162,472 research outputs found

    Adversarial Attacks on Deep Neural Networks for Time Series Classification

    Full text link
    Time Series Classification (TSC) problems are encountered in many real life data mining tasks ranging from medicine and security to human activity recognition and food safety. With the recent success of deep neural networks in various domains such as computer vision and natural language processing, researchers started adopting these techniques for solving time series data mining problems. However, to the best of our knowledge, no previous work has considered the vulnerability of deep learning models to adversarial time series examples, which could potentially make them unreliable in situations where the decision taken by the classifier is crucial such as in medicine and security. For computer vision problems, such attacks have been shown to be very easy to perform by altering the image and adding an imperceptible amount of noise to trick the network into wrongly classifying the input image. Following this line of work, we propose to leverage existing adversarial attack mechanisms to add a special noise to the input time series in order to decrease the network's confidence when classifying instances at test time. Our results reveal that current state-of-the-art deep learning time series classifiers are vulnerable to adversarial attacks which can have major consequences in multiple domains such as food safety and quality assurance.Comment: Accepted at IJCNN 201

    Association of Data Mining and healthcare domain: Issues and current state of the art

    Get PDF
    Data mining has been used prosperously in the favorably perceived areas such as e- business, marketing and retail because of which it is now applicable in knowledge discovery in databases (KDD) in many industrial areas and economy. Data mining is mainly gaining its importance and usage in the areas of medicine and public health. In this paper the investigation of present methods of KDD, applying data mining methods for healthcare and public health has been discussed. The problems and difficulties related to data mining and healthcare in practice are also mentioned. In survey, the use of data mining has increased, along with examination of healthcare institutions so that the health policy prepared is the best, perceive disease causes and protect deaths in hospital and discover the dishonest insurance declaration.stabilization of continuous and fed-batch cultivation processes. In the paper are investigated Monod-Wang kinetic model and it singular Monod form. The simpler Monod and Monod-Wang models are restricted forms of Wang-Yerusalimsky model. The Wang-Yerusalimsky kinetic model could be accepted as a common model. A second order sliding mode is investigated and compared with standard sliding mode algorithms. The sliding mode control permits to solve the control problems with smaller quantity of priory information and elimination of parameters and measurements noises

    An automated technique for identifying associations between medications, laboratory results and problems

    Get PDF
    AbstractBackgroundThe patient problem list is an important component of clinical medicine. The problem list enables decision support and quality measurement, and evidence suggests that patients with accurate and complete problem lists may have better outcomes. However, the problem list is often incomplete.ObjectiveTo determine whether association rule mining, a data mining technique, has utility for identifying associations between medications, laboratory results and problems. Such associations may be useful for identifying probable gaps in the problem list.DesignAssociation rule mining was performed on structured electronic health record data for a sample of 100,000 patients receiving care at the Brigham and Women’s Hospital, Boston, MA. The dataset included 272,749 coded problems, 442,658 medications and 11,801,068 laboratory results.MeasurementsCandidate medication-problem and laboratory-problem associations were generated using support, confidence, chi square, interest, and conviction statistics. High-scoring candidate pairs were compared to a gold standard: the Lexi-Comp drug reference database for medications and Mosby’s Diagnostic and Laboratory Test Reference for laboratory results.ResultsWe were able to successfully identify a large number of clinically accurate associations. A high proportion of high-scoring associations were adjudged clinically accurate when evaluated against the gold standard (89.2% for medications with the best-performing statistic, chi square, and 55.6% for laboratory results using interest).ConclusionAssociation rule mining appears to be a useful tool for identifying clinically accurate associations between medications, laboratory results and problems and has several important advantages over alternative knowledge-based approaches

    Pattern Mining and Sense-Making Support for Enhancing the User Experience

    Get PDF
    While data mining techniques such as frequent itemset and sequence mining are well established as powerful pattern discovery tools in domains from science, medicine to business, a detriment is the lack of support for interactive exploration of high numbers of patterns generated with diverse parameter settings and the relationships among the mined patterns. To enhance the user experience, real-time query turnaround times and improved support for interactive mining are desired. There is also an increasing interest in applying data mining solutions for mobile data. Patterns mined over mobile data may enable context-aware applications ranging from automating frequently repeated tasks to providing personalized recommendations. Overall, this dissertation addresses three problems that limit the utility of data mining, namely, (a.) lack of interactive exploration tools for mined patterns, (b.) insufficient support for mining localized patterns, and (c.) high computational mining requirements prohibiting mining of patterns on smaller compute units such as a smartphone. This dissertation develops interactive frameworks for the guided exploration of mined patterns and their relationships. Contributions include the PARAS pre- processing and indexing framework; enabling analysts to gain key insights into rule relationships in a parameter space view due to the compact storage of rules that enables query-time reconstruction of complete rulesets. Contributions also include the visual rule exploration framework FIRE that presents an interactive dual view of the parameter space and the rule space, that together enable enhanced sense-making of rule relationships. This dissertation also supports the online mining of localized association rules computed on data subsets by selectively deploying alternative execution strategies that leverage multidimensional itemset-based data partitioning index. Finally, we designed OLAPH, an on-device context-aware service that learns phone usage patterns over mobile context data such as app usage, location, call and SMS logs to provide device intelligence. Concepts introduced for modeling mobile data as sequences include compressing context logs to intervaled context events, adding generalized time features, and identifying meaningful sequences via filter expressions

    Applications of Data Mining in Healthcare

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)With increases in the quantity and quality of healthcare related data, data mining tools have the potential to improve people’s standard of living through personalized and predictive medicine. In this thesis we improve the state-of-the-art in data mining for several problems in the healthcare domain. In problems such as drug-drug interaction prediction and Alzheimer’s Disease (AD) biomarkers discovery and prioritization, current methods either require tedious feature engineering or have unsatisfactory performance. New effective computational tools are needed that can tackle these complex problems. In this dissertation, we develop new algorithms for two healthcare problems: high-order drug-drug interaction prediction and amyloid imaging biomarker prioritization in Alzheimer’s Disease. Drug-drug interactions (DDIs) and their associated adverse drug reactions (ADRs) represent a significant detriment to the public h ealth. Existing research on DDIs primarily focuses on pairwise DDI detection and prediction. Effective computational methods for high-order DDI prediction are desired. In this dissertation, I present a deep learning based model D 3 I for cardinality-invariant and order-invariant high-order DDI pre- diction. The proposed models achieve 0.740 F1 value and 0.847 AUC value on high-order DDI prediction, and outperform classical methods on order-2 DDI prediction. These results demonstrate the strong potential of D 3 I and deep learning based models in tackling the prediction problems of high-order DDIs and their induced ADRs. The second problem I consider in this thesis is amyloid imaging biomarkers discovery, for which I propose an innovative machine learning paradigm enabling precision medicine in this domain. The paradigm tailors the imaging biomarker discovery process to individual characteristics of a given patient. I implement this paradigm using a newly developed learning-to-rank method PLTR. The PLTR model seamlessly integrates two objectives for joint optimization: pushing up relevant biomarkers and ranking among relevant biomarkers. The empirical study of PLTR conducted on the ADNI data yields promising results to identify and prioritize individual-specific amyloid imaging biomarkers based on the individual’s structural MRI data. The resulting top ranked imaging biomarkers have the potential to aid personalized diagnosis and disease subtyping

    Separate and conquer heuristic allows robust mining of contrast sets from various types of data

    Full text link
    Identifying differences between groups is one of the most important knowledge discovery problems. The procedure, also known as contrast sets mining, is applied in a wide range of areas like medicine, industry, or economics. In the paper we present RuleKit-CS, an algorithm for contrast set mining based on a sequential covering - a well established heuristic for decision rule induction. Multiple passes accompanied with an attribute penalization scheme allow generating contrast sets describing same examples with different attributes, unlike the standard sequential covering. The ability to identify contrast sets in regression and survival data sets, the feature not provided by the existing algorithms, further extends the usability of RuleKit-CS. Experiments on wide range of data sets confirmed RuleKit-CS to be a useful tool for discovering differences between defined groups. The algorithm is a part of the RuleKit suite available at GitHub under GNU AGPL 3 licence (https://github.com/adaa-polsl/RuleKit). Keywords: Contrast sets, Sequential covering, Rule induction, Regression, Survival, Knowledge discover
    corecore