5,888 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Analysis of Heterogeneous Data Sources for Veterinary Syndromic Surveillance to Improve Public Health Response and Aid Decision Making

    Get PDF
    The standard technique of implementing veterinary syndromic surveillance (VSyS) is the detection of temporal or spatial anomalies in the occurrence of health incidents above a set threshold in an observed population using the Frequentist modelling approach. Most implementation of this technique also requires the removal of historical outbreaks from the datasets to construct baselines. Unfortunately, some challenges exist, such as data scarcity, delayed reporting of health incidents, and variable data availability from sources, which make the VSyS implementation and alarm interpretation difficult, particularly when quantifying surveillance risk with associated uncertainties. This problem indicates that alternate or improved techniques are required to interpret alarms when incorporating uncertainties and previous knowledge of health incidents into the model to inform decision-making. Such methods must be capable of retaining historical outbreaks to assess surveillance risk. In this research work, the Stochastic Quantitative Risk Assessment (SQRA) model was proposed and developed for detecting and quantifying the risk of disease outbreaks with associated uncertainties using the Bayesian probabilistic approach in PyMC3. A systematic and comparative evaluation of the available techniques was used to select the most appropriate method and software packages based on flexibility, efficiency, usability, ability to retain historical outbreaks, and the ease of developing a model in Python. The social media datasets (Twitter) were first applied to infer a possible disease outbreak incident with associated uncertainties. Then, the inferences were subsequently updated using datasets from the clinical and other healthcare sources to reduce uncertainties in the model and validate the outbreak. Therefore, the proposed SQRA model demonstrates an approach that uses the successive refinement of analysis of different data streams to define a changepoint signalling a disease outbreak. The SQRA model was tested and validated to show the method's effectiveness and reliability for differentiating and identifying risk regions with corresponding changepoints to interpret an ongoing disease outbreak incident. This demonstrates that a technique such as the SQRA method obtained through this research may aid in overcoming some of the difficulties identified in VSyS, such as data scarcity, delayed reporting, and variable availability of data from sources, ultimately contributing to science and practice

    Challenges and Research Directions in Medical Cyber-Physical Systems

    Get PDF
    Medical cyber-physical systems (MCPS) are lifecritical, context-aware, networked systems of medical devices. These systems are increasingly used in hospitals to provide highquality continuous care for patients. The need to design complex MCPS that are both safe and effective has presented numerous challenges, including achieving high assurance in system software, intoperability, context-aware intelligence, autonomy, security and privacy, and device certifiability. In this paper, we discuss these challenges in developing MCPS, some of our work in addressing them, and several open research issue

    Multimodal Signal Processing and Learning Aspects of Human-Robot Interaction for an Assistive Bathing Robot

    Full text link
    We explore new aspects of assistive living on smart human-robot interaction (HRI) that involve automatic recognition and online validation of speech and gestures in a natural interface, providing social features for HRI. We introduce a whole framework and resources of a real-life scenario for elderly subjects supported by an assistive bathing robot, addressing health and hygiene care issues. We contribute a new dataset and a suite of tools used for data acquisition and a state-of-the-art pipeline for multimodal learning within the framework of the I-Support bathing robot, with emphasis on audio and RGB-D visual streams. We consider privacy issues by evaluating the depth visual stream along with the RGB, using Kinect sensors. The audio-gestural recognition task on this new dataset yields up to 84.5%, while the online validation of the I-Support system on elderly users accomplishes up to 84% when the two modalities are fused together. The results are promising enough to support further research in the area of multimodal recognition for assistive social HRI, considering the difficulties of the specific task. Upon acceptance of the paper part of the data will be publicly available

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints
    • …
    corecore