i][.] be the current array (1 < i ≤ m) and assume that the invariant holds.

Each propagated element from angle[i][.] pays for itself using its stored credit and carries

with it to angle[i − 1][.] the credit from the unpropagated neighbor to its right. Thus,

the invariant holds for angle[i− 1][.]. Hence the total number of elements propagated is

upper-bounded by the number of credits assigned initially, which is
∑
si = O(n) where

si is the original size of angle[i][.]. Thus the total space is
∑
si (for the original elements)

+
∑
si (for the propagated elements), which is O(n). (Note that there can be at most

one element in angle[i][.] that does not have a neighbor on the right to borrow a credit

from. There are O(n) such elements in total, so this does not affect the space bound.)

Moreover, instead of performing binary search on each layer, we perform binary

search only on the first layer to find the first extreme point, and then follow the pointers

to the other ones. Specifically, assuming the j-th element of layer i represents the

extreme point under some weighting vector w, and it points to the j′th element of layer

i+1, then we claim that the extreme point of layer i+1 must be either the j′th element

or the (j′ − 1)th element. For instance, assume the angle of the given vector w is 38◦.

The binary search on the first layer will tell us that the element p3, corresponding to the

angle interval (30, 45], is the extreme point. Then we follow its pointer to the element

q3 on the second layer, corresponding to (30, 45]. The angle on its left is 30◦ < 38◦, so

q3 is the extreme point of the second layer. This in turn points to the element r5 on the

third layer, corresponding to (40, 45]. However the angle to its left is 40◦ > 38◦, so r4

is the extreme point on the third layer, corresponding to (30, 40].

In summary, finding all the extreme points now costs only O(log n + k), thus the

time for the top-k query improves to O(log n+ k log k).

20

angle

node

angle

node

angle

node

10 30 45 60 70 90

p1 p2 p3 p4 p5 p6

5 25 75 90

q1 q2 q3 q4

15 20 30 40 45 80 90

r1 r2 r3 r4 r5 r6 r7

layer 1

layer 2

layer 3

(a) Original angle and node arrays. For example,
in layer 2, the numbers 5, 25, 75 and 90 repre-
sent intervals [0, 5], (5, 25], (25, 75], (75, 90] re-
spectively, and q1, q2, q3, q4 are their correspond-
ing extreme points.

angle

node

angle

node

angle

node

layer 1

layer 2

layer 3

10 30 45 60 70 90

p1 p2 p3 p4 p5 p6

5 25 75 90

q1 q2 q3 q4

15 20 30 40 45 80 90

r1 r2 r3 r4 r5 r6 r7

1515

q2

3030

q3

4545

q3

5

p1

25

p2

45

q3

(b) Extending the arrays. The elements with red
border are selected to be merged above, and the
shaded cells are the final positions of these selected
elements from the array one level below.

angle

node

angle

node

angle

node

layer 1

layer 2

layer 3

10 30 45 60 70 90

p1 p2 p3 p4 p5 p6

5 25 75 90

q1 q2 q3 q4

15 20 30 40 45 80 90

r1 r2 r3 r4 r5 r6 r7

1515

q2

3030

q3

4545

q3

5

p1

25

p2

45

q3

(c) Each element (except the ones on the last level)
points to the proper selected element one level be-
low.

Figure 2.3: Illustrating the fractional cascading technique.

21

2.2.3 An optimal algorithm

Note that the k objects reported are actually in non-increasing order of score, and that

is why the k log k factor appears in the bound. If we want the results to be sorted, then

the previous algorithm is suitable; otherwise, we can do better. We now propose an

optimal algorithm which will output the top-k objects in arbitrary order within a query

of O(log n+ k). Our approach relies on the following result from [37].

Lemma 2.1. ([37]) Given m sorted arrays of reals, it is possible to find the ck-th

smallest/largest real in O(m) time, where c ≥ 1 is a constant.

In [37], the operation associated with Lemma 2.1 is called a “CUT”. Assume that

the points on each layer are given in (say) clockwise order in an array. Then for a given

weighting vector w, the corresponding extreme points on the layer partition the points

of the layer into two sub-arrays that are sorted by score w.r.t. w. (See, for instance,

the points colored red and green in Figure 2.4.) From our earlier discussion, we know

that the top-k points w.r.t. w must belong to the first k or fewer layers. Using the

approach in Section 2.2.2, we find the extreme points in the first k layers in O(k+log n)

time and use these to create m = 2k sorted arrays of points from these layers. We then

apply the CUT operation (Lemma 2.1) to identify the ck-th largest point (by score)

in O(k) time. Next we scan each of the 2k sorted arrays by non-increasing score and

identify a set, S, of points whose score is greater than or equal to the ck-th largest

score; this takes O(k) time. Note that since c ≥ 1, S is a superset of the set of top-k

points desired, and the size of S is just ck = O(k). We then run a standard selection

algorithm [24] on S to find the point with the k-th largest score in O(k) time. Finally,

we use this point to extract from S the desired top-k points in additional O(k) time.

Thus, the overall time to answer the top-k query is O(log n+ k), which improves upon

the result in Section 2.2.2. (However, note that the points are now no longer reported

in non-increasing order of score.)

2.3 Extensions

In this section, we introduce two extensions of the standard preference top-k query in

2D, i.e., preference top-k query with range restriction on data points (Section 2.3.1) and

22

O x

y

w

p

l

l′

p′

Figure 2.4: The maximal point p and minimal point p′ in layer-1 with respect to weight-
ing vector w; point p (resp. p′) has the maximum (resp. minimum) score on layer-1.

preference top-k query with a fuzzy weighting vector (Section 2.3.2).

2.3.1 Preference top-k query with range restriction on data points

Usually not all the data points are interesting to a user. Instead, the user may want to

“zoom into” a region of interest and want only the top-k points among the data points

in this region. We now give a formal definition for this type of top-k query.

Definition 2.1. Given a set of n data points P = {p1, p2, · · · , pn}. A user query

consists of a rectangle R = [x1, x2] × [y1, y2], and a weighting vector w. Define P ′ =

{p | p ∈ P ∩ R}. The top-k query with range restriction on R reports the k objects in

P ′ with highest score with respect to w. We call this query a range top-k query.

Range trees [27] are often used to answer various types of range queries. In this

section, we show how to answer a range top-k query.

We build a 2D range tree, T , on the set P , and in each internal node we store

the convex layers of the points in the node’s subtree, along with the corresponding

fractional cascading structure. Then our range top-k query can be answered as shown

in Algorithm 1. The pseudocode of Algorithm 1 refers to so-called canonical nodes.

These are a subset of nodes identified in the second level of the range tree, T , when

searching with the query range R. The canonical nodes have the following nice property:

The subset of P that is contained in R is the disjoint union of the sets of points stored

23

in the subtrees rooted at the different canonical nodes. Moreover, the number, C, of

such canonical nodes is O(log2 n). (See [27] for more details.)

Algorithm 1 Range-top-k-query

1: Input: Input point set P , 2D range tree T , query range R, weighting vector w.
2: Output: Range top-k points.
3: Search in T with R to find the set of canonical nodes. Let C be the number of

canonical nodes.
4: For each canonical node, find the extreme point w.r.t. w in the first convex layer

stored with the node.
5: Build a max-heap H on the C extreme points found in step 2, using the score w.r.t.
w as the key.

6: Ans← ∅
7: for i← 1 to k do
8: p← H.DeleteMax
9: Ans← Ans ∪ {p}

10: Assume that p is stored at canonical node x.
11: if p is one of extreme points of some convex layer stored at x then
12: Insert p’s two neighbors and the extreme point of the next inner layer into

H.
13: else
14: Insert the appropriate neighbor of p into H.
15: end if
16: end for
17: return Ans

In Algorithm 1, Lines 3 and 5 take O(log2 n) time. Line 4 takes O(C · log n) =

O(log3 n) time because a binary search is needed at each canonical node. Since the size

of H at any time is O(C + k), the time for all executions of the for-loop on Line 7 is

O(k log(C+k)) = O(k log(Ck)) = O(k log logn+k log k). Therefore the overall running

time is O(log3 n + k log log n + k log k), and the reported objects are in non-increasing

order of score.

The bottleneck of this algorithm is Line 4, which costs O(log3 n) time. To reduce

the running time, we build a fractional cascading structure on the second level of the

range tree. (The idea is similar to the one used in Section 2.2.2 but there are several

key differences as discussed below.) Specifically, for each node c in the first level of T ,

we wish to jump to its corresponding subtree rooted at c′ in the second level of T via a

stored pointer (see Figure 2.5 for an example). Towards this end, we extract the arrays

24

corresponding to the first layer only in each node in the second level of T , and build

a fractional cascading structure for these extracted arrays bottom-up; note that the

structure is slightly different compared to the one in Section 2.2.2, i.e, we have pointers

from layer-i to layer-(i + 1) only in the previous case, but now, for each entry of the

array, we have one pointer to the entry in the left subtree, and one pointer to the entry

in the right subtree. For instance, in Figure 2.5, the array pointed to by each node in the

subtree rooted at c′ corresponds to the first layer information of the fractional cascading

structure stored inside that node. Every entry (except the one in the last level) in these

arrays has two pointers, one each for the arrays in the left and right subtrees. Based on

this newly built structure, when we perform a search to find the canonical nodes in the

subtree rooted at c′ (e.g. the red nodes in Figure 2.5), we can also retrieve the extreme

points of their first layers by doing one binary search at the root of c′, in O(log n) time,

to find the extreme point at that node and then following the stored pointers to the

appropriate left or right child in O(1) time to retrieve the other extreme points. For the

example in Figure 2.5, we need to do just one binary search (at c′) and follow pointers

at the three red nodes, whereas previously we did three binary searches (at the three

red nodes).

Recall the property of a 2D range tree. Given any range, O(log n) nodes will be

involved in the first level so that O(log n) binary searches are done for a total of O(log2 n)

time. Moreover, we can charge the cost of following by pointers and finding the extreme

points (in the cascading structure) to the C canonical nodes, which clearly takes O(C) =

O(log2 n) time. Therefore, the run time of Step 2 improves to O(log2 n), and the overall

run time for the algorithm improves to O(log2 n+k log logn+k log k). The overall space

usage is O(n log n).

2.3.2 Preference top-k query with a fuzzy weighting vector

In the standard version of the top-k query considered so far, it is assumed that the user

can specify the unit weighting vector accurately. However this may not always be the

case because the preference of a user is may not be known exactly. Therefore it is more

reasonable to let a user specify a fuzzy unit weighting vector. In 2D, a unit vector lies

on the unit circle, and can be represented by the angle it makes with the positive x-axis.

Hence a range of weighting vectors can be defined as an interval of angles, say [θ1, θ2].

25

c c′

Figure 2.5: Example to show the fractional cascading structure in the 2D range tree.

We now give the formal definition of the top-k query in this setting.

Definition 2.2. Given a set of n data points P = {p1, p2, · · · , pn}. A user query consists

of a range of angles R = [θ1, θ2] illustrating the range of the desired unit weighting vector

w. Redefine the score of any point p to be max(
∑
p · w), taken over all w ∈ R. A top-k

query on P with fuzzy weighting vector w ∈ R will report the k objects in P with highest

redefined score.

Our strategy is to identify efficiently a superset of the desired top-k points, of size

at most 3k, and then identify the top-k points from this. Let w1 and w2 be the unit

weighting vectors corresponding to θ1 and θ2, respectively. As shown in Figure 2.6, w1

and w2 partition P into three sets P1, P2, and P3. We make the following observations.

1. For any p ∈ P1 and w ∈ R, the redefined score is maximized for w = w1 (since

then the angle between w and
−→
Op is minimized). Suppose that p is reported when

a top-k query is performed on P with a fuzzy weighting vector w ∈ R. Thus,

p · w1 is among the k highest scores found in P . Since P1 ⊆ P , a standard top-k

query on P1 with weighting vector w1 (see Section 2.2.2) will also report p. Hence,

all points of P1 that are part of the answer to the fuzzy top-k query on P will

be included in the output of the standard top-k query on P1 (along with O(k)

spurious points, i.e., points that are not part of the answer to the fuzzy top-k

query on P).

A similar observation also applies to P2 w.r.t. weighting vector w2.

26

2. For any p ∈ P3, the redefined score is maximized when the weighting vector

w =
−→
Op; the score is the L2-distance of p from O, i.e., |Op|. Thus, reasoning as

in Observation 1, if p is reported when a top-k query is performed on P with a

fuzzy weighting vector w ∈ R, then p is among the set of k points of P3 farthest

from O. (Again, this set can have O(k) spurious points.)

For a query R, we can find the k points of P3 farthest from O as follows: In pre-

processing, we sort the points of P by non-decreasing angle from the positive x-axis

and map each point p to a weighted 1D point p′, where the angle of p becomes the

coordinate of p′, and the distance from O to p is the weight. We then build a priority

search tree T on these points [27, 49].

Given R, we traverse T and identify the set of C canonical nodes, where C =

O(log n). The desired set of k farthest points from O is contained in the disjoint union

of all the heap-ordered trees rooted at these canonical nodes. We can find these by

initializing a max-heapH with the root node of each canonical node. Then we repeatedly

delete and report the maximum from H and insert the children of each maximum (in

terms of the priority search tree T) into H. We do this k times (or until H is empty).

Since |H| ≤ C+k this takes O(k log(C+k)) = O(k log log n+k log k) time. Including the

time to identify the set of canonical nodes, the total query time is O(log n+k log log n+

k log k). The space is O(n).

Alternatively, as noted in [3], one can solve the problem on P3 in O(log n+ k) time

and O(n) space by using a priority search tree combined with Frederickson’s O(k)-time

algorithm for finding the k smallest/largest elements in a binary heap-ordered tree [36].

At this point we have a set P ′ of at most 3k points, resulting from the output of the

queries on P1, P2 and P3, which contains the output set for the fuzzy top-k query on P .

Among the points of P ′, we find the one with the k-th largest score, using a standard

selection algorithm [24] and then scan P ′ with this point to identify the top-k points

for the fuzzy top-k query on P . This step takes O(k) time. Hence, the total query

time on P1–P3 is O(log n+k log k+k log logn) and the space is O(n). Alternatively, by

incorporating the heap-selection algorithm from [36] in the query of P3 and the CUT

operation from [37] in the standard top-k query of P1 and P2, the query time can be

reduced to O(log n+ k), while still using O(n) space.

27

O x

y

w1

w2
P1

P3

P2

Figure 2.6: Illustrating the approach for answering a preference top-k query with a
fuzzy weighting vector lying anywhere between w1 and w2. The sets P1-P3 are defined
by weighting vectors w1 and w2 that make angles θ1 and θ2, respectively, with the
positive x-axis.

2.4 Algorithm in 3D

In this section, we extend to 3D our exact algorithm in Section 2.2.1, which was based

on convex layers.

The size of the convex hull in 3D is linear in the number, n, of input points. Hence

the convex layers occupy only O(n) space. The sketch of the algorithm in Section 2.2

still holds, but we need to address two issues that can impact the query time: 1) how

to find the extreme points efficiently? and 2) what is the degree of each vertex (i.e., its

number of neighbors) on the hull?

1. To find an extreme point on a convex layer, we can use planar point location [27],

as follows.

Given any 3D convex hull, we first create the unit-normal of each facet. Then

we translate all the normals so that their starting points coincide with the origin;

thus their ending points will be all on the unit sphere. For each vertex pi on

the hull, we list all its associated facets, fi1 , fi2 , · · · , fit , in clockwise/counter-

clockwise order. Next we connect fi1 and fi2 , fi2 and fi3 , · · · , fit−1 and fit , and

fit and fi1 respectively via arcs on their corresponding great circles. These arcs

will form a closed cycle on the surface of the sphere, and we associate the interior

of the cycle with vertex pi. For convenience, we name that interior ci. Figure 2.7a

28

shows an example where we assume the convex hull is a tetrahedron with vertices

p1, p2, p3, p4. fi and ni indicate the ith facet and its unit normal respectively.

Figure 2.7b shows the positions of these normals after translation. Moreover,

c1 = n1n2n3n1 is the cell associated with p1, cell c2 = n1n2n4n1 is associated to

p2, etc.

Now given any weighting vector w, vertex pi is the extreme point with respect to

w if and only if the ending point of w is inside the interior of the cell ci. Note

that every arc on the sphere is part of the great circle, and thus it will become

a line segment if gnomonic projection [25] is applied. Therefore, after gnomonic

projection, the result will be a planar graph in which each cell ci will uniquely

correspond to a facet, ĉi, in that graph, and the weighting vector w will become

a point ŵ. It is clearly that w lies in ci if and only if ŵ is inside facet ĉi. Hence

finding an extreme point has been reduced to the planar point location problem.

By using a persistent search tree, planar point location can be done in O(log n)

time and O(n) space [52]. Therefore, finding an extreme point in 3D can be done

in O(log n) time without increasing the asymptotic space complexity.

Note that, unlike the 2D case, each 3D weighting vector is uniquely determined by

two parameters, and the fractional cascading technique discussed in Section 2.2.2

is no longer supported here.

2. Unfortunately, the degree of each vertex is no longer a constant in 3D; and it can

be any number from 3 to n − 1, so that after some point p is deleted from the

heap, we have to check all its neighbors, which would be costly in the worst case.

We can soften the worst case a little by dividing the m ≤ n points on the hull into
√
m groups of roughly

√
m points each. We then build the convex hull for each

group. It is clear that the total space remains O(m), but the maximum degree

in each sub-hull is less than
√
m. To find the extreme point from all the original

m points w.r.t. some preference vector w, we can find the extreme point of each

sub-hulls using point location and maintain these O(
√
m) points (by score) in a

max-heap, which takes O(
√
m log

√
m) = O(

√
m logm) time. Retrieving the next

largest point involves checking its neighbors in its sub-hull and inserting them

into the heap and finally deleting the maximum point. Note that a point will be

29

inserted and deleted at most once, hence all the heap operations invoked in each

group take O(
√
m logm) time.

Assume the 3D onion structure of all the n points consists of t layers, and the

i-th layer contains ni points, i.e., n1 + n2 + · · · + nt = n. We apply the strategy

above, i.e., for the hull in layer i, we partition the ni points into
√
ni groups and

maintain a max-heap on them. We also build one extra max-heap to keep track of

the largest point in the first k layers as our previous algorithm does. To sum up,

at most k extreme points will be accessed, which takes at most O(
√
n1 log n1 +

· · · + √nk log nk) = O(k
√
n log n). Reporting the top-k objects in sorted order

also takes O(k
√
n log n). Therefore, the worst case running time is bounded by

O(k
√
n log n).

p1

p2

p3

p4

n1 of f1

n2 of f2 n3 of f3

n4 of f4

(a) An example of 3D convex hull

z

y

x

n1

n2 n3

n4

(b) Unit normals partition the unit
sphere into several cells.

Figure 2.7: Illustrating how to reduce finding extreme points in 3D to planar point
location.

Remark. The basic idea of our algorithm extends to higher dimension as well, but it is

not very attractive due to two reasons: 1) the degree of a vertex of the convex hull can

be as large as n, and, more importantly, 2) the size of the convex hull grows dramatically

to O(nb
d
2
c) in d-dimensions. In other words, storing the entire convex hull structure is

too costly when the dimension is high. Therefore, in next chapter develop an efficient

approximation algorithm for the preference top-k query in higher dimensions that avoids

storing the entire hull.

Chapter 3

Approximate preference top-k

query

In this chapter, we present our sampling-based approximation scheme for the preference

top-k problem in higher dimensions.

3.1 Problem formulation

Recall the preference top-k problem we defined in Section 2.1. We are given a set of n

d-dim data points D = {a1, a2, . . . , an} ⊂ (R+)d and an integer k ≤ n. For any given d-

dim query vector (i.e., preference) q = (q1, q2, . . . , qd) satisfying each qi ≥ 0 and q 6= 0,

the goal of the preference top-k problem is to find k points from D, which have the

largest inner products with q, and report them in order. In other words, the reported

points aπ1 , aπ2 , . . . , aπk have to satisfy

q · aπ1 ≥ q · aπ2 ≥ · · · ≥ q · aπk ≥ q · ai,

for any ai ∈ D − {aπ1 , aπ2 , . . . , aπk}.
An effective approximation approach for dealing with preference top-k queries is

sampling. The high-level idea of a sampling-based approximation is to sample a subset

of the original dataset D (called sampling set or sampling subset), which can well-

represent the top-k features of the entire set but has a much smaller size. When a query

preference vector q is given, the algorithm focuses only on the points in the sampling

30

31

set, i.e., it identifies the top-k points of the sampling set under q, and uses the data

points so identified as an approximation to the true top-k result. In this way, each query

can be answered much more efficiently. Clearly, how to get a small sampling set with

high quality is the crucial part of sampling-based approximation. Ideal sampling sets

should be representative and small-sized so that both the quality of the top-k answer

and query efficiency can be guaranteed.

3.2 Our sampling algorithm

In this section, we first introduce an important conclusion which enables us to reduce

top-k sampling to top-1 case. Then, we introduce the concept of critical detection

vectors, which play a key role in our sampling algorithm. Finally, we present the overall

framework of our algorithm.

3.2.1 Reducing top-k to top-1

We denote by φq(D) the maximum of the inner products of the query vector q and the

points in the dataset D, i.e.,

φq(D) = max
ai∈D

q · ai,

and the corresponding ai is called the top-1 point of D under q. Let S ⊆ D be a (top-1)

sampling set, we now define the overall top-1 error of S, denoted by ES , as

ES = sup
q
{Err(φq(D), φq(S))}.

where

Err(φ1, φ2) =
φ1 − φ2

φ1
.

Also, we call Err(φq(D), φq(S)) the top-1 error of S under q.

Assume we have a sampling algorithm A only for top-1 (i.e., the case of k = 1),

which can guarantee the overall top-1 error of the sampling set to be less than α for

any given dataset D. We construct a corresponding top-k sampling algorithm Ā as

indicated in Algorithm 2.

Theorem 3.1 shows that the quality of the top-k sampling set S∗ obtained by Ā is

well-guaranteed.

32

Algorithm 2 Ā

1: procedure Ā(D, k) . Return the top-k sampling set S∗ of the dataset D.
2: Initial i = 0 and S∗ = ∅
3: while i < k do
4: i← i+ 1
5: S ← A(D)
6: S∗ ← S∗ ∪ S
7: D ← D\S
8: end while
9: return S∗

10: end procedure

Theorem 3.1. For any query vector q, let aπ1 , aπ2 , . . . , aπk be the true sorted top-k data

points in D with respect to q and let bπ′1 , bπ′2 , . . . , bπ′k be the sorted top-k points in the

sampling set S∗ obtained by Ā. Define

L = {i : Err(q · aπi , q · bπ′i) > 0}.

Assume that |L| = k′ and L = {l1, l2, . . . , lk′} where l1 < l2 < · · · < lk′. If the algorithm

A can guarantee the overall top-1 error of the sampling set to be less than α, then for

any i ∈ {1, 2, . . . , k′}, we have

Err(q · aπl1 , q · bπ′li) ≤ α.

(See Section 3.5.1 for a proof.)

Since q·aπl1 ≥ q·aπli , the conclusion of Theorem 3.1 implies that Err(q·aπli , q·bπ′li) ≤
α and is even better than this. With this conclusion, the top-k sampling task can be

naturally reduced to k iterations of top-1 sampling. In other words, in order to do

sampling for top-k, it suffices to propose a good top-1 sampling algorithm A and then

develop it into Ā, as specified in Algorithm 2.

3.2.2 Critical detection vectors

To do sampling for the top-1 case, the basic strategy of our algorithm is to use different

query vectors on the original dataset D to get different top-1 data points and collect

them as the sampling set. We call the used query vectors detection vectors. Since the

33

number of possible query vectors is infinite, we can only use a small subset of these

vectors for detection. Thus, the selection of the detection vectors largely determines the

quality of the obtained sampling set.

If the detection vectors are blindly selected, i.e., the selection made is independent

of the dataset D, the quality of the sampling set in general cannot be well-guaranteed.

As we see below, even in the 2-D case, the overall top-1 error of the sampling set can

almost reach 0.5 in the worst case, no matter how many detection vectors we select and

what they are.

Consider the selection of detection vectors in the 2-D case. Assume we have selected

the detection vectors independent of the dataset. Since the number of detection vectors

we select is finite, we can always find a number θ ∈ (0, π/2) so that there is no detection

vector selected whose angle from the y-axis belongs to (0, θ). Then we simply construct

a dataset D which only contains 3 data points:

D = {p1, p2, p3},

p1 = (m, 1), p2 = (M, 1−m), p3 = (M + cot θ,m),

where M → +∞ and m → 0+. Let S be the sampling set obtained by using these

detection vectors. Because the angles of the detection vectors (from the y-axis) are not

in (0, θ), the data point p2 can never be detected, i.e., never be included in S. Then we

consider the query vector q = (1,M + cot θ). Since p2 /∈ S, even if p1 and p3 are both

in S, we have

Err(φq(D), φq(S)) =
M − 2m(M + cot θ)

M + (1−m)(M + cot θ)
→ 0.5,

which means the overall top-1 error of S can almost reach 0.5. This unsatisfactory result

motivates us to select the detection vectors adaptively, based on the dataset.

Our algorithm performs adaptive selection of detection vectors by alternately se-

lecting new detection vectors based on the current sampling points and then expanding

the sampling set. Suppose now that we have a sampling set S and the dataset D is

unknown. We investigate the detection vectors which are most helpful for improving

the quality of S. Intuitively, good detection vectors should reveal large top-1 errors of S

when used as query vectors, thereby yielding meaningful top-1 points as new sampling

points and helping remedy significant defects of S. One important observation we have

34

is that, although the number of the possible query vectors which may lead to top-1

error of S is infinite, there exists a small set of vectors under which the top-1 error

of S always “dominates” those under other vectors. Moreover, this set of vectors is

independent of the dataset D. We formalize this intuition via the following definition

and via Theorem 3.2 and Theorem 3.3.

Definition 3.1. Let S be a sampling set. We say a vector v is critical to S if and only

if

1) all the components of v are nonnegative;

2) for some c, there exists sπ1 , . . . , sπc ∈ S and z1, . . . , zd−c ∈ {1, . . . , d} such that

• sπ1 , . . . , sπc are the top-1 points of S under v;

• all the zi-th components of v are 0;

• sπ1 , . . . , sπc and z1, . . . , zd−c satisfy

rank



sπ1
...

sπc

ez1
...

ezd−c


d×d

= d. (3.1)

Also, define the critical vector set C of S as the set of all unit vectors critical to S.

In the previous example, if S = {p1, p3}, there are only three vectors critical to

S: (1, 0), (0, 1) and (1 − m,M + cot θ − m). So the critical vector set of S is V =

{(1, 0), (0, 1), (1−m,M + cot θ −m)}. (Strictly, the third vector should be normalized

but we have omitted this to avoid clutter.)

Theorem 3.2. Given sπ1 , . . . , sπc ∈ S and z1, . . . , zd−c ∈ {1, . . . , d} satisfying Equation

3.1, there exists at most one unit vector v such that

• all the components of v are nonnegative and all the zi-th components are 0;

• sπ1 , . . . , sπc are the top-1 points of S under v. (See Section 3.5.2 for a proof.)

Clearly, Theorem 3.2 implies the finiteness of the number of the vectors critical to

S. More precisely, if the dimension d is constant, the size of the critical vector set of S

35

is always bounded by O(|CH(S)|), where |CH(S)| is the complexity of the convex hull

of S (note that sπ1 , . . . , sπc are the top-1 points under v only if they form a (c − 1)-D

edge of the convex hull of S).

Theorem 3.3. Let S be a sampling set and V be its critical vector set. For any D ⊇ S
and any query vector q, we have

Err(φq(D), φq(S)) ≤ max
v∈V
{Err(φv(D), φv(S))}.

As a result,

ES = sup
q
{Err(φq(D), φq(S))} = max

v∈V
{Err(φv(D), φv(S))}.

(See Section 3.5.3 for a proof.)

Roughly speaking, Theorem 3.3 tells us that S has the worst performance (i.e.,

maximum top-1 error) under the vectors critical to it. In this sense, when we want to

further expand S by detecting new top-1 data points, these critical vectors will be the

best choices as detection vectors. By adding the top-1 points detected by them, the

robustness of S can be most improved.

3.2.3 Overall framework

Based on the observation in the previous subsection, the basic idea of our top-1 sampling

algorithm emerges: we begin from a very small S, find the vectors critical to S and use

them as detection vectors to expand S to a larger set, then find the new critical detection

vectors of the current S and further expand it to an even larger set, until the current S

satisfies some termination conditions. Since the d basis vectors

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

. . . ,

ed = (0, 0, 0, . . . , 1)

are critical to any non-empty S, we also regard them as critical detection vectors of the

empty set, which allows us to initialize our algorithm with S = ∅.

36

In order to compute the critical detection vectors for the current sampling set, what

we do is to maintain a convex hull for the expanding S. Then for each edge sπ1 . . . sπc of

the convex hull, if at least one of its vertices is new (i.e., added to S in the last round),

we consider each tuple (z1, . . . , zd−c) satisfying Equation 3.1. We compute the unique

vector v∗ such that

v∗ · sπ1 = · · · = v∗ · sπc

and all the zi-th components of v∗ are 0. We say v∗ is a candidate determined by

sπ1 , . . . , sπc and z1, . . . , zd−c. If all the components of v∗ are nonnegative and sπ1 , . . . , sπc

are the top-1 points of S under v∗, then v∗ is indeed a vector critical to S and not used

in the previous rounds as detection vectors. So we add v∗ to the set of the critical

detection vectors we want to use in the current round. To set the termination condition

for expanding, we need a threshold α to indicate the maximum allowable error of S,

which is an input parameter given by the user. While expanding, only if the top-1 error

of S under a critical detection vector reaches or exceeds α, we add the corresponding

new top-1 data point to the sampling set. Once the top-1 error of S under each critical

detection vector is less than α (equivalent to ES < α), we terminate our expanding and

output the current S as our result.

The working of our top-1 sampling algorithm in 2D can be seen in the next section.

By combining our top-1 sampling algorithm with Algorithm 2, we obtain the overall

framework of our top-k sampling algorithm, which is shown as Algorithm 3.

3.3 Theoretical analysis in 2D

Since our algorithm for top-k sampling is realized by k iterations of top-1 sampling,

it suffices to analyze the process of top-1 sampling. We begin from the empty set.

In the case of d = 2, this process becomes relatively simple. In a general case, we

use the two critical vectors e1 = (0, 1) and e2 = (1, 0) for detection and obtain the

topmost data point A and the rightmost point B (Figure 3.1a) in our first round of

expanding. Then, for the expanded S, we have a new critical detection vector q which

is perpendicular to the line AB. By this vector, we detect a new data point C in our

second round (Figure 3.1b). Accordingly, we further obtain two new critical detection

vectors, one is perpendicular to AC and the other is perpendicular to CB. By these

37

Algorithm 3 Our Top-k Sampling Algorithm

1: procedure Top-k-Sampling(D, k, α) . Return the top-k sampling set S∗ of
dataset D with maximum allowable error α.

2: S∗ ← ∅
3: i← 0
4: while i < k do
5: i← i+ 1
6: Si = ∅
7: C = {e1, e2, . . . , ed}
8: while T 6= ∅ do
9: T = ∅;

10: for every v ∈ C do
11: if Err(φv(D), φv(Si)) > α then
12: T ← T ∪ {a | a ∈ D, v · a = φv(D)}
13: end if
14: end for
15: Si ← Si ∪ T
16: Update CH(Si)
17: C ←Find-New-Critical-Vectors(Si,T)
18: end while
19: S∗ ← S∗ ∪ Si
20: D ← D\Si
21: end while
22: return S∗;
23: end procedure
24: procedure Find-New-Critical-Vectors(U ,V)
25: C ← ∅
26: for every edge sπ1 . . . sπc of CH(U) do
27: if at least one of sπ1 , . . . , sπc is contained in V then
28: for any z1, . . . , zd−c ∈ {1, . . . , d} such that Equation 3.1 holds do
29: Compute the candidate v∗ determined by sπ1 , . . . , sπc and z1, . . . , zd−c
30: if all the components of v∗ are nonnegative and sπ1 , . . . , sπc are the

top-1 points of U under v∗ then
31: C ← C ∪ {v∗}
32: end if
33: end for
34: end if
35: end for
36: return C
37: end procedure

38

two detection vectors, we may add even more data points to keep expanding S. This

procedure repeats until the top-1 error of S under every new critical detection vector is

less than α.

O

A

B

X

e1

e2

(a) The first round of expanding

O

A

B

X

C

Y

Z

q

(b) Finding new detection vector q and further
expanding S

Figure 3.1: Sampling algorithm in 2D

In this process, we have some observations:

(1) At any time, if we sort the data points in S by their x-coordinates, we then obtain

a sequence s1, s2, . . . , sm (m = |S|) in which s1.x < s2.x < · · · < sm.x and s1.y > s2.y >

· · · > sm.y.

(2) If S currently contains m points, then there are totally m + 1 vectors critical to

S. Two of them are (0, 1) and (1, 0). The remaining m − 1 ones are the vectors

perpendicular to s1s2, s2s3, . . . , sm−1sm. Some of these critical vectors may be used as

detection vectors in previous rounds while the others are new.

(3) Since each si ∈ S is the top-1 point under a previous detection vector qi, all of the

data points in D should be on the same side of li as the origin point O, where li is

the line passing through si and perpendicular to qi. Furthermore, all of the meaningful

points in D−S (i.e., the undetected points which can improve the quality of S if added

to S) are clearly in the m− 1 triangles 4s1s2t1, 4s2s3t2, . . . , 4sm−1smtm−1, where ti

is the intersection point of li and li+1. We call such triangles blind triangles and their

union the blind area. For instance, the blind area in Figure 3.1a is the gray triangle

4ABX and in Figure 3.1b is the two gray triangles 4ACY and 4CBZ.

39

(4) The data points in one triangle of the blind area, 4sisi+1ti, are only meaningful for

the critical vector perpendicular to sisi+1, among all of the m + 1 critical vectors. In

other words, under the other m critical vectors, the points in 4sisi+1ti never lead to the

top-1 error of S. Furthermore, under the vector perpendicular to sisi+1, the point ti is

the one that leads to the largest top-1 error of S, among all possible points in 4sisi+1ti.

We call this maximum the causing error of the blind triangle 4sisi+1ti.

(5) Once we use the critical vector perpendicular to sisi+1 to detect a new point s′ and

add it to S, we get two new critical vectors which are perpendicular to sis′ and s′si+1

for the next round of expanding. And in the next round, the blind triangle 4sisi+1ti

will be replaced by two new ones, 4sis′u and 4s′si+1v (Figure 3.2). We say these

two new triangles are generated by the original one 4sisi+1ti. Note that if we fail to

detect a new point (e.g., there is no point in the blind triangle) or the point detected

leads a top-1 error less than our threshold α (so that we do not add it to S), then

the corresponding blind triangle will always exist but be meaningless in the subsequent

rounds. We say it’s invalid in the subsequent rounds. Obviously, in a particular round,

the valid blind triangles are just the ones newly generated in the last round while the

others are all invalid.

O

si

si+1

ti

O

si

si+1

ti

s′

u

v

detection
vector

Figure 3.2: Generating two new blind triangles from an old one

Based on these observations, we have a conclusion about the relationship between

the causing error of a blind triangle and that of the two blind triangles it generates in the

next round. Consider the situation in Figure 3.2. We have the blind triangle 4sisi+1ti

in some round and 4sis′u, 4s′si+1v are the two new blind triangles it generates in the

40

next round. Then our conclusion is shown in Theorem 3.4.

Theorem 3.4. Suppose E, E1, E2 are the causing errors of 4sisi+1ti,

4sis′u, 4s′si+1v, respectively. Then we have

E1

1− E1
+

E2

1− E2
≤ E

1− E , and max{E1, E2} ≤
E

E + 2
»
E(1− E) + 1

.

(See Section 3.5.4 for a proof.)

From Theorem 3.4, we readily have the following corollary.

Corollary 3.1. The number of the rounds for expanding S is bounded by O(α−0.5).

More precisely,

r ≤
⌈

1

α
− 1

⌉
,

where r is the number of the rounds. (See Section 3.5.5 for a proof.)

Based on the conclusions of Theorem 3.4 and Corollary 3.1, we can upper-bound

the size of the final sampling set we obtain as well as the number of detections during

our algorithm, as stated in Theorem 3.5.

Theorem 3.5. In Algorithm 3, the final sampling set obtained contains at most

O(kα−1.5) data points and the total number of detections is also bounded by O(kα−1.5).

(See Section 3.5.6 for a proof.)

In higher dimensions (d > 2), it is difficult to analyze theoretically the bounds of our

sampling algorithm. Thus, we will use the experiments to demonstrate its effectiveness

in Section 3.4. According to our experimental results, the algorithm can still work

very well in higher dimensions. Furthermore, we will also see that, even in 2D, the

theoretical bounds we get in Theorem 3.5 is not that tight, i.e., it overestimates the size

of the sampling set as well as the total number of detections.

3.4 Experimental results in 2D and higher dimensions

In this section, we present the experimental results of our sampling algorithm in 2D,

3D, and 4D. Although we have shown theoretical analysis for 2D in Section 3.3, the

41

bounds we get are in fact not very tight because in each step of our proofs we always

consider the worst cases (see the proofs of Theorem 3.4 and 3.5 in Section 3.5). This is

verified in the later 2D experiments.

Since our top-k sampling algorithm is just a repeat of k iterations of top-1 sampling

by using the framework of Algorithm 2, for simplicity, we do experiments only for

the case of k = 1, i.e., top-1 sampling. The datasets used for experiments have 5

different sizes: n = 10K, 20K, 50K, 100K, 200K. For each of 2D, 3D, 4D and each

size, we generate 10 different datasets and record the average sizes of the sampling

sets generated by our algorithm on them. All of the datasets we use are randomly

generated, where the data points distribute uniformly inside an open unit-ball (i.e., the

space Z = {x ∈ (R+)d : ‖x‖2 < 1}). The maximum allowable error parameters we use

are α = 0.1, 0.05, 0.02, 0.01, 0.005, 0.001.

Table 3.4 shows our experimental results (the average sizes of the sampling sets) in

2D for different datasets and α-parameters. As we see, although the original datasets are

large-sized, the sizes of the sampling sets obtained by our algorithm are in general very

small. The sizes naturally increase when α becomes smaller. But they are not sensitive

to the sizes of the original datasets, n. This coincides our analysis in Section 3.3.

However, if we compare the results with α−1.5, we can find that the size of the sampling

set grows much slower than O(α−1.5) when α decreases. That means our algorithm

performs much better than our theoretical expectation in 2D. In other words, the bound

O(kα−1.5) obtained in Section 3.3 (Theorem 3.5) somehow overestimates the sizes of

the sampling sets. According to the table, the growth of the size with respect to α is

approximately O(α−0.5) in 2D. Consequently, if we do k iterations of such top-1 sampling

to obtain the top-k sampling set, its size can be approximately estimated as O(kα−0.5).

2D n =10K n =20K n =50K n =100K n =200K

α = 0.1 3.0 3.0 3.0 3.0 3.0
α = 0.05 5.0 5.0 5.0 5.0 5.0
α = 0.01 9.0 9.0 9.0 9.0 9.0
α = 0.005 11.6 11.0 11.5 11.8 11.7
α = 0.001 21.1 22.9 25.9 26.8 27.7

Table 3.1: Experimental results in 2D: the average sizes of the sampling sets

42

Table 3.4 shows our experimental results in 3D. As we see, the size of the sampling

set in 3D is in general much larger than the counterpart in 2D for the same n and α.

But compared with the sizes of the original datasets, they are still significantly small.

Most times, the change of n does not have great impact on the sizes of the sampling

sets. In the last two rows (α = 0.005 and α = 0.001), the results seem to be sensitive to

the growth of n. One possible explanation for this phenomenon is that the datasets are

not large enough for such high accuracy requirement so that the sampling set almost

contains all possible “top-1 points” in that dataset, the number of which is influenced

by n. According to the statistics, the growth of the size of the sampling set with respect

to α is still slower than O(α−1).

3D n =10K n =20K n =50K n =100K n =200K

α = 0.1 8.8 9.3 9.6 9.8 9.9
α = 0.05 15.6 15.9 16.5 16.6 17.0
α = 0.01 54.8 59.4 62.6 63.0 64.6
α = 0.005 84.5 94.7 107.3 113.5 116.0
α = 0.001 138.7 181.4 255.6 314.8 377.0

Table 3.2: Experimental results in 3D: the average sizes of the sampling sets

Table 3.4 shows our experimental results in 4D. As we see from the table, the results

are generally similar to those in 3D while the sizes of the sampling sets get even larger.

Likewise, we find that the sizes of the sampling sets are not sensitive to n when the

datasets are large enough in terms of the accuracy requirement. Also, compared with

the original datasets, the sampling sets are indeed small-sized, e.g., we only need to

sample about 2000 points from a 200K dataset in order to restrict the maximum error

to 0.001. And according to the statistics, the growth of the size of the sampling set with

respect to α is between O(α−1) and O(α−1.5).

43

4D n =10K n =20K n =50K n =100K n =200K

α = 0.1 19.9 19.6 19.5 19.9 19.4
α = 0.05 43.2 43.8 47.1 48.5 48.4
α = 0.01 218.6 262.0 311.3 339.4 360.3
α = 0.005 314.9 413.0 563.7 686.9 791.0
α = 0.001 434.3 633.5 1041.2 1483.3 2087.5

Table 3.3: Experimental results in 4D: the average sizes of the sampling sets

3.5 Proofs

3.5.1 Proof of Theorem 3.1

Algorithm Ā repeatedly uses the top-1 sampling algorithm A on D and excludes the

sampling points from D, and does so k times. Let Si be the sampling set we find by

the i-th call of A. Obviously, S1 ∪ S2 ∪ · · · ∪ Sk = S∗ and Si ∩ Sj = ∅ for any i 6= j.

According to the definition, l1 is the smallest index at which the true result is superior

than the one derived from S∗. That means, among {aπ1 , aπ2 , . . . , aπl1}, there must exist

one point which is not in S∗, which we denote by a∗. On the other hand, since the

sampling set obtained by A is guaranteed to have an overall top-1 error less than α, we

have

Err(φq(D −
i−1⋃
j=1

Sj), φq(Si)) ≤ α, (3.2)

for any i ∈ {1, 2, . . . , k}. From another fact a∗ ∈ D − ⋃i−1
j=1 Sj (because a∗ ∈ D and

a∗ /∈ S∗), we have

q · a∗ ≤ φq(D −
i−1⋃
j=1

Sj). (3.3)

Combining Equation 3.2 and 3.3, we conclude that either q · a∗ < φq(Si) or

Err(q · a∗, φq(Si)) ≤ α,

which indicates we have at least k data points c1, c2, . . . , ck in S∗ such that for any ci

either q · a∗ < q · ci or

Err(q · a∗, q · ci) ≤ α.

44

Thus, we conclude Err(q · a∗, q · bπ′
k
) ≤ α. And since q · a∗ ≥ q · aπl1 (a∗ ∈

{aπ1 , aπ2 , . . . , aπl1}), we can replace a∗ by aπl1 to get Err(q · aπl1 , q · bπ′k) ≤ α, which

implies our final conclusion

Err(q · aπl1 , q · bπ′li) ≤ α,

for i ∈ {1, 2, . . . , k′}. �

3.5.2 Proof of Theorem 3.2

Clearly, v satisfies the two conditions only when

vz1 = 0,

. . . ,

vzd−c = 0,

v · (sπ1 − sπ2) = 0,

. . . ,

v · (sπ1 − sπc) = 0,

where vi is the i-th component of v. According to Equation 3.1, the above (d−1) linear

equations are independent. Furthermore, the solutions of this system are invariant in

terms of scaling. Thus, by restricting ‖v‖2 = 1, we have exactly two solutions. Among

them, at most one solution has all the components nonnegative. Thus, there exists at

most one unit vector v satisfying the two conditions. �

3.5.3 Proof of Theorem 3.3

Suppose S = {s1, . . . , sm}. Let D ⊇ S be any dataset and q be any query vector. Also,

let a∗ be the top-1 point of D under q. Without loss of generality, we assume s1 is the

top-1 point of S under q. For any vector v with nonnegative components, define

f(v) =
v · a∗ − φv(S)

v · a∗ .

Clearly, f(v) ≤ Err(φv(D), φv(S)) for any v and f(q) = Err(φq(D), φq(S)). Thus, to

complete the proof, it suffices to show that

f(q) ≤ max
v∈V

f(v).

45

Consider the vector set

V ′ =

ß
λ

v · a∗ v
∣∣∣∣ v ∈ V ™ ,

where λ = q · a∗. Since the function f is invariant in terms of vector scaling, we have

max
v∈V

f(v) = max
v′∈V ′

f(v′).

Note that for any v′ ∈ V ′, f(v′) = 1− φv′(S)/λ. And f(q) = 1− φq(S)/λ. That means

to show f(q) ≤ maxv′∈V ′ f(v′) is equivalent to proving

φq(S) ≥ min
v′∈V ′

φv′(S).

We formulate the following optimization problem

minw φw(S)

s.t. w1 ≥ 0,

. . . ,

wd ≥ 0,

w · (b∗ − s1) ≥ 0,

. . . ,

w · (b∗ − sm) ≥ 0,

w · a∗ = λ.

This is a typical linear programming problem. Let F be its feasible region. It is easy

to see that

• F is bounded and q ∈ F ;

• the vertices of F are critical to S and thus in V ′ (because of the last constraint).

Therefore, there exists v′ ∈ V ′ such that φq(S) ≥ φv′(S). As a result, we can conclude

that

Err(φq(D), φq(S)) = f(q) ≤ max
v′∈V ′

f(v′) = max
v∈V

f(v) ≤ max
v∈V
{Err(φv(D), φv(S))}

and

ES = sup
q
{Err(φq(D), φq(S))} = max

v∈V
{Err(φv(D), φv(S))}.

�

46

3.5.4 Proof of Theorem 3.4

For convenience, when proving Theorem 3.4, we let A = si, B = si+1, P = ti, D = s′,

A′ = u, B′ = v. Figure 3.3 shows an example of the positions of these points with the

new notations. Also, we define the following quantities for our proof (S4 denotes the

area of the triangle):

(1) e = S4APB/S4AOB,

(2) e1 = S4AA′D/S4AOD,

(3) e2 = S4BB′D/S4BOD.

M

B'

A

B

P

O

A'

D

Figure 3.3: The first round of expanding S

First, we prove the first inequality. It is easy to see that

e =
E

1− E ,

e1 =
E1

1− E1
,

e2 =
E2

1− E2
.

Thus, it suffices to show e1 + e2 ≤ e. Obviously, if we fix A, B, P , D, and move O on

the line lO (which is parallel to AB), the value of e is always fixed (while e1 and e2 may

change). So we only need to find a position for O (on lO) which can get e1+e2 maximum

and show the maximum is less than or equal to e. According of the definitions of A, B,

47

P (indeed the definitions of si, si+1, ti in Section 3.3), we know ∠OAP + ∠APB ≥ π

and ∠OBP + ∠APB ≥ π. That means the position of O is limited on the segment

O1O2, where O1 and O2 are the points on lO such that O1B ‖ AP and O2A ‖ BP . We

claim that, if A, B, P , D are fixed, e1 + e2 gets maximum when O coincides one of

the two extreme points, O1 and O2. To prove this, we note that S4AA′D and S4BB′D

will not change when moving O on lO. Furthermore, S4AOD + S4BOD is also fixed.

Thus, according to the definitions of e1 and e2, we know e1 + e2 gets maximum when

S4AOD or S4BOD gets extreme value, i.e., O coincides O1 or O2. Without loss of

generality, we just assume O coincides O2 (Figure 3.3). Then we have OA ‖ BP so that

O = 1
e (B − P) +A. Assume

• A′ = tA+ (1− t)P ;

• B′ = tB + (1− t)P ;

• D = sA′ + (1− s)B′;

• M = xO + (1− x)D = yA+ (1− y)B.

We get that

yA+ (1− y)B

= xO + (1− x)D

= x

ï
1

e
(B − P) +A

ò
+ (1− x)[sA′ + (1− s)B′]

= x

ï
1

e
(B − P) +A

ò
+ (1− x){s[tA+ (1− t)P] + (1− s)[tB + (1− t)P]}

= [x+ (1− x)st]A+

ï
x

e
+ (1− x)(1− s)t

ò
B +

ï
(1− x)(1− t)− x

e

ò
P.

That means

y = x+ (1− x)st,

1− y =
x

e
+ (1− x)(1− s)t,

0 = (1− x)(1− t)− x

e
.

48

And the corresponding solution is

x =
et− e

et− e− 1
,

y =
st− et+ e

−et+ e+ 1
.

Once we get the expression for y, we can represent e1 and e2 as

e1 =
S4AA′D
S4AOD

=
(1− s)t(1− t)S4APB

(1− y)(S4AOB + (1− t)S4APB)
=

(1− s)t(1− t)e
(1− y)[1 + (1− t)e]

=
t(1− t)(1− s)e

1− st ,

e2 =
S4BB′D
S4BOD

=
st(1− t)e

y[1 + (1− t)e] =
t(1− t)se
st− e(1− t) , similarly.

Thus, we have

e1 + e2

e
= t(1− t)

Ç
1− s
1− st +

s

st+ e(1− t)

å
≤ t(1− t)

Å
1− s
1− st +

1

t

ã
= t

(1− t)(1− s)
1− st + (1− t)

≤ t+ (1− t)
= 1,

which implies e1 + e2 ≤ e, i.e.,

E1

1− E1
+

E2

1− E2
≤ E

1− E .

Then we prove the second inequation. Obviously, we only need to prove the maximum

of max{E1, E2} is less than or equal to E/(E + 2
»
E(1− E) + 1). And it is easy to

see max{E1, E2} gets maximum when D coincides A′ or B′. Without loss of generality,

we assume D coincides A′. In this situation, max{E1, E2} = E2. According to the

49

definition of e2, we know E2 gets maximum if and only if e2 gets maximum. Thus, we

study e2 instead of E2. It is easy to see

e2 =
S4BB′D
S4BOD

=
S4BB′A′

S4BOA′
=

t(1− t)S4APB
tS4OPB + (1− t)S4AOB

=
et(1− t)S4AOB

tS4OPB + (1− t)S4AOB
.

As we see from the above equation, if t, e, S4AOB are all fixed, e2 gets maximum when

S4OPB gets minimum. Another fact is, while O moves on O1O2 (with other points

fixed), the values of t, e, S4AOB are always fixed and S4OPB gets minimum when O

coincides O2. Thus, it suffices to study e2 in the case of O = O2. Since AO ‖ PB in

this case, we readily have S4OPB = S4APB so that

e2 =
et(1− t)S4AOB

etS4AOB + (1− t)S4AOB
=

et(1− t)
et+ (1− t) .

It is easy to see e2 get maximum when t = (1 − √e)/(1 − e) and the corresponding

maximum is
e

e− 2
√
e+ 1

.

This is already the overall maximum of e2 for any case. Since e2 = E2/(1 − E2) and

e = E/(1− E), we have

E2 ≤
E

E + 2
»
E(1− E) + 1

,

which readily implies

max{E1, E2} ≤
E

E + 2
»
E(1− E) + 1

,

completing the proof. �

3.5.5 Proof of Corollary 3.1

It is easy to see that after the first round (adding the rightmost and topmost points

into S), the only blind triangle has a causing error at most 0.5. According to the

second inequality of Theorem 3.4, if the maximum of the causing errors of all valid

blind triangles in the ith round is bounded by ui, then the maximum in the (i + 1)st

round is bounded by

ui+1 =
ui

ui + 2
»
ui(1− ui) + 1

.

50

And we know u1 = 0.5, thus it can be verified that

ui =
1

i2 + 1
.

For any given α, we let

r =

⌈
1

α
− 1

⌉
.

Since ur ≤ α, after r rounds of expansion, we can get the causing errors of all valid

blind triangles to be less than or equal to α, which means the sampling process stops

after r rounds. Thus, we have this corollary. �

3.5.6 Proof of Theorem 3.5

We note that Algorithm 3 just uses the framework of Algorithm 2 to do k iterations

of top-1 sampling with the same α. So we only need to show that the bound for each

iteration of top-1 sampling is O(α−1.5). Since each detection can at most get one new

point into the sampling set, the number of the sampling data points is dominated by

the number of detections. Furthermore, each detection corresponds to a particular valid

blind triangle (except the first two detections for the rightmost and topmost points) so

that it suffices to show the total number of valid blind triangles (in all rounds) is

O(α−1.5). We regard each valid blind triangle as a node of a binary tree in which one

node x is a child of another node y if and only if the corresponding blind triangle of x

is generated directly by the corresponding blind triangle of y. This is a full binary tree

because if a valid blind triangle generates new triangles, it always generates two. It is

easy to see that, in this binary tree, each level of nodes corresponds to the valid blind

triangles in one round. We give each node x a weight

w(x) =
Ex

1− Ex
,

where Ex denotes the causing error of the corresponding blind triangle of x. For any

non-leaf node x, it is easy to see

w(x) ≥ α

1− α,

because only the blind triangles with the causing errors larger than or equal to α may

generate new triangles (we will not find a useful point in a blind triangle with causing

51

error less than α). Now, we delete all of the leaves in this binary tree to get a new tree.

We denote the original tree by T and the new one by T ′. According to the property of

a binary tree, we have

|T | < 2|T ′|+ 1.

Thus, it suffices to show |T ′| is bounded by O(α−1.5). According to Theorem 3.4, we

know the weight of a node is always larger than or equal to the sum of the weights

of its two children. The weight of the root of T ′ is at most 1 (after the first round of

expansion, the only blind triangle has a causing error less than or equal to 0.5). And

the weights of the leaf nodes of T ′ are at least α/(1−α) since they are all non-leaf nodes

in T . That means the number of the leaf nodes of T ′ is at most (1 − α)/α, which is

O(α−1). Furthermore, according to Corollary 3.1, we know the height of T ′ (also T) is

bounded by O(α−0.5). Since the total number of the nodes of a tree is always less than

the product of the height and the number of the leaf nodes, we can finally conclude |T ′|
is bounded by O(α−1.5), thus completing the proof. �

Chapter 4

Stochastic line arrangement in R2

In this chapter, we extend the conventional line arrangement to the stochastic setting

and study its underlying combinatorial complexity. We give an efficient algorithm to

compute the most-likely k-topmost lines over the entire line arrangement, which also

implies an efficient solution to the stochastic version of the preference top-k query we

studied in Chapters 2 and 3. We also propose an application of our results to the

stochastic Voronoi Diagram problem in R1.

4.1 Problem definition and main result

Let F be a set containing n lines in R2, i.e., F = {f1, f2, . . . , fn}, where fi(x) = kix+bi.

Here, ki and bi can be any reals but cannot both be zero. For the convenience of our

discussion, we make three assumptions about F :

1. k1 < k2 < · · · < kn, which immediately implies that any two lines have a unique

intersection.

2. No three lines have a common intersection.

3. No two intersection points have the same x-coordinate.

For any x-coordinate q, we define the k-topmost lines of F at q as a k-element

ordered sequence (fl1 , fl2 , . . . , flk), in which fli has the i-th greatest function value (i.e.,

y-value) at q among all the lines in F (this implies fl1(q) > fl2(q) > · · · > flk(q)).

52

53

If F is stochastic, i.e., each line fi has an existence probability of pi, the true k-

topmost lines at q is unknown beforehand. However, we can instead compute the most

likely k-topmost lines at q as the k-element sequence that has the highest probability

to be the true k-topmost lines, where the likelihood of each k-element sequence S =

(fl1 , fl2 , . . . , flk) is defined by

L(S) =
∏
∀fi∈S

pi ×
∏

∀fi 6∈S,fi(q)>flk (q)

(1− pi).

For example, in Figure 4.1, f1–f4 are lines with increasing slope. Let us assume their

existence probabilities are p1 = 0.9, p2 = 0.5, p3 = 0.4, and p4 = 0.1. If k = 2, then

there are 6 candidates for the k-topmost lines at q, namely, S1 = (f3, f4), S2 = (f3, f2),

S3 = (f3, f1), S4 = (f4, f2), S5 = (f4, f1), S6 = (f2, f1). Their corresponding likelihoods

are

L(S1) = 0.4 · 0.1 = 0.04,

L(S2) = 0.4 · 0.5 · (1− 0.1) = 0.18,

L(S3) = 0.4 · 0.9 · (1− 0.1) · (1− 0.5) = 0.162,

L(S4) = 0.1 · 0.5 · (1− 0.4) = 0.03,

L(S5) = 0.1 · 0.9 · (1− 0.4) · (1− 0.5) = 0.027,

L(S6) = 0.5 · 0.9 · (1− 0.4) · (1− 0.1) = 0.243.

Therefore, S6 = (f2, f1) is the most likely k-topmost lines at q, even though the two

lines are at the very bottom at x-coordinate q.

Let F be stochastic. Let C = {c1, c2, . . . , cm} be the set of the intersection points

generated by all line pairs of F , where m =
(n

2

)
, and ci = (xi, yi). Without loss of

generality, we assume that x1 < x2 < · · · < xm. If we draw a vertical line passing

through each intersection, then the plane is partitioned into m + 1 open strips: X0 =

(−∞, x1), X1 = (x1, x2), X2 = (x2, x3), . . . , Xm = (xm,+∞). (Here, we only show the

range of x-coordinates since the range of y-coordinates is always (−∞,+∞). Refer to

Figure 4.1 for an example.) Obviously, in each strip, the most likely k-topmost lines

is the same at all x-coordinates. Thus, we can obtain a sequence A0, A1, A2, . . . , Am,

where Ai denotes the k-topmost lines of the strip Xi. These sequences actually depict

54

f1

f2

f3

f4

c1

c2

c3

c4
c5

c6

X0 X1

X2X3

X4 X5 X6

q

Figure 4.1: An example of a stochastic line arrangement

the entire most likely k-topmost lines for the most likely line arrangement at each x-

coordinate. We now define

cnt =
m∑
i=1

(1− δ(Ai−1, Ai)),

where function δ(a, b) is 1 if a = b, and 0 otherwise. (Note that Ai’s are all ordered

sequences. Thus, not only different elements, but also different order will result in

different sequences. E.g., (f1, f2, f3) 6= (f1, f3, f2).) Intuitively, cnt counts the number

of distinct k-sequences among all Ai’s. Assume that the line set F is given but the

existence probability of each line is a random variable, and is undetermined beforehand.

We then have the following theorem.

Theorem 4.1. Let F be a set of stochastic lines in R2, where the existence probabilities

p1, p2, . . . , pn satisfy an identical distribution and are independent of each other. Let cnt

be the number of distinct sequences of the most-likely k-topmost lines in the arrangement

of F (i.e., taken over all x-coordinates). Then the expected value, Ecnt, of cnt is O(kn).

Thus, we can spend O(k) space for each k-element sequence, and therefore it is

possible to store all the distinct Ai’s (i.e., the set of all most likely k-topmost lines in

55

the arrangement of F) in O(k · kn) = O(k2n) expected space. Readers may wonder

whether two consecutive sequences will have most elements in common so that we can

apply persistence [29] to reduce the space, based on the “common” intuition that only

two lines swap their positions after crossing an intersection Unfortunately, the answer

is no, and we give an counterexample below in which the two consecutive sequences are

totally differently.

..
.

..
.

k − 1 lines, pi = 0.5− ǫ

pi = 0.2

pi = 0.5− ǫ

k lines, pi = 1

v

Figure 4.2: An example illustrating that the difference between two consecutive se-
quences can be huge.

As shown in Figure 4.2, there are k − 1 lines at the top, one line in the middle

and k lines at the bottom, where the top and middle lines have existence probability

pi = 0.5− ε, and the bottom lines have pi = 1. Here ε is a very small positive number.

Also, there is a line of negative slope, that has existence probability pi = 0.2, cutting

all the lines mentioned above; let v be the intersection point of this line with the middle

line. Now, let us consider the two strips just to the left and right of v. Just to the left

of v, it is clear that the bottom k lines are the best and the corresponding likelihood

is 0.8 · (0.5 + ε)k. To the right, the highest k lines have probability (0.5 − ε)k and the

bottom k have probability 0.8 · (0.5 + ε)k. Any other combination is worse. When k is

given, we can always find a sufficiently small ε such that (0.5 − ε)k > 0.8 · (0.5 + ε)k.

Thus, the most likely k-topmost lines just to the left of v (i.e., the k bottom lines) are

completely different from the most likely k-topmost lines just to the right of v (the k

highest lines).

Remark. The reason that we are interested in the expected size of cnt instead of the

worst case size is that we can show (by concrete example) that, in the worst case, cnt

56

can be as large as Θ(n2) even when k = 1. A detailed worst case example will be given

and discussed in Section 4.4.1.

4.2 Proof of Theorem 4.1

In this section, we first introduce some basic definitions regarding the intersection points

of the stochastic lines and their probability distribution. We then show some critical

lemmas, and finally use them to establish the proof of Theorem 4.1.

Definition 4.1. An intersection point ci ∈ C is called valid if Ai−1 6= Ai, and invalid

otherwise.

By Definition 4.1, cnt can be regarded as the number of valid intersection points in

C. In other words, we can define m random variables, Y1, Y2, . . . , Ym, where

Yi =

 0, if ci is invalid,

1, if ci is valid.

Then, cnt is also a random variable, and can be written as

cnt = Y1 + Y2 + · · ·+ Ym. (4.1)

Definition 4.2. The depth of an intersection ci ∈ C is defined as the number of lines

in F which are strictly above ci. (A line fj is strictly above ci = (xi, yi) if and only if

fj(xi) > yi.)

We use d1, d2, . . . , dm to denote the depth of c1, c2, . . . , cm respectively. For

example, in Figure 4.1, the depths of c1, . . . , c6 are 1, 0, 2, 1, 2, 0, respectively. Also,

note that the range for any di is [0, n − 2] since two lines are always needed to form

an intersection. The first lemma below shows the relationship between the number and

the depths of the intersection points.

Lemma 4.1. For a particular depth d ≤ n− 2, the number of intersection points in C

with depths no more than d is at most

(n− 1) + (n− 2) + (n− 3) + · · ·+ (n− d− 1) = (2n− d− 2)(d+ 1)/2.

(See Section 4.6.1 for a proof.)

57

Regarding the probability distribution of each stochastic line, we let p : [0, 1] →
[0,+∞) be the distribution function of p1, p2, . . . , pn, which satisfies

∫ 1
0 p(x)dx = 1.

Suppose S = {s| ∫ 1
s p(x)dx > 0}. Let h be the least upper bound of S, i.e., h = supS,

and

h0 =
h

1 + h
.

We also define

λ =

∫ h0

0
p(x)dx,

where λ is a constant strictly between 0 and 1 and only depending on the given dis-

tribution. Figure 4.3a shows an example of a uniform distribution, where h = 1 and

h0 = 0.5; Figure 4.3b indicates an example of an unknown distribution where h = 0.8

and h0 = 4/9.

x

p(x)

0 1

1

hh0

0.5

λ 1− λ

(a) Uniform distribution

x

p(x)

0 1
hh0

0.44

λ 1− λ

0.8

(b) An unknown distribution

Figure 4.3: Two examples illustrating the probability distribution

We then introduce a crucial necessary condition for an intersection point to be valid.

Lemma 4.2. An intersection point ci = (xi, yi) is valid only if the number of lines that

are strictly above ci and have existence probability greater than h0 is less than k. (See

Section 4.6.2 for a proof.)

Define a map u : N→ (0, 1] as

u(d) =


1 d < k,

k−1∑
j=0

(d
j

)
λd−j(1− λ)j d ≥ k. (4.2)

58

Function u(d) indeed denotes the probability for an intersection point with depth d to

have at most k − 1 lines above it with p-values greater than h0. Note that we do not

put any constraint on the variable d, and treat u(d) as very general function in order

to do some relaxation later.

Then, the necessary condition in Lemma 4.2 immediately implies that

Pr{ci is valid} ≤ u(di).

Recall the definition of cnt = Y1 + Y2 + · · ·+ Ym, we have

Ecnt =
m∑
i=1

Pr{ci is valid} ≤
m∑
i=1

u(di).

In order to prove Theorem 4.1, we still need to find an upper bound for
∑m
i=1 u(di),

which is shown in the following lemma.

Lemma 4.3.
m∑
i=1

u(di) ≤
(
n−2∑
d=0

u(d)

)
· n.

(See Section 4.6.3 for a proof.)

With the lemmas above, we can finally prove Theorem 4.1 as follows.

Proof of Theorem 4.1.

Based on Lemma 4.3, we know that

m∑
i=1

u(di) ≤
(
n−2∑
d=0

u(d)

)
· n.

We now just need to prove that
∑n−2
d=0 u(d) is O(k). According to Equation 4.2, we can

represent u(d), when d ≥ k, in a recursive form as

u(d) = u(d− 1)−
Ç
d− 1

k − 1

å
λd−k(1− λ)k.

The underlying meaning of the recursive form is shown as follows: u(d) depicts the

probability for an intersection point of depth d to have at most k − 1 lines above it

that have existence probability greater than h0. Let us focus on the lowest line which

59

is above ci. (See Figure 4.4 for an example, where the lowest line above ci is the

marked in bold and dashed.) If we assume that line has probability at most h0, then

we immediately have u(d) = u(d− 1). However, the assumption is not always true, i.e.,

some portion of u(d − 1) could be invalid and therefore needs to be excluded. That

invalid portion corresponds to the case when the lowest line above ci has probability

greater than h0, and moreover, there are exactly k − 1 lines among the top d− 1 lines

that have existence probability greater than h0. Clearly, the probability of this invalid

case is
(d−1
k−1

)
λd−k(1− λ)k.

ci

Figure 4.4: Illustrate the underlying meaning of the recursive form of u(d)

By applying the recursive form of u(d), we have

∞∑
d=k

d · u(d) =
∞∑
d=k

d ·
ñ
u(d− 1)−

Ç
d− 1

k − 1

å
λd−k(1− λ)k

ô
=

∞∑
d=k

d · u(d− 1)−
∞∑
d=k

d ·
Ç
d− 1

k − 1

å
λd−k(1− λ)k

=
∞∑

d=k−1

(d+ 1)u(d)−
∞∑
d=k

d ·
Ç
d− 1

k − 1

å
λd−k(1− λ)k

=
∞∑
d=k

d · u(d) +
∞∑
d=k

u(d) + k · u(k − 1)−
∞∑
d=k

d ·
Ç
d− 1

k − 1

å
λd−k(1− λ)k.

60

Since u(k − 1) = 1, the equation above implies that

∞∑
d=k

u(d) =
∞∑
d=k

d ·
Ç
d− 1

k − 1

å
λd−k(1− λ)k − k

=
(1− λ)k

λk

∞∑
d=k

d ·
Ç
d− 1

k − 1

å
λd − k

=
(1− λ)k

λk
· k ·

∞∑
d=k

Ç
d

k

å
λd − k.

Moreover, it can be shown that

∞∑
d=k

Ç
d

k

å
λd =

λk

(1− λ)k+1
. (4.3)

(The proof for Equation 4.3 is given in Section 4.6.4.)

Therefore,
∞∑
d=k

u(d) =
(1− λ)k

λk
· k · λk

(1− λ)k+1
− k =

λk

1− λ.

Since u(d) > 0 is true for any d, it follows that

n−2∑
d=k

u(d) <
∞∑
d=k

u(d).

We then have

n−2∑
d=0

u(d) =
k−1∑
d=0

u(d) +
n−2∑
d=k

u(d)

= k +
n−2∑
d=k

u(d)

< k +
∞∑
d=k

u(d)

= k +
λk

1− λ =
k

1− λ = O(k).

Consequently, Ecnt is O(kn), completing the proof. �

For quick reference, we include in Table 4.1 the key symbols used in this section.

61

Symbol Meaning

F the line set
fi the i-th line in F
pi the existence probability of fi
ki the slope of fi
C the set of intersection points
ci the i-th point in C (sorted by x-coord)
di the depth of ci
cnt see Equation 4.1
p distribution function of p1, p2, . . . , pn
S {s| ∫ 1

i=s p(x)dx > 0}
h the least upper bound of S
h0 h/(1 + h)

λ
∫ h0

0 p(x)dx
u(·) see Equation 4.2

Table 4.1: List of main symbols used

4.3 An algorithm for computing the most likely k-topmost

lines

In this section, we first propose an efficient algorithm for finding the most likely k-

topmost lines of any strip, and then we show how to make use of it to compute the

k-topmost lines over the entire line arrangement of stochastic lines.

4.3.1 Algorithm for one strip

The most likely k-topmost lines problem in one strip can be equivalently mapped to

the following 1D problem. We are given n stochastic points on the x-axis, and the i-th

point is at some position xi and has existence probability pi. (The value of the xi’s is

unimportant; only their order matters.) Given an integer k, 1 ≤ k ≤ n, we would like

to report the most likely k-rightmost points among the n points.

W.l.o.g., let us assume x1 < x2 < · · · < xn. For any k-subsequence xs1 , xs2 , . . . , xsk

from left to right, we can compute its likelihood to become the most likely k-rightmost

62

points as

L = ps1 ·
n∏

i=s1+1

(1− pi) ·
k∏
i=2

psi
1− psi

= ps1 ·
n∏

i=s1+1

(1− pi) ·
k∏
i=2

p̄si . (p̄si
def.
==

psi
1− psi

) (4.4)

If we fix s1, i.e., assume the leftmost point of the k-sequence is always xs1 , then the

first two terms will both be constants. By maximizing the last term, we get the most

likely k-rightmost points where the leftmost point is xs1 . We enumerate all possible

xs1 from xn−k+1 down to x1, and maintain a min-heap that stores the k − 1 points,

among xs1+1, . . . , xn, with the largest p̄ values. It is clear that, at any time of the

enumeration, the current xs1 together with the k−1 points in the heap will be the most

likely k rightmost points whose leftmost point is s1. Therefore, the one (xs1) with the

largest likelihood together with the corresponding k − 1 points in the heap will be the

most likely k rightmost points taken over all n points. We formally describe the above

processes in Algorithm 4. If we assume the n points are pre-sorted, then the bottleneck

of the algorithm is the for-loop that performs n − k + 1 heap operations, and stores

those heaps, where the size of the heap is k − 1. By applying persistence (using path

copying alone will be sufficient here) [53], Line 13 can be done in O(log k) space and

time per iteration. Thus, the total runtime for Algorithm 4 is O(n log k) excluding the

pre-sorting time.

Remark. The arrays declared on Line 3-5 are in fact not needed. We define them in

the pseudo-code mainly for the algorithm that is described in the next subsection. The

reader may also question Line 18, which may be potentially invoked O(n) times, and

thus will result in an O(nk) runtime. We can overcome this issue by simply running the

for-loop twice. The first round only keeps track of the best position i? without updating

argmax , and in the second round, we update argmax exactly once, when i = i?.

4.3.2 Algorithm over the entire line arrangement

A simple approach for computing the most likely k-topmost lines over the entire line ar-

rangement is to run Algorithm 4 for each strip, which will take O(n2 log n+
(n

2

)
n log k) =

O(n3 log k) time, where the first term (n2 log n) is for computing all the intersection

63

Algorithm 4 Most likely k-rightmost points

1: Input: n sorted 1D stochastic points with existence probabilities p1, p2, . . . , pn, and
an integer k, where n ≥ k.

2: Output: the most likely k-rightmost points as well as their likelihood, and three
auxiliary arrays.

3: Let l be a new array of size n− k + 1 with initial value 0.
4: Let h be a new pointer array of size n− k + 2 with initial value NULL.
5: Let π be a new array of size n− k + 2 with initial value 1.
6: fn−k+1 ←

∏n
i=n−k+1 pi

7: max ← −∞ . maintain the global max likelihood
8: argmax ← ∅ . maintain the most likely k rightmost points
9: Build a min-heap H on the k − 1 points xn−k+2, . . . , xn, where the keys are pi

1−pi ’s.
10: Also maintain, for each node x of H, an extra field, named prod , recording the

product of all the keys of x’s subtree.
11: prod ← ∏n

i=n−k+2 (1− pi) . maintain the middle term of Equation 4.4
12: for i← n− k + 1 downto 1 do
13: hi+1 ← H
14: πi+1 ← prod
15: li ← pi ∗ πi+1 ∗ hi+1.prod
16: if li > max then
17: max ← li
18: argmax ← {xi} ∪ hi+1

19: end if
20: H .insert(xi),H .extractMin()
21: prod ← prod ∗ (1− pi)
22: end for
23: seq ← argmax .sorted . sorted by coordinate of each point
24: return (max , seq , l, h, π)

64

points and pre-sorting, and the second term due to running Algorithm 4
(n

2

)
times.

This can be further improved to O(n2 log n+ nk2 log k), as we show below.

We still use the high level idea of the naive approach, but instead of running the

algorithm
(n

2

)
times, we only call it once for the leftmost strip, and maintain the informa-

tion, i.e., l, h and π arrays, through the rest of strips from left to right. Formally, let us

assume that, in some strip, all the lines are labeled as f1, f2, . . . , fn from bottom to top.

Some two lines fi and fi+1 form an intersection, and after crossing that intersection,

the line sequence from bottom to top will be f1, f2, . . . , fi−1, fi+1, fi, fi+2, . . . fn. Then

it is straightforward to observe that only fi, li, fi+1, li+1, πi+1 and hi+1 will change, i.e.,

only O(1) entries of the arrays will change. (See Figure 4.5 for an example of n = 6

lines and k = 3. The only changes between the two strips are marked in red.)

f1

f2

f3

f4 h4π4

h3π3

h2π2

h5π5

h2π2

h5π5

h′
4
π′
4

f1

f2

h3π3

f′
4

f′
3

Figure 4.5: Maintaining the information between two consecutive strips, where the
entries that will change are marked in red. (The figure is best viewed in color.)

Based on this, we propose our algorithm below (Algorithm 5) for computing the most

likely k-topmost lines over the entire line arrangement. To analyze the runtime, first note

that computing and pre-sorting all the intersection points as well as computing the most

likely k-topmost lines in the leftmost strip takes O(n2 log n) time. Second, excluding

reporting the output, each iteration of the for-loop requires O(log k) time only due to

performing O(1) operations on heaps of size k, which in total costs O(n2 log k). Last, as

there are O(nk) changes in expectation due to Theorem 4.1, reporting the most likely

k-topmost lines over the entire line arrangement will take O(nk · k log k) = O(nk2 log k)

time. Therefore, we finally conclude that, in expectation, the entire algorithm runs in

O(n2 log n+ nk2 log k) time.

It is interesting to note that there is an alternative way to judge whether it is

65

Algorithm 5 Most likely k-topmost lines in the arrangement

1: Input: n stochastic lines, f1, f2, . . . , fn, of existence probabilities p1, p2, . . . , pn, and
an integer k, where n ≥ k

2: Output: the most likely k-topmost lines over the entire line arrangement
3: Compute all the m =

(n
2

)
intersection points, denoted by c1, . . . , cm, of lines

f1, f2, . . . , fn, and sort them by increasing x-coordinate.
4: Rearrange f1, . . . , fn and p1, . . . , pn so that they denote the sequence of stochastic

lines, from bottom to top, in the leftmost strip.
5: Let F1, . . . ,Fn denote the sequence of lines, from bottom to top, in the leftmost

strip.
6: Let P1, . . . ,Pn denote the corresponding probabilities.
7: (pre max , pre seq , l, h, π)← Most likely k rightmost points(p)
8: pre x ← −∞
9: ans ← pre seq

10: for i← 1 to m do
11: Let lines fj and fj+1 form the intersection point ci.
12: if j + 1 ≤ n− k + 2 then
13: πj+1 ← πj+1 ∗ (pj+1/pj)
14: hj+1 ← (hj+1 ∪ {fj+1}) \ {fj}
15: lj ← max(lj , pj+1 ∗ πj+1 ∗ hj+1.prod)
16: if j + 2 ≤ n− k + 2 then
17: lj+1 ← max(lj+1, pj ∗ πj+2 ∗ hj+2.prod)
18: end if
19: end if
20: max← max(l1, l2, . . . , ln−k+1)
21: if (max > pre max) or (max = pre max and fj , fj+1 ∈ pre seq) then
22: Let argmax be {ft} ∪ ht+1, where lt = max .
23: seq ← argmin.sort . sort each line by y-coordinate in the strip
24: Report seq as the most likely k-topmost lines over the interval (pre x , ci.x).
25: pre seq ← seq
26: end if
27: pre x ← ci.x
28: swap(fj , fj+1)
29: end for
30: Report pre seq as the most likely k-topmost lines over the interval (pre x ,∞).

66

time to report the current sequence. Indeed, we can apply the necessary condition in

Lemma 4.2 to replace the condition of the if-statement on Line 21, i.e., we report the

current sequence immediately if the necessary condition is true. By doing that, we still

get the correct result, but some interval might be chopped up into several consecutive

sub-intervals. Although more ordered sequences are likely to be output in this case, the

expected runtime to report still remains the same, i.e., O(nk2 log k). This is because the

O(nk) bound in terms of the number of changes is derived from the necessary condition.

Hence, it is in general a loose bound, which means the number of sequences output by

Algorithm 5 can be less than O(nk) in expectation.

4.4 Application: Stochastic Voronoi Diagram in R1

We first introduce the stochastic version of Voronoi Diagram [50] in 1D, and build

bridges between it and the most likely k-topmost lines when k = 1. On the one hand,

we show that the size of 1D stochastic Voronoi Diagram can be large, which implicitly

means that, in the worst case, the number of changes we studied in Theorem 4.1 can be

large as well even when k = 1. On the other hand, by using Theorem 4.1, we can show

that the size of the stochastic Voronoi Diagram in 1D has expected size O(n).

We extend the standard Voronoi Diagram [50] in R1 to a stochastic version. In the

conventional (non-stochastic) case, we are given n points (called sites), say x1, x2, . . . , xn,

on the x-axis from left to right. It is clear that the midpoints of xi and xi+1, for

i = 1, . . . , n−1, form the boundaries of the Voronoi Diagram. Consequently, (−∞, (x1+

x2)/2), ((x1+x2)/2, (x2+x3)/2), ((x2+x3)/2, (x3+x4)/2), . . . , ((xn−2+xn−1)/2, (xn−1+

xn)/2), ((xn−1 +xn)/2,+∞) are the n open cells, and x1, x2, . . . , xn−1, xn are called the

generators. Clearly, the space occupied is only linear.

However, if the points are stochastic, the conclusion is not so straightforward. We

will first give a formal definition of the problem, then we show that the space can be

quadratic, and give a worst case example in Section 4.4.1. Finally, we show how to

reduce the stochastic 1D Voronoi Diagram to stochastic line arrangement to get a good

expected bound. The reduction is given in Section 4.4.2.

The input, P , contains n stochastic 1D points. Let us assume the i-th point has

x-coordinate xi, and existence probability pi. We assume all the points are pre-sorted

67

from left to right, i.e., x1 < x2 < · · · < xn.

For every position x = q on the x-axis, we define, for each point xi, the likelihood

for it to be the closest site to q as

L(xi, q) = pi ·
Ñ ∏
∀(j 6=i)∧(|xj−q|<|xi−q|)

(1− pj)
é
.

Consequently, the one with the highest likelihood, i.e., argmaxxi∈P L(xi, q), becomes

the most likely nearest neighbor of q. Now, we can define the cell, C(xi), of xi, in the

stochastic Voronoi Diagram of P as follows.

C(xi) = {q|(argmaxxj∈PL(xj , q)) = xi}

In other words, C(xi) consists of all points q ∈ R1 for which xi is the most-likely closest

site. Point xi is the generator of C(xi). The stochastic Voronoi Diagram of P is the

union of the C(xi) taken over all xi ∈ P .

Note that, since P is stochastic, C(xi) does not necessarily contain only one in-

terval, and some C(xi) can even be empty. We use |C(xi)| to denote the number

of disjoint intervals in it, where we make a slight abuse of the cardinality function.

Then, it is straightforward that the 1D stochastic Voronoi Diagram requires at least

O(
∑n
i=1 |C(xi)|) space.

How large can the space be? Suppose we draw the m =
(n

2

)
bisectors determined by

every pair of points xi and xj . This partitions the entire x-axis into m + 1 intervals.

For any point in an interval, the ordering of the sites by distance is the same as for

any other point in the interval. It follows that all points in an interval have the same

likelihood with respect to each site, so the most likely neighbor of all points in an interval

is the same and the interval defines a cell in the Voronoi Diagram. Thus, it follows that

O(
∑n
i=1 |C(xi)|) = O(m) = O(n2). In Section 4.4.1, we show this bound is indeed tight

in the worst case, so there is no hope to come up with a better worst case analysis.

4.4.1 The staircase graph and the worst-case example

In this section, we first show a useful tool called the Staircase Graph to best illustrate

the stochastic Voronoi Diagram.

68

We denote the m + 1 cells created by the m =
(n

2

)
pairwise bisectors by c0, c1, c2,

. . . , cm from left to right. As observed above, L(xi, q) will be the same for any q in

a fixed cell. Therefore, with a slight abuse of notation, we define L(xi, cj) to be the

likelihood of xi to be generator of cell cj , where 1 ≤ i ≤ n and 0 ≤ j ≤ m. Now, for each

site xi, the m + 1 likelihood values, L(xi, c0), . . . , L(xi, cm), form a stair-series. There

are n sites, which in total form n different stair-series in the plane, and it is obvious

that argmaxL(xi, cj), 1 ≤ i ≤ n (the site corresponding to the topmost curve) will be

the most likely generator for cell cj . We call this collection of stair-series a Staircase

Graph. The upper envelope of the staircase graph corresponds to the stochastic Voronoi

Diagram.

A B C D

c0 c1 c2 c3 c4 c5 c6

xAB xAC xBC xAD xCDxBD

Figure 4.6: An example for illustrating the staircase graph

As a simple example, in Figure 4.6, there are four points, A,B,C and D, on the

x-axis from left to right. Let us assume their existence probabilities are pA = 0.6,

pB = 0.8, pC = 0.3, and pD = 0.7. All six mid-points are marked by vertical bars, and

all seven cells, c0, . . . , c6 are also marked. For any given query point q ∈ c0, A is the

nearest site with respect to it. The second nearest site is B, and the third and the fourth

will be C and D, respectively. We can record this relative order for A,B,C and D in

c0 by a four-element sequence (A,B,C,D). As soon as q crosses the mid-point xAB,

the four-element sequence changes to (B,A,C,D), i.e., the order between A and B is

swapped. This pattern holds true when q crosses any mid-point, say xαβ, i.e., before

crossing, α and β must be consecutive elements in the sequence, and after crossing,

their order will be swapped. Based on this important observation, we can compute the

sequences for each of the ci, and consequently the likelihood for each site for each ci

can be calculated efficiently based on these sequences. Figure 4.7a shows, for each cell,

the corresponding 4-element sequence and the likelihood for each site to be the nearest

site in that interval. We also plot the four likelihood series (the last four columns of the

table) to get the staircase graph shown in Figure 4.7b. From this figure, we know A is

the most likely nearest site for cell c0, B is the most likely nearest site for cells c1, c2, c3,

69

and c4, and D is the most likely nearest site for cells c5 and c6. Note, in this case, site

C is not a generator for any cell, not even of the cell c3 which contains it! One

Cell Sequence L(A, ·) L(B, ·) L(C, ·) L(D, ·)
c0 (A,B,C,D) 0.6000 0.3200 0.0240 0.0392
c1 (B,A,C,D) 0.1200 0.8000 0.0240 0.0392
c2 (B,C,A,D) 0.0840 0.8000 0.0600 0.0392
c3 (C,B,A,D) 0.0840 0.5600 0.3000 0.0392
c4 (C,B,D,A) 0.0252 0.5600 0.3000 0.0980
c5 (C,D,B,A) 0.0252 0.1680 0.3000 0.4900
c6 (D,C,B,A) 0.0252 0.1680 0.0900 0.7000

(a) 4-element sequences for all the cells and the likelihood values for all
the sites

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

C

D

(b) The staircase graph. Note that the range of
x-axis varies from 1 to 7, which corresponds to c0,
c1, . . . , c6. (Note that some vertical segments from
different stair-series are overlapping.)

Figure 4.7: The statistics table and the corresponding staircase graph

may observe that each stair-series in the staircase graph is a unimodal function. So the

question becomes whether it is possible for these n stair-series to interlace one another

in order to make the upper envelope sufficiently complicated (i.e., of size Θ(n2)). The

answer is yes, and in the rest of this subsection, we give a concrete example.

A worst-case example: We generate the position and the existence probability of

the i-th point as follows, where we consider n > 3 points, and ε > 0 is a sufficiently

70

small real number, say ε < n−4.

pi =


1 if i = n,

pi+1

1 + pi+1
− ε if i < n.

xi =

 0 if i = 1,

xi−1 + 10−i+1 if i > 1.

In general, the pattern of the xi sequence is 0, 0.1, 0.11, 0.111, 0.1111 . . . By such con-

struction, intuitively, if we focus on points x1 and x2, x3, . . . , xn, points x2, x3, . . . , xn

will cluster together, and x1 will be far away from them, i.e., the midpoint of x1 and

any xi (i > 1) must lie in the interval (0, 0.1). Indeed, this property recursively ap-

plies to any suffix of the input, i.e., xi, xi+1, . . . , xn. In other words, if we focus on

xi, xi+1, . . . , xn, points xi+1, xi+2, . . . , xn will cluster, and point xi will be far away

from them. Consequently, the midpoint of xi and any xj (j > i) must lie in the

interval (xi, xi+1), and thus all the midpoints from left to right will be ordered as

x12, x13, . . . , x1n, x23, x24, . . . , x2n, . . . , xn−1n, where xij denotes the midpoint of xi and

xj . (Please refer to Figure 4.8 for a four-point example.)

x1 x2, x3, x4x12, x13, x14

x2 x3, x4x23, x24

x3 x4x34

Figure 4.8: A recursive view of the worst case example where n = 4

Based on the special positions of the midpoints, one may observe that the n-element

sequence in each cell from left to right varies exactly as the behavior of bubble sort.

Formally, at the beginning of each “bubble” stage, the leftmost element xi will be

selected to move to position n+1−i in the sequence by swapping with its right neighbor.

We call each xi the moving element of each stage, and we have the following important

lemma.

Lemma 4.4. The winner (the one with the largest likelihood) in any cell is the left

neighbor of xi in the corresponding n-element sequence, where xi is assumed to be the

71

moving element. (Note that, if xi is the first element of the sequence, then the winner

will be the last element. This situation happens only once at the very beginning of the

entire process when the sequence is (x1, x2, . . . , xn), and x1 is the moving element.)

(See Section 4.6.5 for a proof.)

Table 4.2 also shows a 4-point example.

c0 : 1 2 3 4

c1 : 2 1 3 4

c2 : 2 3 1 4

c3 : 2 3 4 1

c4 : 3 2 4 1

c5 : 3 4 2 1

c6 : 4 3 2 1

Table 4.2: A four-point example where each line corresponds to an n-element sequence
of the corresponding cell. There are 7 cells in total due to

(4
2

)
midpoints. The moving

element of each cell is in the box, and the winner is marked by underscore.

One can easily verify that, by the above construction, the most likely nearest site

changes after crossing every midpoint, and thus the upper envelope of the staircase

graph corresponding to the above dataset has size
(n

2

)
= Θ(n2). In other words, the

O(n2) space bound for the 1D stochastic Voronoi Diagram is tight, as shown in this

example.

To illustrate the worst case, we generate a dataset using the definition above for n =

8. Figure 4.9a lists the detailed input data where we choose ε = 0.01, and Figure 4.9b

shows the corresponding staircase graph, in a pattern that has changes which scale as

Θ(n2) if we were to increase n. We can even increase the complexity of the upper

envelope by reducing the value of ε, and it turns out when ε gets sufficiently small, the

upper envelope can have (n − 1) + (n − 2) + · · · + 1 =
(n

2

)
changes, which illustrates

the fact that the generators of every consecutive pair of cells may be different in some

stochastic Voronoi Diagram. Figure 4.9c indicates the case when we set ε = 0.0001.

72

1 2 3 4 5 6 7 8

x’s -1.0000 0 2.0000 2.1000 2.3000 2.3100 2.3300 2.3310
p’s 0.0921 0.1137 0.1412 0.1782 0.2318 0.3189 0.4900 1.0000

(a) Position and existence probability for each point

0 5 10 15 20 25 30
10

−2

10
−1

10
0

(b) The staircase graph when ε = 0.01.

0 5 10 15 20 25 30
10

−2

10
−1

10
0

(c) The staircase graph when ε = 0.0001.

Figure 4.9: Worst case data set. Note that the y-axis is in log scale.

4.4.2 Reduction from stochastic Voronoi Diagram to stochastic line

arrangement

In the previous section, we showed the size of stochastic Voronoi Diagram can be as bad

as Θ(n2). However, this worst case can rarely happen, and in most random cases, the

size is usually linear or sub-linear. In this section, we develop a proof by reducing the

1D stochastic Voronoi Diagram problem to 2D stochastic line arrangement to show that

the expected size of 1D stochastic Voronoi Diagram is again O(n). In fact, the reader

might have already noticed that the sequences involved above are very similar to the

k-topmost lines in each strip.

The reduction goes as follows. We lift all the n points on the x-axis to the standard

parabola y = x2, and for each lifted point create the tangent to the parabola. We

denote the tangents of the i-th site by fi, and fi and site i have the same existence

probability. A well-known fact [27] is that, for any two tangents, say fi and fj , the

x-coordinate their intersection is exactly the midpoint of site i and site j. Also, since all

the sites are sorted from left to right on the x-axis, based on the property of parabola

f1, . . . , fn will have increasing slopes. Moreover, we have assumed that no two sites

73

have the same mid-point, and hence no two intersections of the tangents will have the

same x-coordinate. If we draw vertical lines passing through each intersection, we will

have m+ 1 =
(n

2

)
+ 1 strips, say X0, X1, . . . , Xm, as we mentioned in Section 4.1. Then

there is obviously a one-to-one correspondence between ci and Xi. More importantly,

the n-element sequence in ci indicates exactly the order of those tangents from top to

bottom. Finally, the most likely nearest site for each cell ci is just the most likely 1-

topmost line in strip Xi, and consequently, the stochastic Voronoi Diagram corresponds

to the most likely 1-topmost line of the stochastic line arrangement taken over all Xi’s.

Figure 4.10 illustrates an example, where A, B, C and D are four given sites, and

A′, B′, C ′ and D′ are the corresponding lifted points. The tangents are shown by bold

colored lines, and black dots indicate the intersection points of any two tangents. It

is clear that the projection (onto x-axis) of each intersection of two tangents is the

midpoint of the two corresponding sites.

8

6

4

2

– 2

1 2 3

A'

D'

C'

B'

A B C D

Figure 4.10: The reduction, where we lift all the points to y = x2.

This reduction indeed indicates two facts, one negative and one positive. The neg-

ative fact is that we can reduce the worst case example in Section 4.4.1 to the cor-

responding stochastic line arrangement so that even the most likely top-1 line of the

stochastic line arrangement has size Θ(n2). Therefore there is no hope for us to derive

a good worst case space bound for the stochastic line arrangement.

74

On the other hand, the positive fact is that, by Theorem 4.1, the expected size of

the most likely top-1 line of any stochastic line arrangement is O(1 · n) = O(n). Thus,

the stochastic Voronoi Diagram also has expected size O(n). We should say that is

under the assumption that there is a fixed probability distribution on the existence

probabilities.

4.5 Application: Stochastic preference top-k query in R2

We propose the stochastic version of the preference top-k query in 2D. Interestingly,

fetching the most likely top-k objects with some preference vector can be viewed as a

dual version of computing the most likely k-topmost lines over a given set of stochastic

lines.

Given n points in R2, the conventional (i.e., non-stochastic) preference top-k query

outputs the k points with the largest score with respect to a user specified weighting

vector w, where the score of a point, p, with respect to w is defined as the inner product

p·w. Now, assume that every point is stochastic, and has a certain existence probability.

Then, given a specified weighting vector, the top-k points returned by the conventional

query might not be very attractive because it is possible that the likelihood that all

of them are present is very low. Instead, there may be have a different set, S, of k

candidates, that has higher likelihood to be the set of top-k candidates. This means

that all the points in S should be present, and any point that is not in S but has a

score larger than at least one point in S must not be present. There are
(n
k

)
possible

sets of size k, each with a certain likelihood to exist, and this is the likelihood of that

set to become the top-k set. Specifically, we would like to know the one with the largest

likelihood, and we call it the most likely top-k points with respect to the given weighting

vector.

A näıve approach to compute the most likely top-k points with respect to some

weighting vector is to enumerate all
(n
k

)
sets, and compute the likelihood of each set as

the product of the existence probabilities of its members and the non-existence of its

non-members. Then we choose the maximum, and the corresponding set will be the

desired answer. This approach is of course exponential.

On the other hand, we can work in the dual space in which each point becomes a

75

line, and the query weighting vector becomes a vertical ray at some x-coordinate. The

conventional preference top-k query reports the topmost k lines that are hit by the ray.

If the problem becomes stochastic, the most likely top-k points with respect to some

weighting vector is nothing but the most likely k-topmost lines at the corresponding

x-coordinate. Therefore, we can pre-compute the most likely k-topmost lines over the

entire dual line arrangement using Algorithm 5 and answer a stochastic preference top-k

query efficiently via a simple binary search.

Note that Algorithm 5 reports ordered sequences, which means the reported k points

are already sorted by their score. If the user wants the set only, we can omit the sorting

on Line 23 so that the pre-processing time can be reduced to O(n2 log n+ nk2).

4.6 Proofs

4.6.1 Proof for Lemma 4.1

We first create (n− d− 1) line sets denoted by Fd+2, Fd+3, . . . , Fn, where

Fi = {fj |fj ∈ F, j ≤ i} = {f1, f2, f3, . . . , fi}.

Obviously, these sets are all subsets (and “prefixes”) of F satisfying

Fd+2 ⊂ Fd+3 ⊂ Fd+4 ⊂ · · · ⊂ Fn = F.

Let Cd+2, Cd+3, . . . , Cn be their corresponding intersection point sets. We then use ei

to denote the number of intersection points with the depth no more than d in Ci. (It

should be noted that the depth of an intersection point in Ci is defined in terms of the

line set Fi.) We shall prove, inductively, that

ei ≤ (i− 1) + (i− 2) + (i− 3) + · · ·+ (i− d− 1) =
(2i− d− 2)(d+ 1)

2

for i = d+2, d+3, . . . , n. Clearly, this strong conclusion implies the lemma when i = n.

In the case of i = d + 2, the conclusion is trivially true since there are in total(d+2
2

)
= (d+ 2)(d+ 1)/2 intersections in Cd+2. Now assume that the conclusion is true

for the case of i = t− 1, where d+ 2 ≤ t− 1 < n, we shall show that it is also true for

i = t.

76

Consider the line ft ∈ Ft. Some intersections in Ct are generated by ft (with another

line), while the others are not. Accordingly, we can partition Ct into two subsets

Ct = C ′t ∪ C ′′t ,

where C ′t denotes the ft-generated intersections points and C ′′t denotes other intersec-

tions. Then et can be naturally represented as

et = e′t + e′′t ,

where e′t denotes the number of intersections with depths no more than d in C ′t and e′′t

denotes that in C ′′t .

We first consider the size of e′t. The intersection points in C ′t are generated by ft so

that |C ′t| = t − 1. According to our assumption k1 < k2 < · · · < kn, ft has the largest

slope among all the lines in Ft. It readily follows that the t− 1 intersections in C ′t have

the depths of 0, 1, . . . , t− 2 for just once of each, where the depths 0, 1, . . . , d are what

we are interested in. This implies that

e′t = d+ 1.

Next, consider the size of e′′t . Since e′′t is composed of all the intersection points generated

by {f1, f2, . . . , ft−1}, it is equivalent to Ct−1. In other words, for each c ∈ C ′′t , we can

find a corresponding element in Ct−1, say c̄. Because of the appearance of ft in Ft, the

depth of c may be equal or greater than the depth of c̄. But it is obviously that the

depth of c can never be smaller than the depth of c̄. Thus, we assert that

e′′t ≤ et−1.

By the induction hypothesis, we have

et−1 ≤ (t− 2) + (t− 3) + · · ·+ (t− d− 2).

77

Then,

et = e′t + e′′t

≤ (d+ 1) + et−1

≤ (d+ 1) + (t− 2) + (t− 3) + · · ·+ (t− d− 2)

= (t− 2 + 1) + (t− 3 + 1) + · · ·+ (t− d− 2 + 1)

= (t− 1) + (t− 2) + · · ·+ (t− d− 1)

= (2t− d− 2)(d+ 1)/2,

which completes the proof.

4.6.2 Proof for Lemma 4.2

We shall prove, by contraposition, that Ai−1 = Ai (i.e., ci is invalid) if |Hi| ≥ k. Assume

ci is generated by two lines fα and fβ. We first define two label sets

L1 = {l|fl(xi) > yi},
L2 = {l|fl(xi) ≤ yi}.

Intuitively, L1 contains the labels of all the lines that are strictly above ci, while L2

contains the labels of all the lines which are strictly below or pass through ci. Note

that L2 includes both α and β. Recalling the definition of Hi, we have Hi ⊆ L1 since

Hi depicts those special lines in L1 that have p-values greater than h0. As an example,

please refer to Figure 4.11a, where the labels of the red lines belong to L1, and the

labels of the black lines are in L2. Also, if we assume that h0 = 0.5, then based on the

p-values to the right of each line, Hi contains the labels of all dashed red lines.

Let F1 and F2 be the sets of lines whose labels are in L1 and L2, respectively.

Obviously, in both strips Xi−1 and Xi, the y-values of the lines in F1 are greater than

the y-values of the lines in F2.

Now consider Ai−1, the most likely k-topmost lines in Xi−1. Suppose

Ai−1 = (fl1 , fl2 , . . . , flk).

78

h0 = 0.5

ci

fα

fβ

Xi−1 Xi

0.4

0.6
0.7

0.3

0.8

0.2

0.5

(a) Red lines belong to L1, black lines belong to L2,
and all lines in Hi are shown by dashed red lines.

k = 3

ci
fα

fβ

Xi−1 Xi

fl1

fl2

fl3

fγ

(b) In this particular case, assume that Ai−1 =
(fl1 , fl2 , fl3) for k = 3, and we can construct a new
line arrangement A′i−1 = (fl1 , fl2 , fγ) by the method
introduced in the proof.

Figure 4.11: Two examples illustrating the proof of Lemma 4.2

We shall show that l1, l2, . . . , lk are all in L1, i.e., Ai−1 consists of lines from F1 only.

In fact, we just need to prove that lk ∈ L1 since fl1 > fl2 > · · · > flk in Xi, i.e., line

flk is the lowest in Xi among fl1 , fl2 , . . . , flk . For a contradiction, assume lk 6∈ L1 (i.e.,

lk ∈ L2). Since we assume that |Hi| ≥ k, accordingly to the fact that Hi ⊆ L1, we can

assert

Hi \ {l1, l2, . . . , lk} 6= ∅.

This implies that we can find a label γ ∈ L1 such that

(pγ > h0) ∧ (γ 6= l1, l2, . . . , lk).

Now we remove the element flk from Ai−1, and add fγ in the appropriate position to

get a new sequence

A′i−1 = (fl1 , fl2 , . . . , fγ , . . . , flk−1
).

Here, if fγ > fl1 (or fγ < flk−1
) in Xi−1, A′i−1 should be written as (fγ , fl1 , fl2 , . . . , flk−1

)

(or (fl1 , fl2 , . . . , flk−1
, fγ)). Please refer to Figure 4.11b for an example.

79

Now we show that A′i−1 indeed has greater likelihood than Ai−1 to be the k-topmost

lines in Xi−1, which contradicts to the fact that Ai−1 is the most likely k-topmost lines

in Xi−1.

We use r to denote the likelihood of Ai−1 being the k-topmost lines in Xi−1 and use

r′ to denote the corresponding likelihood for A′i−1. Then it follows that

r′ =
r

plk
· pγ

1− pγ
· 1∏
∀fj between fγ and flk

(1− pj)

≥ r

plk
· pγ

1− pγ
.

Since plk ≤ h (because h is the supremum) and pγ > h0 (because pγ ∈ Hi), we further

have

r′ ≥ r

plk
· pγ

1− pγ
>

r

h
· h0

1− h0

= r,

which obviously is a contradiction.

Thus, we can assert that lk ∈ L1, so that l1, l2, . . . , lk are all in L1. Similarly, for

Ai, we have the same conclusion, i.e., if we assume that Ai = (fl′1 , fl′2 , . . . , fl′k), then

l′1, l
′
2, . . . , l

′
k are all in L1 as well.

Finally, because fα and fβ are in F2 and the lines of Ai−1 and Ai are all in L1,

the exchange of ranks of fα and fβ has no impact on the k-topmost lines probabilities

of Ai−1 and Ai. Consequently, we can conclude that Ai−1 = Ai, i.e., ci is invalid,

completing the proof (by contraposition).

4.6.3 Proof for Lemma 4.3

In the proof of this lemma, for convenience, we rearrange the order of the m intersections

by the depths instead of x-coordinates. In other words, we assume that d1 ≤ d2 ≤ · · · ≤
dm (instead of the previous assumption x1 < x2 < · · · < xm). Consider an m-element

80

sequence

0, 0, . . . , 0,︸ ︷︷ ︸
(n−1)×0’s

1, 1, . . . , 1,︸ ︷︷ ︸
(n−2)×1’s

2, 2, . . . , 2,︸ ︷︷ ︸
(n−3)×2’s

. . . , i, i, . . . , i,︸ ︷︷ ︸
(n−i−1)×i’s

. . . , n− 3, n− 3,︸ ︷︷ ︸
2×(n−3)’s

n− 2.︸ ︷︷ ︸
1×(n−2)

We use d′i to denote the i-th element of the sequence above. By Lemma 4.1, it is easy

to verify that d′i ≤ di for i = 1, 2, . . . ,m. Furthermore, since u(d) is a non-increasing

function (proof is omitted here), we assert u(d′i) ≥ u(di). Consequently, we have

m∑
i=1

u(di) ≤
m∑
i=1

u(d′i)

=
n−2∑
d=0

u(d) · (n− d− 1)

≤
(
n−2∑
d=0

u(d)

)
· n.

4.6.4 Proof for Equation 4.3

∞∑
d=k

Ç
d

k

å
λd =

Ç
k

k

å
λk +

Ç
k + 1

k

å
λk+1 +

Ç
k + 2

k

å
λk+2 + . . .

=

Ç
k − 1

k − 1

åÄ
λk + λk+1 + λk+2 + λk+3 + . . .

ä
+Ç

k

k − 1

åÄ
λk+1 + λk+2 + λk+3 + λk+4 + . . .

ä
+Ç

k + 1

k − 1

åÄ
λk+2 + λk+3 + λk+4 + λk+5 + . . .

ä
+Ç

k + 2

k − 1

åÄ
λk+3 + λk+4 + λk+5 + λk+6 + . . .

ä
+ . . .

=

Ç
k − 1

k − 1

å
· λk

1− λ +

Ç
k

k − 1

å
· λ

k+1

1− λ +

Ç
k + 1

k − 1

å
· λ

k+2

1− λ + . . .

=
λ

1− λ ·
∞∑

d=k−1

Ç
d

k − 1

å
λd.

81

If we recursively apply the above equation k times, we have

∞∑
d=k

Ç
d

k

å
λd =

λ

1− λ ·
∞∑

d=k−1

Ç
d

k − 1

å
λd

=
λ2

(1− λ)2
·
∞∑

d=k−2

Ç
d

k − 2

å
λd

=
λ3

(1− λ)3
·
∞∑

d=k−3

Ç
d

k − 3

å
λd

. . .

=
λk

(1− λ)k
·
∞∑
d=0

Ç
d

0

å
λd

=
λk

(1− λ)k
·
Ä
1 + λ+ λ2 + λ3 + . . .

ä
=

λk

(1− λ)k
· 1

1− λ =
λk

(1− λ)k+1
.

4.6.5 Proof for Lemma 4.4

In the following proof, for simplicity, we use 1, 2, . . . , n to represent x1, x2, . . . , xn. The

first n-element sequence is 1, 2, 3, . . . , n, and the likelihood for element w to become the

winner is

L(w) = pw ·
w−1∏
i=1

(1− pi),where pi =
pi+1

1 + pi+1
− ε and pn = 1.

If we ignore the term −ε, i.e., pi = pi+1/(1 + pi+1), then it is easy to verify that

L(1) = L(2) = · · · = L(n) = p1. With the additional term −ε, the above equation

becomes L(1) < L(2) < · · · < L(n), which implies that point xn is the winner of the

first sequence.

For the rest of the sequences, we consider the following general format

i+ 1, i+ 2, . . . , j, i, j + 1, j + 2, . . . , n, i− 1, i− 2, . . . , 2, 1, (4.5)

where i is the moving element, and i < j ≤ n. We will prove that the winner of this

sequence is j.

82

Consider the following (n − 1)-element sequence generated by removing i from Se-

quence 4.5.

i+ 1, i+ 2, . . . , j, j + 1, j + 2, . . . , n, i− 1, i− 2, . . . , 2, 1, (4.6)

By a similar argument as above, we have L(i+1) < L(i+2) < · · · < L(n). Moreover,

since pn > pi−1 > pi−2 > · · · > p2 > p1, we also have L(n) > L(i − 1) > L(i − 2) >

· · · > L(2) > L(1). Therefore, point n has the largest likelihood in Sequence 4.6.

Now, let us insert i back into the sequence to get back Sequence 4.5. Clearly,

L(i+ 1), L(i+ 2), . . . , L(j) will not change, and L(i) < L(j) because i is to the right of

j and pi < pj . In addition, we argue that L(j + 1), L(j + 2), . . . , L(n), L(i − 1), L(i −
2), . . . , L(1) will all drop significantly due to the impact of inserting i so that even the

previous largest likelihood L(n) will be less than L(j). Consequently, L(j) is the largest

likelihood of Sequence 4.5, and xj is the winner.

To see why, although intuitively L(i + 1) < L(i + 2) < · · · < L(n) in Sequence 4.6,

they are very close to each other because ε is sufficiently small. By inserting i back into

the sequence, all of L(j+1), . . . , L(n) now need to be multiplied by an additional factor

(1 − pi) that can be small enough (by judiciously choosing a proper ε) to ensure that

L(n) is even smaller than L(i+ 1). We give a formal proof below.

If we define p′n = 1, and p′i = p′i+1/(1 + p′i+1), then we have the following two facts

that can be easily proved by induction.

1. p′n−i = 1/(i+ 1),

2. 0 < p′n−i − pn−i ≤ iε.

83

By choosing any ε < n−4, we have

L(n) = pn ·
n−1∏
j=i

(1− pj)

=
n−i∏
j=1

(1− pn−j) (since pn = 1)

≤
n−i∏
j=1

(1− p′n−j + jε)

=
n−i∏
j=1

(1− 1/(j + 1) + jε)

≤
n−i∏
j=1

(1− 1/(j + 1)) +
n−i∑
j=1

jε (since 1− p′n−j + jε ≤ 1 for j = 1, 2, . . . , n)

= p′i + ε(n− i+ 1)(n− i)/2
< 1/(n− i+ 1) + n2ε.

Here we used the fact that
∏n
i=1 (ai + bi) ≤

∏n
i=1 ai +

∑n
i=1 bi if 0 ≤ ai + bi ≤ 1 for

i = 1, 2, . . . , n, which can be proved by mathematical induction.

Then,

L(n)− L(i+ 1) < 1/(n− i+ 1) + n2ε− 1/(n− i)
< n2ε− 1/[(n− i)(n− i+ 1)]

< n2ε− 1/n2

< 0 (since ε < n−4).

Thus, with respect to Sequence 4.5, we can conclude that L(i + 1) > L(k) for any

k ∈ {j+ 1, j+ 2, . . . n, i− 1, i− 2, . . . , 2, 1}. Moreover, we know L(j) > L(j− 1) > · · · >
L(i+ 1), and it is also easy to observe that L(j) > L(i). So we finally conclude L(j) is

the largest likelihood, i.e., xj is the winner.

Chapter 5

Stochastic closest pair problem

and most likely nearest neighbor

search in tree space

In this chapter, we further generalize the most likely nearest neighbor search problem in

R1 that we have solved previously and study two new problems, namely, the stochastic

closest pair (SCP) problem and k most likely nearest neighbor (k-LNN) search in so-

called tree space. For the former, we propose the first algorithm for computing the

`-threshold probability and the expectation of the closest pair distance for a realization

of the input stochastic points. For the latter, we study the k most likely Voronoi Diagram

(k-LVD), where we show the combinatorial complexity of k-LVD is O(nk) under two

reasonable assumptions, leading to a logarithmic query time for k-LNN.

5.1 Preliminaries

A tree space T is represented by a t-vertex positively-edge-weighted tree T where the

weight of each edge depicts its “length”. Formally, T is the geometric realization of T ,

in which each edge weighted by w is isometric to the interval [0, w]. There is a natural

metric over T which defines the distance dist(x, y) as the length of the (unique) simple

path between x and y in T . See Figure 5.1 for an example of tree space.

84

85

2

1.42.2

4.5

2.8

4.1

3.2
x

y

dist(x, y) = 6.9

Figure 5.1: A tree space and the unique simple path (in blue) between x and y. Since
x and y are the midpoints of the edges they lie on, the length of the path is 0.5 · 2.8 +
4.5 + 0.5 · 2 = 6.9.

Similar to the model in Chapter 4, we study the problems under existential un-

certainty: each input stochastic point has a fixed location (in T) associated with an

(independent) existence probability. Let S be the given set of n stochastic points in T
each of which is associated with an existence probability. A realization of S refers to a

random sample of S in which each point is sampled with its existence probability.

5.2 The stochastic closest pair problem

Let T be a tree space represented by a t-vertex edge-weighted tree T and let S =

{a1, . . . , an} ⊂ T be a set of stochastic points where ai has an existence probability

πai . We use κ(S) to denote the random variable indicating the closest pair distance of

a realization of S (if the realization is of size less than 2, we simply set its closest pair

distance to be 0).

5.2.1 Computing the threshold probability

We study the problem of computing the probability that κ(S) is at least ` for a given

threshold `. We call this quantity the `-threshold probability or simply threshold prob-

ability of κ(S), and denote it by C≥`(S). We show that C≥`(S) can be computed in

O(t + n log n + min{tn, n2}) time. This result gives us an O(t + n2) upper bound for

t = Ω(n) and an O(n log n + tn) bound for t = O(n). In the rest of this section, we

86

first present an O(t + n3)-time algorithm for computing C≥`(S), and then show how

to improve it to achieve the desired bound. For simplicity of exposition, we assume

a1, . . . , an have distinct locations in T .

An O(t+ n3)-time algorithm

In order to conveniently and efficiently handle the stochastic points in a tree space, we

begin with a preprocessing step, which reduces the problem to a more regular setting.

Theorem 5.1. Given T and S, one can compute in O(t+n log n) time a new tree space

T ′ ⊆ T represented by an O(n)-vertex weighted tree T ′ s.t. S ⊂ T ′ and every point in

S is located at some vertex of T ′. (See Section 5.4.1 for a proof.)

By the above theorem, we use O(t+n log n) time to compute such a new tree space.

Using this tree space as well as the O(n)-vertex tree representing it, the problem becomes

more regular: every stochastic point in S is located at a vertex. We can further put

the stochastic points in one-to-one correspondence with the vertices by adding dummy

points with existence probability 0 at the “empty” vertices (i.e., vertices not coinciding

with points of S; see Section 5.4.1). In such a regular setting, we then consider how

to compute the `-threshold probability. For convenience, we still use T to denote the

representation of the (new) tree space and S = {a1, . . . , an} the stochastic dataset

(though the actual size of S may be larger than n due to the additional dummy points,

it is still bounded by O(n)). Since the vertices of T are now in one-to-one correspondence

with the points in S, we also use ai to denote the corresponding vertex of T .

As we are working on a tree space, a natural idea for solving the problem is to exploit

the recursive structure of the tree and to compute C≥`(S) in a recursive fashion. To

this end, we need to define an important concept called witness. We make T rooted by

setting a1 as its root. The subtree rooted at a vertex x is denoted by Tx. Also, we use

V (Tx) to denote the set of the stochastic points lying in Tx, or, equivalently, the set of

the vertices of Tx. The notations p̄(x) and ch(x) are used to denote the parent of x and

the set of the children of x, respectively (for convenience we set p̄(a1) = a1).

Definition 5.1. Let dep(ai) be the depth of ai in T , i.e., dep(ai) = dist(a1, ai). For

any ai and aj, we define ai ≺ aj if dep(ai) < dep(aj), or dep(ai) = dep(aj) and i < j.

Clearly, the relation ≺ is a strict total order over S (also, over the vertices of T). For

87

any subset S′ ⊆ S and any vertex ai of T , we define the witness of ai with respect to

S′, denoted by ω(ai, S
′), as the smallest vertex in V (Tai) ∩ S′ under the ≺-order. If

V (Tai) ∩ S′ = ∅, we say ω(ai, S
′) is not defined.

See Figure 5.2 for an illustration of witness. We say a subset S′ ⊆ S is legal if the

closest pair distance of S′ is at least `.

2

1.4

2.2

4.4

2.8

4.1

3.22

a1

a2

a3

a4

a5

a6

a7

a8 a9

S′ = {a3, a5, a8, a9}

ω(a1, S
′) = a3

ω(a6, S
′) = a9

Figure 5.2: An illustration of witness

The following lemma allows us to verify the legality of a subset by using the witnesses,

which will be used later.

Lemma 5.1. For any S′ ⊆ S, we have S′ is legal if and only if every point ai ∈ S\{a1}
satisfies one of the following three conditions:

(1) ω(ai, S
′) is not defined;

(2) ω(ai, S
′) = ω(p̄(ai), S

′);

(3) dist(ω(ai, S
′), ω(p̄(ai), S

′)) ≥ `.
We say that S′ is locally legal at ai whenever ai satisfies one of the above conditions.

(See Section 5.4.2 for a proof.)

In order to compute C≥`(S), we define, for all x ∈ S and y ∈ V (Tp̄(x)),

Py(x) =


Pr

S′⊆RV (Tx)
[S′ is legal ∧ ω(x, S′) = y] , if y ∈ V (Tx),

Pr
S′⊆RV (Tx)

[S′′ is legal ∧ ω(p̄(x), S′′) = y] , if y ∈ V (Tp̄(x))\V (Tx).
,

where S′′ = S′ ∪ {y}. Here the notation ⊆R means that the former is a realization of

the latter, i.e., a random sample obtained by sampling each point with its existence

88

probability. With the above, we immediately have that C≥`(S) =
∑n
i=1 Pai(a1) − P0,

where P0 is the probability that a realization of S contains exactly one point. We then

show how Py(x) can be computed in a recursive way.

Lemma 5.2. For x ∈ S and y ∈ V (Tx), we have that

Py(x) = Q ·
∏

c∈ch(x)

Py(c),

where Q = πx if x = y and Q = 1− πx if x 6= y. (See Section 5.4.3 for a proof.)

Lemma 5.3. For x ∈ S and y ∈ V (Tp̄(x))\V (Tx), we have that

Py(x) =
∏

ai∈V (Tx)

(1− πai) +
∑
z∈Γ

Pz(x),

where Γ = {z ∈ V (Tx) : y ≺ z and dist(z, y) ≥ `}. (See Section 5.4.4 for a proof.)

By the above two lemmas, the values of all Py(x) can be computed as follows. We

enumerate x ∈ S from the greatest to the smallest under ≺-order. For each x, we first

compute all Py(x) for y ∈ V (Tx) by applying Lemma 5.2. After this, we are able to

compute all Py(x) for y ∈ V (Tp̄(x))\V (Tx) by applying Lemma 5.3. The entire process

takes O(n3) time. Once we have the values of all Py(x), C≥`(S) can be computed

straightforwardly. Including the time for preprocessing, this gives us an O(t+ n3)-time

algorithm for computing C≥`(S).

Improving the runtime

We first show how to improve the runtime of the above algorithm to O(t + n2). Note

that computing all Py(x) for x ∈ S and y ∈ V (Tx) takes only O(n2) time in total, as

we can charge the time for computing Py(x) to the pairs (y, c) for c ∈ ch(x) and thus

each pair of vertices is charged at most a constant amount of time. So the bottleneck

is the computation of Py(x) for y ∈ V (Tp̄(x))\V (Tx). For a specific x ∈ S, we want to

compute all Py(x) for y ∈ V (Tp̄(x))\V (Tx) in linear time. To achieve this, we review the

formula given in Lemma 5.3. Assume that V (Tx) = {z1, . . . , zm} where z1 ≺ · · · ≺ zm,

and V (Tp̄(x))\V (Tx) = {y1, . . . , yr} where y1 ≺ · · · ≺ yr. Define

Γyi = {z ∈ V (Tx) : yi ≺ z and dist(z, yi) ≥ `}

89

for i ∈ {1, . . . , r}. Then Pyi(x) is just the sum of
∏m
j=1(1−πzj) and all Pz(x) for z ∈ Γyi .

Lemma 5.4. Each set Γyi is a suffix of the sequence (z1, . . . , zm), namely, Γyi =

{zj , zj+1, . . . , zm} for some j ∈ {1, . . . ,m}. Furthermore, we have that Γy1 ⊆ · · · ⊆
Γyk ⊇ · · · ⊇ Γyr for some k ∈ {1, . . . , t}. (See Section 5.4.5 for a proof.)

The above observation gives us the idea to efficiently compute Py1(x), . . . , Pyr(x).

Instead of computing Pyi(x) straightforwardly using the formula given in Lemma 5.3,

we compute each Pyi(x) by modifying Pyi−1(x). Specifically, we first compute Py1(x)

straightforwardly and then begin to compute Py2(x), . . . , Pyr(x) in order. If Γyi ⊆ Γyi−1 ,

we compute Pyi(x) by subtracting all Pz(x) for z ∈ Γyi−1\Γyi from Pyi−1(x). Otherwise,

if Γyi ⊇ Γyi−1 , we compute Pyi(x) by adding all Pz(x) for z ∈ Γyi\Γyi−1 to Pyi−1(x).

According to Lemma 5.4, in the entire process, each Pz(x) for z ∈ {z1, . . . , zm} is at

most added and subtracted once. Therefore, with the sequence (z1, . . . , zm) in hand, it

is easy to compute Py1(x), . . . , Pyr(x) in O(n) time. Note that the sequence (z1, . . . , zm)

can be easily obtained in O(n) time, if we sort all the points a1, . . . , an in ≺-order at

the beginning of the algorithm. This improves the overall time complexity to O(t+n2).

Indeed, we can further improve the runtime to O(t+n log n+min{tn, n2}). In other

words, we show that C≥`(S) can be computed in O(n log n + tn) time when t = O(n).

To achieve this, we recall the original tree space (before the preprocessing) which is

represented by a t-vertex tree. Intuitively, if t is significantly smaller than n, then most

stochastic points in S are located inside the interiors of the edges of the original tree.

In this case, after the preprocessing, we will have a lot of “chain” structures in the new

tree T . This gives us the insight to further improve our algorithm.

Definition 5.2. A chain of T is a sequence of vertices (b1, . . . , bk) satisfying

(1) bi is the only child of bi−1 for i ∈ {2, . . . , k};
(2) bk has at most one child;

(3) b1 is either the root or the only child of p̄(b1).

(See Figure 5.3 for an example of chain.) A chain is maximal if it is not properly

contained in another chain. A vertex of T is called chain vertex if it is contained in

some chain. Otherwise, it is called non-chain vertex.

Lemma 5.5. If T is a tree space represented by a t-vertex tree and T ′ ⊆ T is also a

90

tree space represented by a rooted tree T , then the number of the non-chain vertices of

T is O(t). (See Section 5.4.6 for a proof.)

Root

A chain

A chain

Figure 5.3: An example of chains.

One can easily verify that when removing all the non-chain vertices (and their adja-

cent edges) from T , each connected component of the remaining forest corresponds to

a maximal chain of T . Thus, the number of the maximal chains of T is also bounded

by O(t).

Now we explain why the chains of T are helpful for us. Let (b1, . . . , bk) be a chain

of T . For convenience of exposition, we assume bk has a (unique) child bk+1 and b1

has the parent b0. Our previous algorithm takes O(kn) time to compute all Py(x) for

x ∈ {b1, . . . , bk} and y ∈ V (p̄(x)). To improve the runtime, we want that these values

can be computed in O(n) time. This seems impossible as the number of the values

to be computed is Θ(kn) in worst case. However, instead of computing these values

explicitly, we can compute them implicitly. Note that Py(bi) is defined only when

y ∈ {bi−1, . . . , bk} ∪ V (Tbk+1
). Set σ0 = 1 and σi =

∏i
j=1(1 − πbj) for i ∈ {1, . . . , k}.

Let bi ∈ {b1, . . . , bk} be a vertex in the chain. By Lemma 5.2, we observe the following.

First, for any y ∈ V (Tbk+1
), we have that Py(bi) = Py(bk+1) · σk/σi−1. Furthermore, we

have that Pbi(bi) = πbi · Pbi(bi+1) and

Pbj (bi) = Pbj (bj) ·
σj−1

σi−1
= Pbj (bj+1) · πbjσj−1

σi−1

for j ∈ {i + 1, . . . , k}. Thus, as long as we know σ1, . . . , σk and Pb0(b1), . . . , Pbk−1
(bk),

any Py(x) with x ∈ {b1, . . . , bk} can be computed in constant time (note that the values

of Py(bk+1) are already in hand when we deal with the chain). In other words, to

implicitly compute all Py(x) for x ∈ {b1, . . . , bk}, it suffices to compute σ1, . . . , σk and

Pb0(b1), . . . , Pbk−1
(bk), and associate to each bi the values of σi and Pbi−1

(bi). Clearly, one

91

can easily compute σ1, . . . , σk in O(k) time. We then show that Pb0(b1), . . . , Pbk−1
(bk)

can be computed in O(n) time. Define Ai = {z ∈ V (Tbi) : dist(z, bi−1) ≥ `}, then

Ak ⊆ Ak−1 ⊆ · · · ⊆ A1 and each Ai is a suffix of the ≺-order sorted sequence of the

vertices in V (Tb0). Now by Lemma 5.3, one can deduce that

Pbi−1
(bi) = (1− πbi) · Pbi(bi+1) +

∑
z∈Ai\Ai+1

Qz · Pz(bi+1),

where Qz = πbi if z = bi and Qz = 1 − πbi otherwise. Thus, if the computation is

taken in the order Pbk−1
(bk), . . . , Pb0(b1), then each Pbi−1

(bi) can be easily computed in

O(|Ai\Ai+1|) time. In this way, we use O(n) time to implicitly compute all Py(x) for

x ∈ {b1, . . . , bk}. It turns out that the computation task for any chain can be done in

O(n) time.

With this in hand, it is not difficult to compute all Py(x) in O(tn) time. We enu-

merate x ∈ S from the greatest to the smallest under ≺-order. For each x visited, if x

is a non-chain vertex, we use O(n) time to explicitly compute all Py(x) in the previous

way. If x is the deepest vertex of a chain, i.e., x has no child or its child is a non-chain

vertex, then we find the maximal chain containing x and implicitly complete the com-

putation task for this chain in O(n) time. Otherwise, if x is a chain vertex but not the

deepest one, we just skip it as all Py(x) have been implicitly computed previously. The

entire process takes O(tn) time, as there are O(t) non-chain vertices and O(t) maximal

chains. Including the time for preprocessing and sorting a1, . . . , an, we solve the prob-

lem in O(n log n+ tn) time. Combining with the case t = Ω(n), we finally conclude the

following.

Theorem 5.2. Given an edge-weighted tree T with t vertices and a set S of n stochastic

points in its tree space T , one can compute the `-threshold probability of the closest pair

distance of S, C≥`(S), in O(t+ n log n+ min{tn, n2}) time.

5.2.2 Computing the expected closest pair distance

Based on our algorithm for computing the threshold probability, we further study the

problem of computing the expected closest pair distance of S, i.e., the expectation of

κ(S). It is easy to see that our algorithm in Section 5.2.1 immediately gives us an

O(t + min{tn3, n4})-time algorithm to compute E[κ(S)]. This is because the random

92

variable κ(S) has at most
(n

2

)
distinct possible values and hence we can compute E[κ(S)]

via O(n2) threshold probability “queries” with various thresholds ` (note that after

preprocessing our algorithm answers each threshold probability query in O(min{tn, n2})
time).

If we want to compute the exact value of E[κ(S)] (via threshold probability queries),

Θ(n2) queries are necessary in worst case. So it is natural to ask whether we can use

fewer queries to approximate E[κ(S)]. In the rest of this section, we show that one

can use O(ε−1n) threshold probability queries to achieve a (1 + ε)-approximation for

E[κ(S)], which in turn gives us an O(t+ε−1 min{tn2, n3})-time approximation algorithm

for computing E[κ(S)].

For simplicity of exposition, we assume that the stochastic points in S are now in one-

to-one correspondence with the vertices of T (this is what we have after preprocessing).

We begin with a simple case, in which the spread of T , i.e., the ratio of the length of

the longest edge to the length of the shortest edge is bounded by some polynomial of

n. In this case, to approximate E[κ(S)] is fairly easy, and we only need O(ε−1 log n)

threshold probability queries.

Definition 5.3. For β > α > 0 and τ > 1, the (α, β, τ)-jump is defined as

J = {α, τα, τ2α, . . . , τkα, β},

where τkα < β and τk+1α ≥ β.

Let dmin be the length of the shortest edge of T and dmax be the sum of the lengths

of all edges of T . Also, let J be the (dmin, dmax, 1 + ε)-jump. Suppose J = {`1, . . . , `|J |}.
Then we do |J | threshold probability queries using the thresholds `1, . . . , `|J |, and com-

pute

E =

|J |∑
i=1

C≥`i(S) · (`i − `i−1)

as an approximation of E[κ(S)] (where `0 = 0). Note that |J | = O(log1+ε
dmax
dmin

) =

O(log1+ε n) = O(ε−1 log n). It is easy to verify that E ≤ E[κ(S)] ≤ (1 + ε)E.

The problem becomes interesting when the spread of T is unbounded. In this case,

although the above method still correctly approximates E[κ(S)], the number of the

93

threshold probability queries is no longer well-bounded. Imagine that the O(n2) possible

values of κ(S) are distributed as `, (1 + ε)`, (1 + ε)2`, etc. Then the (dmin, dmax, 1 + ε)-

jump J is of size Ω(n2). Moreover, for guaranteeing the correctness, it seems that we

cannot “skip” any element in J . However, as one will realize later, such an extreme

situation can never happen. Recall that we are working on a weighted tree and the

O(n2) possible values of κ(S) are indeed the pairwise distances of the vertices of the

tree. As such, these values are not arbitrary, and our insight here is to exploit the

underlying properties of the distribution of these values.

Let e1, . . . , en−1 be the edges of T where ei has the length (weight) wi. Assume

w1 ≤ · · · ≤ wn−1. We define an index set I =
¶
m :

∑m−1
i=1 wi < wm

©
. Suppose I =

{m1, . . . ,mk} where m1 < · · · < mk. Note that m1 = 1. For convenience, we set mk+1 =

n. We design our threshold probability queries as follows. Let Ji be the (wmi , si, 1 + ε)-

jump where si =
∑
j<mi+1

wj , and J = J1 ∪ · · · ∪ Jk. Suppose J = {`1, . . . , `|J |} and set

`0 = 0. Similarly to the previous case, we do |J | threshold probability queries using the

thresholds `1, . . . , `|J |, and compute

E =

|J |∑
i=1

C≥`i(S) · (`i − `i−1)

as an approximation of E[κ(S)]. We first verify the correctness, i.e., E ≤ E[κ(S)] ≤
(1 + ε)E. The fact E ≤ E[κ(S)] can be easily verified. To see the inequality E[κ(S)] ≤
(1 + ε)E, we define a piecewise-constant function h : R+ ∪ {0} → [0, 1] as

h(`) =


C≥`i(S) if (1 + ε)`i < ` ≤ (1 + ε)`i+1,

0 if ` > (1 + ε)l|J |,

1 if ` = 0.

Then it is clear that (1 + ε)E =
∫∞

0 h(`)d`. We claim that
∫∞

0 h(`)d` ≥ ∫∞0 C≥`(S)d`,

hence we have E[κ(S)] ≤ (1 + ε)E. Note that the jumps J1, . . . , Jk are disjoint and

each of them contains a consecutive portion of the sequence `1, . . . , `|J |. Furthermore,

if `i and `i+1 belong to different jumps, then there is no possible value of κ(S) within

the range (`i, `i+1), i.e., C≥`(S) is constant when ` ∈ [`i, `i+1). With this observation,

it is not difficult to verify that h(`) ≥ C≥`(S) for any ` ≥ 0. Consequently, we have

E[κ(S)] ≤ (1 + ε)E, which implies the correctness of our method. Now the only thing

94

remaining is to bound the number of the threshold probability queries, which we show

in Lemma 5.6.

Lemma 5.6. For each jump Ji, we have |Ji| = O(ε−1(mi+1 −mi)). As a result, the

total number of the threshold probability queries, |J |, is O(ε−1n). (See Section 5.4.7 for

a proof.)

Indeed, the above method can be extended to a much more general case, in which

the stochastic dataset S is given in any metric space X (not necessarily a tree space). In

this case, one can still define the threshold probability C≥`(S) as well as the expected

closest pair distance E[κ(S)] in the same fashion. Our conclusion is the following.

Theorem 5.3. Given a set S of n stochastic points in a metric space X , one can (1+ε)-

approximate the expected closest pair distance of S, E[κ(S)], via O(ε−1n) threshold

probability queries. (See Section 5.4.8 for a proof.)

For the expected closest pair distance in tree space, we can eventually conclude the

following by plugging in our algorithm in Section 5.2.1 for computing C≥`(S).

Corollary 5.1. Given a tree space T represented by a weighted tree T with t vertices

and a set S of n stochastic points in T , one can compute a (1 + ε)-approximation for

the expected closest pair distance of S, E[κ(S)], in O(t+ ε−1 min{tn2, n3}) time.

5.3 The most likely nearest neighbor search problem

In this section, we study the k most likely nearest neighbor (k-LNN) search in a tree

space. Again, let T be a tree space represented by a t-vertex weighted tree T and

S = {a1, . . . , an} ⊂ T be the given stochastic dataset where the point ai has an existence

probability πai . The k-LNN search problem can be defined as follows. Let q ∈ T be any

point. For each ai ∈ S, define NNPq(ai) as the probability that the nearest neighbor of

q in a realization of S is ai. Clearly, the nearest neighbor of q in a realization is ai iff

ai is in the realization and any point closer to q is not in the realization. Therefore, we

have

NNPq(ai) = πai ·
∏
x∈Γ

(1− πx),

95

where Γ = {x ∈ S : dist(q, x) < dist(q, ai)}. Given a query point q ∈ T , the goal of the

k-LNN search is to report the k-LNN of q, which is a k-sequence (ai1 , . . . , aik) of points

in S such that NNPq(ai1) ≥ · · · ≥ NNPq(aik) ≥ NNPq(aj) for all j /∈ {i1, . . . , ik}. For

convenience, we assume NNPq(ai) 6= NNPq(aj) for any q ∈ T and ai 6= aj so that the

k-LNN of any query point q ∈ T is uniquely defined.

A standard tool for nearest neighbor search is the Voronoi diagram. In the stochastic

setting, we seek the most likely Voronoi diagram (LVD), the concept of which is for the

first time introduced in [58]. The k-LVD partitions the query space into connected cells

such that points in the same cell have the same k-LNN. Figure 5.4 presents an example

of 1-LVD in a tree space.

2.2

πa1 = 0.35

a1

a2

πa2 = 0.45

a3

πa3 = 0.9

3.2

3

1.8

2.3
2

2

a4

πa4 = 0.1

Figure 5.4: A tree-space 1-LVD with 3
cells

3 2

2

2.8 2.2

2.2 2.9

3.2

3.6
1.4

1

1.5

A center c

2.5

2.3

Figure 5.5: A degree-3 center involving 5
points.

5.3.1 The size of the tree-space LVD

We use ΨST to denote the k-LVD of S on T , i.e., the collection of the cells. Formally,

ΨST can be defined as follows. For any k-sequence η = (ai1 , . . . , aik), let Ψη be the set

of the connected components of the subspace {q ∈ T : η is the k-LNN of q}. Then ΨST

is the union of Ψη over all possible η. Clearly, the size of ΨST significantly influences

the space efficiency of the LVD-based algorithm for k-LNN search. Let mij ∈ T be the

“midpoint” of ai and aj , i.e., the midpoint of the path between ai and aj in T . It is easy

to see that the k-LNN only changes nearby these
(n

2

)
midpoints. However, this does not

immediately imply that the size of ΨST is bounded by O(n2). The reason is that O(n2)

points do not necessarily decompose T into O(n2) pieces (cells), unless these points are

located only in the interiors of the edges. The rigorous proof for the O(n2) upper-bound

can be seen later as a direct corollary of Lemma 5.7.

96

Definition 5.4. For any two midpoints mij and mi′j′, we define mij ≡ mi′j′ iff mij and

mi′j′ have the same location in T and dist(ai,mij) = dist(aj ,mij) = dist(ai′ ,mi′j′) =

dist(aj′ ,mi′j′). Clearly, ≡ is an equivalence relation over the midpoints. We call the

equivalence classes (under ≡) centers of S and use [mij] to denote the center that

contains mij. A stochastic point ai ∈ S is said to be involved by a center c if c = [mij]

for some j. The degree of a center c, denoted by deg(c), is defined as the number of

the connected components of T \ĉ that contain at least one point involved by c, where ĉ

denotes the point in T corresponding to c, and each such component is called a branch

of c. A center c is said to be critical if ĉ is not in the interior of any cell C ∈ ΨST and

there exists at least one point involved by c that is in the k-LNN of ĉ. (See Figure 5.5

for an intuitive illustration of a center.)

Lemma 5.7. Let Γ be the set of the critical centers and ξ =
∑
c∈Γ deg(c). Then

|ΨST | ≤ ξ + 1. (See Section 5.4.9 for a proof.)

The above lemma immediately gives us the O(n2) upper bound for the size of ΨST .

Indeed, a center c of S contains at least Ω(deg(c) ·m) midpoints, where m is the number

of the points involved by c, so ξ + 1 is at most O(n2). Unfortunately, this upper bound

is tight, following from the Ω(n2) worst-case lower bound for the size of the 1-dim 1-

LVD given in Section 4.4.1 (note that the 1-dim LVD is a special case of the tree-space

LVD). Surprisingly, we show that, if we make reasonable assumptions for the existence

probabilities of the stochastic points or consider the average case, the size of ΨST is

significantly smaller. Our results are:

• If the existence probabilities of all points in S are constant-far from 0, i.e., there

is a fixed constant ε > 0 such that πai ≥ ε for all ai ∈ S, then the size of the k-

LVD ΨST is O(kn). Note that this assumption about the existence probabilities is

natural and reasonable. In applications, an extremely small existence probability

means the data point is highly unreliable. Such a point can be considered as a

noise and removed from the dataset.

• The average-case size of the k-LVD ΨST is O(kn). For the average-case analysis

we assume that the existence probabilities of the points in S are i.i.d. random

variables drawn from any fixed distribution (e.g., the uniform distribution among

97

[0, 1]). In other words, we consider the expectation of |ΨST | when πa1 , . . . , πan are

such random variables. The interesting point is that the O(kn) upper bound is

totally independent of the structure of T and the locations of the stochastic points.

The randomness is only applied to the existence probabilities in our average-case

analysis.

To prove these bounds requires new ideas. By Lemma 5.7, to bound the size of ΨST , it

suffices to bound the degree-sum of the critical centers. Intuitively, if a center c is far

from the points it involves (compared with other points in S), then c is less likely to be

critical, as the c-involved points are less likely to be in the k-LNN of ĉ. Along with this

intuition, we define the following.

Definition 5.5. For any center c, the diameter of c, denoted by diam(c), is defined

as the distance from ĉ to the c-involved points. Let A ⊂ T be a finite set. We define

the depth of c with respect to A as depA(c) = |{x ∈ A : dist(x, c) < diam(c)}|, i.e., the

number of the points in A which are closer to c than the c-involved points.

Our idea here is to first bound the “contribution” (degree-sum) of the “shallow”

centers, and then further bound the degree-sum of the critical ones. Specifically, we

investigate in Lemma 5.8 the degree-sum of the d-shallow centers of S, i.e., the centers

of depth less than d with respect to S.

Lemma 5.8. For 1 ≤ d ≤ n−1, the degree-sum of the d-shallow centers of S is at most

8dn. (See Section 5.4.10 for a proof.)

Now we are ready to prove the O(kn) bound for |ΨST | under the “constant-far from

0” assumption about the existence probabilities.

Lemma 5.9. If the existence probabilities of the points in S are constant-far from 0,

then a center of S is critical only if it is O(k)-shallow. (See Section 5.4.11 for a proof.)

Theorem 5.4. If the existence probabilities of the points in S are constant-far from 0,

then the size of the k-LVD ΨST is O(kn).

Proof. Suppose the existence probabilities πa1 , . . . , πan are constant-far from 0.

Lemma 5.9 shows that all the critical centers of S are O(k)-shallow. By further applying

98

Lemma 5.8, the degree-sum of the critical centers is O(kn). Finally, by Lemma 5.7, the

size of ΨST is O(kn). �

To prove the bound for the average-case size requires more efforts. Let f be a fixed

probability distribution function whose support is in (0, 1] and µ be the supremum of

the support of f . Define two constants µ0 = µ/(1+µ) and λ = 1−∫ µ0−∞ f(x)dx. Clearly,

if X is a random variable drawn from f , then λ = Pr[X > µ0]. Note that λ is always

positive by definition. The following lemma clarifies the meaning of µ0.

Lemma 5.10. Suppose πa1 , . . . , πan are i.i.d. random variables drawn from f . For any

center c of S, the event “c is critical” does not happen if there are k (distinct) points

ai1 , . . . , aik in S closer to ĉ than the c-involved points such that πai1 , . . . , πaik are all

greater than µ0. (See Section 5.4.12 for a proof.)

Theorem 5.5. The average-case size of ΨST is O(kn), given that the existence probabil-

ities of the points in S are i.i.d. random variables drawn from a fixed distribution.

Proof. Suppose the existence probabilities πa1 , . . . , πan are drawn independently

from f . Lemma 5.10 implies that, if c is a center of S with depS(c) = d ≥ k, then

Pr[c is critical] ≤ ud =
k−1∑
i=0

Ç
d

i

å
λi(1− λ)d−i.

Then by applying Lemma 5.7, we have

E[|ΨST |] ≤
∑
c

Pr[c is critical] · deg(c) ≤
∑
c∈Hk

deg(c) +
n−1∑
d=k+1

∑
c∈Hd

(ud−1 − ud)deg(c),

where Hd is the set of the d-shallow centers of S. Observe that

ud−1 − ud =

Ç
d− 1

k − 1

å
λk(1− λ)d−k.

Based on this and Lemma 5.8, we further have

E[|ΨST |] ≤ 8kn+ 8n
n−1∑
d=k+1

Ç
d− 1

k − 1

å
λk(1− λ)d−kd.

Note that

99

n−1∑
d=k+1

Ç
d− 1

k − 1

å
λk(1− λ)d−kd = k

Å
λ

1− λ

ãk n−1∑
d=k+1

Ç
d

k

å
(1− λ)d.

By an induction argument on k, it is not difficult to see that

n−1∑
d=k+1

Ç
d

k

å
(1− λ)d <

∞∑
d=k

Ç
d

k

å
(1− λ)d =

(1− λ)k

λk+1
.

Finally, by combining the inequalities, E[|ΨST |] ≤ 8kn+ 8kn
λ = O(kn). �

5.3.2 Constructing LVD and answering queries

In this section, we show how to construct the k-LVD ΨST and use it to answer k-LNN

queries. Let e1, . . . , et−1 be the edges of T . Assume each edge ei has a specified “start

point” si (which is one of its two endpoints) and the query point q is specified via a pair

(i, δ), meaning the point on ei with distance δ to si.

We first explain the data structure used for storing the k-LVD ΨST and answering

queries. The LVD data structure is simple. First, it contains |ΨST | arrays (called answer

arrays) each of which stores the k-LNN answer of one cell of ΨST . This part takes

O(k|ΨST |) space. In addition to that, we also need to record the structure of ΨST . For each

edge ei of T , we use a sorted list Li to store the “cell-decomposition” of ei. Specifically,

the intersection of each cell C ∈ ΨST and ei is an “interval” (may be empty). These

intervals are stored in Li in the order they appear on ei. Note that this part takes

O(t+ |ΨST |) space. Indeed, if an edge is decomposed into p pieces (intervals) by ΨST , then

it at least entirely contains (p − 2) cells of ΨST (so we can charge these (p − 2) pieces

to the corresponding cells and the remaining two pieces to the edge). Therefore, the

total space of the LVD data structure is O(t+ k|ΨST |). To answer a query q = (i, δ), we

first do a binary search in the list Li to know which cell q locates in, and then use the

answer array corresponding to the cell to output the k-LNN of q directly. The query

time is clearly O(log |ΨST |+ k).

Next, we consider the construction of the LVD data structure. The first step of the

construction is to compute all the centers of S and sort the centers in the interior of each

edge e in the order they appear on e. We are able to get this done in O(t+n2 log n) time

(see Section 5.5.1). After the centers are computed and sorted, we begin to construct

100

the LVD data structure. Choose a vertex v of T . Starting at v, we do a walk in T along

with the edges of T . The walk visits each edge of T exactly twice and finally goes back

to v; see Figure 5.6. During the walk, we maintain a (balanced) binary search tree for

NNPx(a1), . . . ,NNPx(an) w.r.t. the current location x. By exploiting this BST, we can

work out the cell-decomposition of each edge ei (i.e., the sorted list Li) at the time we

first visit ei in the walk. Specifically, we track the k-LNN when walking along with ei,

which can be obtained by retrieving the k largest elements from the BST. Whenever

the k-LNN changes, a new cell of ΨST is found, so we need to create a new answer array

to store the k-LNN information. Also, we need to update the sorted list Li. In this

way, after we go through ei (for the first time), Li is correctly computed. At the second

visit of ei, we do nothing but maintain the binary search tree. When we finish the walk

and go back to v, the construction of the LVD data structure is done. Clearly, in the

process of the walk, we only need to maintain the binary search tree and retrieve the

k-LNN when we arrive at (resp., leave from) a center of S from (resp., to) one of its

branches. With a careful implementation and analysis (see 5.5.2), we can complete the

entire walk and hence the entire LVD structure in O(t+n2 log n+n2k) time. Combined

with the bounds in Section 5.3.1, we then have the following results.

v

Figure 5.6: A walk in tree visiting each edge exactly twice.

Theorem 5.6. Given a tree space T represented by a t-vertex weighted tree and a set

S of n stochastic points in T , one can construct in O(t+ n2 log n+ n2k) time an LVD

data structure to answer k-LNN queries in O(log n+ k) time. The LVD data structure

uses worst-case O(t + kn2) space and average-case O(t + k2n) space. Furthermore, if

the existence probabilities of the points in S are constant-far from 0, then the LVD data

structure uses worst-case O(t+ k2n) space.

101

5.4 Proofs

5.4.1 Proof of Theorem 5.1

Clearly, we can represent T by a new tree T ′ with O(t + n) vertices such that each

stochastic point in S lies at a vertex of T ′. The tree T ′ is obtained by adding some new

vertices to T for the stochastic points lying in the interiors of the edges and “breaking”

those edges. It can be easily computed in O(t+ n log n) time by sorting the stochastic

points in the interior of each edge (in the order they appear on the edge). Next, we try

to simplify T ′ to make it have O(n) vertices. We say a vertex of T ′ is empty if there

is no stochastic point lying at it. The first step is to delete the branches of T ′ which

do not contain any stochastic points. Specifically, if T ′ has an empty leaf v, we then

remove v and its adjacent edge from T ′. We keep doing this until T ′ has no empty leaf.

After this step, the underlying tree space of T ′ changes to be a subspace of the original

T . The second step is to compress the “empty chains” in T ′. Specifically, if T ′ has a

degree-2 empty vertex v with edges e1 = (v, v′) and e2 = (v, v′′), we replace v, e1, e2

with a single edge e = (v′, v′′) whose weight is the sum of the weights of e1 and e2.

Note that this operation does not change the underlying tree space. We keep doing this

until T ′ has no degree-2 empty vertex. These two steps of simplification can be done in

O(t + n) time. In the resulting T ′, every empty vertex has a degree at least 3. Thus,

T ′ has O(n) vertices. Furthermore, T ′ represents a tree space T ′ such that S ⊂ T ′ ⊆ T
and each stochastic point in S is located at a vertex of T ′.

5.4.2 Proof of Lemma 5.1

The “only if” part is easy to see. Assume that S′ is legal. Let x ∈ S\{a1} be any

point. If x does not satisfy the condition (1) and (2), i.e., ω(x, S′) is defined and

ω(x, S′) 6= ω(p̄(ai), S
′), then it must satisfy the condition (3) because both ω(x, S′) and

ω(p̄(ai), S
′) are in S′. To show the “if” part, assume that S′ is not legal. Then we

can find distinct points x, y ∈ S′ such that dist(x, y) < `. Let z be the lowest common

ancestor of x and y in T . Without loss of generality, we can assume x 6= z. Suppose

x̂ is the child of z such that x ∈ V (Tx̂). We consider two cases, ω(z, S′) /∈ V (Tx̂) and

ω(z, S′) ∈ V (Tx̂) (note that ω(z, S′) is defined since both x and y are in V (Tz)∩S′). In

the case of ω(z, S′) /∈ V (Tx̂), we show that x̂ satisfies none of the three conditions. First,

102

because x ∈ V (Tx̂) ∩ S′, ω(x̂, S′) is clearly defined so that x̂ violates the condition (1).

Second, we have ω(x̂, S′) 6= ω(p̄(x̂), S′) since ω(p̄(x̂), S′) = ω(z, S′) /∈ V (Tx̂), which

implies that x̂ violates the condition (2). Thirdly, since ω(z, S′) /∈ V (Tx̂), we have

dist(ω(x̂, S′), ω(p̄(x̂), S′)) = dist(ω(x̂, S′), z) + dist(z, ω(z, S′)).

Further, by the definition of witness, dep(ω(x̂, S′)) ≤ dep(x) and thus dist(ω(x̂, S′), z) ≤
dist(x, z). Similarly, dep(ω(z, S′)) ≤ dep(y), so dist(p̄(x̂), ω(z, S′)) = dist(z, ω(z, S′)) ≤
dist(z, y). Note that dist(x, z) + dist(z, y) = dist(x, y) < l. Therefore, we can conclude

that dist(ω(x̂, S′), ω(p̄(x̂), S′)) < l, which implies that x̂ violates the condition (3). In

the case of ω(z, S′) ∈ V (Tx̂), we notice that y 6= z; otherwise ω(z, S′) = z /∈ V (Tx̂).

Suppose ŷ is the child of z such that y ∈ V (Tŷ). Then it is easy to see that ŷ satisfies

none of the three conditions, by applying the same argument used in the previous case

(note that the situation here is dual to the previous case).

5.4.3 Proof of Lemma 5.2

By definition, when y ∈ V (Tx), Py(x) is the probability that a realization S′ ⊆R V (Tx)

is legal and ω(x, S′) = y. If x = y, x must be in S′ in order to have ω(x, S′) = y.

Otherwise, if x 6= y, x must not be in S′. Thus, the meaning of the factor Q in the

formula is clear. Then we consider the vertices in V (Tx) other than x. Clearly, if S′

is legal, then S′ ∩ V (Tc) is also legal for any c ∈ ch(x). Also, if ω(x, S′) = y, then

w(c, S′ ∩ V (Tc)) = y if y ∈ V (Tc) and w(p̄(c), (S′ ∩ V (Tc)) ∪ {y}) = y if y /∈ V (Tc).

Therefore, the probabilities of all the legal instances S′ ⊆ V (Tx) satisfying ω(x, S′) = y

are counted by the right-hand side of the formula. It suffices to show that the right-

hand side does not overestimate the probability, i.e., every instance S′ counted by the

right-hand side truly satisfies the desired properties: S′ is legal and ω(x, S′) = y. Let S′

be an instance counted by the right-hand side. The property ω(x, S′) = y is obviously

satisfied. To see S′ is legal, by Lemma 5.1, we only need to verify the local legality

of S′ at every vertex in S\{a1}. Since S′ does not contain any vertices outside V (Tx),

the local legalities at x and all ai /∈ V (Tx) clearly hold. Also, S′ is locally legal at any

ai ∈ V (Tx)\(ch(x)∪{x}), because each factor Py(c) forces S′∩V (Tc) to be legal. Now we

verify that S′ is locally legal at any c ∈ ch(x). If y ∈ V (Tc), then ω(c, S′) = ω(x, S′) = y

and hence S′ is legal at c. If y /∈ V (Tc), then the factor Py(c) forces (S′ ∩ V (Tc)) ∪ {y}

103

to be legal and thus either ω(c, S′) is not defined or dist(ω(c, S′), y) ≥ `, which implies

that S′ is legal at c.

5.4.4 Proof of Lemma 5.3

When y ∈ V (Tp̄(x))\V (Tx), Py(x) is the probability that a realization S′ ⊆R V (Tx)

satisfies the conditions that S′ ∪ {y} is legal and ω(p̄(x), S′ ∪ {y}) = y. Clearly, the

empty sample S′ = ∅ satisfies the two conditions and its probability is computed by

the first term of the formula. If S′ is not empty, then ω(x, S′) is defined and must be

some vertex z ∈ V (Tx). In this case, we need y ≺ z to guarantee ω(p̄(x), S′ ∪ {y}) = y.

Also, we need dist(z, y) ≥ ` to ensure the legality of S′ ∪ {y}. Therefore, z must be a

vertex in Γ . Now it suffices to show that the right-hand side of the formula does not

overestimate the probability. In other words, we want that, if S′ ⊆ V (Tx) is legal and

ω(x, S′) = z for some z ∈ Γ , then ω(p̄(x), S′ ∪ {y}) = y and S′ ∪ {y} is also legal.

The former can be easily seen from the facts that ω(x, S′) = z and y ≺ z. To see the

latter, by Lemma 5.1, we only need to verify that S′∪{y} is locally legal at x (the local

legalities of S′ ∪ {y} at any vertex other than x is clear). Note that z ∈ Γ , so we have

dist(ω(x, S′), y) = dist(z, y) ≥ `, which completes the proof.

5.4.5 Proof of Lemma 5.4

Clearly, if yi ≺ zj , then yi ≺ zj′ for any j′ > j. Also, if dist(zj , yi) ≥ `, then

dist(zj′ , yi) ≥ ` for any j′ > j, because both the paths zj → yi and zj′ → yi go through

the vertex p̄(x). Thus, we know that Γy = {zj , zj+1, . . . , zm} for some j ∈ {1, . . . ,m}.
To show the remaining part of the lemma, we notice that Γyi = Γ ′yi ∩ Γ ′′yi , where

Γ ′yi = {z ∈ V (Tx) : yi ≺ z} and Γ ′′yi = {z ∈ V (Tx) : dist(z, yi) ≥ `}. Both Γ ′yi and

Γ ′′yi are suffixes of the sequence (z1, . . . , zm). Furthermore, we have Γ ′y1 ⊇ · · · ⊇ Γ ′yr and

Γ ′′y1 ⊆ · · · ⊆ Γ ′′yr . As such, we can conclude that Γy1 ⊆ · · · ⊆ Γyk ⊇ · · · ⊇ Γyr for some

k ∈ {1, . . . , t}.

5.4.6 Proof of Lemma 5.5

Suppose the tree space T is represented by a t-vertex weighted tree T0. Let e be an

edge of T0, and ê ⊆ T be the subspace corresponding to e. Assume that v1, . . . , vk

104

are the vertices of T lying in ê (sorted in the order they appear on ê). We claim that

among v1, . . . , vk, there are only constant number of non-chain vertices. If the root of

T is not in {v1, . . . , vk}, then only v1, v2, vk−1, vk can be non-chain vertices. Otherwise,

if the root is some vi, then only v1, v2, vi−1, vi, vi+1, vk−1, vk can be non-chain vertices.

In both the cases, the number of the non-chain vertices is constant. Finally, since T0

has (t− 1) edges, the total number of the non-chain vertices of T is bounded by O(t).

5.4.7 Proof of Lemma 5.6

First, for any index r ∈ [mi,mi+1), we show that wr ≤ 2r−mi · wmi . When r = mi, the

inequality clearly holds. Assume, inductively, that the inequality holds for any index

less than r′ (mi < r′ < mi+1). Since r′ /∈ I and mi ∈ I, we then have

wr′ ≤
r′−1∑
j=1

wj < wmi +
r′−1∑
j=mi

2j−mi · wmi = 2r
′−mi · wmi ,

which completes the induction. It follows that

si =
∑

j<mi+1

wj < wmi +

mi+1−1∑
j=mi

2j−mi · wmi = 2mi+1−mi · wmi .

Thus, |Ji| = O(log1+ε
si
wmi

) = O(ε−1(mi+1 −mi)). Since |J | = ∑k
i=1 |Ji|, we can imme-

diately conclude that |J | = O(ε−1n).

5.4.8 Proof of Theorem 5.3

Suppose that the stochastic dataset S = {a1, . . . , an} is given in a metric space X with

the metric dX . Let GX be the metric graph of S, i.e., a weighted complete graph with

vertex-set S such that the weight of each edge (ai, aj) is equal to dX (ai, aj). Also, let T

be a minimum spanning tree of GX . We then directly apply the method in Section 5.2.2

to the tree T to compute the quantity E via O(ε−1n) threshold probability queries.

(Note that the threshold probability queries are made with respect to the metric of X ,

the tree T is only used for choosing thresholds.) We show that E gives us a (1 + ε)-

approximation for E[κ(S)]. The fact E ≤ E[κ(S)] can be easily verified. To see the

inequality E[κ(S)] ≤ (1 + ε)E, we review the analysis in Section 5.2.2. Again, we use

e1, . . . , en−1 to denote the edges of T with lengths (weights) w1 ≤ · · · ≤ wn−1. As

105

that in Section 5.2.2, we have the index set I = {m1, . . . ,mk}, the jumps J1, . . . , Jk,

and J = J1 ∪ · · · ∪ Jk = {`1, . . . , `|J |}. Now we only need to verify that if `i and `i+1

belong to different jumps, then there is no possible value of κ(S)] within the range

(`i, `i+1). As long as this is true, we can use the same argument as in Section 5.2.2 to

show E[κ(S)] ≤ (1 + ε)E. Let dT (ai, aj) be the distance between ai and aj in T (i.e.,

the length of simple simple path between ai and aj in T). Assume for a contradiction

that `i ∈ Jr, `i+1 ∈ Jr+1, and there exists x, y ∈ S such that `i < dX (x, y) < `i+1.

Observe that `i = sr =
∑
j<mr+1

wj and `i+1 = wmr+1 . Since dT (x, y) ≥ dX (x, y) > `i,

there must be an edge em with m ≥ mr+1 on the path between x and y in T . However,

this contradicts the fact that T is a minimum spanning tree, because dX (x, y) < `i+1.

As such, there is no possible value of κ(S) within the range (`i, `i+1). By applying the

analysis in Section 5.2.2, it turns out that E[κ(S)] ≤ (1 + ε)E.

5.4.9 Proof of Lemma 5.7

Let x ∈ T be any point. We use Bx to denote the (open) δ-ball about x with δ small

enough such that ĉ ∈ Bx only if ĉ = x for any center c (not necessarily critical). We first

notice that NNPq(ai) ≤ NNPx(ai) for any q ∈ Bx and any ai ∈ S. This is because if

dist(x, aj) < dist(x, ai) then dist(q, aj) < dist(q, ai). We further claim that NNPq(ai) <

NNPx(ai) for q ∈ Bx iff there is a center c (not necessarily critical) with ĉ = x such that

ai is involved by c and q is in a branch of c other than the one that contains ai. To see

this, consider a point aj ∈ S with dist(x, aj) = dist(x, ai) and dist(q, aj) < dist(q, ai).

Note that such a point always exists, otherwise NNPq(ai) = NNPx(ai). It is evident

that q and aj locate in the same connected component of T \x, which is other than the

component contains ai. Thus, the center c = [mij] satisfies the desired properties. Now

let us prove the lemma. Recall that Γ is the set of the critical centers of S. We show

that any connected subspace U ⊆ T intersecting with (exactly) p cells in ΨST satisfies

the condition that p ≤∑c∈Γ,ĉ∈U deg(c) + 1. When p = 1, this is trivially true. Assume

that for any p < p′ the argument holds, and consider the case p = p′. Let C be a cell

satisfying C∩U ∩U\C 6= ∅. Note that such a cell always exists, unless U only intersects

with one cell and then p = 1 (as U is connected). Choose a point x ∈ C ∩ U ∩ U\C
and define X = {c ∈ Γ : ĉ = x}. Suppose U\x has l connected components U1, . . . , Ul

among which there are l′ components not intersecting with C. We denote by pi the

106

number of the cells in ΨST intersecting with Ui. Then we have

p ≤
l∑

i=1

pi − (l − l′) + 1.

This is because the sum of all the pi’s counts the cell C exactly (l− l′) times and other

cells intersecting with U exactly once. It is easy to observe that pi < p. Then by our

induction hypothesis, we have

l∑
i=1

pi ≤
∑

c∈Γ,ĉ∈U\x
deg(c) + l =

∑
c∈Γ\X,ĉ∈U

deg(c) + l.

Thus, it follows that

p ≤
∑

c∈Γ\X,ĉ∈U
deg(c) + l′ + 1.

It now suffices to show l′ ≤ ∑
c∈X deg(c). Let Ui be a component not intersecting

with C and q ∈ Ui ∩ Bx be any point. Since q /∈ C and q ∈ Bx, x and q have

different k-LNNs. As such, there exists a stochastic point aj in the k-LNN of x such

that NNPq(aj) < NNPx(aj) (otherwise x and q have the same k-LNN, according to

our observation NNPq(·) ≤ NNPx(·) presented at the beginning of the proof). Since

NNPq(aj) < NNPx(aj), there is a center c with ĉ = x such that aj is involved by c and

q is in one branch of c (again, this follows from our observation at the beginning). Note

that c ∈ X as it is critical (c involves aj and aj is in the k-LNN of x). We then charge

Ui to the branch of c containing q. We do this for all the l′ components not intersecting

with C. It is easy to verify that each branch of each center c ∈ X is charged at most

once, which immediately implies that l′ ≤ ∑
c∈X deg(c). Consequently, the argument

holds for p = p′ and hence for any p. By setting U = T , we conclude that |ΨST | ≤ ξ + 1.

5.4.10 Proof of Lemma 5.8

We first prove the special case when d = 1. We show that the degree-sum of all the

1-shallow centers (i.e., the centers of depth 0 with respect to S) is at most 2n − 2. If

n = 1, this claim is clearly true, as there is no center. Assume the claim holds for any

n < n0, and consider the case that n = n0. Let c be a center with depS(c) = 0. Suppose

deg(c) = g and Sc ⊆ S is the set of points involved by c. Without loss of generality,

assume a1 ∈ Sc. We observe the following three facts.

107

• For ai, aj /∈ Sc, depS([mij]) = 0 only if ai and aj are in the same connected components

of T \ĉ. To see this, assume that ai and aj locate in different connected components.

Then dist(a1,mij) < dist(ai,mij) = dist(aj ,mij) and hence depS([mij]) > 0.

• For ai ∈ Sc and aj /∈ Sc, depS([mij]) = 0 only if ai and aj are in the same connected

component of T \ĉ, or aj is not in any branch of c. To see this, assume ai and aj are

located in different connected components of T \ĉ and aj is in the branch of c containing

a1 (without loss of generality). Then dist(a1,mij) < dist(ai,mij) = dist(aj ,mij) and

hence depS([mij]) > 0.

• Let ai /∈ Sc be a point which does not locate in any branch of c. Then the degree of

the center [m1i] does not change if we “delete” all the points in Sc\{a1}. Formally, set

S′ = S\Sc ∪ {a1} and denote by [m′1i] the center of S′ that contains the midpoint of a1

and ai. Then deg([mij]) = deg([m′ij]). This observation follows immediately from the

fact that all the points in Sc locate in the same connected components of T \m1i.

With these observations, we now bound the degree-sum of the 1-shallow centers of

S (denoted by φ). Suppose that T \ĉ has p connected components U1, . . . , Up, where

S ∩Ui = Ri. If Ui is a branch of c, we use λi to denote the degree-sum of the 1-shallow

centers of Ri, otherwise λi denotes the degree-sum of the 1-shallow centers of Ri ∪ {a1}
(here the depths of the considered centers are with respect to Ri or Ri ∪ {a1} instead

of S). Based on the above three observations and the induction hypothesis, we have

φ ≤
p∑
i=1

λi + g ≤ 2
p∑
i=1

|Ri| − 2g + g ≤ 2n− g ≤ 2n− 2.

Thus, the case of d = 1 is verified. To prove the result for a general d, we use the

sampling argument. We sample each point in S independently with probability 1/d.

Let S′ be the resulting random sample and ϕ be a random variable indicating the

degree-sum of the 1-shallow centers of S′ (the depths of the considered centers are with

respect to S′). The previous proof for d = 1 implies that E[ϕ] ≤ 2n/d. Clearly, each

center of S′ is “contributed” by some center of S. For each center c of S, define a random

variable σ(c) such that σ(c) = 0 if c does not contribute a 1-shallow center of S′, and

σ(c) = deg(c′) if c contributes a 1-shallow center c′ of S′. The event σ(c) = 0 happens

whenever there are at most one point involved by c being sampled to S′, or there are

points closer to ĉ (than those involved by c) being sampled to S′. We claim that, for

any d-shallow center c of S, E[σ(c)] = Ω(deg(c)/d2). To see this, we set g = deg(c)

108

and θ = depS(c) < d. Without loss of generality, assume a1, . . . , ag ∈ S are involved

by c and belong to distinct branches of c. Define another random variable τ such that

τ = |S′∩{a1, . . . , ag}| if c contributes a 1-shallow center and there are at least two points

among a1, . . . , ag being sampled to S′, and τ = 0 otherwise. Observe that σ(c) ≥ τ .

Thus, we have

E[σ(c)] ≥ E[τ] =

Å
1− 1

d

ãθ Çg
d
− g

d

Å
1− 1

d

ãg−1
å
≥ g

4d2
,

since θ < d and g ≥ 2. It follows that

1

4d2

∑
c∈Hd

deg(c) ≤
∑
c∈Hd

E[σ(c)] ≤ E[ϕ] ≤ 2n

d
,

where Hd is the set of the d-shallow centers of S. As a result, the degree-sum of the

d-shallow centers of S is at most 8dn, completing the proof.

5.4.11 Proof of Lemma 5.9

Suppose πa1 , . . . , πan ∈ [ε, 1] for a constant ε > 0. Let c be a critical center of S with

depS(c) = d. Without loss of generality, we assume

• dist(a1, ĉ) ≤ dist(a2, ĉ) ≤ · · · ≤ dist(ad, ĉ) < diam(c),

• ad+1 is involved by c and in the k-LNN of ĉ.

We claim that d = O(k). The claim is trivial when d ≤ k, thus assume d > k. Since

ad+1 is in the k-LNN of ĉ, there must exist i ≤ k such that NNP ĉ(ai) < NNP ĉ(ad+1).

It then follows that

(1− ε)d−i+1 ≥
d∏
j=i

(1− πaj) ≥ πad+1

d∏
j=i

(1− πaj) > πai ≥ ε.

As a result, d < log1−ε ε+ i− 1 ≤ log1−ε ε+ k = O(k).

5.4.12 Proof of Lemma 5.10

Without loss of generality, assume a1, . . . , ak are k points closer to ĉ than the c-involved

points and πa1 , . . . , πak are greater than µ0. Let x ∈ S be any point involved by c. Since

πx is drawn from f , we must have πx ≤ µ by definition. We now show that x is not in

the k-LNN of ĉ. We have the inequality

NNP ĉ(x)

NNP ĉ(ai)
≤ πx(1− πai)

πai
<
µ(1− µ0)

µ0
= 1,

109

for i ∈ {1, . . . , k}. It follows that there are at least k points in S which have greater

probabilities of being the nearest neighbor of ĉ than x. Thus, x is not in the k-LNN

of ĉ. Since x is arbitrarily chosen, we know that c is not critical, which completes the

proof.

5.5 Details for constructing LVD data structure

5.5.1 Computing and sorting the centers

First of all, we apply Theorem 5.1 to obtain a new tree-space T ′ represented by an

O(n)-vertex tree T ′ such that S ⊂ T ′ ⊆ T and each stochastic point in S is located

at a vertex of T ′. This step takes O(t + n log n) time. Note that all the centers of S

must be in T ′, so we can first work on T ′ and then map the computed centers back

to T . Before computing the centers, we do some preprocessing on the tree T ′. For all

pairs (e, v) where e is an edge and v is a vertex of T ′, we figure out the side of e that

v locates on. This can be easily done in O(n2) time with a careful implementation.

Furthermore, for each vertex v of T ′, we create a sorted list Bv which contains all points

in S sorted according to their distances to v. This step can also be done in O(n2) time

as follows. Observe that, if v and v′ are adjacent vertices connected by an edge e, we

can modify the sorted list Bv to obtain the list Bv′ . Specifically, we separate Bv into

two sorted sublists each of which contains the stochastic points on one side of e. Then

Bv′ can be computed by merging these two sorted sublists in O(n) time. Based on this

observation, we can first straightforwardly create the sorted list for one vertex of T ′ in

O(n log n) time, and keep modifying it to obtain the lists for other vertices, which takes

O(n2) time in total. After the preprocessing, we are ready to compute the centers of S.

The centers lying at any vertex v of T ′ can be directly found from the sorted list Bv.

To compute the centers lying in the interior of an edge e = (v, v′), we utilize the sorted

list Bv (or Bv′). Again, we separate Bv into two sorted sublists (say B′v and B′′v) each

of which contains the stochastic points on one side of e. We notice that a center in the

interior of e involves a set A′ of stochastic points located at the vertices in B′v and a

set A′′ of stochastic points located at the vertices in B′′v . The points in A′ must have

the same distance to v (say d′), so are the points in A′′ (say d′′). Furthermore, we must

have 0 < d′′ − d′ < w, where w is the weight (length) of e. With these observations,

110

one can easily apply a standard sliding window technique to compute the centers in the

interior of e in O(α + n) time where α is the number of the centers computed. Thus,

the computation for all edges takes O(n2) time. After the centers are computed, we

sort the centers in the interior of each edge e in the order they appear on e. This part

takes O(n2 log n) time in worst case. The final step is to map the centers back to the

original tree space T . If T ′ is constructed by applying the method in Section 5.1, then

it is easy to keep a “relation” between T ′ and T during the construction. For example,

for each edge e of T ′, we can record the edges of T intersecting with e in the order the

intersections appear on e. With this information, as long as the centers in the interior

of each edge of T ′ is sorted, the entire mapping process can be done in O(t+ n2) time.

At the end, after we map the centers to T , we need to do another sort for the centers in

the interior of each edge of T . The overall time for computing and sorting the centers

is O(t+ n2 log n).

5.5.2 Constructing the LVD during the walk

During the walk, the nearest neighbor probabilities of a1, . . . , an change only when we

arrive at (resp., leave from) a center c from (resp., to) one of its branches. At this time,

we need to update the nearest neighbor probabilities, maintain the binary search tree,

and (possibly) retrieve the k-LNN from the binary search tree. Let mc be the number

of the stochastic points involved by c. Note that only these mc stochastic points may

change their nearest neighbor probabilities (this may be not true if there are other

centers which have the same location as c, but the changes of the nearest neighbor

probabilities of the points involved by other centers can be charged to those centers

instead of c). The update of the nearest neighbor probabilities can be easily done in

O(mc) time, if we store (before the walk) for each branch of a center c the product of

the non-existence probabilities of the c-involved points in this branch. The maintenance

of the binary search tree is achieved by O(mc) deletion and insertion operations, and

thus takes O(mc log n) time. Finally, the time for retrieving the k-LNN from the binary

search tree is O(log n + k). Therefore, every time in the walk we arrive at c from

one of its branches we spend O(mc log n + k) time. Similarly for every time we leave

from c along one of the branches in the walk. During the walk, we arrive at (resp.,

leave from) c O(deg(c)) times in total. It follows that the time cost charged to c is

111

O(deg(c) ·mc log n+ deg(c) · k). Since we have
∑
c deg(c) ·mc = O(n2), the overall time

cost for the walk is O(t + n2 log n + n2k). (There are also some low-level details for

implementing the walk, e.g., how to know whether we are arriving at a center from one

of its branches, etc. Such issues can be easily handled with enough preprocessing work

before the walk.)

Chapter 6

Range closest pair queries

In this chapter, we study the range closest pair query problem when the query range

Q is a (1) p-sided axis-aligned rectangle for p = 2, 3, 4; (2) halfplane; and (3) radius-

fixed disc. In addition, we present a generic framework for solving the range closest

pair query approximately. Applications of this framework include solutions where the

query region is (1) a disc, (2) any translated and/or scaled copy of a so-called fat axes-

aligned rectangle, (3) any translated and/or scaled copy of a fat convex shape of O(1)

complexity.

The high-level idea of all our solutions is based on the concept of a candidate pair;

the same idea is also used in [2, 40]. Formally, a candidate pair is a pair of points that

is reported by at least one query. It is clear that among all the Θ(n2) pairs in a set of

n input points, we only need to consider the candidate pairs. This motivates the so-

called candidate pair-based approach, which first proves a sub-quadratic (usually linear,

or nearly linear) bound on the number of candidate pairs and then builds on them a

proper data structure that can efficiently answer each query.

Throughout the chapter, the reader will find that different strategies are applied to

help bound the number of candidate pairs: we may analyze the complexity directly, or

under some reasonable assumptions, or in a subproblem decomposed from the original

one. (Indeed, many of these combinatorial analyses are of independent interest.) Nev-

ertheless, the goal is to prove that there can be only a small number of candidate pairs

so that we can design an efficient data structure and reporting algorithm.

Finally, we introduce some global naming conventions used throughout the chapter.

112

113

Let S be a set of n input points in the plane and Q be the query range. Let CS consist

of all candidate pairs when the type of Q is fixed. Define dist(·, ·) as the L2-distance

metric. Also, for a point p in the plane, we write its abscissa and ordinate as p.x and

p.y, respectively.

6.1 Axes-aligned rectangle query

In this section, we consider the range closest pair problem with the query being a p-sided

axes-aligned rectangle for p = 2, 3, 4.

6.1.1 Quadrant query

Let the query range Q = [x,∞)×[y,∞) be any northeast quadrant, and for convenience,

we write Q = (x, y) for short. From [40], we know the number of candidate pairs

is O(n). Let CS = {θ1, θ2, . . . , θm} consist of all such pairs, where θi = (ai, bi) and

m = O(n). For each θi, define wi to be the weighted quadrant (−∞,min(a.x, b.x)] ×
(−∞,min(a.y, b.y)] with the weight equal to dist(a, b). Let W = {w1, . . . , wm}, and

assume that the elements in W are sorted in increasing order of their weights. We then

create a planar subdivision, A, by successively overlaying the quadrants in W. (See

Figure 6.1.) Formally, the cell corresponding to the quadrant wi, denoted by c(wi), is

wi \
⋃i−1
j=1wj , and it is easy to verify that the closest pair in Q = (x, y) is θi if and only if

(x, y) lies in c(wi). Therefore, the query is naturally mapped to a planar point location

problem, which can be solved optimally by, for instance, persistent search trees [52].

Finally, we observe that every quadrant creates at most two intersections, hence, A
has O(m) = O(n) vertices, edges, and faces. Therefore, the point location structure

occupies O(n) space and can answer each query in O(log n) time. As such, we claim

the following result.

Theorem 6.1. A set S of n points in R2 can be preprocessed into a data structure of

size O(n) such that, for any quadrant query Q, the closest pair in S ∩Q can be reported

in O(log n) time.

114

w1

w2

w3

w4

w6

w5

(a) Corners of weighted quadrants
{w1, . . . , w6}, indexed by increasing
weight.

w1

w2

w3

w6

w5

w4

(b) The subdivision A induced
by quadrants {w1, . . . , w6}.

Figure 6.1: Illustrating weighted quadrants and their induced subdivision.

6.1.2 Strip query

Again, let CS denote the candidate pair set when the query Q is a closed subset of R2

bounded by two vertical lines, which we will refer to as a strip. It has been proved in

[55] that |CS | is O(n log n), and we will further show that this bound is indeed tight.

Construct a set of points Sstrip = {a0, a2, . . . , an−1}, where n is assumed to be a power

of 2, and si = (i/n, 3mir(i)). Here, mir(i) is a function that mirrors the binary represen-

tation of i. Formally, let i be written as (bk−1bk−2 . . . b1b0)2 in base-2 where k = log n;

then mir(i) = (b0b1 . . . bk−2bk−1)2. We then have the following lemma.

Lemma 6.1. The number of candidate pairs of Sstrip is Ω(n log n).

Proof. First, it is easy to see that ai and ai+1 form a candidate pair (w.r.t. the

strip defined by the vertical lines containing ai and ai+1, respectively) as there are no

other points in between. This contributes n − 1 pairs. Then, the idea is to evenly

divide these n points into two subsets, i.e., {a2i} and {a2i+1}, and separate (vertically)

the two sets as far as possible. This way, the pairwise-distances crossing the two sets

will be significantly larger than those generated from the same set. Thus, we can treat

each subset as an independent instance of size n/2, i.e., each subset will contribute

n/2− 1 pairs (in the form of (ai, ai+2)). We then recursively work on these two smaller

115

subproblems, and the same pattern recurs. See Figure 6.2 for an example.

Finally, it can be verified that the 3mir(i)-ordinate constraint guarantees that the

vertical distances between any two different groups (of the same size) are significantly

large so that the two groups can be considered independently. (Any integer greater

than 3 works.) Therefore, let E(n) denote the number of candidate pairs in Sstrip.

Then E(n) ≥ 2E(n/2) + n− 1, which implies that E(n) = Ω(n log n). �

a0

a1

a2

a3

a4

a5

a6

a7

a0

a2

a4

a6

a0

a4

Figure 6.2: An example of eight points, recursively showing three groups whose sizes
decrease at each step by a factor of 2. The left, middle, and right group contributes at
least 7, 3, and 1 candidate pairs, respectively.

From Lemma 6.1 and the result in [55] it follows that the number of candidate pairs

for strip queries in R2 is Θ(n log n). We now describe an efficient query structure.

Let Q = [u, v] × (−∞,∞) be the query strip and (a, b) be a candidate pair. Then

(a, b) ∈ Q iff −∞ < u ≤ min(a.x, b.x) and max(a.x, b.x) ≤ v < ∞, i.e., iff the point

(u, v) is in the quadrant (−∞,min(a.x, b.x)] × [max(a.x, b.x),∞). For each candidate

pair θ ∈ CS where θ = (a, b), we map it to a weighted quadrant (−∞,min(a.x, b.x)] ×
[max(a.x, b.x),∞) with the weight equal to dist(a, b). Thus, one can build a data struc-

ture similar to the one in Section 6.1.1 and solve the strip query in O(log |CS |) =

O(log(n log n)) = O(log n) time using O(n log n) space. We therefore obtain the follow-

ing theorem, which improves the previous results in [55] by a log n factor in space.

Theorem 6.2. A set S of n points in R2 can be preprocessed into a data structure of

size O(n log n) such that, for any query strip Q, the closest pair in S∩Q can be reported

in O(log n) time.

Alternatively, we shall see, in Section 6.1.3, that there are only O(n) candidate

pairs if S is what we call O(1)-flat (see Definition 6.1). Then we immediately have the

following.

116

Theorem 6.3. If S is O(1)-flat, it can be preprocessed into a data structure size O(n)

such that, for any strip Q, the closest pair in S ∩Q can be reported in O(log n) time.

6.1.3 3-sided rectangular query

The candidate pair based method does not work well when Q is a 3-sided rectangle

(say, Q = [x1, x2]× (−∞, y]), as Lemma 6.2 shows that in the worst case there can be

a quadratic number of candidate pairs so that the space will be too high.

Lemma 6.2. |CS | = Ω(n2) if |S| = Θ(n).

Proof. We create two point sets SL and SR, each of which contains n points. Let

SL = {l0, . . . , ln−1} and SR = {r0, . . . , rn−1}, where lj = (j/n, j/n) and ri = (2 −
i/n, 1 − 3i), for i, j = 0, 1, . . . , n − 1. (We note that the points in SR are sorted in

decreasing order of their abscissas.) We shall see that there are at least n2 candidate

pairs. Indeed, any lj ∈ SL and ri ∈ SR, (lj , ri) forms a candidate pair. To see this, we fix

ri = (2−i/n, 1−3i) and consider the following n 3-sided query rectangles, Q
(i)
0 , . . . , Q

(i)
n−1,

where Q
(i)
j = [(j − 0.5)/n, 2 − (i − 0.5)/n] × (−∞, (j + 0.5)/n]; see Figure 6.3 for an

example. It is clear that Q
(i)
j ∩ (SL ∪ SR) = {lj , ri, ri+1, . . . , rn−1}, and one can verify

that

1. dist(lj , ri) < dist(lj , ri+1) < · · · < dist(lj , rn−1),

2. dist(ri, ri+1) < dist(ri+1, ri+2) < · · · < dist(rn−1, rn−2), and

3. dist(lj , ri) < dist(ri, ri+1).

Therefore, the closest pair in Q
(i)
j ∩ (SL ∪ SR) is (lj , ri). As such, there are at least n2

distinct candidate pairs among the given 2n points. �

One may observe that, in the worst-case example above, SR has a skewed distribu-

tion, i.e., the slope between consecutive points can be very large and unbounded. In

fact, if we prevent any large consecutive slopes (in absolute values) defined by points in

the input set, there can be only linear number candidate pairs. To formally see this, we

introduce in Definition 6.1 a concept called α-flat and show in Lemma 6.3 that if S is

O(1)-flat there can be only a linear number of candidate pairs.

117

1

SL

r

(a) Fix some r ∈ SR. For every l ∈
SL, (l, r) is a candidate pair for some
3-sided query Q.

SL

. . .

SR

. .
.

(b) Illustrating candidate pairs be-
tween SL and SR.

Figure 6.3: A worst-case example for a 3-sided rectangular query

Definition 6.1. Let α ∈ [0, π/2) be a constant, and assume S = {s1, . . . , sn} is sorted

in x-order. Then, S is α-flat if and only if, for all 1 ≤ i < n,∣∣∣∣ si.y − si+1.y

si.x− si+1.x

∣∣∣∣ ≤ tanα.

Corollary 6.1. If S = {s1, . . . , sn} is α-flat, then for any 1 ≤ i < j ≤ n we have

|(si.y − sj .y)/(si.x− sj .x)| ≤ tanα.

Lemma 6.3. There are only O(n) candidate pairs if S is O(1)-flat for any 3-sided query

rectangle.

Proof. Assume S is α-flat, where α = O(1). Let CS = C+
S ∪ C−S consist of all the

candidate pairs of S, where the slope of each pair in C+
S (resp. C−S) is positive (resp.

non-positive). For each (a, b) ∈ C+
S where a.x < b.x, we charge its existence to b;

symmetrically, for each (a, b) ∈ C−S where a.x < b.x, we charge it to a. We shall show

that |C−S | = O(n), and via a symmetric argument, |C+
S | = O(n), which implies that

|CS | = |C+
S |+ |C−S | = O(n).

To see why |C−S | = O(n), we fix the left endpoint, a, of any pair in C−S and argue

that there can be only O(1) bi’s such that (a, bi) ∈ C−S . Let the right endpoints be

b1, b2, . . . , bk that are sorted in clock-wise order around a. It then can be verified that

1. bi.x > bi+1.x,

118

2. dist(a, bi) ≤ dist(bi, bi+1), and

3. bi.x− bi+1.x ≥ dist(bi, bi+1) cosα ≥ dist(a, bi) cosα.

To see (1), for a contradiction, assume bi.x < bi+1.x; thus, dist(a, bi) < dist(a, bi+1).

This is impossible as the minimum 3-sided rectangle that contains a and bi+1 must also

contain bi, which means (a, bi+1) can never be a candidate pair. Now, since bi+1 is to

the left of bi (and clockwise from bi), the minimum 3-sided rectangle that contains a

and bi must also contain bi+1, which proves (2). Once (1) and (2) are seen to be true,

it is easy to verify (3) as S is α-flat. Please refer to Figure 6.4 for an example of all the

three cases.

Finally, we have dist(a, b1) ≥ b1.x−a.x = (b1.x− b2.x) + (b2.x− b3.x) + · · ·+ (bk−1−
bk) + (bk − a.x) ≥ (b1.x− b2.x) + (b2.x− b3.x) + · · ·+ (bk−1 − bk) ≥ (cosα)(dist(a, b1) +

· · ·+ dist(a, bk−1)) ≥ (k− 1)(cosα)dist(a, b1). Therefore, k ≤ 1 + secα = O(1). �

bi
a

bi+1

(a) Case 1

bi
a

bi+1

(b) Case 2

bi
a

bi+1

(c) Case 3

Figure 6.4: Illustrating the three cases of Lemma 6.3

A natural way to answer a 3-sided rectangle query is to decompose it into several

strip queries via a two-level range tree. Specifically, we create a two-level range tree, T ,

on the points in S where the leaves are sorted in y-order. In each internal node u ∈ T ,

we build a data structure discussed in Section 6.1.2 on those points that are leaves of u’s

subtree to handle any strip query. It is clear that each level of T costs O(n) space, and

thus, the total space occupied is O(n log n). When a 3-sided query Q = [a, b]× (−∞, c]
comes in, we first traverse T with the range (−∞, c] and identify O(log n) canonical

nodes. Then, for each canonical node u, we launch a strip query with the range [a, b]

and find the closest pair inside (if exists). Finally, we collect the O(log n) pairs and

report the one with the minimum pairwise distance. By Theorem 6.3, each canonical

node takes O(log n) time, and the total query is therefore O(log2 n).

119

Theorem 6.4. If S is O(1)-flat and has n points in R2, then it can be preprocessed into

a data structure of size O(n log n) such that, for any 3-sided rectangle Q, the closest

pair in S ∩Q can be reported in O(log2 n) time.

6.1.4 4-sided rectangular query

Since it has been shown that there can be Θ(n2) candidate pairs for 3-sided rectangular

queries, the same conclusion applies for 4-sided queries. Therefore, we still make the

assumption that the input S is O(1)-flat. However, Lemma 6.3 is not necessarily true

when p = 4. Thus, we cannot directly generalize the solution in Section 6.1.3 by using

a three-level range tree. Instead, we show how to improve the results in [40] when S is

O(1)-flat.

Specifically, the 4-sided query algorithm in [40] has an O(log2 n) query time using

O(n log5 n) space. It relies on a so-called anchored 3-sided rectangle query, where the

query Q is a 3-sided rectangle that always intersects with some vertical line `. This

problem was solved in O(log2 n) time using O(n log3 n) space. By applying Theorem 6.4,

the space complexity can be improved to O(n log n) if S is O(1)-flat. Therefore, we

obtain a solution for a 4-sided query with O(log2 n) query time using O(n log3 n) space.

We note that this result is also better than the one in [55] with O(log3 n) query time

and O(n log3 n) space.

Theorem 6.5. If S is O(1)-flat and has n points in R2, then it can be preprocessed into

a data structure of size O(n log3 n) such that, for any 4-sided rectangle Q, the closest

pair in S ∩Q can be reported in O(log2 n) time.

6.1.5 Connection to range min-gap query

In this section, we provide some evidence that reflects the potential hardness of finding

the closest pair in a query strip. We start by reviewing a common problem called

min-gap and then generalize it to a query version.

Formally, the min-gap of an array A[1..n] of n ≥ 2 reals is defined as min1≤i<j≤n |Ai−
Aj |. In its query version, a range min-gap query receives two integers l and r, where

1 ≤ l < r ≤ n, and outputs the min-gap of the subarray A[l..r]. One is allowed

to preprocess A into some data structure and use it to answer each query efficiently.

120

Specifically, let S(n) be the size of the underlying data structure and T (n) be the query

time. A data structure with S(n) = O(n2) and T (n) = O(1) is trivial but occupies

too much space, and thus is not of interest. Other than that, to our best knowledge,

there is very little existing work on this topic, and perhaps, only the following generic

framework solves the problem in sublinear time while using subquadratic space:

1. Using Mo’s algorithm [1] (also known as square root decomposition), one can

answer the range min-gap query in a reasonably satisfactory time, but in an offline

fashion. That is, given m queries beforehand, Mo’s algorithm can answer all

the queries in O((m + n)
√
n log n) using O(n) space. Via an amortized analysis,

T (m,n) = O((m+ n)
√
n(log n)/m) = Ω(

√
n). We elaborate in Section 6.5.

2. One can try to further improve the performance of Mo’s algorithm by building a

rectilinear minimum spanning tree on the mapped query intervals and answering

each query via an Euler tour along the tree, but unfortunately this does not help

with the worst case performance. (Again, please see Section 6.5 for more details.)

Therefore, even for an offline version, there does not seem to be a satisfactory solution

in the literature, not to speak of an online version.

Next, we show that our strip closest pair query is at least as hard as the range

min-gap by the following reduction. Given A[1..n], we construct a set of points S =

{s1, s2, . . . , sn}, where si = (iε, Ai) and ε → 0 is a sufficient small positive constant.

Now, the Euclidean distance between si and sj is
»

(Ai −Aj)2 + ε2(i− j)2 ≈ |Ai−Aj |.
This way, when ε is small enough, the closest pair in the range [lε, rε] × (−∞,∞) will

naturally yield the min-gap of the subarray A[l..r]. For instance, the reader can verify

that it works for any ε ≤
»
g2

2 − g2
1/n, where g1 < g2 are the smallest and the second

smallest gap in A. (Both of g1 and g2 can be computed efficiently in O(n log n) time.)

By plugging in the results in Section 6.1.2, we obtain an online solution to the range min-

gap query with O(log n) query time and O(n log n) space, which significantly improves

the query time but occupies slightly more space. On the other hand, the range min-gap

query shows that it may be difficult to further improve our results for the strip query,

say, obtaining a linear-space solution with logarithmic or even o(
√
n) query time.

121

6.2 Halfplane query

In this section, we consider the range closest pair problem with the query Q being a

halfplane. Our goal is to preprocess the dataset S into a data structure D such that for

any given halfplane Q : y ≥ ux+ v, the closest pair of points in S ∩Q can be reported

efficiently. (Note that the halfplanes of the form y ≤ ux + v can be handled similarly

by building another data structure symmetric to D.)

By using duality, a non-vertical line ` : y = ux+v is mapped to the point `∗ = (u,−v)

and a point p = (s, t) is mapped to the line p∗ : y = sx−t. Also, ` is below (resp. above)

p iff `∗ is above (resp. below) p∗. Then handling halfplane queries can be transformed

into a point-location problem. The line bounding the query halfplane Q : y ≥ ux + v

corresponds to the point Q∗ = (u,−v) in the dual space (of R2). So if we decompose

the dual space into “cells” such that the points (corresponding to the bounding lines

of halfplanes in the original space) in each cell have the same answer for the closest

pair, then any point-location technique can be applied to solve the problem directly.

Now the crucial thing we need to consider is the structure of such a decomposition or

arrangement and, more importantly, its complexity.

Since there are n lines in the dual space, one per point of S, a trivial upper bound

on the complexity of the desired arrangement A is O(n2). However, by using additional

properties of the problem at hand we show that, surprisingly, the complexity of A is in

fact O(n).

6.2.1 Complexity of the arrangement A

The first result we need is that there can be only O(n) candidate pairs.

Lemma 6.4. [2] If (a, b) and (c, d) are both candidate pairs such that a, b, c, d are distinct

points in S, then the segment ab does not properly intersect the segment cd. Hence, the

number of the candidate pairs is O(n).

Proof. Let Qab and Qcd be the halfplanes in which the closest pair is (a, b) and (c, d),

respectively. Then, Qab contains a, b and at least one of c or d. Similarly, Qcd contains

c, d and at least one of a or b. W.l.o.g., let c ∈ Qab and a ∈ Qcd. Since (a, b) is the

closest pair in Qab, |ab| ≤ |bc|. Similarly, |cd| ≤ |ad| as (c, d) is the closest pair in Qcd.

122

Then, |ab| + |cd| ≤ |bc| + |ad|. Now, for a contradiction, assume ab and cd properly

intersect at e. By triangle inequality, |ae| + |de| > |ad| and |be| + |ce| > |bc|. Thus,

|ab|+ |cd| = (|ae|+ |be|) + (|ce|+ |de|) > |bc|+ |ad|, which is a contradiction.

The graph with vertex set S and edges consisting of line segments joining candidate

pairs is planar (since the line segments are properly non-crossing). Thus, the number

of edges, hence the number of candidate pairs, is O(n). �

With this in hand, we now consider the complexity of A. For a candidate pair

(a, b), define its length as the L2-distance between a and b in R2. Suppose we have

m candidate pairs θ1, . . . , θm sorted by their lengths (from the shortest to the longest)

where θi = (ai, bi). If we observe each pair θi in the dual space, we get two lines a∗i and

b∗i corresponding to ai and bi, respectively. The pair θi is contained in Q iff Q∗ is below

above a∗i and b∗i , i.e., Q∗ is in the upward-open wedge generated by a∗i and b∗i , which we

denote by wi; see Figure 6.5a. As such, the closest pair answer for Q to be reported is

the candidate pair θj with

j = min{i : Q ∈ wi}.

This observation gives us a new way to view the arrangement A. We begin with the

trivial decomposition P0 of the dual space (plane), i.e., a decomposition with only one

face which is the entire plane. We construct a decomposition Pi by merging Pi−1 and wi

as follows. Let oi−1 be the outer face of Pi−1, i.e., the complement of
⋃i−1
j=1wj .Then Pi

is obtained from Pi−1 by decomposing the face oi−1 via the wedge wi. In other words,

we obtain Pi by first removing the face oi−1 from Pi−1 and then adding oi−1 − wi and

all the connected components of oi−1 ∩wi and as new faces. Note that oi−1 −wi is the

complement of
⋃i
j=1wj . One can easily verify that oi−1 −wi is connected and becomes

the outer face oi of Pi. In this way, we construct P1, . . . ,Pm in order. Now each Pi is a

polygonal decomposition, and we use Ai to denote the corresponding arrangement. By

the above argument, we know that Pm is the desired decomposition and hence Am = A.

We denote the complexity of A by |A|. To bound |A|, we prove the following result.

Theorem 6.6. |Ai| − |Ai−1| = O(1). In particular, |A| = |Am| = O(m) = O(n).

Proof. Let oi be the outer face of Pi, and ci be the boundary of the wedge wi

(which consists of two rays emanating from the intersection point of a∗i and b∗i). We

123

ai

bi

Q

a∗
i

b∗
i

Q∗

wi

primal space dual space

(a) Pair (ai, bi) is in halfplane Q iff Q∗ is in
the upward-open wedge wi formed by a∗i and
b∗i .

aj

bj

primal space dual space

ai bi

a
∗

i b
∗

ir

r0

b
∗

j

a
∗

j

(b) The case for j ∈ J1

primal space dual space

ai bi

a∗
i
r

r0

p

(c) Moving p and rotating line aibi clockwise
around ai

primal space dual space

ai bi

r

r0aj

bj p

a∗j
b∗j

(d) An example for j ∈ J2 where r∩wj = ∅.

primal space dual space

ai bi

r

r0

aj

bj

a
∗

j

b
∗

j

(e) An example for j ∈ J2 where r ∩wj 6= ∅.

primal space dual space

ai
bi

r

r0

aj

bj

a
∗

j

b
∗

j

(f) An example for j ∈ J3 where ajbj is to
the left and r ∩ wj = ∅.

dual space

r

r0

b
∗

j

l
∗

primal space

ai

bi

l

aj
bj

a
∗

j

(g) An example for j ∈ J3 where l∗ 6∈ r and
r ∩ wj = ∅.

dual space

r

r0

b
∗

j

l
∗

a
∗

j

primal space

ai
bi

l

aj

bj

primal space

ai
bi

l

aj

bj

(h) An example for j ∈ J3 where l∗ 6∈ r and
r ∩ wj 6= ∅.

Figure 6.5: Illustrating the various cases in Theorem 6.4.

124

dual space

r

r0

b
∗

j

l
∗

a
∗

j

bi

aj

bj

l

primal space

ai

aj

bj

l

(i) An example for j ∈ J3 where l∗ ∈ r and
r∩wj contains l∗ but does not contain r0 or
the infinite end of r.

Figure 6.5: Illustrating the various cases in Theorem 6.4 (continued).

first note that, to deduce that |Ai| − |Ai−1| is O(1), it suffices to show that the number

of connected components of ci ∩ oi−1 is constant. This is because every connected

component of ci ∩ oi−1 contributes to Ai exactly one new face, a constant number of

new vertices, and a constant number of new edges. Indeed, we only need to check one

branch of ci (i.e., one of the two rays of ci), say the branch corresponding to a∗i (we

denote it by r). We will show that r ∩ oi−1 has O(1) connected components. Without

loss of generality, we may assume that ai is to the left of bi. Then each point on r

corresponds to a line in the original space, which goes through the point a with the

segment ab above it. Note that

r ∩ oi−1 = r −
i−1⋃
j=1

wj = r −
i−1⋃
j=1

(r ∩ wj),

and each r ∩ wj is a connected subset of r. We consider each pair θj with j < i and

analyze the intersection r ∩wj . There are three cases: (1) both aj and bj are above the

line aibi, (2) both of aj and bj are below aibi, or (3) one of aj and bj is (strictly) above

aibi while the other is (strictly) below aibi. We use J1, J2, J3 to denote the index sets

corresponding to the three cases (so J1 ∪ J2 ∪ J3 = {1, . . . , i− 1}).

Case 1: If j ∈ J1, the wedge wj must contain the initial point r0 of r (i.e., the intersection

point of a∗i and b∗i , which is the dual of the line aibi), because r0 must be above

both a∗j and b∗j . (See Figure 6.5b.)

Case 2: For j ∈ J2, we claim that either r ∩ wj is empty or it contains the infinite end

of r (i.e., the point at infinity along r). Imagine that we have a point p moving

125

along r from r0 to the infinite end of r. In the original space, p corresponds to a

line rotating clockwise around ai from the line aibi to the vertical line through ai;

see Figure 6.5c. Note that r ∩ wj contains p only when both aj and bj are above

the dual line of p. But aj and bj are below the line aibi for j ∈ J2. When p is

moving, the region below aibi and above the dual line of p expands. As such, one

can easily see that r∩wj must contain the infinite end of r if it is nonempty. (See

Figure 6.5d and 6.5e.)

Case 3: Finally, we consider j ∈ J3. In this case, one point of θj is (strictly) above the

line aibi while the other one is (strictly) below aibi. Thus, the segment ajbj must

intersect the line aibi. However, by Lemma 6.4, ajbj cannot intersect the segment

aibi. So the intersection point of ajbj and the line aibi is either to the left of ai or

to the right of bi (recall that ai is assumed to be to the left of bi).

• If the intersection point is to the left of ai, we argue that r∩wj is empty. Observe

that the dual line of any point on r is through ai and below bi, meaning that it

must be above the intersection point (when the intersection point is to the left of

ai). In other words, the dual line of any point on r is above at least one of aj and

bj , and thus any point on r is not contained in the wedge wj , i.e., r∩wj is empty.

(See Figure 6.5f.)

• The trickiest case occurs when the intersection point of ajbj and the line aibi is

to the right of bi. In such a case, we consider the line through ai perpendicular

to aibi, which we denote by l. We first argue that both aj and bj must be on the

same side of l as bi. Since ajbj intersects the line aibi to the right of bi, at least

one of aj and bj is on the same side of l as bi. But we notice that ajbj cannot

intersect l, otherwise the length of θj is (strictly) more than the length of θi, which

contradicts the fact that j < i (recall that θ1, . . . , θm is sorted from the shortest

to the longest). So the only possibility is that both aj and bj are on the same side

of l as bi. Now we have two sub-cases.

(i) l has no dual point l∗ (i.e., l is vertical) or the dual point l∗ of l is not on

the ray r. In this case, we look at the point p moving along r from r0 to

the infinite end of r. Clearly, when p moves, the region to the right of l and

above the dual line of p expands. Thus, either r ∩wj is empty or it contains

126

the infinite end of r. (See Figure 6.5g and 6.5h.)

(ii) The dual point of l is on r. Then r ∩ wj may be a connected portion of r

containing neither r0 nor the infinite end of r. However, as bi is above the

line l in this case, we have that both aj and bj are above l. This implies that

r ∩ wj contains the dual point of l. (See Figure 6.5i.)

In sum, we conclude that for any j ∈ {1, . . . , i− 1}, the intersection r∩wj might be

(1) empty, (2) a connected subset of r containing r0, (3) a connected subset containing

the infinite end of r, or (4) a connected portion containing the dual point of l (if the dual

point of l is on r). As such, the union
⋃i−1
j=1(r ∩ wj) can have at most three connected

components. Thus the complement of
⋃i−1
j=1(r ∩ wj) in r, i.e., r ∩ oi−1, has at most two

connected components. This in turn implies that ci ∩ oi−1 has only a constant number

of connected components, and hence |Ai| − |Ai−1| = O(1). Finally, since |A0| is O(1)

and m = O(n), we immediately have |A| = |Am| = O(m) = O(n). �

6.2.2 Preprocessing and query algorithms

In this section, we first propose a sub-optimal incremental algorithm that is able to

construct the wedge subdivision in O(n log2 n) time. (In Section 6.2.3 we improve this

to O(n log n).) We use an augmented balanced search tree, D, as the underlying data

structure to maintain the upper envelope of oi after we insert each wedge wi into the

dual space. (The upper-envelope is x-monotone.) Recall that oi is the outer face of Pi.
Here, each node in D represents a segment (or an infinite ray) on oi. Specifically, we

store in each node, p, the following fields:

1) u and v, indicating the line y = ux + v that goes through the segment represented

by p;

2) x1 and x2, where x1 < x2, indicating the range of the segment in the x-dimension;

3) w, the wedge corresponding to the segment represented by p.

It is clear that any vertical line will intersect the upper envelope exactly once, which

naturally gives us a total order among all the segments on it. Therefore, any arbitrary

number between x1 and x2 suffices to act as the key for comparison. With D in hand,

we can efficiently tell, in O(log n) time, whether a point in the dual space is above or

below the envelope. In addition, we define the following convenient helper functions,

127

which will be used repeatedly as black boxes.

1) remove(low , high): This method cuts off the portion of the upper envelope whose

x-coordinate is in the range (low , high). This function will remove several existing seg-

ments from D and insert at most two back into D. Therefore, it has O(log n) amortized-

runtime if we charge each segment removal to the corresponding insertion.

2) insert(`, low , high): This method inserts into D a segment (or a ray), whose under-

lying line is ` and range on the x-axis is [low , high]. We guarantee that the structure

maintained by D remains x-monotone after the insertion. Clearly, this function takes

O(log n) time.

We initialize D as a single root representing the horizontal line y =∞. We then sort

w1, . . . , wm by non-decreasing order of their lengths (i.e., the length of the corresponding

segment in the primal plane) and insert them into D one by one. When a new wedge,

wi = (a∗i , b
∗
i), comes in, we show how to handle all the possible cases separately according

to the proof of Theorem 6.4. Again, for simplicity, we only consider inserting the left

ray, r, of wi, and recall that the finite end-point of r is r0. We also compute the line,

l, that passes through ai and is perpendicular to aibi, and denote its dual point as l∗.

Now, consider the following two cases.

Case 1: l∗ 6∈ r. Choose an auxiliary point r−∞, which lies on r and has sufficiently

small x-coordinate, to represent the infinite part of r. We then have the following four

sub-cases depending on whether r0 and r−∞ are above and/or below D.

Case 1a: Both of r0 and r−∞ are below D, indicating that r ∩ wj = ∅ for all j < i.

(Note that if r ∩ wj 6= ∅ it must contain either r0 or r−∞ since l∗ 6∈ r.) In this case, we

simply do remove(−∞, r0.x) followed by insert(r,−∞, r0.x).

Case 1b: r0 is below D and r−∞ is above. This means that if r ∩ wj 6= ∅ it must

contain r−∞ and can never contain r0. Thus, r has a unique intersection, γ, with D,

such that the infinite ray γr−∞ is above D and the segment r0γ is below. With this

invariant in hand, we can identify the segment in D that intersects with r, and hence

γ, via binary search on those x-coordinates in the range (∞, r0.x]. Once γ is found, we

perform remove(γ.x, r0.x) followed by insert(r, γ.x, r0.x).

Case 1c: r0 is above D and r−∞ is below. This case is symmetric to Case 1b and is

thus omitted.

Case 1d: Both r0 and r−∞ are above D. This is a tricky case since ray r may be

128

entirely above D, or it will intersect D twice, contributing to a new piece of interval on

the envelope. We first assume the latter happens. Let α and β be the two intersections

and assume α is to the left of β. Then, we claim that ray r−∞α and segment βr0 are

above D, and segment αβ is below. Again, binary search on x-values can be applied

to compute α and β, but with a more careful invariant: the underlying wedge with

respect to the segment cut by the left boundary always contains the infinite part of r,

i.e., r−∞ and the underlying wedge cut by the right boundary always contains r0. Once

we find an x-coordinate at which r is below D, we terminate the search and solve two

subproblems (one similar to Case 1b and the other similar to Case 1c) to identify α and

β, respectively; otherwise, we adjust one of the boundaries accordingly and continue

the search. Eventually, the binary search either successfully finds α and β or fails due

to being out of range. If α and β exist, we maintain D by calling remove(α.x, β.x)

and insert(r, α.x, β.x); otherwise, it means r is completely above D, and therefore, we

should leave D unchanged.

Remark. We note that doing binary searches on the above x-coordinates is not as

straightforward as searching on a conventional static array because some x-coordinates

(i.e., α.x, β.x, and γ.x) are not known beforehand and thus must be computed and

maintained dynamically. Therefore, a dynamic data structure must be applied here,

which unavoidably introduces an extra O(logm) factor. Formally, we use an order

statistic tree [24], OS, to maintain all the x-coordinates as well as their ranks. To do a

binary search for values in OS ranging from [xlow , xhigh], we instead do a binary search

on their ranks. It is clear that each binary search takes at most O(log(rank(xhigh) −
rank(xlow) + 1)) = O(logm) steps. In each step, we first do an inverse query on OS to

retrieve the x-value with the middle rank and then query D with it to decide whether we

should shift the left or the right boundary. Both queries can be answered in O(logm)

time, and therefore, each binary search takes O(log2m) time.

Case 2: l∗ ∈ r. We first check whether l∗ is above or below D. If below, none

of r ∩ wj , j < i, contains l∗ and it essentially boils down to Case 1. Otherwise, l∗

breaks the problem into two subproblems, i.e., inserting ray l∗r−∞ and segment l∗r0,

respectively. We only show how to handle the latter. If r0 is below D, l∗r0 will have a

unique intersection, γ, with D such that segment l∗γ is above and segment γr0 is below

the envelope; this boils down to Case 1b. On the other hand, if r0 is above D, we have

129

a case similar to Case 1d.

Nevertheless, either case involves O(1) number of tree traversals, remove/insert

operations, and binary searches. Therefore, inserting w1, . . . , wm into D in total takes

O(m(logm + log2m)) = O(m log2m) = O(n log2 n) time. To construct the entire

subdivision, one can explicitly save all the segments (and their corresponding wedges)

generated throughout the entire algorithm and build a point location structure [52]

to support logarithmic-time query. There are at most O(n) segments according to

Lemma 6.4, resulting in an O(n log n) (resp. O(n)) overhead in time (resp. space).

Therefore, the total preprocessing time is O(n log2 n) and we only use linear space.

6.2.3 The refinement

The runtime of each binary search mentioned above takes O(log2 n) instead of O(log n)

because OS, as a tree structure, does not offer any constant-time random accessor. In

this section, we show how to eliminate the O(log n) factor overhead and hence improve

the overall runtime to O(n log n). For brevity, we only show how to speed up the binary

search in Case 1b. Case 1c is completely symmetric, and Case 1d can be handled in a

similar way with more care.

We augment each node p of D with one more field, p.max , indicating the rightmost

segment in the subtree rooted at p. Given a binary search range R = [xlow , xhigh],

we traverse D and collect O(logm) canonical nodes as well as the single nodes on the

paths, whose range is completely contained in R. Name these nodes c1, . . . , cs, where

s = O(logm). Note that these canonical nodes are naturally ordered from left to the

right due to the binary search tree property. We scan from c1 to cs. At the i-th iteration,

if ci.max intersects with r, we can directly compute γ and we are done. If ci.max is

below r, we skip ci and proceed to the next canonical node ci+1. If ci.max is above r,

the segment that intersects with r must reside in ci and we can find it by a binary tree

traversal. We first check whether the root of ci intersects with r. If so, we are done.

Otherwise, the root must be either below or above r. If it is below r, we proceed to

its right child and repeat the same procedure; else, we recursively check its left child

instead.

The refined “binary search” takes only O(logm) = O(log n) time since there are

O(logm) canonical nodes to check and the height of any node is always bounded by

130

O(logm).

Finally, we note that the duality transform does not handle halfplanes whose bound-

ary lines are vertical. But these can be trivially handled in O(n) space and O(log n)

query time. (E.g., by separate preprocessing or by slight rotation.) As such, we conclude

the following result.

Theorem 6.7. Given a set S of n points in R2 together with its O(n) candidate pairs,

one can build an O(n)-space data structure in O(n log n) time such that each halfplane

query can be answered in O(log n) time.

6.3 Radius-fixed disc query

In this section, we investigate the range closest pair reporting problem for a set, S, of

points in the plane, where the query range Q is a disc of some fixed radius. Formally,

let r be the radius of Q, where r is pre-determined and can be treated as a constant.

Furthermore, we say Q is a long query if the shortest pair-wise distance in Q is no

smaller than r/α for some user-specified positive integer constant α; otherwise, Q is a

short query. In the rest of this section, we show how to correctly and efficiently answer

a query depending on whether it is long or short.

6.3.1 Handling long queries

When Q is long, it is important to observe that there is only a constant number of points

in Q, i.e., |S∩Q| = O(1). Indeed, we can always cover Q by a 2α×2α grid of squares of

size r
α × r

α ; see Figure 6.6. By the pigeon-hole principle, there can be at most 4 points

(from S ∩Q) in each square, which proves that |S ∩Q| ≤ 16α2 = O(1). Therefore, we

can build on S a circular range reporting structure [4] so that given any long query Q

we first report all points in Q and then find the closest pair by brute-force. Such a data

structure takes O(n) space and answers each query in O(log n+ α2) = O(log n) time.

6.3.2 Handling short queries

Unlike the previous case, the number of points in S∩Q can be large when Q is short, so

the same method does not apply. Instead, we carefully bound the number of candidates

131

Q

r

r/α

Figure 6.6: A 2α× 2α grid covering Q

pairs that belong to some short query and build a data structure on those to answer

the query. Formally, let C′S = {(a, b) ∈ CS : dist(a, b) < r/α}. We will prove that

|C′S | = O(n).

Lemma 6.5. If we treat each candidate pair in C′S as a line segment, then no two

segments intersect properly. Thus, |C′S | = O(n).

Proof. For a contradiction, assume the assertion is false. Then, there exist candidate

pairs (a, b) ∈ C′S and (c, d) ∈ C′S , where dist(a, b) < r/α, dist(c, d) < r/α, and ab

properly intersects cd. Choose the constant α sufficiently large so that dist(a, b) � r

and dist(c, d) � r. Let Qab (resp. Qcd) be any disc of radius r that has (a, b) (resp.

(c, d)) as the closest pair in it. Then, it is impossible to have both of Qab and Qcd contain

at least three points among a, b, c, d; the argument is similar to the one in Lemma 6.4

when Q is a halfplane. (See also [2].) W.l.o.g., assume Qab contains a and b, but neither

c nor d; see Figure 6.7a. We then assert that Qcd must contain b. This is easy to verify

if the centers of Qab and Qcd are on opposite sides of the line passing through cd. We

elaborate more in the following when the two centers lie on the same side.

Since both ab and cd are sufficiently short, we can always move Qab to a new position,

named Q′ab, such that a and b are in Q′ab and both c and d lie exactly on the boundary

of Q′ab; see Figure 6.7b. Then we claim that b must be contained in Q′ab. To see this,

note that the region of Qab in which b resides (shaded in gray) is completely contained

in Q′ab as the two discs have the same size. It follows that to ensure that Qcd contains

both c and d, Qcd must contain the region of Q′ab bounded by cd (the one not containing

a) and hence must contain b.

132

Once it is confirmed that b ∈ Qcd, we immediately derive a contradiction by arguing

that (c, d) can never be the candidate pair of Qcd as both bc and bd are strictly shorter.

Indeed, we extend the ray ab so that it intersects Q′ab at b′. Since dist(c, d) = r/α� r,

∠cb′d must be greater than π/2, indicating that ∠cbd is also be greater than π/2. Hence,

cd must be the longest edge in the obtuse triangle ∆bcd. �

Qab

a

b

c d

(a) An example of Qab, where
c 6∈ Qab and d 6∈ Qab.

Qab

a

b

c d

Q′
ab

b′

(b) Illustrating Q′ab, which
helps to show b ∈ Qcd.

Figure 6.7: Illustrating the proof of Lemma 6.5.

Next, we show how to build the query structure for short queries. We begin with

some definitions and observations. For each θ ∈ C′S , let θ = (a, b) where a, b ∈ S. Define

`θ = ca ∩ cb, where ca and cb are the discs of radius r centered at a and b, respectively.

We call `θ the lune of θ. (Note that our definition of a lune is slightly different from

the standard definition in [27].) It is clear that θ can be reported only if the center

of Q lies inside `θ. In addition, we treat the following statements as equivalent: (i)

dist(a, b) < r/α; (ii) θ = (a, b) is short; (iii) `θ is fat, as it is close in size to a disc of

radius r. Finally,

(i) Let `, `1, `2 be any fat lunes;

(ii) Let d be any disc with radius r;

(iii) Let ∂`, ∂`1, ∂`2, ∂d denote the corresponding shape boundaries;

(iv) Let `+, `− be the two extreme points of `, where `+ is above `−. Similarly, define

`+1 , `−1 , `+2 , `−2 .

133

Observation 6.1. The boundary of a fat lune intersects at most twice with the boundary

of a disc of radius r, i.e., |∂` ∩ ∂d| ≤ 2.

Proof. We break ∂` into two circular arcs, ϕ1 and ϕ2, both of radius r. If ∂d

intersects only one arc, then the statement is clearly true as two circles have at most

two intersections. Now, assume ∂d intersects both arcs. (See Figure 6.8.) We show

|∂d ∩ ϕ1| = |∂d ∩ ϕ2| = 1, and thus the statement holds. To see this, we denote by Φ1

the disc (with radius r) that has ϕ1 on its boundary and assume that d and Φ1 intersect

at α and β. We can show that if α ∈ ϕ1, then β 6∈ ϕ1. Let α̂β be the arc on d that

is inside Φ1. Since ` ⊂ Φ1, the other arc ϕ2 must intersect with α̂β at some point γ.

Now, α̂γ is inside the lune and γ̂β is outside, which shows that β 6∈ ϕ1. This proves

that |∂d ∩ ϕ1| = 1. Similarly, we have |∂d ∩ ϕ2| = 1, and thus |∂` ∩ ∂d| ≤ 2. �

`+

'1

`−α

β
γ

d

Φ1

Figure 6.8: Illustrating Observation 6.1, where lune ` is shaded gray.

Observation 6.2. If an extreme point of a fat lune lies in another fat lune, the bound-

aries of the lunes cross at most twice. That is, w.l.o.g., if `+2 ∈ `1 or `−2 ∈ `1, then

|∂`1 ∩ ∂`2| ≤ 2.

Proof. First, we note that if both `+2 ∈ `1 and `−2 ∈ `1, then we have `2 ⊂ `1 and

thus |∂`1 ∩ ∂`2| = 0. This is not difficult to see since ∂`1 and ∂`2 are generated by discs

of the same radius. Then, w.l.o.g., assume `+2 ∈ `1 and `−2 6∈ `1. (See Figure 6.9.) In

this case, we show that each branch of ∂`2 will intersect with ∂`1 exactly once, and,

therefore, |∂`1 ∩ ∂`2| = 2. Fix a branch of ∂`2 and consider the disc (of radius r) that

generates it. Name the branch ϕ. By Observation 6.1, ∂`1 can intersect the boundary of

134

the disc at most twice. In fact, since `+2 is inside `1, there are exactly two intersections,

which we call α and β. W.l.o.g., if α ∈ ϕ, then we have β 6∈ ϕ. Indeed, since `+2 is an

endpoint of ϕ, it follows that ᾱ`+2 ⊂ ϕ and ¯̀+2 β ∩ ϕ = {`+2 }. As such, |ϕ ∩ ∂`1| = 1.

Similarly, |ϕ ∩ ∂`2| = 1. �

`+2

`−2

`1

`2 α
β

'

Figure 6.9: Illustrating Observation 6.2, where the fixed branch ϕ of `2 is shown bold.

Observation 6.3. The boundaries of two fat lunes cross at most twice, i.e., |∂`1∩∂`2| ≤
2.

Proof. Let (a1, b1) and (a2, b2) be the (short) candidate pairs of `1 and `2, respec-

tively. By Lemma 6.5, segment a1b1 and a2b2 cannot cross. It follows that either both

a1 and b1 lie completely on one side of the line passing through a2b2, or vice versa.

W.l.o.g., assume a1 and b1 lie above a2b2, and we draw an auxiliary disc, Φ, centered

at `+2 with radius r. For convenience of analysis, assume a2b2 is parallel to the x-axis,

and hence `+2 `
−
2 is vertical. We then complete the proof by separately considering the

following four cases.

1. At least one of a1 and b1 is strictly above Φ. In this case, even `+2 will not be

contained in `1, and therefore, |∂`1 ∩ ∂`2| = 0.

2. At least one of a1 and b1 is out of both Φ and `2. It is not difficult to verify that

`1 can only intersect with one branch of ∂`2. By Observation 6.1, ∂`1 can have at

most two intersections even with the circle generating that branch, so with ∂`2.

3. At least one of a1 and b1 is inside `2. Then Observation 6.2 directly applies and

the statement holds.

135

4. The only case remaining is that both a1 and b1 are contained in Φ \ `2. Since

a1, b1 ∈ Φ, dist(a1, `
+
2) ≤ r and dist(b1, `

+
2) ≤ r, and thus `+2 ∈ `1, i.e., one

endpoint of `2 lies inside `1. By applying Observation 6.2 we immediately conclude

the statement.

�

Observation 6.3 shows that fat lunes belong to the family of pseudo-discs [13]. There-

fore, according to [45], the union of a set of fat lunes has linear complexity. One can then

build on the union a planar point location data structure so that we can quickly check

whether a given point lies inside the union interior. (The standard point location struc-

ture for line segment, e.g. [52], can be generalized to circular arcs in a straightforward

way. We omit the details.) As such, we conclude the following result.

Lemma 6.6. Let L = {`θ1 , . . . , `θk} be a set of fat lunes w.r.t. short candidate pairs

θ1, . . . , θk. There exists a data structure occupying O(k) space such that for any query

point q ∈ R2 one can report whether q ∈ ⋃L in O(log k) time.

With Lemma 6.6 in hand, we can finally propose our algorithm and data structure

to answer short queries efficiently. We build a balanced binary tree T in a bottom-up

fashion where the leaves are the θ’s from C′S , sorted in increasing order of their lengths.

(Recall that the length of θ = (a, b) is dist(a, b).) For each internal node u ∈ T , let Lu
be the collection of lunes corresponding to all the leaves in the subtree rooted at u. We

then store in u a secondary data structure on Lu for quickly reporting whether a given

point lies in
⋃Lu, as we described in Lemma 6.6. Clearly, the overall space is O(n log n)

because each level of T uses O(n) space and there are in total O(log n) levels.

To answer a (short) query Q, we set u to be the root of T and proceed as follows

until u becomes a leaf. When u is an internal node, let v and w be its left and right

child, respectively. We then check by querying the data structure stored in v whether

the center of Q, which we denote by q, lies in
⋃Lv. If yes, we repeat this process by

setting u to v. Otherwise, set u to w and proceed further. Once u becomes a leaf we do

a final check to see whether q lies in the lune of u. If so, we report the candidate pair

w.r.t. u as the output; otherwise, Q contains no pair at all. It is easy to check that,

during the descent in T , the secondary data structure is queried exactly once per level

of T , resulting in an O(log n · log n) = O(log2 n) query time.

136

6.3.3 Putting both cases together

Given a general query disc Q with a fixed radius r, we first assume it is long and query

the circular range search data structure mentioned in Section 6.3.1. We keep reporting

points that are contained in Q until we have exhausted all of them or have encountered

more than 16α2 points. This step takes O(log n) time. If the former case applies, we

simply find the closest pair by brute-force and we are done; otherwise, Q must be short.

We then query the data structure described in Section 6.3.2 and find the answer in

O(log2 n) time. As such, we conclude the following theorem.

Theorem 6.8. A set, S, of n points in R2 can be preprocessed into a data structure

occupying O(n log n) space such that, for any radius-fixed disc Q, the closest pair in

S ∩Q can be reported in O(log2 n) time.

6.4 A general approximation framework

In real-world applications, data is often imprecise due to noise or sensing limitations.

Thus each data point can exist anywhere in a disc centered at the presumed location

of the data point. Therefore, in a range closest pair query, input points that are suf-

ficiently close to the query boundary might not actually be in the query range, so the

closest pair in the query range may not be the true closest pair. Thus, it is natural to

shrink the query region suitably and use the closest pair in the shrunken region as the

baseline. That is, we want to output a pair in the query range whose distance is no

more than the minimum one generated from the shrunken region. (Note, however, that

this approximation does not necessarily guarantee an upper bound on the approxima-

tion ratio.) We first define formally the notion of shrinkage and then propose a generic

approximation method.

Definition 6.2. Given a closed region R, the δ-shrinkage of R is the following sub-

region

{x ∈ R : inf
y 6∈R

dist(x, y) ≥ δ}.

That is, the δ-shrinkage of R consists of all points x such that the open disc of radius

δ centered at x is contained in R.

137

Definition 6.3. Given a closed region R, the radius of R is defined as

rad(R) = sup
x∈R

inf
y 6∈R

dist(x, y).

That is, the radius of R is the radius of the largest open inscribed disc of R.

Given a set S of n points in R2, a query Q, and a positive real ε, an ε-approximation

returns some pair (a, b) in Q ∩ S that is no farther apart the closest pair in Qε, where

Qε is defined as the (rad(Q)ε)-shrinkage of Q. Our solution to this problem is based on

a general framework that uses two fundamental structures in computational geometry,

namely, a 2-level range reporting structure (RR) and a 2-level range minimum query

(RMQ) structure. We build RR and RMQ on the set S during the preprocessing phase.

Specifically, in RMQ, the weight of each point of S is equal to the shortest distance

from this point to any other point of S. We assume that RR and RMQ can answer each

query in O(f(n) + k) and O(g(n)) time, respectively, where f(n) and g(n) are some

functions of n, and k denotes the output size. With RR and RMQ ready, we give our

approximation query algorithm as Algorithm 6, where for simplicity we assume that

there are at least two points in Qε. If not, we return any pair in Q because the baseline

is undefined. Also, to guarantee the performance, we require that the given query Q is

O(1)-fat, where the fatness of Q is the ratio of the radius of the smallest circumscribed

circle to the radius of the largest inscribed circle of Q.

Algorithm 6 Approximation query algorithm

1: function ε-Approximation(S, RR, RMQ, Q, ε) . Assume that there are at least
two points in Qε.

2: Query RMQ with Qε and retrieve the point in Qε∩S with the minimum weight.

3: Let (a, b) be the pair corresponding to the minimum-weight point.
4: if dist(a, b) ≤ rad(Q)ε then
5: return (a, b)
6: else
7: Query RR with Qε and report all points in Qε ∩ S.
8: return the closest pair among these points using a standard single-shot clos-

est pair algorithm.
9: end if

10: end function

138

Correctness and runtime analysis:

The correctness of Algorithm 6 is trivial if Line 8 is triggered as we are solving the

problem directly for Qε. We now show that the correctness also holds for Line 5. First,

both of a and b are in Q by Definition 6.2 and 6.3, implying that (a, b) is a pair in Q.

Next, it is easy to verify that dist(a, b) ≤ dist(â, b̂), where (â, b̂) is the closest pair in

Qε. Therefore, pair (a, b) is a valid approximation.

To bound the query time of Algorithm 6, we only need to analyze Line 2, 7, and 8.

The runtime of Line 2 is clearly O(g(n)). It then suffices to analyze the runtime for

Line 7 and 8. Indeed, we argue that there can be at most O(1/ε2) points in Qε ∩ S
under this case, similar to the analysis in Section 6.3.1. Formally, we see that any

pairwise distance in Qε is greater than rad(Q)ε since dist(a, b) > rad(Q)ε. Then, by

the pigeonhole principle, there are at most four points in the intersection between Qε

and any rad(Q)ε × rad(Q)ε square. Also, since Q is fat, it can be verified that we

can cover Q (and hence Qε) by
(
α rad(Q)

rad(Q)ε

)2
= O(1/ε2) squares, where α is a constant

depending on the fatness. Therefore, Line 7 takes O(f(n)+1/ε2)) time, and Line 8 takes

O((1/ε2) log(1/ε)) time. The total runtime is thus O(f(n) + g(n) + (1/ε2) log(1/ε)).

Applications:

We provide several applications of our general framework by adapting suitable black

boxes for RR and RMQ when the query family consists of:

1. Discs. We use the structure in [4] for RR, which uses linear space and answers

each query in O(log n+ k) time. For RMQ, we apply the results in [51] that can

answer each query in O((log n+1) log n) time using O(n1+ζ) space, where ζ is any

positive real. Thus, the overall query time is O(log2 n + (1/ε2) log(1/ε)) and the

space used is O(n1+ζ).

2. Fat axes-aligned rectangles. We build standard 2D range trees (with fractional

cascading) for RR and RMQ that answer RR and RMQ queries in O(log n + k)

and O(log n) time, respectively. Therefore, the total query time is O(log n +

(1/ε2) log(1/ε)). The space occupied is O(n log n).

3. Any translated and/or scaled copy of a fat right triangle (with two

139

edges parallel to the coordinate axes); See Figure 6.10a for an example.

Assume that the triangle hypotenuse has a slope of `. Then, it suffices to answer

RR or RMQ by creating a three-level range tree. That is, we build the levels w.r.t.

the x-axis first, the y-axis, and finally the line y = `x, with fractional cascading

applied at the last level. Thus, the total space occupied is O(n log2 n) and the

query time is O(log2 n+ (1/ε2) log(1/ε)).

4. Any translated and/or scaled copy of a fat convex shape (with constant

complexity). Note that both the range reporting and the range minimum query

are decomposable. Also, it is easy to see that any convex shape of this family can

be partitioned into O(1) right triangles with two edges parallel to the coordinate

axes; see Figure 6.10b. For each family of right triangles in this partition, we

build 3-level range trees for doing RR and RMQ. Given query Q, we take Qε

and decompose it using the same aforementioned partition. Clearly, the answer

for RMQ (resp. RR) w.r.t. Qε can be found by doing RMQ (resp. RR) w.r.t.

each triangle in the partition. Therefore we can apply Algorithm 6. The query

time is O(log2 n+ (1/ε2) log(1/ε)) and the space is O(n log2 n) as Q has constant

complexity. Note that it is only necessary that Q (hence Qε) be fat; the triangles

in the partition themselves need not be fat.

(a) A family of right triangles
(with two edges parallel to both
axes) under translation and scal-
ing

(b) A fat convex shape with
O(1) complexity and its par-
tition using right triangles

Figure 6.10: Illustrating cases 3 and 4.

140

6.5 Answering offline range min-gap query

In Section 6.1.5, we mentioned two approaches to the offline range min-gap query via

Mo’s algorithm [1]. We elaborate on these here. We first design a data structure D that

supports the following three operations:

(1) insert a real into D;

(2) remove a real from D;

(3) output the min-gap of all the reals in D.

To implement all the operations efficiently, one can augment a balanced binary search

tree with three fields: max, min, and min-gap, representing the maximum, the minimum,

and the min-gap in each subtree. Since all the three fields can be properly maintained

in O(1) time for each node, D can perform each of the three operations in O(log n) time.

Now, assume there are in total m range min-gap queries to answer, and each query

is of the form [li, ri], where 1 ≤ li < ri ≤ n. According to Mo’s algorithm, we need to

order these intervals by bli/
√
nc first, then by ri. Since li, ri, and bli/

√
nc are all integers

in the range of [1, n], counting sort applies and hence takes O(m + n) time. We then

initialize D by inserting the reals in the subarray A[l1..r1] and answer the first query.

This step takes O(n log n) time. As we move from the i-th query to the (i+1)-th query,

we need to maintain D by inserting Aj ’s for j ∈ [li+1, ri+1]\ [li, ri] and removing Aj ’s for

j ∈ [li, ri] \ [li+1, ri+1]. Then, D is ready to answer the (i+ 1)-th query, and we repeat

this process until all m queries have been reported. It can be shown that the total

number of insertions and removals is bounded by ((m/
√
n)
√
n + n)

√
n = (m + n)

√
n.

Thus, it takes O((m+ n)
√
n log n) time to answer all the m queries.

As we see above, Mo’s algorithm judiciously determines an order so that one does

not need to change too many elements when switching between consecutive queries. In

fact, we can often do better than that. If we treat each query [li, ri] as a point (li, ri)

in R2, the cost of moving from the i-th to the (i + 1)-th query is no more than the

L1-distance between (li, ri) and (li+1, ri+1). Therefore, to reduce the overall cost, we

can map all the queries to points in the plane and compute their rectilinear minimum

spanning tree [39, 64]. With the MST in hand, we do a Euler tour (starting from any

vertex) in the tree and then answer each query according to the vertex-order along

the tour. It is easy to check that the total cost is no more than twice the total tree

141

length. The planar rectilinear minimum spanning can be computed in O(n log n) time,

and computing the Euler tour takes linear time. So, it is generally a good idea to apply

this optimization to achieve a better sequence than the one from Mo’s algorithm.

On the other hand, it is worth mentioning that this approach cannot improve the

worst-case performance. Consider the following example. We are given a
√
n×√n grid,

and imagine we have roughly (
√
n × √n)/2 = Θ(n) queries, located at the center of

each square from the upper triangle of the grid. Since the L1-distance between any two

grid centers is at least
√
n, the total length of the MST is Ω(n

√
n) as there are Θ(n)

edges. This example shows the tightness of Mo’s algorithm.

Chapter 7

Conclusion and future work

We summarize the contributions of this thesis and list some open problems for future

work.

7.1 Summary of contributions

In Chapter 2, we investigated the preference top-k query problem, where one must pre-

processes a dataset of points in Rd so that the user can efficiently retrieve the top-k

candidates w.r.t. one’s specific preference. We presented efficient algorithms in 2D

and 3D and also considered two query variants, namely, range preference top-k query

and preference top-k with fuzzy vectors. Furthermore, in Chapter 3, we proposed a

new sampling-based approximation algorithm to answer the preference top-k query. We

proved via theoretical analysis that in R2 the method samples only a small subset of

the input while guaranteeing that the approximation error is within a user-specified

tolerance. For R3 and R4 we provided experimental evidence for this claim.

In Chapter 4, we extended the concept of a line arrangement to the stochastic setting

and investigated the most-likely k-topmost lines problem. We derived an upper-bound

on the expected number of changes to the set of most-likely k-topmost lines, taken

over the entire x-axis. We also showed, via a concrete example, the upper-bound can

be quadratic in the worst-case even when k = 1. Moreover, we proposed an efficient

algorithm to compute the most-likely k-topmost lines over the entire x-axis. Finally,

we considered two related applications, namely, stochastic Voronoi Diagrams in R1 and

142

143

stochastic preference top-k queries in R2.

In Chapter 5, we generalized the idea of the stochastic Voronoi Diagram and its

related problems from R1 to a general tree space. Specifically, we investigated two

fundamental proximity problems under the stochastic setting, the closest-pair problem

and nearest-neighbor search. For the former, we proposed the first algorithm for com-

puting the `-threshold probability and the expectation of the closest-pair distance of a

realization of the stochastic input points. For the latter, we studied the k most-likely

nearest-neighbor search (k-LNN) via a notion called the k most-likely Voronoi Diagram

(k-LVD).

In Chapter 6, we further explored the proximity problems in query-retrieval mode

and proposed efficient exact solutions to the range closest pair problem for queries

such as a p-sided axes-aligned rectangle (p = 2, 3, 4), a halfplane, and a disc with

fixed radius. We also presented a general approximation framework that is flexible

enough to handle other query shapes. Some of our proofs (e.g., the number of candidate

pairs for halfplane queries and radius-fixed discs (for short queries)) are of independent

combinatorial interest.

7.2 Future work

We close this thesis by listing the following open problems.

1. In Chapter 3, the theoretical analysis of our approximation algorithm for prefer-

ence top-k queries is only given in R2. It would be interesting to further generalize

the analysis to higher dimensions.

2. In Chapter 4, we investigated the combinatorial complexity for a given set of

stochastic lines. One direction for future work here is to study the problem in

higher dimensions. Specifically, in Rd, given n stochastic hyperplanes, we are

interested in the most likely k-topmost hyperplanes with respect to the d-th di-

mension taken over all the points spanned by the first d − 1 dimensions. As in

Chapter 4, a subdivision can be computed in the subspace of the first d − 1 di-

mensions such that any query point in a cell has the same set of the most likely

k-topmost hyperplanes. However, the structure of the subdivision becomes subtle

144

when d ≥ 3, and thus deriving an expected bound on its complexity becomes hard.

3. In Chapter 5, we showed that to compute efficiently two elementary statistics

regarding the stochastic closest pair problem, namely, the `-threshold probability

and the expected closest pair distance. Symmetrically, it would be of interest to

compute similar statistics with respect to the stochastic farthest pair problem.

4. In Chapter 6, we assume that all the candidate pairs are given beforehand during

preprocessing for all our algorithms. It would be of interest to study how to

identify these pairs efficiently.

5. Finally, it would be interesting to consider a problem that incorporates concepts

and ideas from Chapters 5 and 6, i.e., the range closest pair problem in the stochas-

tic setting where each point has an existential uncertainty. A question of interest

then would be to determine the probability that the range closest pair has distance

greater than some user-specified threshold. Though the single-shot problem has

been proved to be #P-hard in [44], the hardness of the problem is unknown in the

query-retrieval setting.

References

[1] https://z.umn.edu/mosalgorithm/.

[2] M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-

separated pair decomposition. In Workshop on Algorithms and Data Structures,

pages 1–12. Springer, 2009.

[3] P. Afshani, G. Brodal, and N. Zeh. Ordered and unordered top-k range reporting

in large data sets. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete

Algorithms, pages 390–400. SIAM, 2011.

[4] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three dimensions.

In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 180–186. Society for Industrial and Applied Mathematics, 2009.

[5] P. Agarwal, B. Aronov, T. Chan, and M. Sharir. On levels in arrangements of lines,

segments, planes, and triangles. Discrete & Computational Geometry, 19(3):315–

331, 1998.

[6] P. Agarwal, B. Aronov, S. Har-Peled, J. Phillips, K. Yi, and W. Zhang. Nearest

neighbor searching under uncertainty II. In Proceedings of the 32nd ACM Sympo-

sium on Principles of Database Systems (PODS), pages 115–126. ACM, 2013.

[7] P. Agarwal, S.-W. Cheng, and K. Yi. Range searching on uncertain data. ACM

Transactions on Algorithms, 8(4):43, 2012.

[8] P. Agarwal, M. de Berg, J. Matousek, and O. Schwarzkopf. Constructing levels in

arrangements and higher order Voronoi Diagrams. SIAM Journal on Computing,

27(3):654–667, 1998.

145

https://z.umn.edu/mosalgorithm/

146

[9] P. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang. Nearest-neighbor searching

under uncertainty. In Proceedings of the 31st ACM Symposium on Principles of

Database Systems (PODS), pages 225–236. ACM, 2012.

[10] P. Agarwal, S. Har-Peled, S. Suri, H. Yıldız, and W. Zhang. Convex hulls under

uncertainty. In European Symposium on Algorithms (ESA), pages 37–48. Springer,

2014.

[11] P. Agarwal, N. Kumar, S. Sintos, and S. Suri. Range-max queries on uncertain data.

In Proceedings of the 35th ACM Symposium on Principles of Database Systems

(PODS), pages 465–476. ACM, 2016.

[12] P. Agarwal and M. Sharir. Arrangements and their applications. In Handbook of

Computational Geometry, pages 49–119. Elsevier Science Publishers B.V. North-

Holland, 1998.

[13] P. K. Agarwal, J. Pach, and M. Sharir. State of the union (of geometric objects):

A review. Computational Geometry: Twenty Years Later. American Mathematical

Society, 2007.

[14] C. Aggarwal and P. Yu. A survey of uncertain data algorithms and applications.

IEEE Transactions on Knowledge and Data Engineering, 21(5):609–623, 2009.

[15] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approxi-

mate query processing. In Proceedings of the 2003 ACM Special Interest Group on

Management of Data (SIGMOD), pages 539–550. ACM, 2003.

[16] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query

processing using wavelets. The International Journal on Very Large Data Bases

(VLDB), 10(2-3):199–223, 2001.

[17] T. Chan. On levels in arrangements of surfaces in three dimensions. Discrete &

Computational Geometry, 48(1):1–18, 2012.

[18] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. Smith. The

onion technique: indexing for linear optimization queries. In Proceedings of the

147

2000 ACM Special Interest Group on Management of Data (SIGMOD), volume 29,

pages 391–402. ACM, 2000.

[19] S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-based approach

for approximate answering of aggregate queries. In Proceedings of the 2001 ACM

Special Interest Group on Management of Data (SIGMOD), volume 30, pages 295–

306. ACM, 2001.

[20] B. Chazelle. On the convex layers of a planar set. IEEE Transactions on Informa-

tion Theory, 31:509–517, 1985.

[21] B. Chazelle and L. Guibas. Fractional cascading: I. a data structuring technique.

Algorithmica, 1:133–162, 1986.

[22] D. Chen, G.-Z. Sun, and N. Gong. Efficient approximate top-k query algorithm

using cube index. In Web Technologies and Applications, pages 155–167. Springer,

2011.

[23] J. Chen and L. Feng. Efficient pruning algorithm for top-k ranking on dataset with

value uncertainty. In Proceedings of the 22nd ACM Conference on Information and

Knowledge Management (CIKM), pages 2231–2236. ACM, 2013.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms, Third Edition. The MIT Press, 3rd edition, 2009.

[25] H. Coxeter. Introduction to geometry. New York, London, 1961.

[26] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: Diamonds in the dirt.

Communications of the ACM, 52(7):86–94, 2009.

[27] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-

ometry. Springer Verlag, 2nd edition, 2000.

[28] T. Dey. Improved bounds for planar k-sets and related problems. Discrete &

Computational Geometry, 19(3):373–382, 1998.

[29] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures persistent.

In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,

pages 109–121. ACM, 1986.

148

[30] P. Erdős, L. Lovász, A. Simmons, and E. Straus. Dissection graphs of planar point

sets. A Survey of Combinatorial Theory, pages 139–149, 1973.

[31] R. Fagin. Combining fuzzy information from multiple systems. In Proceedings

of the 15th ACM Symposium on Principles of Database Systems (PODS), pages

216–226. ACM, 1996.

[32] R. Fagin. Fuzzy queries in multimedia database systems. In Proceedings of the 17th

ACM Symposium on Principles of Database Systems (PODS), pages 1–10. ACM,

1998.

[33] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.

Journal of Computer and System Sciences, 66(4):614–656, 2003.

[34] J. Fakcharoenphol, S. Rao, and K. Talwar. Approximating metrics by tree metrics.

ACM SIGACT News, 35(2):60–70, 2004.

[35] M. Fink, J. Hershberger, N. Kumar, and S. Suri. Hyperplane separability and

convexity of probabilistic point sets. In Proceedings of the 32nd International Sym-

posium on Computational Geometry (SoCG). ACM, 2016.

[36] G. Frederickson. An optimal algorithm for selection in a min-heap. Information

and Computation, 104(2):197–214, 1993.

[37] G. Frederickson and D. Johnson. The complexity of selection and ranking in x+ y

and matrics with sorted columns. Journal of Computer and System Science, 24:197–

208, 1982.

[38] T. Ge, S. Zdonik, and S. Madden. Top-k queries on uncertain data: on score

distribution and typical answers. In Proceedings of the 2009 ACM Special Interest

Group on Management of Data (SIGMOD), pages 375–388. ACM, 2009.

[39] L. J. Guibas and J. Stolfi. On computing all north-east nearest neighbors in the

L1-metric. Information Processing Letters, 17(4):219–223, 1983.

[40] P. Gupta, R. Janardan, Y. Kumar, and M. Smid. Data structures for range-

aggregate extent queries. Journal of Computational Geometry, 47(2, Part C):329

– 347, 2014.

149

[41] L. Huang and J. Li. Approximating the expected values for combinatorial optimiza-

tion problems over stochastic points. In International Colloquium on Automata,

Languages, and Programming, pages 910–921. Springer, 2015.

[42] I. Ilyas, G. Beskales, and M. Soliman. A survey of top-k query processing techniques

in relational database systems. ACM Computing Surveys (CSUR), 40(4):11, 2008.

[43] P. Kamousi, T. Chan, and S. Suri. Stochastic minimum spanning trees in Euclidean

spaces. In Proceedings of the 27th International Symposium on Computational

Geometry (SoCG), pages 65–74. ACM, 2011.

[44] P. Kamousi, T. Chan, and S. Suri. Closest pair and the post office problem for

stochastic points. Computational Geometry, 47(2):214–223, 2014.

[45] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of jordan regions and

collision-free translational motion amidst polygonal obstacles. Discrete & Compu-

tational Geometry, 1(1):59–71, 1986.

[46] N. Kumar, B. Raichel, S. Suri, and K. Verbeek. Most likely Voronoi Diagrams

in higher dimensions. In LIPIcs-Leibniz International Proceedings in Informatics,

volume 65. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[47] M. Löffler and M. van Kreveld. Largest and smallest convex hulls for imprecise

points. Algorithmica, 56(2):235–269, 2010.

[48] L. Lovász. On the number of halving lines. Ann. Univ. Sci. Budapest, Eötvös, Sec.

Math, 14:107–108, 1971.

[49] E. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,

1985.

[50] F. P. Preparata and M. Shamos. Computational geometry: An introduction.

Springer, 1985.

[51] S. Rahul and R. Janardan. A general technique for top-k geometric intersec-

tion query problems. IEEE Transactions on Knowledge and Data Engineering,

26(12):2859–2871, 2014.

150

[52] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.

Communications of the ACM, 29(7):669–679, July 1986.

[53] M. Shamos and D. Hoey. Closest-point problems. In 16th Annual IEEE Symposium

on Foundations of Computer Science, pages 151–162, 1975.

[54] J. Shan, D. Zhang, and B. Salzberg. On spatial-range closest-pair query. In Inter-

national Symposium on Spatial and Temporal Databases, pages 252–269. Springer,

2003.

[55] R. Sharathkumar and P. Gupta. Range-aggregate proximity queries. Technical

Report IIIT/TR/2007/80. IIIT Hyderabad, Telangana, 500032, 2007.

[56] M. Sharir. On k-sets in arrangements of curves and surfaces. Discrete & Compu-

tational Geometry, 6(1):593–613, 1991.

[57] M. Smid. Closest point problems in computational geometry. Citeseer, 1995.

[58] S. Suri and K. Verbeek. On the most likely Voronoi Diagram and nearest neighbor

searching. In Proceedings of the 25th International Symposium on Algorithms and

Computation (ISAAC), pages 338–350. Springer, 2014.

[59] S. Suri, K. Verbeek, and H. Yıldız. On the most likely convex hull of uncertain

points. In 21st Annual European Symposium on Algorithms (ESA), pages 791–802.

Springer, 2013.

[60] G. Tóth. Point sets with many k-sets. Discrete & Computational Geometry,

26(2):187–194, 2001.

[61] D. Xin, C. Chen, and J. Han. Towards robust indexing for ranked queries. In

Proceedings of the 32nd International Conference on Very Large Data Bases, pages

235–246. VLDB Endowment, 2006.

[62] J. Xue, Y. Li, and R. Janardan. On the separability of stochastic geometric ob-

jects, with applications. In Proceedings of the 32nd International Symposium on

Computational Geometry (SoCG). ACM, 2016.

151

[63] A. Yu, P. Agarwal, and J. Yang. Processing a large number of continuous pref-

erence top-k queries. In Proceedings of the 2012 ACM Special Interest Group on

Management of Data (SIGMOD), pages 397–408. ACM, 2012.

[64] H. Zhou, N. Shenoy, and W. Nicholls. Efficient minimum spanning tree construction

without Delaunay triangulation. In Proceedings of the 2001 Asia and South Pacific

Design Automation Conference, pages 192–197. ACM, 2001.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem motivation and statement
	Preference top-k query
	Stochastic line arrangement in R2
	Stochastic closest-pair problem and most-likely nearest-neighbor search in tree space
	Range closest pair search in R2

	Related work
	Summary of contributions
	Organization

	Preference top-k query
	Problem formulation
	Algorithm in 2D
	Preliminary algorithm
	Applying fractional cascading
	An optimal algorithm

	Extensions
	Preference top-k query with range restriction on data points
	Preference top-k query with a fuzzy weighting vector

	Algorithm in 3D

	Approximate preference top-k query
	Problem formulation
	Our sampling algorithm
	Reducing top-k to top-1
	Critical detection vectors
	Overall framework

	Theoretical analysis in 2D
	Experimental results in 2D and higher dimensions
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Corollary 3.1
	Proof of Theorem 3.5

	Stochastic line arrangement in R2
	Problem definition and main result
	Proof of Theorem 4.1
	An algorithm for computing the most likely k-topmost lines
	Algorithm for one strip
	Algorithm over the entire line arrangement

	Application: Stochastic Voronoi Diagram in R
	The staircase graph and the worst-case example
	Reduction from stochastic Voronoi Diagram to stochastic line arrangement

	Application: Stochastic preference top-k query in R2
	Proofs
	Proof for Lemma 4.1
	Proof for Lemma 4.2
	Proof for Lemma 4.3
	Proof for Equation 4.3
	Proof for Lemma 4.4

	Stochastic closest pair problem and most likely nearest neighbor search in tree space
	Preliminaries
	The stochastic closest pair problem
	Computing the threshold probability
	Computing the expected closest pair distance

	The most likely nearest neighbor search problem
	The size of the tree-space LVD
	Constructing LVD and answering queries

	Proofs
	Proof of Theorem 5.1
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Proof of Lemma 5.5
	Proof of Lemma 5.6
	Proof of Theorem 5.3
	Proof of Lemma 5.7
	Proof of Lemma 5.8
	Proof of Lemma 5.9
	Proof of Lemma 5.10

	Details for constructing LVD data structure
	Computing and sorting the centers
	Constructing the LVD during the walk

	Range closest pair queries
	Axes-aligned rectangle query
	Quadrant query
	Strip query
	3-sided rectangular query
	4-sided rectangular query
	Connection to range min-gap query

	Halfplane query
	Complexity of the arrangement A
	Preprocessing and query algorithms
	The refinement

	Radius-fixed disc query
	Handling long queries
	Handling short queries
	Putting both cases together

	A general approximation framework
	Answering offline range min-gap query

	Conclusion and future work
	Summary of contributions
	Future work

	References

