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Abstract

This dissertation research aims to provide support for efficient data mining

to enhance the user experience. While data mining techniques such as fre-

quent itemset and sequence mining are well established as powerful pattern

discovery tools in domains from science, medicine to business, effective ex-

traction of new knowledge from data often requires interactive exploration

and input by domain experts. When applying data mining over data sets of

interest, the analysts must iteratively sift through a long list of patterns gener-

ated for varying parameters, such as interestingness thresholds (e.g., support

and confidence) and the data subset, to discover insightful patterns. During

each iteration of such exploratory sessions, the mining may require several

hours to process even a medium sized (10s of GB) dataset. To maintain user

interest and focus, real-time query turnaround times are essential. Clearly,

this demands novel solutions to enhance the interactivity of mining tools.

Scalable data mining solutions for mobile usage data from a variety of sensors

and apps have recently gained the attention of researchers. Patterns mined

over mobile data may enable a variety of context-aware applications ranging

from automating frequently repeated tasks (e.g., turning phone to mute dur-

ing meetings) to providing personalized recommendations (e.g., restaurant

recommendations when a user is likely to eat out). Research on efficient on-

device data mining techniques is yet another interesting research topic with

the overarching goal of achieving scalability and enhanced user experience.



In this dissertation, we first develop a novel interactive exploration framework

that supports domain experts in their exploration of association rules mined

over their data sets and make sense of those mined results. Our solution

adopts the core principle of preprocess-once-query-many (POQM) paradigm

and consists of contributions in two aspects, namely, (a.) the back-end PARAS

framework and (b.) the front end FIRE rule exploration framework. PARAS

framework addresses the problem of efficient data mining techniques. We

gain key insights on rule relationships in a parameter space view; resulting in

a compact storage of rules that enable query-time reconstruction of complete

rulesets. Further, our proposed Framework for Interactive Rule Exploration

(FIRE) features innovative visual displays and interactions to enable inter-

active rule exploration. We propose two linked interactive displays, namely

the parameter space view (PSpace) and the rule space view (RSpace), that

together enable enhanced sense-making of rule relationships. The usability

and effectiveness of the proposed PARAS and FIRE frameworks are evalu-

ated via performance experiments, case studies and user studies using several

benchmark datasets.

Analysts also need to be able to dynamically adapt the subset of the data

they work on as they explore in which partitions of the data set the as-

sociation rules may be most significant. We propose a novel multidimen-

sional itemset-based data partitioning (MIP-index) that extends the POQM

paradigm to mine localized rules. MIP-index offers efficient mining perfor-

mance by utilizing pre-computed results, while still allowing the user the

flexibility of selecting any data subset of interest at run-time. Our proposed

COLARM framework consists of a suite of alternative execution strategies

using optimization principles such as selection push-up, supported R-tree fil-



ter and differential treatment of contained versus partially overlapped MIPs.

Through performance evaluation over benchmark datasets, we establish the

effectiveness of our COLARM framework in a rich variety of tested cases.

Towards the overall goal of developing scalable data mining solutions, we

then designed OLAPH, an on-device context-aware service that learns phone

usage patterns. Such patterns can be used to provide device intelligence to

enhance the user experience. This part of my dissertation focuses on learning

several key insights regarding alternative models to train over mobile usage

data, adequacy of data to achieve high prediction accuracy under constrained

resources of the mobile devices, and feasibly of scheduling periodic data min-

ing tasks on a phone. OLAPH is a generic service to which applications can

subscribe to receive personalized predictions in real-time.

Overall, this dissertation research encompasses contributions at the intersec-

tion of data mining, knowledge management and visual analytics for a rich

variety of data sources ranging from scientific datasets to mobile usage logs.
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1

Introduction

The focus of this dissertation is pattern mining and sense-making support for enhanc-

ing user experience. In particular, this dissertation addresses three problems that limit

the utility of data mining, namely, (a.) lack of interactive exploration tools for mined

patterns, (b.) insufficient support for mining localized patterns, and (c.) high compute re-

quirements of data mining prohibiting mining of patterns on smaller compute units such

as a smartphone. Our solutions to these problems promise to be impactful in improving

the adoption of data mining by analysts in different fields and over disparate data sources

ranging from scientific datasets to mobile sensor and app data.

1.1 Motivation

1.1.1 Need for Interactive Mining

Mining of associations and correlations from huge data sets is critical for applications

ranging from market basket analysis (AS94a), bioinformatics (WCWL12) to intrusion

detection and web usage mining (LOPS04). However, even the most advanced mining

approaches (HPY00, ZPOL97, Bor15) are faced with two key challenges, namely, (a)

1



1.1 MOTIVATION

unacceptably high response times that are not suitable for interactive analysis (perfor-

mance); and (b) lack of support for sense-making of rule relationships (usability). Ex-

isting rule mining algorithms (AS94a, HPY00, ZPOL97) tend to be compute-intensive,

rendering even their fast implementations, such as (Bor15), inadequate for interactive

analysis. Mining systems with delayed response time risk losing a user’s attention and,

more importantly, are often unacceptable in mission critical applications.

While significant focus has been placed on improving the performance of mining al-

gorithms (AY01a, ZPOL97, Bor15), usability of mining systems suffers from the fact that

a large number of patterns is typically generated (ARu15, JB02). Figure 1.1 depicts how

the number of frequent itemsets range from thousands to millions for different benchmark

datasets at different support % values. A detriment is the lack of support for interactive

exploration of these high numbers of rules generated with diverse parameter settings and

the relationships among these rules.

Recent works on rule relationships (CLWY13, Cao13) and actionable high-utility

rules (SYLC15) have begun to make significant advances in defining functions for mea-

suring the utility of rules and complex rule relationships other than the traditional frequency-

based measures. Qin et al. (QKW+17) study rule relationships in the specific domain of

multi-drug adverse reactions. However, analysts using these advanced techniques would

still need to sift through the generated list of rules manually. That is, the focus of these

state-of-the-art approaches is not the visual support of the rule discovery and exploration

process. Part I of this dissertation focuses on developing interactive frameworks for the

guided exploration of mined patterns and their relationships.

1.1.2 Importance of Localized Patterns

Different aspects of rule mining have received attention in the existing literature. In par-

ticular, (a) improving the efficiency of mining algorithms (AS94a, BMUT97); (b) gener-

2
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Figure 1.1: CFIs Distributed by Datasets.
(ZH02)

Company Title Location Gender Age Salary
IBM QA Lead Boston M 30-40 60K-90K
IBM Sw Engg Boston F 20-30 90K-120K
IBM Engg Mgr SFO M 20-30 90K-120K

Google Sw Engg SFO F 20-30 90K-120K
Google Sw Engg Boston F 20-30 90K-120K
Google Sw Engg Boston M 20-30 90K-120K
Google Tech Arch Boston M 40-50 120K-150K

Microsoft Engg Mgr Seattle F 30-40 90K-120K
Microsoft Sw Engg Seattle F 30-40 90K-120K
Facebook QA Mgr Seattle F 30-40 90K-120K
Facebook QA Engg Seattle F 20-30 30K-60K

Figure 1.2: The Example Salary Dataset.
(MRW14)

ating rules at different data granularities (SA95, HF95); (c) mining rules over heteroge-

neous data types (SA96); (d) defining rule interestingness measures (WCH07); and, (e)

parameter space based interactive rule exploration (LMR+13, MLB+13, MLT+18). All

these efforts, including part I of this dissertation work on the PARAS / FIRE framework

(LMR+13, MLT+18), focus on discovering global rules valid in the entire dataset. Yet

local rules valid for subsets of the dataset, while potentially different from global rules,

are often also of tremendous importance to analysts. The problem of online discovery of

localized rules from subsets of data has received little attention, and is topic of the part II

of this dissertation.

Simpson’s paradox (Sim51) establishes that local patterns can be very different from

global patterns. We illustrate this phenomenon in the context of rule mining. The salary

dataset (Table 1.2) shows salary information of anonymized IT employees in different

regions of the United States. Based on the complete dataset, a global salary trend given

by rule RG = (A0 → S2) 1 can be mined. Rule RG means that the employees with age

between 20 and 30 usually have salaries ranging between $90K and $120K. RG has 45%

support, i.e., it holds true for five out of the total of eleven records. It also has a confidence

1For rule mining over quantitative data (SA96), the attribute-value pairs are discretized into disjoint
intervals (e.g., Age 20-30,30-40, and so on.). We denote the intervals for each dimension as Age =
{A0,A1,A2,. . .}, Salary = {S0,S1,S2,. . .},and so on. Here, A0= (Age in 20−30 years) and S2 = (Salary in
90K−120K).

3
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of 83% (5/6). Next, if an analyst wants to learn the local trends for the female employees

in Seattle (here, the last four records), a localized rule, namely, RL = (A1→ S2) will be

discovered with a 75% support and a 100% confidence. Interestingly, the global rule RG

does not hold true in this subset.

The above example highlights that local rule RL will be hidden in the global context

unless the analyst lowers the minsupport to < 27% (possibly outputting overwhelmingly

large set of rules). Even if, in the global context, RL is discovered as a low support rule,

the analyst may not discover that this low ranked rule RL is prominent in a local context.

In general, as trends may vary greatly from region to region, from job to job and across

different age groups, global patterns may not represent the dataset adequately. Part II of

this dissertation addresses the challenges of mining local rules from data sets of interest

in near real-time.

1.1.3 Mining Patterns from Mobile Sensor and App Data

While data mining techniques such as rule and sequence mining are well established as

powerful pattern discovery tools in domains such as science, finance and retail (AS94b,

AY01b, PHMA+04); these techniques are considered too compute-intensive to execute on

mobile devices (RPA+12, LBM+17). Modern day mobile devices are capable of logging

their sensor and apps data such as app usage, location, call/SMS logs, battery usage, and

calendar events. Such rich variety of mobile context data can be leveraged to learn mo-

bile usage patterns. For example, a mobile user’s contexts such as “which apps the user

typically uses at home versus at work”, “how much time the user spends at home versus

at work”,“who does she communicate with regularly”, “which places does she typically

visit”, and many more such patterns can be learnt. Such discovered patterns enable a vari-

ety of context-aware applications ranging from automating frequently repeated tasks (e.g.,

turning phone to mute during meetings, turning Wi-Fi on when returning home and off

4



1.1 MOTIVATION

Figure 1.3: Google Timeline.
Figure 1.4: Example User Behavioral
Sequential Patterns.

when away to conserve battery) to providing personalized recommendations (e.g., restau-

rant recommendations when a user is likely to eat out). Google Timeline 1.3 is one such

service where the smartphone collects user’s location history and asks for feedback to

improve Google maps location services and possibly also improve the user’s experience.

Initial research efforts towards learning frequent mobile user patterns have been pri-

marily limited to offloading computation to the cloud as done in (Nat12, XLZ+18). How-

ever, cloud-based applications are heavily dependent on availability of the internet. One

example application that may fail due to its dependence on the internet is a map applica-

tion. Not too long ago, our map applications failed in bad coverage areas such as tunnels.

Map applications now have solved the problem by downloading directions to the phone

and using an offline mode. If context-aware services on mobile devices are cloud-based,

they may also be unavailable during poor network coverage. Context-aware services of-

ten also require user’s mobile context data for training purposes. Thus, in a cloud-based

approach, such as (Nat12, XLZ+18), user’s data such as visited locations and call logs,

must be uploaded to the cloud. This is both a privacy concern and utilizes network band-

width. Few weeks of such mobile context data can be about 10s of MB, which not only is

fairly large but also may not be important to upload to the cloud. Developing on-device

5
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intelligence via machine learning on mobile context data has recently gained attention of

researchers (LBM+17). For example, Srinivasan et al. (SMM+14) learn co-occurrence

patterns over user’s mobile context data using a variant of Apriori (AS94a) that runs on the

phone. Rawassizadeh et al. (RMD+16) systematically study the feasibility of discovering

frequent behavior patterns focusing on temporal granularity of frequent itemsets. Simi-

larly, in (MSW14) preliminary results related to sequential behavior mining over mobile

device data are shared. The focus of these works (RMD+16, MSW14) is user profiling

of mobile usage behavior. More recently, Srinivasan et al. (SKJ18) further present Rule-

Selector, an interactive rule selection tool to allow smartphone users to browse, modify,

and select action rules from a small set of summarized rules presented to them. Part III of

this dissertation, continuing on the theme of enhancing data mining for practical applica-

tions, explores how data mining approaches such as sequence prediction modeling may

be adopted to fit this paradigm of mobile sensing and context-awareness.

1.2 Research Challenges Addressed in This Dissertation

Below research challenges are addressed in this dissertation. First, the challenges hin-

dering the usability of rule mining systems as an interactive tool are described. Next, we

discuss the challenges of employing a preprocess-once-query-many (POQM) paradigm

for mining localized rules. Finally, the challenges of applying data mining, in particular

sequence prediction modeling, to mobile sensor and app data.

1.2.1 Interactive Rule Exploration

With respect to interactive rule exploration, below we discuss the challenges related to

both the management of generated patterns (rules) and their visual exploration.

1. Managing Large Number of Rules. In general, for k items in a dataset D, a

6
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total of 2k-1 itemsets can be composed (GKP94). Clearly, for a dataset with several

hundreds or thousands of items, it is prohibitively expensive to store all rules individually.

This raises two critical requirements for rendering the precomputation of final rulesets

practical. First, we must design a data structure to compactly prestore rulesets. Next,

we must develop an efficient strategy that uses this compact storage at query-time for

processing online mining requests.

2. Managing Rules for All Parameter Settings. To facilitate a direct lookup of

rulesets given specific input parameter settings, the rules must be indexed on the two-

dimensional space of support and confidence parameters. Yet minsupport and mincon-

fidence values input by users are from a continuous domain [0,1]. For a large dataset,

prestoring rules for all possible parameter settings will be extremely challenging. On the

other hand, some regions of the parameter space may be stable, such that despite changes

in the input parameter settings, the output ruleset remains unchanged. This raises the need

for effective indexing of rules within the parameter space with an understanding of stable

regions.

3. Numerous Ways of Sense-making. One of the biggest challenges of mining inter-

esting association rules is that there are numerous “interestingness” parameters and that

interestingness tends to be domain-dependent (QKW+17). Sense-making in the context

of association rules means not only discovering co-occurring itemsets with high support

and confidence, but also understanding and distinguishing interesting rules from obvi-

ous ones. For example, in banking data, if the restriction is those maintaining below the

minimum limit will be charged a monthly maintenance fee, then a low account balance

and fine paid will have high support and/or confidence yet be an obvious rule. Instead,

an interesting rule to learn may be “rent check in the beginning of every month causes

the account to go low balance”. However, its support and/or confidence may not be as

strong as those for the obvious rule, because other reasons for the low balance may exist.

7
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Overall, there is no fixed rule of thumb for sense-making of association rules. Interesting-

ness depends on several aspects such as the domain, the particular dataset and the user’s

perspective. Thus, a tool that allows users to systematically explore the mined rules is

needed and not just one that simply presents only the rules with high scores.

4. Lack of Parameter Space-driven Exploration. Several rule visualization tech-

niques have been proposed (HFH+09, ARu15, JB02), yet none provide a broad parameter

space view for rule mining. Neither do they provide support for parameter selections or

refinements. In the absence of parameter space insights, analysts may not be aware of

the appropriate minsupport and minconfidence parameter settings required to obtain the

rulesets of interest from a particular dataset. While high parameter settings may discover

too few rules, too low parameters may present the analysts with an overwhelmingly large

number of rules. Figure 1.1 (taken from (ZH02)) depicts how the distribution of closed

frequent itemsets (CFIs) differs significantly from data set to data set. While gazelle and

T10I4 benchmark data sets (UCI15) have most CFIs concentrated around only 0.1% sup-

port, chess and mushroom data sets instead feature≥ 2000 CFIs at 94% and 50% support,

respectively.

5. Lack of Parameter Space-based Recommendations. Finding the top-k rules

from a dataset is a sought after feature. Existing systems (HFH+09, ARu15, JB02) can

only extract top-k rules based on one parameter (either support or confidence) at a time.

However, certain rules may have high support yet low confidence, and vice-versa. Such

a two-dimensional combination of support and confidence (or, any combination of rule

interestingness measures, including those proposed by (SYLC15, QKW+17)) for top-k

rule extraction is not yet available. This feature has the potential to improve the usability

of interactive mining systems by providing parameter space-based recommendations.

6. Limited Insights into Rule Relationships. For a set of rules that consists of iden-

tical itemsets, yet items may be distributed differently in antecedent and consequent, few
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dominating rules from the set may implicitly imply the others, defined as redundancy

relationship among rules (AY01a). These relationships could be leveraged to represent

the complete ruleset with just a subset of rules, thus reducing the clutter. However, in

(LMR+13) we discover that redundancy is a query-time phenomenon, i.e., redundancy

among rules must be resolved based on the user selected parameters. Unfortunately, ex-

isting association rule tools (HFH+09, ARu15, JB02) lack a mechanism to manage these

dynamic rule relationships. Additionally, graphical representation of other rule relation-

ships (CLWY13, QKW+17) are also required.

7. Lack of Support for Ruleset Comparison. When existing systems are used for

discovering interesting rules in a given dataset, analysts must go about a tedious and time-

consuming trial-and-error process of parameter selection interleaved with rule generation

and sifting through the extracted rules to discover interesting ones. Ability to compare

rulesets across different parameter values with minimal clicks in real-time will truly en-

able interactive rule exploration.

1.2.2 Mining of Localized Rules

Towards mining of localized rules, the below challenges are addressed by the COLARM

framework described in Part II of this dissertation.

1. Offline Data Pre-processing. Pre-computing locally frequent itemsets is complex.

For a dataset containing m records, the total number of possible subsets that the analyst

can select at query-time is given by the Bell Number (GKP94) as
∑m

i=0{mi }, where {mi }

is the Stirling number. Clearly, pre-storing all possible partitions and their corresponding

frequent itemsets is infeasible. An effective indexing strategy for compactly pre-storing

itemsets is needed to render POQM feasible in a local context.

2. Online Focal Subset Selection. We denote the subset of interest to the analyst

as the focal subset. The focal subset is specified as a query-time parameter and may

9
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range from as few as a single record to as many as all records of the dataset. Clearly,

a versatile online query processing strategy is required that can utilize the pre-computed

index structure to efficiently identify the focal subset and the candidate frequent itemsets.

3. Online Localized Rule Verification. Most existing online mining solutions (AY01a,

DPDK11) only verify the minsupport (as it is relatively inexpensive to compute), while

avoiding the costlier minconfidence checks. Due to the importance of null-invariant mea-

sures (WCH07), we propose to verify both minsupport and minconfidence. However, as

these measures can only be verified at query-time, efficient mechanisms are needed for

the same.

1.2.3 Mobile Context Sequence Prediction

The key challenges of on-device sequence prediction modeling over mobile context data

are twofold, namely, (a.) on-device computation of resource-intensive sequence predic-

tion modeling (training), and (b.) achieving reasonable prediction accuracy. Below we

discuss these challenges in detail.

1. On-device Sequence Training and Prediction. Overall, both storage and com-

putation resources are limited on smart phones. The mobile context data when collected

in raw form can amount to approximately 40+ MB of mobile space in a matter of few

weeks. Unless the context logs are processed in a structured manner, it will be difficult to

draw any insights from the logs. Therefore, plain life-logging is unfeasible on mobile de-

vices. Further, sequence prediction modeling consists of two steps, namely, (i.) sequence

data generation, and (ii.) training the sequence-based context model. It is well known

that the sequence data generation dominates the cost of sequence prediction modeling

(FVLG+16). For few weeks of data, the sequence DB generation alone may take 10s

of minutes when run on a mobile device. Therefore, the goal of this work is to identify

sequence models that can feasibly be deployed on mobile devices without impacting the
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user experience.

2. Achieving High Accuracy. In CPT+ (GFVRT15) several data sets have been tested

with a variety of sequence prediction models. As shown by Gueniche et al. (GFVRT15),

the accuracy achieved by the best of the models over these benchmark datasets is low

(maximum accuracy < 74%), and mostly in the range of 30-60%. These results are

discouraging at first glance as sequence prediction models appear to have low accuracy in

general. However, on closer observation we find that the tested datasets are only loosely

sequential. While the majority of those datasets are webpage visitations, the rest are

sentence databases treated as sequences of words or characters. In contrast, we find that

mobile context data is inherently sequential as they correspond to a time-series of events.

Thus, in this work, we want to evaluate and identify which of the sequence prediction

models would work for mobile context data. Further, the order k of a sequence model

is an important factor. Order k means up to k previous events can be used to predict the

current event. A higher value of k helps improve accuracy but induces very high state

complexity and makes the models large (GFVRT15). Thus, one challenge we target in

this paper is to explore “what minimal value of k of model would be reasonable to store

on the smartphone that could achieve high accuracy while having reasonably small model

state complexity and model size”. Further, we explore how much longitudinal data must

the model contain that will not be huge, yet will achieve reasonable accuracy suitable for

real-time predictions.

1.3 Proposed Solutions

1.3.1 PARAS and FIRE Frameworks for Interactive Rule Exploration

Our PARAS framework (LMR+13) proposes the back end innovations including mining

performance optimizations, data modeling and indexing. Then we introduced the notion
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of rule distribution visualization on the parameter space in our short paper (MLW+13),

and extended these preliminary ideas by including the dual-space interactive rule visual-

ization paradigm. Finally, in the proposed Framework for Interactive Rule Exploration

(FIRE) (MLT+18) we introduced the full visual paradigm that features innovative vi-

sual displays and interactions to enable analysts to conduct rule exploration in real-time.

Therefore, in part I of this dissertation we developed innovative visualizations for rule ex-

ploration that are described across several publications (LMR+13, MLB+13, MLW+13,

MLT+18). Below we list the key contributions of the PARAS and FIRE frameworks.

• We first propose the parameter space model, called PARAS, that organizes asso-

ciation rules in a space of query parameters. Instead of maintaining the huge number

of individual rules in an infinite parameter space, our compact space representation, also

called PSpace, abstracts rule sets at a coarse granularity of stable regions.

• The PARAS framework offers efficient algorithms for offline PSpace index con-

struction and provides stable region-aware indexing where each rule is stored exactly

once and stable regions are compactly stored in a region neighborship graph.

• PARAS supports a rich set of novel exploratory mining queries beyond traditional

rule mining. Effective strategies for online processing of these novel query types using

the PSpace index are also developed.

•We observe that redundancy relationship among rules is a query-time phenomenon.

Thus, we establish a theoretical foundation of redundancy relationships among associa-

tions that allows us to pre-compute compact abstractions of redundancy. This abstracted

redundancy meta-knowledge enables effective redundancy resolution at query-time. For

N rules in the output ruleset, our approach reduces the complexity of online redundancy

resolution (AY01a) from O(2N ) to linear time (O(N)) by performing a O(N2) time offline

redundancy abstraction step.

•Our extensive experiments using IBM Quest (AS94a), webdocs (LOPS04) and other
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benchmark datasets demonstrate that PARAS achieves 2 to 5 orders of magnitude im-

provement over commonly used techniques in online rule mining.

•We further propose a novel visual rule exploration framework, called FIRE. FIRE

supports rule exploration at two layers of abstractions, namely, the overall parameter

space view (PSpace) and the detailed rule space view (RSpace). Both layers are sup-

plemented with innovative features and interactions.

• The PSpace view displays the overall distribution of rules within the space of in-

terestingness parameters (such as support and confidence). Salient features of the PSpace

view include (a) parameter recommendations via stable region abstractions; (b) rich in-

sights into region-wise rule cardinality; (c) capture of rule redundancy relationships; and

(d) the rule cardinality skyline to explore alternative results.

• The PSpace-RSpace hierarchical relationship enables real-time exploration using

the two views. The stable regions are selected via the PSpace view and the RSpace view

shows detailed information about particular rule sets within the selected region. To enable

interactive filtering of rules, the RSpace view includes antecedent/consequent auto-fill

filters and rule sorting on parameters.

•While the tabular RSpace view introduced in the short paper (MLW+13) lists rules

with detailed information, to facilitate visual sense-making of rule sets, we now intro-

duce an effective visualization technique called rule glyphs for graphically representing

association rules. To visually capture key properties of rules and their interestingness

measures, we design three variants of the RSpace glyph views, namely, lined, connected

and filled glyphs. We also explore various glyph placement strategies that enable ana-

lysts to gain insights into clusters of similar rules as well as to detect outliers of rules that

deviate significantly from the norm.

• In this dissertation, we present a case study comparing FIRE with the state-of-

the-art rule visualization techniques in ARulesViz R package (ARu15). The case study
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is qualitative in nature where a researcher learns to use FIRE for the first time, and is

tasked with documenting his interactions while exploring a new dataset of interest. The

researcher also explored the same dataset using a combination of 10 rule visualization

techniques in the ARulesViz R package. He concluded that FIRE enabled him to discover

patterns in the dataset that were either undiscovered or cumbersome to derive using state-

of-the-art techniques.

•We also conducted a user study to evaluate the diverse capabilities of our FIRE visual

paradigm. 22 participants were used to evaluate the usability and effectiveness of vari-

ous features of the FIRE framework over several benchmark datasets (UCI15). The user

study is comprised of two evaluations, namely, of the PSpace view and the new RSpace

glyph view, respectively. This extensive user study provides evidence that our proposed

FIRE visualizations are efficient and effective in helping analysts to understand the rule

distribution over the parameter space and to gain rich insights into the rule relationships

via the RSpace glyph view and the glyph placement strategies.

1.3.2 COLARM Framework for Localized Rule Mining

In Part II of this dissertation we extended the POQM paradigm towards online mining

of localized rules. For the localized rule mining scenario, due to the uncertain nature

of subset selection, one cannot guarantee that a POQM solution always outperforms a

naive solution of running the rule mining algorithm from scratch on the chosen subset.

Thus, there is scope for comparison of alternative execution plans and plan selection using

cost-based optimization. The key contributions in part II of this dissertation research are

summarized as follows:

• We formulate the online localized rule mining query. In addition to the traditional

rule interestingness thresholds (minsupport and minconfidence), a localized rule mining

query introduces two new parameters, namely, range and item to enable focal subset
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selection and item attribute specification, respectively.

• We introduce the Multidimensional Itemset Partitioning index (MIP-index). MIP-

index offers efficient mining performance by utilizing pre-computed results, while still

allowing the flexible query-time selection of data subsets. This is achieved by compactly

pre-storing two features of the itemsets, namely, (a) the multidimensional bounding box

of the itemsets; and, (b) the items composing the itemsets.

•We isolate different online mining steps and optimize each of these steps by employ-

ing novel optimization principles in the context of online localized rule mining. We con-

struct several alternative mining plans by pipelining the different optimized steps. We de-

velop a cost model to estimate benefits and overheads of these plans. We further develop

a Cost-based Optimizer for Localized Association Rule Mining, in short COLARM, for

online selection of the most cost-effective plan.

• Our experimental study over benchmarks such as chess, mushroom and PUMSB

datasets from UCI ML repository (UCI15) establishes that our COLARM optimizer is

highly accurate (∼93%) in selecting the most efficient mining plan for a rich diversity of

online mining requests.

1.3.3 OLAPH Sequence Prediction over Mobile Context Data.

In the part III of this dissertation, the design and implementation of On-device Life-

logging And Predicting Habitual Behavior OLAPH service for mobile context prediction

is presented. The key contributions are as follows:

• OLAPH is a service that runs entirely on the phone to transform logs of longitudinal

mobile context data into compact sequence models to predict a mobile user’s context in

real-time; thus making life-logging on mobile devices feasible. For example, 40+ MB of

raw data can be transformed into a compact sequence model of approximately 0.2 MB.

• One key contribution of OLAPH is that the sequence prediction modeling is adapted
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to fit the paradigm of context-awareness and mobile sensing. Towards that end, OLAPH

adapts several key concepts for modeling mobile data as sequences such as compressing

context logs to intervaled context events, adding generalized time features, and identifying

meaningful sequences via filter expressions.

•We conducted a thorough evaluation of OLAPH using four types of mobile context

logs (app usage, location, call and SMS) from 85 users. We demonstrate several key ob-

servations such as models trained on 4 consecutive weeks of data provide good prediction

accuracy with reasonable training times. Based on our analysis, we develop guidelines

for feasibly scheduling OLAPH training on phones.

• We present a comparative evaluation of six sequence prediction algorithms that

train and test over mobile context data. We present interesting, and, in some cases, con-

trasting observations of applying sequence models over mobile context data. The best

model AKOM achieves a median of 90+% sequence prediction accuracy. As AKOM has

higher state complexity compared to other first order markov approaches, we identify that

AKOM with order k = 5 is the best suited to achieve high accuracy yet have reasonable

state complexity and model size for our mobile context dataset.

1.4 Dissertation Organization

Chapter 2 describes PARAS and FIRE frameworks including their extensive performance

evaluations as well as user and case study. The COLARM work for localized rule mining

together with its experimental results are explained in Chapter 3. Further, Chapter 4

provides details of the OLAPH sequence prediction modeling of mobile context data and

its evaluation. The conclusion of this dissertation is presented in Chapter 5 and future

works are discussed in Chapter 6.
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2

Interactive Rule Exploration with

PARAS and FIRE

2.1 Foundation of Parameter-driven Rule Mining

In this chapter of my dissertation I first review the foundation of parameter space model

from (LMR+13). I then present the backend innovations of PARAS framework followed

by the FIRE visual engine.

The core principle we adopt for our interactive rule exploration framework corre-

sponds to the preprocess-once-query-many (POQM) paradigm (AY01a). In an offline

step, we extract all rules from a dataset that satisfy a minimum primary support. Then

we compactly index the large number of extracted rules for subsequent interactive rule

exploration by analysts. In particular, we adopt the parameter space-driven approach

(LMR+13) which, in the context of rule mining, consists of a two-dimensional space of

support and confidence, as described below.
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2.1.1 Parameter Space Model

We use the parameter space as a model for managing, retrieving, and exploring the as-

sociation rules of a dataset. For a dataset D, this space contains the rules of D, denoted

by {R}D. Each dimension pk of the space represents an interestingness measure, such as

support, confidence and lift (WCH07).

Definition 2.1 Parameter Space: Given a dataset D and d user-chosen interestingness

parameters each denoted as pi, we use a d-dimensional parameter space, denoted by

P = {p1, . . . , pk, . . . , pd} for organizing the rules {R}D for D. Each rule Rj is rep-

resented by its parametric location (Rj .value(p1), . . ., Rj .value(pk), . . ., Rj .value(pd))

where Rj .value(pi) denotes the value of the ith parameter for rule Rj .

For simplicity, we henceforth work with a two-dimensional parameter space using support

and confidence as dimensions. A parametric location `1 is defined by a combination of

support and confidence values, denoted by (`1.supp, `1.conf) (Fig. 2.2). Many association

rules may map to the same parametric location, e.g., (XZ⇒Y) and (YZ⇒X) both map to

(0.1,0.5). Therefore, all rules mapping to the same parametric location can be compactly

indexed in our parameter space model.

The user specified minsupp and minconf values may range between 0 and 1, making

the number of locations infinitely large. Yet, the number of distinct parametric locations

is typically much smaller than the actual number of association rules. Thus, if the asso-

ciation rules are grouped by their parametric locations, there is a modest number of such

locations compared to the number of actual rules.

2.1.2 Stable Region Abstractions.

In Figure 2.2, we observe that certain regions of the parameter space often either contain

no rules or contain the same set across a large range of parameter settings (e.g., the shaded

18
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Figure 2.1: Adjacency Lattice. Figure 2.2: Parameter Space.

regions marked S
(0.4,0.5)
(0.2,0) and S

(0.4,0.67)
(0,0.5) ). This leads us to the notion of stable regions, which

forms our coarse granularity abstractions for rules.

Definition 2.2 Stable Region: Given a parameter space P of d interestingness dimen-

sions {p1, . . . , pd} for dataset D, a stable region S
(upper(p1),...,upper(pd))
(lower(p1),...,lower(pd))

is a d-dimensional

rectangular hyperbox with extreme points (S.lower(p1),. . ., S.lower(pd)) and ( S.upper(p1),

. . ., S.upper(pd)) within which no matter how the parameter values are adjusted, the set

of rules generated from D remains unchanged.

In Figure 2.2, the shaded region S
(0.4,0.5)
(0.2,0) is bounded by the parametric locations (0.2,0)

and (0.4,0.5) as its extreme points. Let us suppose that a user inputs two separate queries

Q1 and Q2 with the parametric locations `1 and `2, respectively. Then both parametric

locations lie within S
(0.4,0.5)
(0.2,0) . Thus, we can infer that the outputs for both Q1 and Q2

will be the same, i.e., {R}Q1 = {R}Q2 = {(X ⇒ Y), (Y ⇒ X)}. However, if the user

inputs another query Q3 with parametric location `3, that lies within region S
(0.4,0.67)
(0,0.5) ),

the output would only contain rule (Y ⇒ X). Thus, the output remains unchanged as

long as parameter values are chosen within the bounds of a stable region, whereas the

output changes when crossing between stable regions. Next, Lemma 2.1.2 establishes a

neighborhood relationship among adjacent stable regions.
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Consider two stable regions S(usupp1,uconf1)
(lsup1,lconf1) and S(usupp2,uconf2)

(lsup2,lconf2) such that usupp2 ≥

usupp1 and uconf2≥ uconf1, then all association rules valid in stable region S(usupp2,uconf2)
(lsup2,lconf2)

are also valid in region S(usupp1,uconf1)
(lsup1,lconf1) . The reverse is not true.

Proof: A rule Ri at a parametric location (Ri.supp,Ri.conf ) qualifies to be output

for any mining request with minsupp ≤ R.supp and minconf ≤ Ri.conf. Assuming rule

Ri belongs to stable region S(usupp2,uconf2)
(lsup2,lconf2) , Ri.supp = usupp2 and confidence Ri.conf =

uconf2. Therefore, Ri will also be valid in region S(usupp1,uconf1)
(lsup1,lconf1) as usupp1 ≤ Ri.supp

and uconf1 ≤ Ri.conf.

Definition 2.3 Lending Neighbor Stable Region: Consider two neighbor stable regions

S(usupp1,uconf1)
(lsup1,lconf1) and S(usupp2,uconf2)

(lsup2,lconf2) , related by Lemma 2.1.2. We then say that S(usupp2,uconf2)
(lsup2,lconf2)

is the lending neighbor stable region for S(usupp1,uconf1)
(lsup1,lconf1) , in short, l-neighbor.

By Def. 2.3, in Figure 2.2 S
(0.4,0.67)
(0,0.5) is the lending neighbor stable region for S(0.4,0.5)

(0.2,0) .

S
(0.4,0.67)
(0,0.5) lends rule (Y ⇒ X) to S

(0.4,0.5)
(0.2,0) , as (Y ⇒ X) first appears in S

(0.4,0.67)
(0,0.5) and is

also valid for S(0.4,0.5)
(0.2,0) . We refer to the lending neighbor stable region(s) as l-neighbors in

short.

We partition the parameter space P into a finite number of non-overlapping stable

regions, denoted by {S}. The non-overlapping property among stable regions can be

guaranteed due to our approach of modeling the regions (Section 2.3.3). Utilizing the

concept of neighbor stable regions (Def. 2.3), for each such stable region, we maintain

(a.) the rules that are valid within that region and (b.) the links to its l-neighbors. This

partitioning of the parameter space into stable regions enables us to process novel ex-

ploratory online queries as well as to recommend query parameter settings based on user

interest.
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Rule Support Confidence
X⇒YZ S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z) / S(X) = 0.125
XY⇒Z S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z) / S(X ∪ Y) = 0.25
XZ⇒Y S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z) / S(X ∪ Z) = 0.5
X⇒Y S(X ∪ Y) = 0.4 S(X ∪ Y) / S(X) = 0.5
X⇒Z S(X ∪ Z) = 0.2 S(X ∪ Z) / S(X) = 0.25

Table 2.1: Example Rules to Illustrate Rule Redundancy.

2.1.3 Rule Redundancy in Association Rules

Aggarwal et al. (AY01a) defined rule redundancy relationships, such that redundant rules

may be filtered out to present succinct results to the user. The redundant rules could

always be derived on demand, if so desired. We examine how these redundancy relation-

ships can be identified in the parameter space model. In particular, redundancy can be of

two types (AY01a), as defined below.

Definition 2.4 Simple Redundancy: Let A ⇒ B and C ⇒ D be two rules such that the

itemsets A, B, C and D satisfy the condition A ∪ B = C ∪ D. The rule C⇒ D is simply

redundant with respect to the rule A⇒ B, if C ⊃ A.

Definition 2.5 Strict Redundancy: We consider two rules generated from itemsets Xi and

Xj respectively such that Xi ⊃ Xj . Let A⇒ B and C⇒ D be rules satisfying A ∪ B = Xi,

C ∪ D = Xj , and C ⊇ A. Then the rule C⇒ D is strictly redundant with respect to the

rule A⇒ B.

The concept of redundancy can be illustrated using the rules generated from the lattice

(Figure 2.1) as listed in Table 2.1. Based on Definitions 2.4 and 2.5, if a rule R1 is simple

or strict redundant with respect to another rule R2, then R2 is said to simple or strict

dominate R1, respectively. In Table 2.1, the rule (X ⇒ YZ) simple dominates the rules

(XY⇒ Z) and (XZ⇒ Y) (Def. 2.4). In Table 2.1, the rule (X⇒ YZ) strict dominates

rules (X⇒ Y) and (X⇒ Z) (Def. 2.5). In general, a rule may be dominated by several

dominating rules and may in turn dominate several other dominated rules.
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2.2 Offline PSpace Construction

Our proposed offline PSpace construction (Algorithm 1) is composed of three tasks,

task 1: generate all associations; task 2: compute stable regions; and task 3: determine

neighborhoods among regions. To perform the above tasks we adapt the algorithms Con-

structLattice and GenerateRules from (AY01a). For a dataset D, an adjacency lattice L

(Figure 2.1) is constructed using the ConstructLattice algorithm (explained in (AY01a)).

This lattice L is then utilized to perform the first two tasks below:

Task 1: Generate All Associations. The original GenerateRules algorithm (AY01a)

utilizes a lattice L to generate non-redundant rules. This is achieved by a subroutine

FindBoundary that, for a given itemset node Ni in lattice L, returns only the bound-

aryListNi(AY01a) of parent nodes. However, PARAS needs to pre-store all associations

for dataset D. By replacing FindBoundary with FindFullParentList, the list of all parent

itemsets is produced, denoted by parentListNi . This modified GenerateRules generates

all rules.

Task 2: Compute Stable Regions. We further modify the GenerateRules algorithm

such that the stable regions are constructed in parallel with rule generation, as described

in subroutine Rules & Regions Generator (Algo. 1.A). To partition the parameter space

into stable regions, we first compute the cut locations. A cut location is identified by

the upper location of a stable region. For S(0.4,0.5)
(0.2,0) the cut location is (0.4,0.5). Therefore,

while generating rules using lattice L, for itemset nodes {Ni}with identical support count

(denoted by S(Ni)) in L, the support for the cut location for Ni = S(Ni)
|D| , where |D| (of L

in Figure 2.1 = 100) is the total number of records. Similarly, for Ni and a parent node

NP
j ε parentListNi , the confidence value for the corresponding cut location is given by

S(Ni)

S(NPj )
. In other words, the cut location for S(0.4,0.5)

(0.2,0) is the location of association (X ⇒

Y) in the parameter space. Therefore, each stable region is constructed in parallel during
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rule generation process as described in Algo. 1.A.

Figure 2.3: Stable Regions.

S. Regions Neighbors Associations
S
(0.4,0.67)
(0,0.5) ∅ {(Y⇒X)}

S
(0.4,0.5)
(0.2,0) S

(0.4,0.67)
(0,0.5) {(X⇒Y)}

S
(0.2,0.5)
(0.1,0.33) S

(0.4,0.5)
(0.2,0) {(Z⇒X),(Z⇒Y)}

S
(0.2,0.33)
(0.1,0.25) S

(0.2,0.5)
(0.1,0.33) {(Y⇒Z)}

S
(0.2,0.25)
(0.1,0) S

(0.2,0.33)
(0.1,0.25) {(X⇒Z)}

S
(0.1,0.5)
(0,0.33) S

(0.2,0.5)
(0.1,0.33) {(XZ⇒Y),(YZ⇒X)}

S
(0.1,0.33)
(0,0.25) S

(0.1,0.5)
(0,0.33) +S(0.2,0.33)(0.1,0.25) {∅}

S
(0.1,0.25)
(0,0.16) S

(0.1,0.33)
(0,0.25) +S(0.2,0.25)(0.1,0) {(XY⇒Z),(Z⇒XY)}

S
(0.1,0.16)
(0,0.125) S

(0.1,0.25)
(0,0.16) {(Y⇒XZ)}

S
(0.1,0.125)
(0,0) S

(0.1,0.16)
(0,0.125) {(X⇒YZ)}

Figure 2.4: Enriched Stable Regions.

Task 3: Determine Neighborhood Relationships Among Regions. For each stable

region S, the Neighborhood Miner subroutine (Algorithm 1.B) adds the minimum pa-

rameter values. It also determines the list of lending neighbor stable regions. The final

parameter space partitioned into its stable regions is depicted in Figure 2.3. Figure 2.4

lists all stable regions along with their associations and their l-neighbor stable regions.

In our example space, region S
(0.4,0.5)
(0.2,0) contains rule {(X⇒Y)} and has the region

S
(0.4,0.67)
(0,0.5) as its lending neighbor. The complete list of associations for a particular stable

Figure 2.5: Dominating Rules. Figure 2.6: Dominating Locations.
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region is given by the associations within the region plus the associations recursively

collected from its l-neighbors. This way, a compact representation of stable regions along

with the associations valid within them is achieved such that no association rule is stored

repeatedly. The collection of regions enriched with neighbors is denoted by {S+}.

2.3 Redundancy Relationships

The rules produced using the stable regions constructed above may contain redundancies.

In the parameter space model, our analysis derives certain properties of redundancy rela-

tionships that enable us to abstract redundancy information compactly as an offline step.

When the user desires to retrieve non-redundant associations, PARAS can thus generate

them efficiently at query-time.

2.3.1 Abstracting Redundancy Relationships

As a key observation we note that the redundancy relationship is a query-time phe-

nomenon. In other words, the redundancy among rules depends on query-time input

parameters rendering it impossible to eliminate a rule as redundant at an offline step.

Instead, the redundancy relationships can be established only at query-time. For the pa-

rameter space in Figure 2.2, suppose that the user inputs (0.1,0.1) as query parameters.

Here, the dominating rule R� = (X ⇒ YZ) located at (0.1,0.125) qualifies as output.

Then, to produce only non-redundant rules, the dominated rules {R�} = { (XY ⇒ Z),

(XZ ⇒ Y), (X ⇒ Y) and (X ⇒ Z) } must be eliminated. However, if the user inputs

(0.1,0.2) instead, then (X ⇒ YZ) would not qualify for output and the rules previously

deemed redundant are no longer redundant for this query. Thus, as the query parameters

are supplied by the user at query-time, the decision about rule elimination can only be

determined at query-time.
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While elimination of the dominated rules can only be performed at query-time, our

goal is to isolate as much as possible the redundancy relationships among rules inside the

parameter space model in the preprocessing phase. This leads to the challenge that we

must design a corresponding query-time strategy to produce non-redundant associations

by utilizing this predetermined redundancy model. A straightforward yet expensive ap-

proach may proceed as follows. In the offline phase, for each rule Rj , store the set of rules

that dominate Rj , denoted by {R�}j . At query-time, if the rule Rj is included in the set

of rules for the stable region containing query parameters (minsupp,minconf ), then test if

any of the rules dominating Rj , denoted by R�i ε {R�}j , qualify the query parameters.

If yes, then rule Rj is eliminated, else Rj is output.

Simple Dominating Rules and Location. Unfortunately, a rule R�sim
j may be simple

dominated by multiple rules (Def. 2.4). For example, (XY⇒ Z) is simple dominated by

two rules, namely, (X⇒ YZ) and (Y⇒ XZ). Therefore, (XY⇒ Z) can only qualify for

output if neither of its simple dominating rules qualify. We call them the set of simple

dominating rules of rule R�sim
j as we described in Def. 2.6. Here, the simple dominating

ruleset is denoted by {R�sim}j = {(X⇒ YZ),(Y⇒ XZ)}.

Definition 2.6 Simple Dominating Rule Set: For a rule R�sim
j , its simple dominating

rule set, denoted by {R�sim}j , is the set of all the rules that simple dominate R�sim
j .

1em
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Algorithm 1 Offline PSpace Construction
Dataset D PSpace Index P
L←− ConstructLattice(D);

{S}, {R} ←− Rules&RegionsGenerator(L);

{S+} ←− NeighborhoodMiner({S});

{R+} ←− RedundancyAbstractor({R});

P←− PSpaceIndexConstructor({S+},{R+});

return P;

1.A: Rules&RegionsGenerator(L)

{S} ←− ∅;

*[f]Get Parent List all k-itemsets in L, k>1.

each Ni ∈ L parentListNi ←− FindFullParentList(Ni);

*[f]Generate rules and regions.

each Ni ∈ L {R} ←− ∅;

each NPj ∈ parentListNi Ri,j ←− {I(NPj )⇒ I(Ni)− I(NPj )};

*[f]I(Ni) = itemset for Ni

{R} ←− {R} ∪ Ri,j ;

supp←− S(Ni)
|D| ; conf ←− S(Ni)

S(NP
j )

;

(Sold ←− getRegion({S},(supp, conf )) 6= ∅) Sold.addToRuleList(Ri,j );

Create New Region Snew;

Snew .addUpperParameters(supp, conf );

Snew .addToRuleList(Ri,j );

{S} ←− {S}∪ Snew;

return {S}, {R};

1.B: NeighborhoodMiner({S})

each Si ∈ {S} Si.findLowerParameters();

Si.findClosestHigherNeighbors();

return {S+};

1.C: RedundancyAbstractor({R})

each Rj ∈ {R} {R�sim}j ←− CollectTopSimpleDomRules(Rj );

`
�sim
j ←− FindMaxDomLocation({R�sim}j );

{R�str}j ←− CollectTopStrictDomRules(Rj );

`�str
j ←− FindMaxDomLocation({R�str}j );

Rj .AddDominatingLocations(`�sim
j ,`�str

j );

return {R+};
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For each simple dominated rule R�sim
j ≡ ((A1:An) ⇒ (C1:Cm)), all rules that po-

tentially simple dominate it conform to the template (((A1:An)-(Av:Aw))⇒ ((Av:Aw) ∪

(C1:Cm))). For the rule (XY⇒ Z) having two items X and Y in the antecedent, there are

two simple dominating rules, considering all subsets of XY in the antecedent, namely, X

and Y. Our observation is further generalized as in Lemma 2.3.1 below. For a simple

dominated rule R�sim
j ≡ ((A1:An) ⇒ (C1:Cm)) with n antecedent items, the number of

simple dominating rules, denoted by |{R�sim}j| is 2n-2. 1

We further observe in Figure 2.5, that all rules in the set of simple dominating rules

{R�sim}j have the same support value as rule R�sim
j . Thus it is possible to uniquely iden-

tify one single location containing one or more rules that is closest to R�sim
j as described

in Lemma 2.3.1.

Simple Dominating Location: For each simple dominated rule R�sim
j , the set of

simple dominating rules {R�sim}j contains a rule R�sim
i closest to the dominated rule

R�sim
j , such that ∀R�sim

k ε {R�sim}j and (k6=i), R�sim
i .conf ≥ R�sim

k .conf. The location

of rule R�sim
i is called the simple dominating location2 of R�sim

j , denoted by `�sim
j .

Strict Dominating Rules and Location. Similar to the above case of simple domi-

nating rules, a strict dominated rule R�str
j can be dominated by several strict dominating

rules {R�str}j . We call them the set of strict dominating rules of rule R�str
j as defined

below. In the example in Figure 2.1, for a rule R�str
j = (X ⇒ Y), the strict dominating

rule set {R�str}j = {(X⇒ YZ)}.

Definition 2.7 For a rule R�str
j , its strict dominating rule set, denoted by {R�str}j , is

the set of all the rules that strict dominate R�str
j .

For a rule R�str
j , the number of such strict dominating rules can also be estimated as

in Lemma 2.3.1.
1Proofs of the lemmas and the theorems are omitted due to space restriction and can be found in

(LMR+13).
2Multiple rules may map to the simple / strict dominating location that collectively represents them.
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For a strict dominated rule R�str
j having n antecedent items ((A1:An)⇒ (C1:Cm)), the

strict dominating rules {R�str}j conform to the template (((A1:An)-(At:Au))⇒ ((At:Au)

∪ (C1: Cm+e))). The cardinality of strict dominating rules, denoted by |{R�str}j|, is

2n+e, where e is the number of additional consequents in the dominating rules within the

set {R�str}j .

Using Lemma 2.3.1, for a dominated rule R�str
j , the number of strict dominating

rules can be determined. We further observe in Figure 2.5, that all rules in the set of strict

dominating rules {R�str}j must have both their support and confidence values less than

or equal to those of the rule R�str
j . Thus it is possible to uniquely identify one single rule

location closest to R�str
j as described in Lemma 2.3.1.

Strict Dominating Location: For each strict dominated rule R�str
j , the set of strict

dominating rules {R�str}j contains one or more rules R�str
i (in the same location) closest

to the dominated rule R�str
j , such that ∀R�str

k ε {R�str}j where (i6=k), R�str
i .supp ≥

R�str
k .supp AND R�str

i .conf≥ R�str
k .conf. The location of rule R�str

i is called the strict

dominating location4, denoted by `�str
j .

Lemmas 2.3.1 and 2.3.1 now lead us to a key insight, namely, they allow us to com-

pactly store the association rules along with respective redundancy relationships. For

each rule Rj , only its two locations, namely, the simple dominating location `�sim
j and

the strict dominating location `�str
j must be captured by the offline step. At the online

query processing phase, these two locations are sufficient to determine the redundancy

relationship for rule Rj , as described in Theorem 2.3.1.

Constant Time Criteria for Online Redundancy Determination: Given an online

mining query with parameter values (minsup, minconf ), for each rule Rj in the result set

{Rj}, only two parameter space locations, namely, the simple dominating location

`�sim
j and the strict dominating location `�str

j are sufficient for determining whether the

rule Rj is redundant. In the case of (minsupp≤ `�sim
j .supp AND minconf≤ `�sim

j .conf)
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OR (minsupp≤ `�str
j .supp AND minconf≤ `�str

j .conf) is true, the rule Rj is redundant.

Otherwise, the rule Rj is not redundant.

As illustrated in Figure 2.6, the online algorithm for redundancy resolution requires

checking the three cases of where the user input (minsupp,minconf ) lies with respect to

each rule in the result set and their dual dominating locations.

2.3.2 Optimized Location Computation

The Redundancy Abstractor subroutine (Algorithm 1.C) captures redundancies for each

rule Rj . Suppose Rj is of the form ((A1:An)⇒ (C1:Cm)) as in Figure 2.5. One straight-

forward approach for computing the simple dominating location for rule Rj is as follows:

(a.) collect all simple dominating associations and (b.) find the simple dominating rule

with the maximum (supp,conf ) value pairs. The location of that rule is the simple dom-

inating location `�sim
j for rule Rj . Clearly, the same process could be employed to find

the strict dominating location `�str
j .

However, this process of finding the dominating location by searching through the

set {R�sim}j of k rules is equivalent to finding the largest of k numbers. It requires

O(k) time. From Lemma 2.3.1, the total number of simple dominating rules for a rule

((A1:An) ⇒ (C1:Cm)) having n antecedents is 2n-2. Therefore, finding the simple and

strict dominating locations using the complete set of dominating rules (here k = 2n-2) is

very computationally intensive. Below, we instead demonstrate that a much smaller sub-

set of dominating association rules is sufficient for computing the dominating locations,

as stated in Theorem 2.3.2.

Top Simple Dominating Rules: For a rule ((A1:An)⇒ (C1:Cm)) having n antecedents,

to find the simple dominating location, it is necessary and sufficient to search only the (n-

1)-antecedent simple dominating rules with format (((A1:An)- Ai) ⇒ (Ai∪ (C1:Cm))),

called the top simple dominating rules.
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The total number of top simple dominating rules is given by
(
n
n−1
)

= n.

Top Strict Dominating Rules: For a rule ((A1:An)⇒ (C1:Cm)) to find the strict dom-

inating location, it is is necessary and sufficient to search only the e dominating rules with

format (((A1:An))⇒ ((C1:Cm) ∪ Ch)), where e is the number of consequent items in the

dominating rules but not in (C1:Cm) and Ch is a single item out of the set (Cm+1:Cm+e).

We call them the top strict dominating rules.

Using Theorem 2.3.2, only the top n simple dominating rules must be collected us-

ing CollectTopSimpleDomRules method, instead of all the 2n-2 simple dominating rules.

Similarly, using Theorem 2.3.2, only the top e strict dominating rules must be collected

using the CollectTopStrictDomRules method, where e is the number of additional conse-

quent items in the dominating rules but not in (C1:Cm). The overall approach is given in

Algorithm 1.C. The optimizations achieved by Theorems 2.3.2 and 2.3.2 result in signifi-

cant improvements as the offline redundancy abstraction now requires O(n2) time opposed

to the approach utilizing all dominating rules that would require O(2n). The collection of

rules enriched with redundancy information is denoted by {R+}.

2.3.3 The Compact PSpace Index

Using the enriched stable regions {S+} and the enriched ruleset {R+}, the PSpace is

created using the subroutine ConstructIndex (Algorithm 1) and indexed by a two-layered

index, called the PSpace Index. The top level of the PSpace index facilitates the search

to locate a particular stable region given input parameters. As such, any spatial indexing

method could be utilized. In our implementation, grid-based spatial indexing is utilized

to partition the PSpace into equal sized grid cells and allocate the stable regions to their

respective positions in the grid. A stable region may span over one or more grid cells,

while a grid cell is allocated at least one stable region. The stable regions in each cell

point to the coresponding nodes in the next level of the PSpace index. In Figure 2.7,
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Figure 2.7: The PSpace Index.

we partition PSpace into 0.1 × 0.125 sized grid cells. S8 and S9 are in the same grid

cell, while S6 spans over two grid cells. For optimization, we reduce the number of grid

cells by marking the upperbounds for support and confidence and indicating that no stable

region exist beyond the upperbound in PSpace. For online query processing using the grid

see Section 2.4. Using the proposed grid structure, the online search for a stable region

can be performed in near constant time as shown in Section 2.4.

The next level of the PSpace index, namely, the region neighborship graph (R.H.S. of

Figure 2.7), expedites the collection of rules from neighbor regions. Each stable region

forms a node in the graph and each node is linked to its lending neighbors. As each

region may have at most two such neighbors, these links result in a sparse directed graph

of stable regions. The region neighborship graph enables us to not only locate lending

neighbor regions in near constant time, but also to produce complete rule sets in time

linear to the number of rules involved. Inside the region neighborship graph, each region

node consists of the enriched ruleset unique to the region (Figure 2.4) along with their

respective simple and strict dominating locations. For example, node S1 in Figure 2.7

stores rule R1 ≡ (Y ⇒ X) as well as its dominating locations `�sim

R1
and `�str

R1
. The

PSpace index is used to efficiently process a rich variety of online exploratory queries as

shown in Section 2.4.
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2.4 Online Query Processing

We now explain how the different classes of online mining queries are processed by

PARAS (Algorithm 2). The PSpace Access module is employed to load the PSpace

index P (see Section 2.3.3 for index details). Depending on the query class, interpreted

by the Query Parser, the apropriate subroutine for the query class is invoked. If the query

class is RM (or SR or RR), then the subroutine RuleMiningQ (or StableRegionQ or Re-

dundancyQ) is invoked with appropriate parameter values.
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Algorithm 2 Online Query Processing
Query Q RuleSet {R} or RegionSet{S}
P←− PAccess.GetIndex();

QParser.GetQClass(Q) == RM RuleMiningQ(QParser.GetQRE(Q),(minsupp,minconf ),P);

QParser.GetQClass(Q) == SR StableRegionQ(qType,(minsupp,minconf ),P);

QParser.GetQClass(Q) == RR RedundancyQ(qType,(minsupp,minconf ),P);

2.A: RuleMiningQ(REFlag,(minsupp,minconf ),P)

{R} ←− ∅; S←− P.LocSearchRegion(minsupp,minconf );

{R} ←− {R} ∪ S.GetRuleSet();

neighborList←− NeighborCollector(S); *[f]Get all neighbors.

each Si ∈ neighborList {R} ←− {R} ∪ Si.GetRuleSet(); *[f]Collect RuleSets.

REFlag.IsTrue() {R} ←− RedundancyResolver({R},(minsupp,minconf ));

return {R};

2.B: StableRegionQ(qType,(minsupp,minconf ),P)

qType == Q2 return P.LocSearchRegion(minsupp,minconf );

qType == Q3 S←− P.LocSearchRegion(minsupp,minconf );

return S.GetRuleSet();

qType == Q4 S←− P.LocSearchRegion(minsupp,minconf );

return S.GetNeighborList();

return false;

2.C: RedundancyQ(qType,(minsupp,minconf ),P)

{L�} ←− ∅; {R} ←− ∅;

{R} ←− StableRegionQ(Q3, (minsupp,minconf),P);

*[f]Iterate over rules.

each Rj ∈ {R}

*[f]Collect Simple Dom Loc.

L�sim ←− copyLocation(Rj .`�sim .supp,Rj .`�sim .conf );

{L�} ←− {L�} ∪ L�sim ;

*[f]Collect Strict Dom Loc.

L�str ←− copyLocation(Rj .`�str .supp,Rj .`�str .conf );

{L�} ←− {L�} ∪ L�str ;

return {L�};

RuleMiningQ. Algorithm 2.A describes how the rule mining query is processed. The

LocSearchRegion method performs a location search on the PSpace index using (min-
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supp,minconf ) as input to retrieve the stable region S that contains (minsupp,minconf ).

S is enriched with its ruleset and neighbors. The NeighborCollector module recursively

collects all the neighbor stable regions. The output ruleset {R} consists of the ruleset of

region S and the rulesets of the lending neighbors. If REFlag is set to TRUE, the Redun-

dancyResolver (Algorithm 3) performs the inexpensive checks, as illustrated in Figure

2.6, to reduce the output ruleset.

Algorithm 3 Redundancy Resolver
RuleSet {R}, (minsupp,minconf ) Redundancy Eliminated RuleSet {R}RE
{R}RE ←− emptyset;

each Ri ∈ {R} simDL←− Ri.GetSimDomLoc();

strDL←− Ri.GetStrDomLoc();

*[f]Ri qualifies by failing Case 1. Case 2:

(((minsupp ≤ simDL.supp)AND(minconf ≤ simDL.conf ))OR ((minsupp ≤ strDL.supp) AND

(minconf ≤ strDL.conf ))) PRINT (Ri is dominated.);

*[f]Case 3

{R}RE ←− {R}RE ∪ Ri; return {R}RE ;

The response time for the rule mining query consists of three components, namely,

Cost(LocSearchRegion) + Cost(Neighbor Collection) + Cost(Redundancy Resolution).

Our PSpace index is an in-memory structure that compactly represents all the stable

regions enriched with rulesets and neighbors. In case the data exceeds the memory, disk

space is utilized for extra storage. The cost for a location search on the grid structure of

the PSpace index is given as Cost(LocSearchRegion) = O(1).As illustrated in Figure 2.7,

by converting input parameters (0.15,0.2) into offsets, the appropriate cell can be found in

constant time and the stable region (here, S5) is retrieved. For neighbor collection on the

sparse directed graph of stable regions a depth first search (DFS) is required starting at the

node containing (minsupp,minconf ). The time complexity of DFS is O(|V| + |E|). In our
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case, E ≤ (2 × V) as each vertex has a fanout of at most two edges, thus, Cost(Neighbor

Collection) = O(|V|). Further, assuming uniform distribution of regions in the 2-D space,

the number of stable regions that lie above (minsupp,minconf ) is denoted by V = {NS×

(1 - minsupp) × (1 - minconf )}, where NS is the number of stable regions. For very low

(minsupp,minconf ) input, all NS stable regions must be collected. If the Intermediate set

of Rules {R} input to the redundancy resolution method contains a total of NIR rules,

the time required for redundancy resolution is [NIR× CRR], where CRR is the constant

cost of redundancy checking over a single candidate rule (Algo. 3). If the PSpace index

requires secondary storage such that both grid cells and stable regions are stored on disk,

additional costs for disk access are added into the costs of location search and neighbor

collection. Redundancy resolution can still be performed in-memory over the retrieved

stable regions.

StableRegionQ. Algorithm 2.B describes how the three stable region queries are pro-

cessed. All three stable region query types invoke the LocSearchRegion method to retrieve

the stable region containing (minsupp,minconf ). Query type Q2 simply returns stable re-

gion S as output. As each stable region S is enriched with its ruleset, the GetRuleSet

method in Q3 returns the ruleset of S. Similarly, for Q4, GetNeighborList returns the

neighbor list for S.

Similar to query Q1, each of the stable region queries incurs the location search cost

(Cost(LocSearchRegion)). The ruleset for Q3 and the neighbor list for Q4 can be re-

trieved in near constant time as each stable region is enriched with that information.

Thus, Cost(Q2)=Cost(Q3)=Cost(Q4)= Cost(LocSearchRegion) + CSRQ, where CSRQ is

the constant cost of accessing the rules and/or neighbors of a stable region.

RedundancyQ. Algorithm 2.C describes how the redundancy query is processed. The

dominating stable regions are desired. For this query the StableRegionQ subroutine is

invoked with query type Q3, (minsupp,minconf ) and P as input. For each rule Rj in the
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returned ruleset {R}, the simple and strict dominating locations of Rj are retrieved to

collect the output stable regions {S�}.

The response time of redundancy query Q5 is given by Cost(Q5) = [ Cost(LocSearchRegion)

+ NR ] = O(NR). Here, NR denotes the number of rules in the stable region containing

(minsupp,minconf ). For each rule Rj , its simple and strict dominating locations are re-

trieved in near constant time.

Figure 2.8: The FIRE Architecture Figure 2.9: The FIRE Visual Interface

2.5 Overview of FIRE Visual Paradigm

Our FIRE Visualizer (Figure 2.8) supports a rich variety of analytical interactions over

the PARAS index. The FIRE visual interface1 (Figure 2.9) enables analysts to explore

the stable region abstractions of the parameter space model and the corresponding rule-

sets with ease - thus supporting effective visual analytics. FIRE is composed of a visual

paradigm with two layers of interlinked visual interfaces, namely, the PSpace view and

1The FIRE tool is available at (FIR15) as a web interface for researchers to upload their own datasets,
generate association rules on the datasets and visualize the rules.
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the RSpace view. The PSpace view (Sec. 2.6) displays the overall distribution of rules

within the space, facilitating parameter tuning and exploration at a higher level of abstrac-

tion. The RSpace view (Sec. 2.7) provides alternate tabular and rule glyph visuals. The

tabular view displays the rules in text format, including their itemsets in its antecedent

and consequent together with the support and confidence values. The RSpace glyph view,

which is a novel visualization to show association rules. The glyph view enables analysts

to gain rich insights by applying glyph placement strategies to find clusters of similar rules

and to detect outliers. The FIRE visualizer is powered by the PARAS backend algorithms

(LMR+13). When a dataset is first loaded into FIRE, the PARAS backend generates all

rules and organizes the rules into the PARAS index for compact storage. PARAS also

includes query processing algorithms to respond to the user visual requests efficiently in

real-time. The Index Access module offers an API for accessing the PARAS index that

would have been constructed in an offline step using PARAS. When the same dataset is

reloaded, the index is directly used as rules are already pre-generated.

Figure 2.10: PSpace (All Rules) for the
Mushroom dataset

Figure 2.11: PSpace (Unique Rules) for the
Mushroom dataset
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2.6 Interactive Visual Parameter Space Design

Below we introduce FIRE’s parameter-space (PSpace) visual paradigm where rules are

distributed over the two-dimensional space of parameters (here, support and confidence)

together with all the visual interactions available to analysts.

2.6.1 The PSpace Visualization

In this work, we design a novel abstract view of the distribution of rules on the parameter

space called the PSpace visualization. As depicted on the left hand side (LHS) of Figure

2.9, the PSpace view displays rules in a two-dimensional plot of the stable regions within

a space of support (x-axis) and confidence (y-axis) dimensions. Depending on the distri-

bution of rules within the two-dimensional space, datasets may differ in number, size and

density of the stable regions. Two such examples are shown in Figure 2.9 (LHS) depict-

ing the Chess data set and in Figure 2.10 depicting the rule distribution for the Mushroom

data set. Both are benchmark data sets taken from the UCI Machine Learning Repository

(UCI15). The PSpace view offers a compact rule space driven by a parameter-centric

perspective.

Figure 2.12: PSpace (Unique + Non-red.)
for the Mushroom dataset

Figure 2.13: Rule Cardinality Skyline
(>100 Rules)
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2.6.2 The PSpace Interactions

The following user interactions are provided on the PSpace visual engine.

Stable Region Display for Fast Parameter Exploration. For a dataset with a sparse

distribution of rules in the parameter space, even when a user submits several successive

mining requests with distinct (minsupp,minconf) input parameter values, a rule miner

may often repeatedly return the same set of rules. When using an existing rule miner

(HFH+09, ARu15), the analyst may have to progress through a frustrating trial-and-error

process to finally get a new set of rules. When using the PSpace visualizations, the analyst

can instead explore the parameter space by clicking through different regions. Every time

she is guaranteed to receive a distinct rule set for investigation. This way, FIRE saves

time and effort by laying out the complete distribution of rules in the parameter space. In

FIRE, analysts can navigate through regions by either indirectly typing in the support and

confidence values in the textbox (Figure 2.9) or by directly clicking on the stable regions

displayed on the PSpace view.

Rich Insights into Region-wise Rule Cardinality. To provide rich insights into the

density of rules within different regions, a color map is used where different colors denote

different cardinality / count of rules. Figure 2.9 (left) and Figure 2.10 show two example

datasets. Each shade of color denotes the count of rules within the region. Here, a lighter

color depicts low count and a darker color depicts high count. FIRE offers a variety of

color palettes to chose from including variants of sequential, diverging and qualitative

ramps (XMD15). This tool enables users to select color schemes of interest to customize

their displays.

Analysts can use the left bottom panel of the PSpace visualizer for a variety of inter-

actions with the PSpace. For example, users can interactively show either all rules that

appear in a region or only the rules unique to each region. For a dense dataset such as

Chess (UCI15), each parameter setting produces a huge number of rules. Suppose that
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Figure 2.14: PSpace-RSpace Linkage Figure 2.15: Comparing Two Regions

an analyst changes the parameter input by clicking on the PSpace interactive UI from

(minsuppold,minconfold) to (lsupp,lconf) such that minsuppold ≥ lsupp and minconfold

≥ lconf. Then the ruleset {R}(lsupp,lconf) would also contain the rules in the original

ruleset satisfying (minsuppold,minconfold). The change in the ruleset may be difficult to

quickly grasp by manual inspection. Here, a delta output of rules is desirable which can

be achieved in FIRE simply by selecting the Unique option. While Fig. 2.10 depicts an

All rules view, Fig. 2.11 shows the PSpace view for the same dataset when the user selects

the Unique option via the radio button.

Rule Redundancy Resolution. To the best of our knowledge, FIRE is the first rule

visualization system that allows analysts to optionally select to display only the non-

redundant rules for a data set. By excluding redundant rules, a succinct set of fewer

rules can be displayed in the PSpace view that covers all rules for ease of analysis. In

the context of the stable region abstractions, interesting patterns can be observed when

redundancies are excluded (Figure 2.12) compared to when they are included (Figure

2.11). In fact, any combination of unique/all and redundant/ non-redundant rules can be

selected via the radio buttons to observe different patterns of rule distributions over the

PSpace view. Further the results displayed can be analyzed using interactions.

Rule Cardinality Skyline Interaction. Figure 2.13 depicts the skyline view that

provides recommendations beyond a single stable region boundary. Consider the situation
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when the analyst wants to find the top-k (say, 100) rules in a dataset. However, at times

it is unclear which parameter (support or confidence) to give priority to. By selecting the

skyline option on the LHS bottom panel the analyst can input the desired cardinality in

the skyline cardinality textbox (say, 100). The skyline is then drawn on the PSpace view

to mark for each support value (x-axis), the confidence value (y-axis) having≥ 100 rules.

As a lower confidence value will result in a higher number of rules, the regions below the

skyline will contain ≥ 100 rules while those above the skyline will contain < 100 rules.

Therefore, the analyst can now select from a range of support and confidence settings

that will all return up to the top 100 rules based on particular support and confidence

combinations. Furthermore, the analyst can now quickly determine various observations

about the data set. For instance, using the rule cardinality skyline in Figure 2.13 one can

observe that no region contains ≥ 100 rules above support = 0.61.

Assisted Navigation through PSpace Visualization. Additional features such as

cursor positions, optional grid line and zooming are provided to assist the analyst in nav-

igating through the PSpace view. Some of these features can be seen in Figure 2.14. In

our early user study, we found that while using FIRE, analysts may not be comfortable

initially in identifying the support and confidence of desired regions on the PSpace view.

Therefore, we have introduced the cursor position feature. Namely, as the analyst moves

the cursor over the PSpace, the current cursor position is displayed. In Figure 2.14, the

current cursor position is (0.74. . .,0.84. . .).

2.6.3 Visualizing the PSpace-RSpace Relationship

Viewing the rule distribution in the PSpace stable region display is at a level of abstrac-

tion higher than the RSpace view of individual rules or rulesets with their respective

antecedent and consequent. PSpace-RSpace linkage enables real-time exploration using

the two views as described below. By default, the RSpace view loads with all rules mined
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from the dataset.

Drill-down via PSpace-RSpace Linkage. As shown in Figure 2.14, when the analyst

selects a single region on PSpace view (highlighted in black) the rules valid within that

region can be viewed in the RSpace view via cross links between the two views. This

supports instant drill-down into individual rules while still maintaining the global context

via the PSpace view.

Visual Region Ruleset Comparison. Analysts can also select two regions at a time

to compare their respective rulesets. In Figure 2.15 comparing two stable regions facili-

tates the analysis of how the change in parameter settings effects the output. Region A is

selected with a left click (highlighted in black) and region B is selected with shift+click

(highlighted in grey). Through cross links, the RSpace view then will present a compara-

tive display of unique rules within each region and also the common rules shared among

these two regions A and B, if any. Here, we see that region A 71 unique rules and region

B has 2 unique rules, with 3 common rules.

2.7 Interactive Visual Rule Space Design

Here, we describe the two detailed RSpace views designed for FIRE, namely, tabular and

glyph views along with the respective interactions supported on them.

2.7.1 The RSpace Tabular View

Rules are traditionally listed in a tabular RSpace view common to most mining tools as

depicted on the right hand side (RHS) of Figure 2.14. This tabular view allows the users to

learn the detailed information such as antecedents and consequents of each rule together

with support and confidence values. The total number of rules within the selected region

on the PSpace view is displayed at the bottom of the RSpace table.
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2.7.2 The RSpace Glyph View

Figure 2.16:
Lined Glyph 1

Figure 2.17:
Lined Glyph 2

Figure 2.18:
Con’ted Glyph

Figure 2.19:
Filled Glyph

The purpose of the detailed RSpace view is for the analysts to visually analyze simi-

larities or differences between the rules being displayed. However, as confirmed by initial

user testing, this task is difficult to accomplish by using only the tabular view due to

the overload of textual information. Beyond the straightforward tabular view described

above, we thus designed a novel RSpace glyph view for graphically representing asso-

ciation rules to facilitate efficient visual analysis of rulesets. A glyph is known to be an

effective visualization technique for displaying multi-variate data (War02). Glyphs are

effective for visual shape comparisons as well as finding clusters or outliers by applying

glyph placement strategies. However, to the best of our knowledge, glyphs have never

been used to visualize association rules before. Below we describe three variants of our

proposed RSpace glyph views.

Lined Glyph Design. A lined glyph (Figure 2.16) resembles a 360 degree clock dial

with multiple hands. Given a data set with n attributes, we represent each attribute with

a hand on the dial. Attribute hands are placed at equal angles to each other within the

total of 360 degree dial. In Figure 2.16, the Mushroom data set (UCI15) containing 22

attributes is represented with 22 hands. The lined glyph represents the rule {poisonous?

= edible} −→ {gill-attachment = free, veil-type = partial, veil-color = white} from the

Mushroom data set. The attributes that participate in a rule are highlighted while the rest

of the attributes are displayed in a faded manner.
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For each attribute the distinct values are displayed using different hand lengths. For

example, the attribute poisonous? has 2 distinct values, namely, {edible, poisonous}.

Thus, the hand lengths are encoded such that poisonous? = edible is represented by a

full length hand (blue hand in Figure 2.16) whereas a half length hand would represent

poisonous? = poisonous (blue hand in Figure 2.17).

Further, in order to distinguish the antecedents from the consequents, we propose to

draw them using two different colors. In Figure 2.16, the single antecedent poisonous? =

edible is represented with a blue hand whereas the three consequents {gill-attachment =

free, veil-type = partial, veil-color = white} are each represented with a red hand.

Connected Glyph Design. The intuition for the connected glyph design is that it is

easier to visually comprehend the similarities and differences between different shapes

rather than those of the combination of hand positions. For the same example rule dis-

cussed above using the lined glyph shown in Figure 2.16, we now depict the connected

glyph in Figure 2.18. The connected glyph is a simple modification of the line glyph with

the outside ends of the highlighted attribute hands connected to each other so as to give it

a shape. Two adjoining hands are connected only if they are within less than 180 degrees

of each other in the clockwise direction. Otherwise this will introduce ambiguity. Further,

we use a distinct color for the connection lines (here, black) to distinguish them from the

antecedents and the consequents.

Filled Glyph Design. Initial user trials revealed that the connected glyphs were not

effective for certain tasks such as distinguishing between antecedents and consequents.

Thus, we propose a third glyph design called the filled glyph. The filled glyph display

further fills colors inside the shapes created by connecting adjoining hands. The space

between two adjoining highlighted attribute hands is filled with the color of the first at-

tribute hand in a clockwise manner. In Figure 2.19, the space between hands represent-

ing attribute stalk-color-above-ring = white and stalk-color-below-ring = white is filled
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Figure 2.20: Lined
Glyphs

Figure 2.21: Connected
Glyphs

Figure 2.22: Filled
Glyphs

with blue, i.e., the color of the antecedent. Namely, in this case the antecedent is stalk-

color-above-ring = white. The space between the attribute hands stalk-color-below-ring

= white and veil-type = partial is filled with red, i.e., the color of the consequent stalk-

color-below-ring = white. Again, the space between two adjoining hands is filled only if

the hands are within less than 180 degrees of each other in the clockwise direction.

Comparison of Glyph Designs. The purpose of these three glyph representations is

to enable the analysts to visually comprehend the similarities and differences between the

rules displayed in the glyph view. Our intuition is that these graphical representations

are easier to comprehend and work with than the tabular display. Further, the purpose of

providing multiple glyph options is that for different tasks, different glyph displays may

be more effective, as confirmed by our evaluation. In Figures 2.20, 2.21 and 2.22 a set

of 4 rule glyphs are shown using lined, connected and filled glyph designs, respectively.

Our hypothesis is the following, based on initial user trials. If a task involves counting of

hands such as ”to find the rule with the minimum number of consequents (red hands)”, the

lined glyphs are most effective. On the other hand, if a task involves similarity detection

such as ”to find the rules containing the same antecedents (blue hands)”, then the filled

glyphs can effectively reveal the most prominent pattern. Connected glyphs, however,

will be efficient for tasks that may involve both counting hands and requiring some shape

information. A user study to examine the glyph designs is presented in Sec. 2.8.3.
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Figure 2.23: Tabular RSpace.

2.7.3 The RSpace Interactions

Using different interactions designed for the RSpace view, analysts can drill-down to gain

rich insights into rule subsets as described below.

Filtering and Sorting of Rulesets. In case of an overwhelmingly large number of

rules being displayed in the RSpace view, the analyst can filter the rules based on an-

tecedent and/or consequent values using an auto-fill control. In general this allows the

analyst to determine which rules are prominent for a given item/itemset. For example, in

Figure 2.23, the antecedent is filtered on veil-type = partial and the consequent is filtered

on gill-spacing = close. We note that only 8 rules out of the original 74 rules (Figure 2.14)

satisfy the filter. This is a more manageable number for human analysis. The antecedent

and consequent filters are available for both the RSpace views, namely tabular and glyph.

As shown in Figure 2.23, the rules can also be sorted by descending/ ascending support

or confidence. This is achieved by clicking on the support or confidence column header,

respectively. This is particularly useful if a set contains some rules that have high support
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Figure 2.24: PCA Placement of Rules. Figure 2.25: MDS Placement of Rules.

yet low confidence and others have high confidence yet low support.

Customizable Glyphs. Lastly, the ability to customize colors for distinguishing be-

tween antecedent and consequent provides a powerful visualization as certain patterns can

be visualized with contrasting color schemes. Further, analysts can choose among any of

the three glyph displays; each facilitating easy discovery of different pattern types.

2.7.4 RSpace Glyph Placement

Yet another important capability in information visualization is the placement or layout

of glyphs on a display to communicate significant information regarding the values of

individual glyphs themselves as well as relationships between the objects represented by

the glyphs (War02). Here, we explore various placement strategies in the context of our

proposed RSpace glyph view. The explored methods range from data-driven strategies

that use data dimensions as positional attributes to structure-driven strategies that base the

placement on implicit or explicit structure inherent within the data set. A comprehensive

taxonomy of placement strategies has been developed in (War02) to assist the visualiza-

tion designer in selecting the technique most suitable to his or her data and task. In our

context, this feature enables analysts not only to gain insights about clusters of similar

47



2.8 EXPERIMENTAL EVALUATION

Dataset AdjLatticeRR PARAS
(supp) (supp, conf)

T100k (0.0001) (0.0001, 0.1)
T5000k (0.0003) (0.0003, 0.15)
Webdocs (0.08) (0.08, 0.30)

Table 2.2: Thresholds

Dataset Varying minsupp Varying minconf
({minsupp},minconf ) (minsupp,{minconf})

T100k ({0.0004, 0.0006, 0.0008, 0.0010}, 0.60) (0.0004. {0.20, 0.40, 0.60, 0.80})
T5000k ({0.0005, 0.0010, 0.0015, 0.0020}, 0.60) (0.0010, {0.20, 0.40, 0.60, 0.80})
Webdocs ({0.10, 0.15, 0.20, 0.25}, 0.60) (0.15, {0.45, 0.60, 0.75, 0.90})

Table 2.3: Online Query Settings

rules (e.g., rules with identical antecedents) but also to detect outliers that are separated

from the rest of the rules.

In this work, we employ derived data-driven placement techniques that generate glyph

positions using analytics applied to the data values as a whole input. Thus, instead of a

location reflecting only one, two, or three of the data dimensions, it reflects a combination

of all the dimensions in an attempt to convey N-dimensional relational information in the

smaller number of dimensions. Common dimensionality reduction techniques (War02)

include Principal Component Analysis (PCA), Multidimensional Scaling (MDS), Self-

Organizing Maps (SOMs), spring-based models and so on.

We have adapted two of these layout techniques, namely, PCA-based placement (Fig-

ure 2.24) and MDS-based (Figure 2.25) placements in our FIRE visualization. PCA finds

linear combinations of the dimensions that best explains the largest variation in the multi-

variate data set. The first two principal components are then used to determine the position

of a glyph in a 2-D space as they capture the most prominant combinations of the original

attributes that distinguish the data. In contrast, MDS is an iterative refinement process

that attempts to adjust weights or positions until a certain criteria is met. In the context

of rule glyphs the criteria would be common antecedents and / or consequents. In our

case, the distances (or similarities) between glyphs in 2-D is a good approximation of the

similarity of the rules based on the participating itemsets as antecedents and consequents.
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2.8 Experimental Evaluation

Here we describe our experimental evaluation of PARAS backend, followed by details of

case study and user study of the FIRE visual framework.

2.8.1 Evaluation of PARAS

Experimental Setup. We conducted experiments on a Windows 7 machine with Intel(R)

Xeon(R) CPU X3440@2.53 GHz processor and 8 GB of RAM. All algorithms were

coded in C++ using Visual Studio 2010.

Experimental Datasets. We evaluated the performance of the PARAS system and its

competitors using synthetic and real dataset benchmarks. We used two synthetic datasets

generated by the IBM Quest data generator (AS94a) modeling transactions in a retail

store, T10I4D100k (T100k) and T10I4D5000k(T5000k). T5000k has 5 million transac-

tions with 1000 items. On average, each transaction has 10 items. The data file size is

about 200 MB. We also tested the Webdocs dataset from FIMI Repository (LOPS04).

The webdocs dataset captures real data of spidered web html documents. Webdocs has

1.7 million transactions with 5,267,656 distinct items. The maximal length of a trans-

action is 71472. The data file size is about 1.5 GB. The results for two additional real

datasets from the UC Irvine Machine Learning Repository (UCI15), namely, chess and

mushroom are available in the technical report (LMR+13) due to space constraints in this

paper. Thus, these diverse datasets are suitable for evaluating the scalability of PARAS

and its competitors.

Alternate State-of-the-art Techniques. While we had difficulty in executing the

original rule mining algorithms in Apriori (AS94a), Eclat (ZPOL97) and FP-growth

(HPY00) on the large data sets, improved C++ implementations of these algorithms avail-

able in (Bor15) run successfully. We evaluated the performance of online mining queries
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with and without redundancy resolution. For mining requests without redundancy reso-

lution, the performance of PARAS is compared against the original Apriori, Eclat, FP-

growth from (Bor15). For requests with redundancy resolution, we compared PARAS

(which produces non-redundant rules) against the above three online mining algorithms

by adding online redundancy resolution code such that the results produced by all algo-

rithms are comparable (identical). The algorithms enhanced with redundancy resolution

(RR) are henceforth referred to as AprioriRR, EclatRR and FPgrowthRR. Next, we also

compared PARAS against the POQM solution (AY01a). As it involves an offline step to

generate and pre-store frequent itemsets within an adjacency lattice (Sec. ??), we call

it AdjLatticeRR. The online step generates the rules with redundancy resolution (pseu-

docode in (AY01a)). As PARAS and the other mining techniques adopt the redundancy

definitions in AdjLatticeRR (AY01a), for each mining request, all five approaches pro-

duce identical results.

Experimental Methodologies. Performance measures are:

• Offline Preprocessing Times. We measure the total offline preprocessing times for

AdjLatticeRR and PARAS. As AprioriRR, EclatRR and FPgrowthRR do not involve any

preprocessing, they are excluded.

• Mean Online Processing Times. We measure the online processing time for a query

averaged over several runs, for all five methods. We varied the minsupp and minconf

query input parameters in the range [0,1].

• Index Sizes. We compare the sizes of the preprocessed information. AprioriRR, Ecla-

tRR, and FPgrowthRR are fully online techniques without any preprocessing involved.

Thus, we compared the size of the adjacency lattice in AdjLatticeRR (i.e., # of frequent

itemsets) and the PSpace index size in PARAS (i.e., # of stable regions) against the # of

associations. We studied the impact of varying the primary support threshold on these

index sizes.
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2.8.1.1 Evaluation of Preprocessing Times

We first compare the preprocessing times for PARAS and AdjLatticeRR. AdjLatticeRR

generates the frequent itemsets offline, whereas offline preprocessing in PARAS involves

the four steps of frequent itemset generation, rule&region generation, redundancy ab-

straction and PSpace index creation. Among these, for each dataset, frequent itemset

generation takes the longest preprocessing time for both PARAS and AdjLatticeRR (Fig.

2.26). This confirms prior works (AY01a, HPY00, NDD99) that rule generation is more

efficient compared to frequent itemset generation. However, we now show that if re-

dundancy resolution is required, the overall online processing time becomes significantly

higher. In PARAS, while redundancy abstraction at the offline step adds offline overhead,

it significantly reduces the online redundancy resolution costs (as we will see in Sec.

2.8.1.2). In Fig. 2.26, T100k and T5000k datasets (left y axis), redundancy abstraction

has higher overhead than rule&region generation and PSpace index creation. However,

for Webdocs (right y axis), compared with the cost of frequent itemset generation (60k+

seconds), the costs of the other steps, namely, rule&region generation, redundancy ab-

straction and PSpace index creation are negligible. Overall the three additional prepro-

cessing steps in PARAS require no more than 10% extra time than AdjLatticeRR. Since

they are done only once offline, acceptable in practice.
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(a) minconf = 0.60 (b) minsupp = 0.0004 (c) minconf = 0.60 (d) minsupp = 0.0004
Figure 2.27: Avg. Online Query Processing Times (T100k) [Rules w Redundancy Resolution
in (a),(b) and w/o in (c),(d)].
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(a) minconf = 0.60 (b) minsupp = 0.0010 (c) minconf = 0.60 (d) minsupp = 0.0010
Figure 2.28: Avg. Online Query Processing Times (T5000k) [Rules w Redundancy Resolu-
tion in (a),(b) and w/o in (c),(d)].

2.8.1.2 Evaluation of Online Processing Time

Next, we varied parameters minsupp or minconf (x-axis) and compared the online pro-

cessing times (y-axis in log scale) of the alternative techniques. Table 2.2 (column two)

lists for each tested dataset, the primary support threshold used to prestore frequent item-

sets in the adjacency lattice. Column three lists the primary support and confidence

thresholds used for populating the PSpace index of PARAS. We performed two sets

of experiments.

Evaluation Involving Redundancy Resolution. First, we compare AprioriRR, Ad-
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Figure 2.29: Avg. Online Query Processing Times (Webdocs) [Rules w Redundancy Reso-
lution in (a),(b) and w/o in (c),(d)].
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jLatticeRR, EclatRR, FPgrowthRR and PARAS for user queries involving redundancy

resolution. For query Q1 in PARAS, we set REFlag = TRUE. The query processing

times are averaged over several runs of each query. To determine the effect of varying

minsupp, we conducted several experiments by fixing minconf to a constant value and

varying just the minsupp value.

Impact of Varying minsupp. Table 2.3 (column one) lists the fixed minconf and

different minsupp values used for the three datasets. Figs. 2.27(a), 2.28(a) and 2.29(a)

illustrate the query processing times for T100k, T5000k and Webdocs datasets, respec-

tively. For all five techniques, the query processing time decreased with increase in the

minsupp. As minsupp increases more rules get filtered - producing fewer rules as output.

For AprioriRR, EclatRR, FPgrowthRR and AdjLatticeRR, a smaller number of frequent

itemsets are processed for rule generation. For PARAS fewer stable regions are consid-

ered for composing the output ruleset and fewer rules require redundancy resolution.

Overall, PARAS consistently performed several orders of magnitude better than the

four competitors. In particular, PARAS outperformed AprioriRR by 4, 5 and 5 orders,

AdjLatticeRR by 4, 4 and 5 orders, EclatRR by 4, 4 and 4 orders and FPgrowthRR by 4,

5 and 5 orders for T100k, T5000k and Webdocs datasets, respectively.

Impact of Varying minconf. Next, we fixed the minsupp to a constant value and mea-

sured query processing times by varying minconf values (Table 2.3, column two). Figs.

2.27(b), 2.28(b) and 2.29(b) depict the processing times for T100k, T5000k and Web-

docs datasets, respectively. The trend of the five alternate algorithms is similar as before.

PARAS outperformes the four competitor approaches by several orders of magnitude.

Overall, PARAS consistently outperformed AprioriRR by 3, 4 and 5 orders, AdjLat-

ticeRR by 3, 4 and 5 orders, EclatRR by 4, 3 and 4 orders and FPgrowthRR by 4, 4 and

5 orders for T100k, T5000k and Webdocs datasets, respectively. We note that the rate of

decrease (slope) of the query processing times with the increase in minconf is not as steep
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Figure 2.30: Multi-Query Costs.
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Figure 2.31: Size of the PSpace Index.

as the slope with increase in minsupp.

Evaluation of Handling Multiple Queries. We now compare the processing times

for multiple successive queries. Fig. 2.30 depicts the chart for the Webdocs dataset with a

number of successive 2, 10, 20 and 50 queries (x-axis). The total processing time is show

on y-axis. A diversity of queries are generated by randomly selecting minsupp values be-

tween 0.10 and 0.30 and minconf values between 0.10 and 0.90, respectively. AprioriRR

performs all steps at query-time. AdjLatticeRR only performs rule generation with redun-

dancy resolution at query-time. Thus it outperforms AprioriRR. PARAS only requires a

look-up in the PSpace index and performs the inexpensive redundancy resolution using

the dominating locations prestored within the PSpace index. Thus, PARAS delivers in-

stantaneous responses even for large workloads with 50 queries or more. In Figure 2.30,

for the case of two successive queries, all five approaches performed reasonably well. As

the number of queries increases, the gains of using PARAS became more apparent. For 50
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successive queries, PARAS took less than 1 second whereas AprioriRR, AdjLatticeRR,

EclatRR and FPgrowthRR used approximately 38, 21, 2 and 26 hours, respectively.

Evaluation of Queries without Redundancy Resolution. Next, we considered user

requests without redundancy resolution. We compared Apriori, Eclat and FPgrowth

against PARAS by setting the Boolean REFlag to FALSE. AdjLatticeRR cannot be com-

pared as it only produces non-redundant association rules. Similar as above, we con-

ducted separate experiments by fixing one of the query parameters and varying the other

as discussed below.

Impact of Varying minsupp. Figures 2.27(c), 2.28(c) and 2.29(c) depict charts for

the three tested datasets. PARAS outperformed Apriori by 4, 5 and 5 orders, Eclat by 3,

4 and 3 orders, FPgrowth by 4, 4 and 5 orders for T100k, T5000k and Webdocs datasets,

respectively.

Impact of Varying minconf. Figures 2.27(d), 2.28(d) and 2.29(d) depict charts for

the three tested datasets. PARAS outperformed Apriori by 3, 4 and 5 orders, Eclat by 2,

3 and 3 orders, FPgrowth by 3, 4 and 5 orders for T100k, T5000k and Webdocs datasets,

respectively.

2.8.1.3 Evaluation of Index Sizes

We compare the sizes of the prestored index structures used in AdjLatticeRR and PARAS.

AprioriRR, EclatRR and FPgrowthRR are skipped as they are entirely online. For Ad-

jLatticeRR, the adjacency lattice size is determined by the number of frequent itemsets,

while PSpace index size by the number of stable regions. The actual index sizes (in say,

MB) can be estimated by multiplying the number of instances (itemsets or stable regions)

with the average space required per instance. The lower the primary support threshold,

the larger the number of frequent itemsets stored in the adjacency lattice. Similarly, the

choices of primary support and confidence thresholds determine the number of stable
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regions and rules stored within the PSpace index.

In Figs. 2.31.(a),(b),(c), for the three datasets, we examine how the numbers (y-axis)

of frequent itemsets, stable regions and association rules change with respect to changes

in the primary support (AY01a) threshold values (x-axis). The primary support thresholds

are in reverse order to show how the index sizes increase as the primary support threshold

is relaxed to lower values.

For T100k (Fig. 2.31(a)), as the primary support changes from 0.0010 to 0.0004,

the numbers of stable regions remain unchanged or at best increase slightly whereas the

numbers of frequent itemsets and rules increase gradually. For T5000k (Figure 2.31(b)),

the numbers of frequent itemsets, stable regions and rules increase when primary support

changes from 0.0020 to 0.0005. For Webdocs (Figure 2.31(c)), the primary confidence is

fixed at 0.30. the numbers of frequent itemsets, stable regions and rules increase gradually

with the relaxation in primary support from 0.25 to 0.15, whereas the change is rapid for

primary support 0.15 and 0.10. Overall, our PSpace index is slightly larger than the lattice

of AdjLatticeRR.

2.8.1.4 Conclusions from the Experimental Evaluation

The main findings in evaluation of PARAS are:

• PARAS requires about 10% extra offline preprocessing time compared with AdjLat-

ticeRR, which is acceptable.

• For a large diversity of online queries, PARAS consistently outperforms the state-

of-the-art competitors from the literature by 2 to 5 orders of magnitude over the tested

datasets.

• The benefits of PARAS are more apparent when multiple successive queries are pro-

cessed. As PARAS processes several queries within a second, thus staying within the

needs of human attention span for interactive exploration. On the other hand, the com-

56



2.8 EXPERIMENTAL EVALUATION

Figure 2.32: Finding the Highest Rules: the Highest No Common Knowledge Rule

petitors take several hours for the same.

• The PSpace index size of PARAS is on average 3.3× the adjacency lattice of AdjLat-

ticeRR. The modern costs of memory makes this tradeoff practical given the huge CPU

savings.

•Overall, the gains of several orders of magnitude when using PARAS for online process-

ing outweigh the one-time minimal offline preprocessing time and storage requirements.

2.8.2 Case Study of FIRE Visual Rule Explorer

We evaluated the usability and effectiveness of our FIRE framework in two stages. In

this first stage, we introduce a case study1 during which a researcher explored a dataset of

interest. The case study is qualitative in nature. The researcher independently explored

the bike sharing dataset (Bik15) from the UCI machine learning repository using (a.)

FIRE and (b.) ARulesViz as described below.
1This case study was performed by an avid bike user with an interest in data mining.
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2.8.2.1 Exploring The Dataset Using FIRE

Dataset Description. The bike sharing dataset contains two years of bike usage data.

Each data instance contains the counts of casual (walk-ins) and registered users in a given

day and information about weather conditions (temperature, humidity) and holiday status

(weekday, weekend, holiday). The contributors of the dataset claim that ”most of the

important events in the city could be detected by monitoring these data” (Bik15). The aim

is to mine rules that link bike usage to holidays, workday status and weather conditions.

Pre-processing Bike Sharing Dataset. The Bike Sharing dataset (Bik15) was pre-

processed before loading into FIRE (FIR15) and R ARulesViz (ARu15), as described

below.

Attribute Discretization Category

adjusted casual
[0,986.006) LOW
[986.006,1972.0118) MEDIUM
[1972.0118,∞) HIGH

adjusted registered
[0,1334.0613) LOW
[1334.0613,2668.1227) MEDIUM
[2668.1227,∞) HIGH

air temperature
[0,0.333012) LOW
[0.333012,0.586954) MEDIUM
[0.586954,∞) HIGH

humidity
[0,0.324167) LOW
[0.324167,0.648333) MEDIUM
[0.648333,∞) HIGH

windspeed
[0,0.184082324167) LOW
[0.184082,0.345773) MEDIUM
[0.345773,∞) HIGH

Table 2.4: Discretized Attributes: Bike Sharing Dataset.

Figure 2.33: Original Casual User Count. Figure 2.34: Adjusted Casual User Count.

1. Data corresponding to three of the attributes was eliminated. The attributes are
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Figure 2.35: Orig. Registered User Count. Figure 2.36: Adj. Registered User Count.

instant (unique identifier), dteday (date) and yr (contains 2 values: year 1 and year

2).

2. The casual and registered users increased over time. In particular, the casual users

increase at 0.895 users per day whereas the registered users increase at a rate of

4.874 users per day. To cancel the effect of the overall growth, the data was rotated

to negate the slope of the trend lines. In Figures 2.33 and 2.35 we show the original

user counts and in Figures 2.34 and 2.36 we show the adjusted user counts for the

casual and registered users categories. This processing is similar in flavor to season

trend decomposition in (CCMT90).

3. Further, the attributes were discretized as shown in Table 2.4.

Generating Rules and Loading Them into FIRE. The data was loaded into FIRE

with a minimum support of 5% and minimum confidence of 60%. As the dataset contains

732 instances, each representing a day, 5% support means a rule would be mined only if

it is present in at least 36 days, or in more than 1 month out of 24 months. Therefore, the

researcher believes this value constitutes a good primary support. Given these parameters

FIRE generated the rules and loaded them within a few seconds. The total number of

rules generated was 9673. In the ALL rules setting (Section 2.6.1), the set of 9673 rules

can be listed in the RSpace view by clicking on the lowest stable region (0.05, 0.6) on

the PSpace view. The highest rules are located in the upper right corner (Figure 2.32).
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However, from the PSpace view, we find that the stable region with maximum support

and confidence is empty. The two neighboring stable regions are as follows. The region

(0.683,1) contains a rule with confidence = 1 and support<1 and the region (0.807,0.976)

contains a rule with maximum possible support (80.7%) and confidence <1. These rules

are listed below:

1. {workingday=yes −→ holiday=no} (support = 0.683, confidence=1): a common

knowledge rule, correctly derived by the data, yet uninteresting.

2. { adjusted casual=low −→ holiday=no} (support = 0.807, confidence=0.976): this

rule can be interpreted as the number of casual users being low during non-holidays.

As holidays are rare (∼ 11 days per year, or less than 5% of the data), the primary support

of 5% does not cover rules with “holiday=yes”. The PSpace view for the bike sharing

dataset in Figure 2.32 clearly lets us learn with just one glance that the rules with support

>50% are rare in this dataset. We were able to quickly explore all such regions. One

interesting rule we found in this space is: {workingday = yes −→ adjusted casual=low}

(support: 0.671, confidence= 0.982). This means that overall walk-ins are low on working

days. It is common knowledge that 5 out of 7 days are working days, which gives an

expected maximum support level of 71%. However, 22 of the working days are holidays

for the duration the bike sharing dataset was collected, or approximately 3% of data. Thus,

working days make up approximately 68% of the data. Dividing support by confidence

serves as a sanity check, and arrives at the same number without the need to have prior

knowledge about the data: 0.671/0.98 ' 0.68 (68%). In other words, this rule implies

that working days are ∼ 68% of the instances, and for ∼98% of those working days, the

casual user count is low.

Using Rule Filtering and Sorting Features. Having explored all regions with sup-

port >50%, the next step was to explore rules with support ≤ 50%. The rule mentioned
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in the previous section is: {workingday=yes −→ adjusted casual=low} (support: 0.671,

confidence=0.982). This rule has a strong support value due to the large number of in-

stances that contain working days. What about rules when “workingday=no”? In the bike

sharing dataset “workingday=no” includes all weekends as well as holidays. To find these

rules The researcher took the following steps:

1. In the PSpace view, he clicked on the stable region with the lowest coordinates

(0.05,0.6). This then resulted in 9673 rules being listed,

2. Then in the RSpace view, he filtered for rules with “workingday=no” in the an-

tecedent. This resulted in 550 rules being listed,

3. Lastly in the RSpace view, he sorted rules by descending support values.

The same three steps can be repeated by filtering for “workingday=no” in the consequent.

These features of FIRE are described in Section 2.6.1.

The highest support value for a rule containing “workingday=no” was 28.7%. How-

ever, this rule represents common knowledge (Figure 2.37) {workingday= no−→ holiday=no}

(support=0.287, confidence=0.909). Thus, in other words, 90.9% of the non-working

days are weekends and the rest are holidays. However, a non-common knowledge rule

found in this space was: {adjusted casual=High−→ workingday=no} (support =0.0519,

confidence=0.974). This rule indicates that bike rentals by walk-in users were high 6%

of the days (0.0519/0.974) and that in 97% of these instances it was not a working day.

This rule makes sense as walk-in users have other means of transport for their daily lives

and they are instead much more likely to rent bikes on weekends and holidays.

Thus far the researcher found rules mostly related to casual users. He further explored

rules related to the registered users. For this purpose he followed the same three steps

as in the case of filtering for “workingday=no”. Instead, in step 2, he then filtered for

rules with “adjusted registered=High” in the antecedent as shown in Figure 2.38. There
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Figure 2.37: Filtering for Weekends

Figure 2.38: Filtering for Registered Users
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Figure 2.39: Skyline Cardinality: Distinguishing Regions with >20 Rules and ≤ 20 Rules.

are 998 such rules. He then sorted them by their descending support. The highest sup-

port possible for a rule with “adjusted registered=High” is 28.3% with a 99.5% confi-

dence (highlighted in blue color). The top 3 rules indicate that registered bike users are

high in numbers during working days. However, the fourth rule: {adjusted registered

= High −→ adjusted casual=Low} (support= 0.264, confidence=0.932) shows an inter-

esting inverse relationship between the count of registered and casual users. Specifically,

whenever “adjusted registered=High”, 93% of those days “adjusted casual=Low”.

Utilizing the Skyline Feature over the PSpace View for Retrieving the Regions

with a Certain Cardinality. The case study thus far involved exploring the different

stable regions and going through the list of rules in each region. In the ALL rules view,

the count of rules cumulatively increases as the researcher moves towards lower support

or confidence settings. Further, he wanted to list the top k (say, 20) rules. However,

as there are two rule ranking criteria, namely, support and confidence, he employed the

skyline cardinality feature that allowed him to separate stable regions with more than k

rules from those with less than k rules (Figure 2.39).

The regions adjacent to the skyline were the most interesting, because they had a high

number of rules with good support and confidence value. For example, the highlighted
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region (0.4, 0.8), which is above the skyline, contains 18 rules. In addition to the rules ex-

plored thus far, several new rules involving temperature, humidity, weather situation can

be found in this region. One of these rules is {adjusted total=MEDIUM−→ holiday=no}

with a support of 44% and a high confidence of 97.8%. Here, the total rentals are dis-

cretized into three values {LOW,MEDIUM,HIGH}.

Comparing Rules Using the Glyph View. For the stable region (0.4,0.8) that the

researcher explored above, he noticed from the tabular view that several of the 18 rules

had common attributes in the antecedent and/or the consequent. Thus, he next wanted

to compare the rules and see which ones are similar, i.e., have common attribute values.

In order to compare all rules, he needed to manually compare C(n,r) = n!/(r!(n - r)!)

possible combinations of rules. In our concrete example n = 18 and the r = 2, we have

153 possible comparisons to make. This problem becomes increasingly complex with a

large number of rules and is difficult to do in the tabular list of rules. While the glyph

view does not reduce the number of comparisons he had to make, he found it easier to

look for the similarity among shapes using the rule glyph view (rule glyphs are defined in

Section 2.7.2). Figure 2.40 shows several such examples. The two rules depicted using

the blue boxes are opposite to each other, i.e., one with “holiday=no” in the antecedent

and “adjusted casual=Low” in the consequent, and the other vice versa. Similarly the

two rules within the red box contain three attributes each and their antecedent/consequent

sequence (“adjusted casual=Low”/“workingday=yes”) is swapped. Further, we see that

the rules depicted in the red box can be obtained by combining the attributes of the rules

in the blue box and the rule highlighted within the green box. Overall, the researcher

found the glyph representation convenient for visual shape comparisons among rules and

rulesets.

Glyph Clustering Functionality. The next step in the exploration was to enable

clustering for the group of rules as above. The goal was to look for outliers that might
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Figure 2.40: Comparing Rule Glyphs. Figure 2.41: Clustered Rule Glyphs.

contain interesting rules. When enabling clustering, as expected, the rules described in

the previous section grouped together based on the commonality of attributes (see Figure

2.41). Further, several rules that have common set of attribute-value pairs are grouped

together such that the common attribute-value pairs are depicted by a shared line or lines

close to each other.

2.8.2.2 Exploring the Dataset Using ARulesViz

ARulesViz is a popular R package that contains a total of 10 state-of-the-art association

rule visualization techniques (ARu15). The visualizations include: (a.) scatterplot (2

variants), (b.) matrix-based (4 variants), (c.) graph (2 variants), (d.) parallel co-ordinates,

and, (e.) double decker. Details of each visualization technique can be found in (ARu15).

Inside the R environment, the researcher typed in R commands to load the Bike Shar-

ing dataset (Bik15). Then using the ARules package association rules were generated.

Finally, using the ARulesViz package the rules were visualized using the different rule

visualization techniques available in the ARulesViz package. The overall comparison of

these visualization techniques is shown in Table 2.5. This comparison extends the origi-
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nal comparison given in (ARu15) by adding the two primary visualization techniques of

FIRE, namely, (a.) FIRE PSpace stable regions view, and (b.) FIRE RSpace rule glyph

view.

Figure 2.42: ARulesViz Scatterplot UI.
Figure 2.43: ARulesViz
Grouped-Matrix UI.

Three of the matrix-based visualizations, graph-based, parallel co-ordinates and dou-

ble decker visualizations support a medium to a small number of rules at a time. On the

other hand, scatterplot variants, grouped matrix, and graph-based (external) as well as

FIRE PSpace and Glyph views can support a large rule set. In the interactive scatterplot

view (Figure 2.42), one can select an arbitrary region (shown as a red shaded box) and

show the list of rules that qualify for the selected support and confidence in the region in

the console output (here, a total of 43 rules). This interaction in effect is equivalent to the

unique rules view in the FIRE PSpace visualization. The limitation of the scatterplot view

is that for an arbitrarily chosen region that includes several rules, a high number of rules

will be listed in the console view. Thus several rules may be hidden unless the rule list

is explored exhaustively. Moreover, no reordering support is available in the scatterplot

visualizations.

The FIRE PSpace view can be considered as a layer of the stable region abstraction
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Technique Rule set Measures Interactive Reordering Ease of use
Scatterplot large 3 X ++
Two-Key plot large 2 + order X ++
Matrix-based medium 1 X 0
Matrix-based (2 measures) medium 2 X –
Matrix-based (3D bar) small 1 X +
Grouped matrix large 1 X X 0
Graph-based small 2 ++
Graph-based (external) large 2 X X +
Parallel co-ordinates small 1 X -
Double decker single rule (2) -
FIRE PSpace large 2 X X +++
FIRE Rule Glyph large 2 X X +++

Table 2.5: Comparison of Association Rule Visualization Techniques.

over the scatterplot view. Additional features of the FIRE PSpace view such as unique

rules, redundancy exclusion, and skyline provide semantic filters based on support and

confidence measurements, rule redundancy definitions as well as the cardinality of rules,

respectively. Further, all these techniques (Table 2.5) can be categorized by the number of

measures (e.g., support, confidence and lift) that can be simultaneously visualized. While

the scatterplot allows three measures (two on the axes, one using color/shade), most other

approaches allow two measures at a time. The FIRE PSpace view utilizes color mapping

schemes to denote the density of rules in the stable regions.

As described in (ARu15), to explore large sets of rules with graph-based visualization,

advanced interactive features like zooming, filtering, grouping and coloring nodes are

needed. Such features are available in interactive visualization and exploration platforms

for networks and graphs like Gephi. From the ARulesViz package (ARu15), graphs for

sets of association rules can be exported in the GraphML format or as a Graphviz dot-file

to be explored in tools like Gephi. This process of exporting the rule graphs is cumber-

some for interactive exploration. On the other hand, the FIRE RSpace tabular view is

enabled with antecedent and consequent auto-fill filters as well as support and confidence

ordering for enhanced exploration through list of rules. The FIRE rule glyph view utilizes

color schemes to differentiate antecedents from consequents. The details of each rule rep-
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resented by a glyph, such as the antecedent and consequent values of the rule can be seen

at the bottom of the RSpace view by hovering over or selecting the glyph.

The grouped matrix view (Figure 2.43) is a variant of matrix-based visualization tech-

nique such that the rules are grouped based on common antecedents and consequents

(see (ARu15) for details). The view utilizes a K-mean clustering algorithm for the same,

where the user needs to provide the value of K (default value of K=20). In Figure 2.43,

all 9673 rules are shown with K=20. The appropriate value of K for any dataset needs to

be learnt using trial-and-error. Moreover, the LHS, shown in the top x-axis, consists of

clusters of multiple antecedent values grouped together. This made it difficult for the re-

searcher to comprehend the items other than the single one listed in each column. Similar

in flavor to the grouped matrix view is the FIRE rule glyph clustering approach, where the

researcher utilized PCA and MDS layout (see Section 2.7.4 for details). However, the full

details of the attributes in the antecedent and the consequent can be viewed in the RSpace

view by hovering over the group.

2.8.2.3 Conclusions from the Case Study

Overall, the FIRE PSpace view together with its rich diversity of features effectively

supports interactive exploration for a high number (∼9673) of rules for the bike sharing

dataset (Bik15). In addition the RSpace view, in particular, the rule glyph visualiza-

tions enables effective comparison of rules. Having graphical displays and interactions

on otherwise static sets of rule enable novel interactions with the data and a rapid ex-

ploration of the rule space. Moreover, compared to the state-of-the-art association rule

visualization techniques in (ARu15), that required the researcher to understand and type

in syntactically correct R command line inputs or scripts, FIRE is a completely graphi-

cal visualization tool as every feature is available through intuitive clicks through labeled

interactions.
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2.8.3 User Study of FIRE Visual Rule Explorer

2.8.3.1 Evaluation Methodology

Here, we further present the second stage of our evaluation of the FIRE system. We

conducted a controlled user study to compare the features of FIRE to that of the state-

of-the-art systems such as Weka (HFH+09) and measured the effectiveness of different

visual representations compared to the list of rules provided by Weka.

User Study Procedure The overall process was as follows: The subjects perform a

series of 5 studies listed in Table 2.6. As the studies progressed, the study administrator

explained the purpose and process for each task with examples. Lastly, the subject fills

out an exit questionnaire. On average the study took between 26 and 47 minutes per

subject.

Tested Feature Tasks Duration

S1. PSpace stable region and interaction
T1 2-4 min
T2 2-5 min
T3 3-6 min

S2. PSpace-redundancy / RSpace-tabular-filter T4 3-6 min
S3. PSpace skyline exploration T5 4-6 min

S4. RSpace glyph rule analysis T6 2-3 min
T7 2-3 min

S5. RSpace glyph placement analysis
T8 2-3 min
T9 4-8 min
T10 2-3 min

Total 26-47 min

Table 2.6: User Study Schedule.

Compared Tools. Our user study compares our FIRE visualizer to the cached as-

sociation rule miner (CRM). CRM is a association rule miner based on the APRIORI

algorithm (AS94a) but with instant response time due to the cached rules. CRM provides

users with a tabular view of rules and all functions offered by existing rule mining systems

(e.g., WEKA (HFH+09)).

Metrics of Evaluation. We measured both efficiency and accuracy of the subjects in

accomplishing the tasks. For efficiency, we measured the time consumed by each subject
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for each task. For accuracy, we measured the percentage of correctly answered tasks by

the subjects.

Datasets. We chose two datasets from the UC Irvine Machine Learning Repository

(UCI15), namely, chess and mushroom. The chess dataset is derived from the game step.

The mushroom dataset contains characteristics of various species of mushrooms. Chess

and mushroom data sets have ≥ 2000 closed frequent itemsets at 94% and 50% support,

respectively. (see Fig. 1.1.)

General Method. Each subject was asked to perform all of the five studies (S1 - S5)

described in Section 2.8.3.2. To avoid carryover effects and learned knowledge about a

dataset, we counter-balanced the order of tasks, datasets and tools. For S1, we switched

datasets and tools. For example, half of the subjects performed the task T1 on the chess

dataset using CRM, and T1 on the mushroom dataset using FIRE. On the other hand, the

other half of the subjects performed the task T1 instead on the mushroom dataset using

CRM and T1 on the chess dataset using FIRE. For S2 and S3, we switched both the

questions and the tools. Particularly, we asked subjects to find characteristics of edible

mushrooms using CRM and characteristics of poisonous mushrooms with FIRE. This way

addressed the “pre-knowledge” problem. For S4, we randomized the order of showing

different glyph displays for each subject. For S5, we randomized the order of applying

different glyph placement strategies for each subject. In general, we avoided practice and

fatigue effects by randomizing the order of tools and tasks. In these task assignments, no

carryover problems arose, as each subject was asked to only finish a particular task on a

given dataset using the tools in a random order.

Environment Setup. We conducted our experiments on a Windows 7 PC with In-

tel(R) Core(TM)i5-2410M CPU@2.3 GHz processor and 4 GB of RAM, with a display

resolution of 1600 by 900. Our visualizations displayed in a 1000 by 600 window.

Study Population. We performed the user study with a population of 22 subjects
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(10 undergraduate students and 12 graduate students). They were either from computer

science, computer engineering or mathematical sciences programs. The user study was

conducted on a one-to-one basis, i.e., a tester to subject test.

2.8.3.2 Design of Our User Study

S1. Stable Region Usage Study. In our stable region usage tests we asked the subjects

to perform three different tasks (T1-T3) by varying tools and data sets, such that each

dataset was tested for each visualization in a random order. The three tasks were designed

to verify the ability of the subjects to explore the parameter space, to utilize the stable

region abstractions and to compare rulesets. The questions were as follows:

T1 What are the most prominent rules by support and/or confidence?

T2 Which setting (out of 4 choices) gives a different set of rules than the given setting?

T3 Find the common and unique rules for two different parameter settings.

S2. Filter/Redundancy Study. In this study we used only the mushroom dataset. We

asked our subjects to first filter the antecedents of the rules and then to remove redundant

rules. Some users used FIRE first and CRM next, and vice-versa. The goal was to test

the ability of our subjects to use filter and redundancy removal features by asking them to

perform the following task.

T4 Find the most frequent characteristics of edible/ poisonous mushrooms.

S3. Skyline View Study. In the skyline view study we asked the subjects to find

the top-k rules from the mushroom dataset by varying the tools (FIRE and CRM). The

goal was to test if our subjects can make use of the rule skyline cardinality. For this, we

presented our subjects with the following task.
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T5 Find the parameter settings that produce top-k rules in the dataset, where k = 20, 50,

or 100.

S4. Glyph Display Study. In our glyph view study we showed the subjects a set of

6 glyphs using different glyph designs, namely, lined, connected and filled. We told the

subjects that the antecedent(s) is/are represented by the blue color and the consequent(s)

is/are represented by the red color. We verified the hypothesis that different glyph designs

may be more effective for different tasks. We presented our subjects with the following

tasks.

T6 Given a set of 6 glyphs, find the rules with the same antecedents. Three questions

were asked, each using a different glyph design.

T7 Given a set of 6 glyphs, find the rule(s) with the greatest number of consequents.

Three questions were asked, each using a different glyph design.

S5. Glyph Placement Study. In this study three glyph placement strategies were

presented using the glyphs generated from the mushroom dataset. The goal was to test

if the subjects are able to leverage glyph placement strategies to identify cluster or out-

lier among a set of glyphs. In addition, we verified the hypothesis that different glyph

placement strategy may be more effective for different tasks. In these tests, the connected

glyph design was chosen to present the questions due to the fact that the connected glyph

gives a visual shape to the glyph together with serving the purpose of showing each hand

(attribute) clearly.

T8 Identify outliers within a given set of glyphs using two different glyph placement

strategies (i.e., the unclustered layout versus the clustered layout). Two questions

were asked- each using a different glyph placement strategy.
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T9 Given a set of glyphs, identify glyph(s) with a certain attribute-value pair using three

different glyph layout strategies, i.e., unsorted layout, sorted layout and clustered

layout. Total of six questions were asked, two questions using each of the placement

strategies.

T10 Using the clustered layout, identify groups of similar glyphs and count the groups

containing a given attribute-value pair. Two different sets of glyphs were tested.

Exit Questionnaire. A survey questionnaire was presented to the subjects at the end

of the studies. We asked them to rate the two alternative tools, namely, FIRE and CRM

in terms of their ease of use on a scale of 1-5 (where 5 = very easy, 1 = very difficult).

We also asked them which tool they preferred for each of the 3 studies (S1-S3). We also

asked the subjects to rank the alternate glyph designs (S4) and glyph layouts (S5) by their

ease of use. Overall, they were asked the following questions about each task.

Q1 Which task(s) is/are easier with FIRE than CRM? (list tasks)

Q2 Which task(s) is/are easier with CRM than FIRE? (list tasks)

2.8.3.3 Hypotheses

As FIRE provides several features for interactive rule exploration, we anticipated that

conducting certain tasks using FIRE would be faster and more accurate than using CRM.

Also, we expected that the glyph designs and glyph layout strategies may vary in their

effectiveness for different tasks. This led to the following hypotheses.

H1 For T1, T2, T3, T4 and T5, subjects perform better using FIRE than CRM in term of

both time spent and accuracy.

H2 For T6, the filled glyph is more effective than other glyph designs, whereas for T7,

the lined glyph is more effective than others.
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H3 For T8, the clustered layout is more effective than other glyph placement strategies

in detecting outlier glyphs.

H4 For T9, the sorted layout is more effective than other layouts in aiding the analyst in

finding glyph(s) with a certain attribute-value pair.

H5 For T10, the subjects can easily identify group of similar glyphs using the clustered

layout.

2.8.3.4 Conclusions from the User Study

(a) Mushroom (b) Chess

Figure 2.44: Time Spent on T1, T2 and T3.
Figure 2.45: Time Spent
on T4 and T5.

Stable Region Usage Study. As confirmed in Figure 2.44, subjects took less time

when working with FIRE compared to that while using CRM.

This is because the tabular view in CRM does not provide any aid or intuition for

subjects to accomplish the tasks.

As shown in Figures 2.44(a.) and 2.46(a.), for task T1, subjects spent 9 seconds on

average using FIRE to get 100% accuracy while subjects used 62 seconds on average

with CRM to achieve the same accuracy. For T2, the minimum time spent was 2 seconds

using FIRE while that using CRM required was at least 26 seconds. Thus for T2, FIRE

outperformed CRM in measures of accuracy by 5%.
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(a) Mushroom (b) Chess

Figure 2.46: Accuracy of T1, T2 and T3. Figure 2.47: Accuracy of
T4 and T5.

For T3, the maximum time spent with FIRE was 55 seconds, while in CRM it was

255 seconds. Subjects using FIRE achieved 100% correctness while in CRM this figure

was 80% .

Similarly, in Figures 2.44(b.) and 2.46(b.), our subjects took less time using FIRE

than CRM to complete all three tasks. At the same time, they made fewer mistakes using

FIRE than CRM. In particular, the accuracy of T1 using FIRE was 30% higher than the

accuracy of CRM. This is because more than one rule existed that satisfied the question

in the chess dataset. Subjects tended to omit some rules that resulted in this low accuracy.

In contrast, FIRE is able to reveal the full answer with just 1 or 2 clicks.

Filter/Redundancy + Skyline View Studies. In Figures 2.45 and 2.47 we show the

time spent and accuracy for tasks T4 and T5, respectively. Again, subjects using FIRE

spent less time to perform the tasks, yet were able to achieve better accuracy than subjects

using CRM for the same task. More specifically, subjects used 29 seconds on average with

FIRE yet achieved near 100% accuracy for T4. The subjects using CRM, on the other

hand, took 80 seconds and reached only 84% accuracy. Overall, the results confirmed

our hypothesis H1, i.e., our FIRE technology is a win-win in terms of both efficiency and

accuracy.

75



2.8 EXPERIMENTAL EVALUATION

Figure 2.48: Time Spent on T6 and T7. Figure 2.49: Accuracy of T6 and T7.

Glyph View Study. Figures 2.48 and 2.49 show the time spent and the accuracy

when using the three glyph designs. The results confirmed our hypothesis H2. For task

T6 that asked for antecedent similarity detection, the filled glyph indeed is proven to be

the most effective among the three glyph designs. In particular, subjects spent 20 secs on

average to correctly answer this similarity detection question using filled glyphs. Those

using other glyph displays took longer time and yet committed several mistakes. For T7

involving counting of the number of consequents, the lined glyph showed an impressive

efficiency (avg. 6 secs) and 100% accuracy. Most subjects rated the lined glyph as the

easiest to use in their exit questionnaire. In T7 subjects using the connected glyph design

also achieved 100% accuracy with a slightly higher time spent.

Glyph Placement Study. In Figures 2.50 and 2.52 we show the time spent and the

accuracy of task T8 when using unclustered and clustered layouts. The subjects used less

time when supported by our clustered layout, while they needed significantly more time

using the unclustered layout. The fastest subject took only 1 second to complete this task

with the help of our clustered layout. Accuracy-wise, subjects achieved 97% correctness

using the clustered layout while only 80% accuracy was achieved by subjects with the

unclustered layout. This is because our clustered layout essentially groups similar glyphs
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Figure 2.50: Time Spent on T8. Figure 2.51: Time Spent on T9.

Figure 2.52: Accuracy of T8. Figure 2.53: Accuracy of T9.

together and simultaneously unveils the outliers to subjects. The results confirmed our

hypothesis H3. The subjects are able to leverage our clustered layout to recognize the

outlier within a set of glyphs effectively.

For task T9, which asked the user to identify glyphs with a certain attribute-value pair,

the sorted view indeed was proven to be most effective among the three placement strate-

gies. As shown in Figures 2.51 and 2.53, the subjects using the sorted layout achieved

99% accuracy and took less time, while the subjects using the unsorted layout achieved

80% correctness and took more time. This is because the sorted view allows subjects

to sort glyphs by a single attribute using the ”sort-by” function. The set of glyphs is

thus classified by the specified attribute and the glyphs with the same value are naturally
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Figure 2.54: Time Spent on T10. Figure 2.55: Accuracy of T10.

grouped together to facilitate search. Notable among these three layout strategies was

the clustered layout, which does not behave well in this task. Clustered layout tends to

group glyphs using all of their attributes instead of a designated one, which renders it less

suitable for this task.

Figures 2.54 and 2.55 show the effectiveness of identifying groups of glyphs using the

clustered layout. In particular, the subjects used on average 11 and 6 seconds, respectively,

to achieve near 100% correctness on both questions in task T10. Our hypothesis H5 is

thus confirmed. In our initial trial on the subjects, they were unable to perform this task

well without the help of the clustered layout. The subjects could not group the glyphs

correctly within an acceptable response time. Therefore, this task is best suited for the

clustered layout.

Exit Questionnaire. Answers to Q1 and Q2 on the exit questionnaire are shown in

Figure 2.56. There is a clear endorsement in favor of FIRE versus CRM, especially in

test T5 where none of the subjects chose CRM over FIRE. The most common reason

cited for this choice was the facilitated exploration of PSpace. The only exception was

T1, as some subjects stated that they are more familiar with the sorted rules in the tabular

view. In terms of ease of use, on a scale from 1 to 5, FIRE was rated 4.3 on average and
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Figure 2.56: Votes on the Preference of CRM vs. FIRE Per Task.

Figure 2.57: Survey Question on T8. Figure 2.58: Survey Question on T9.

Figure 2.59: Overall Accuracy using CRM and FIRE.
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CRM was rated 3. Here, 1 = very difficult and 5 = very easy. Figures 2.57 and 2.58 show

the results for the glyph placement study that verified the task of finding glyphs with a

given attribute-value pair using different layouts. On a scale from 1 to 5, the clustered

layout was rated 2.7, the sorted layout was rated 4.5 and the unsorted glyph layout was

rated 3.8. In terms of identifying dissimilar glyphs, the clustered view was rated 3 and the

unclustered view was rated 3.7.

Overall, as shown in Figure 2.59, the user study showed that 92% of our subjects

could perform the task correctly with FIRE while 82% of them produced correct answers

with CRM. In addition, the glyph representation of rules and the glyph layout strategies

offered users great benefits in association rule exploration. In conclusion, all hypotheses

were confirmed by our user study. Our study shows that FIRE indeed aids human analysts

in performing interactive rule exploration tasks efficiently and accurately.

2.9 Related Work

Parameter Space Exploration. Prior research has explored the space of parameters

for handling parameterized database queries (CLN10) and tuning database configuration

parameters (DTB09). Most data mining queries are parameterized, which, while making

the algorithm flexible and tunable to one’s own problem, often causes huge difficulty

as typically the selection of appropriate parameter values is left to the human analysts.

Closest to our work, (YRW09) aims to help analysts understand the relationship among

clusters produced with different parameter settings to better understand good results for

density-based clusters. We instead explore the parameter space for rule mining. Closest

to our proposed parameter space display is the recent demonstration called AssocExplorer

(LSZ+12) that proposes a scatterplot of rules on a 2-D space. However, they overlook the

visual clutter problem that is common even for a moderate number of rules. We tackle
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the clutter problem with our proposed stable region, zoom and granularity features.

Interactive Association Rule Mining. Hahsler et al. (ARu15) presented the R-

extension package arulesViz which implements several visualization techniques to display

individual rules. In that sense, these efforts only focus on subset of our problem, namely,

on designing displays for visualizing association rules as in our RSpace view. Analogous

to our RSpace view, they work with standard visualizations found in visualization toolk-

its including variants of scatterplots, histograms and parallel coordinates visualization

techniques. In this paper, we instead propose three variants of RSpace glyph views for

graphically representing individual rules. We found rule glyphs and associated placement

strategies to be well-suited to facilitate exploration and comparison among rules. These

core techniques can potentially be integrated into ARulesViz as well.

Couturier et al. (CHYN07) proposed an integrated framework covering both rule

extraction and visualization steps of the mining process. They provided a guided explo-

ration based on clustering of rules. Neither of these approaches provide support for un-

derstanding the distribution of rules within the space of interestingness parameters (such

as support, confidence and lift). Last but not least, unlike other efforts on interactive rule

mining, a key contribution of our work is its focus on evaluating the usability of our FIRE

framework via a formal user study.

Online Association Rule Mining. Online mining techniques (AY01a, KA08, KHR+03)

typically prestore the intermediate frequent itemsets. Here, we instead adopt the approach

of rule prestoring from (LMR+13) to achieve the required real-time interactive behavior.

(LMR+13, MLB+13) propose to store the final rule results instead. They achieve near

real-time responsiveness, laying the foundation for offering speedups sufficient for in-

teractive rule exploration. However, sense-making of rulesets extracted from a data set,

which is the topic of our current study, is not the focus of these existing rule mining

systems (HFH+09, LMR+13, MLB+13, ARu15, JB02).
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Interestingness Measures as Parameters. Han et al. (WCH07) identify the impor-

tance of analyzing the interestingness measures of rules. They compare different null-

invariant measures, such as confidence, to provide insights into similarities and differ-

ences among them. However, they do not tackle interactive rule mining through pre-

computation as undertaken by our work. In a more recent work, Cao et al. (CLWY13)

proposes a new interestingness parameter Max Coverage Gain. They also introduce a

MCGminer algorithm with a series of built-in mechanisms and pruning strategies to han-

dle complex rule interactions and reduce computational complexity towards identifying

the globally optimal rule set in large imbalanced dataset. By extensive evaluation over 13

UCI datasets (UCI15), their metric is proven to be accurate, scalable, stable and effective.

Our work is orthogonal to (WCH07, CLWY13) as we provide an overall framework for

interactive rule mining. In other words, the parameters and strategies proposed in these

works can be added to our framework to provide richer experiences to analysts.

Rule Relationships and Actionable High Utility Rules. Combined mining (Cao13)

techniques focus on determining and managing various aspects of patterns such as rules,

e.g., relationships among patterns, pattern representation, etc. Further, works on action-

able high-utility itemset mining (SYLC15) establish that itemsets that are frequent may

not necessarily be of high-utility. These works propose a new paradigm of utility func-

tions to establish how significant a itemset/rule is, and bridge the gap between research

outcomes and business needs. While these two relevant works make significant advances

in discovering high-utility rules and defining complex rule relationships, our interactive

FIRE engine powers the discovery process itself by presenting rules in an easy explorable

manner. We use rule redundancy relationships as an example rule relationships, the con-

cepts in these relevant works can be adopted into the backend (PARAS) of our visual

FIRE engine to then together provide richer insights to the analysts for sense-making of

association rules.
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2.10 Conclusion

In this work we designed, implemented and evaluated innovative back-end and visualiza-

tion technologies for interactive rule exploration called the PARAS and the FIRE frame-

works. In our PARAS back end framework for fast online association mining, we propose

a novel parameter space model for pre-storing rules such that a near real-time performance

is guaranteed for online mining queries. FIRE offers parameter recommendations and en-

hanced sense-making of rule relationships. Particularly, we propose two linked views,

namely, the PSpace and RSpace views. Both views are supplemented with innovative

visualizations and interactions that enable analysts to effectively conduct visual rule ex-

ploration. While PSpace offers a rule distribution abstraction, RSpace facilitates detailed

analysis of rules and their relations. In addition our novel RSpace glyph display en-

ables visual comparison of rule shapes further augmented by glyph placement strategies

(War02).

Our case study using the Bike sharing dataset (Bik15) illustrates the capabilities of the

FIRE system and compares it with that of the state-of-the-art ARulesViz rule visualiza-

tion techniques. Further, our user study with 22 subjects demonstrates the usability and

effectiveness of the proposed FIRE framework using several benchmark datasets.
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Localized Rule Mining with COLARM

3.1 Preliminaries

We first describe how we represent itemsets in a multidimensional space and then formu-

late the online localized rule mining problem using the terms defined in Table 3.1.

3.1.1 Itemsets in Multidimensional Space

Consider a relational database D with n attributes {A1, . . . ,An}. Let there be m data

records in D. Each data record r consists of value <v1,. . .,vi,. . .,vn>, where vi corre-

Symbol Definition
n Total number of attributes in a relation.

minsupp User-specified min. support.
minconf User-specified min. confidence.
Arange Range attribute-value pairs in the WHERE clause of Q.
Aitem Item attributes specified in the WHERE clause of Q.
DQ User-chosen focal subset.

SuppGI Global support of an itemset I in the complete dataset D.
SuppQI Local support of an itemset I w.r.t. the subset DQ.
ConfGR Global confidence of Rule R in the complete dataset D.
ConfQR Local confidence of Rule R w.r.t. the subset DQ.
{IQS } Set of candidate itemsets w.r.t. DQ output by SEARCH.
{IQE } Set of candidate itemsets in DQ output by ELIMINATE.
{RQ} Set of local rules in DQ output by VERIFY.

Table 3.1: List of Notation.
Figure 3.1: Itemsets in n-Dimensional
Space.
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sponds to attribute Ai of the n attributes. Rule mining (AIS93) works with only nominal

attributes, while quantitative attributes are first discretized1. For D, a single attribute-

value pair (Ai = vi) forms an item and a collection of such items is called an itemset.

For example, in the salary dataset (Table 1.2), A0=(Age=20-30) is an item. (Age=20-30,

Salary=90K-120K), also denoted as (A0,S2), is a 2-itemset as it consists of two items.

Further, (Age=20-30, Salary=90K-120K, Company=IBM), denoted as (A0,S2,C0), is a

3-itemset.

For ease of depiction, in Figure 3.1 we assume that the salary dataset consists of three

dimensions, namely, age, salary and company. Here, the records {2,3} belong to the cell

(A0, S2, C0). The cells (3-itemsets), namely, (A0, S2, C0), (A0, S2, C1), (A0, S2, C2)

and (A0, S2, C3) combine to form the 2-itemset (A0,S2). The bounding box for (A0,S2)

is shown in Figure 3.1. This conforms to the downward closure property2 of itemsets that

we utilize in our work. While cells (A0, S2, C0) and (A0, S2, C1) contain records {2,

3} and {4, 5, 6} respectively, cells (A0, S2, C2) and (A0, S2, C3) are empty. Thus, in

general we divide an n-dimensional space into (n-itemset) cells at the lowest granularity.

Several i-itemsets can be combined to form each (i-1)-itemset. This bottom up process

can be repeated until 2-itemsets are composed.

3.1.2 Localized Association Mining Problem

An online mining query for localized rules can be specified by query Q. Given a dataset D,

localized rules valid in the focal subset DQ are requested. The range parameter Arange in

the WHERE clause specifies DQ. For each range attribute Arange
i , the user selects values,

where vrangei,p denotes the pth value.

1Discretization of quantitative data (e.g., discretization of attribute Age as {20-30, 30-40, . . .} versus
{20-40,40-60,. . .}) is an orthogonal problem and existing works (SA96, HF95) can be applied offline to
achieve the best discretization for a dataset.

2For a frequent itemset, all its subsets are also frequent and thus for infrequent itemset, all its supersets
must also be infrequent.
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Q: REPORT LOCALIZED ASSOCIATION RULES

FROM Dataset D

WHERE RANGE Arange = { A
range
1 = (vrange1,1 ,...), . . ., A

range
k = (vrangek,1 ,...)}

AND

[ ITEM ATTRIBUTES Aitem = {Aitem1 , . . ., Aitemf } ]

HAVING minsupport = minsupp and

minconfidence = minconf;

For the salary dataset (Table 1.2), (Age={20-30, 30-40} and Company = {IBM})

forms an example focal subset DQ denoting the IBM employees between ages 20 and 40.

By default Arange
i spans over the domain of Arange

i . The users can optionally use the item

clause (Aitem) to specify the attributes for generating rules. Therefore, (Arange ⊆ A) and

(Aitem ⊆ A).

Let the user-defined focal subset be DQ. Size of the focal subset (|DQ|) is the number

of tuples in the focal subset. It is computed by counting the tuples overlapping with the

range parameter Arange. For an itemset I, if DQ
I denotes the records of DQ that support I,

the local support for I (SuppQI ) = |D
Q
I |

|DQ| . Itemset I is frequent in DQ if SuppQI ≥ minsupp.

Further, for a rule R = ( X⇒ Y ), where I = (X ∪ Y), the local confidence ConfQR is given

by the fraction SuppQI
SuppQX

. Only if ConfQR ≥ minconf, Rule R is included in output {RQ}. As

range and item attributes are known only at query-time, offline precomputation of local

support and confidence values is not possible. The overall problem is formulated below.

Definition 3.1 Localized Association Mining Problem: Given the range attributes Arange,

the item attributes Aitem and the thresholds, namely, minsupp and minconf, find the set

of association rules {RQ} = {RQ
1 , R

Q
2 , . . . , R

Q
m} valid for the focal subset DQ (defined

by Arange). such that for every rule RQ
k = Xk ⇒ Yk, Xk∪ Yk ⊆ Aitem, the local support

SuppQk ≥ minsupp and the local confidence ConfQk ≥ minconf.
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3.2 The COLARM Design

To process a localized rule mining query Q, our approach adapts a preprocess-once-query-

many (POQM) paradigm-based solution composed of two phases, namely, offline prepro-

cessing and online query processing as described below.

3.2.1 The COLARM Framework

Figure 3.2: The COLARM framework.

We now give an overview of our proposed approach that we call the COLARM frame-

work (Figure 3.2). The framework consists of an offline preprocessing phase and an online

query processing phase. The offline preprocessing phase computes and stores the itemset

information using efficient index structures called the MIP-index (explained in Section

3.2.3). The index statistics are also pre-computed and stored for analysis of online min-

ing strategies. In the online query processing phase, a user submits a mining request that

consists of minsupp, minconf and focal subset DQ.

In this work, we propose a suite of six alternate mining plans for executing the lo-

calized mining request submitted by the user. The cost for each mining plan is derived

and discussed in detail in Section 3.2.4. Based on the index statistics provided by the
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(a) R-tree (b) Closed IT-tree

Figure 3.3: The two-level MIP-index.

offline preprocessing phase and the online query parameters, namely, minsupp, minconf

and focal subset DQ, our proposed COLARM query optimizer estimates the costs of the

alternate plans. The estimates are a constant time computation of six formulae, each cor-

responding to one mining plan. For a given mining request, the COLARM optimizer

suggests the plan with the lowest estimated cost which is then used by the executor to

process the online mining request.

3.2.2 Offline Preprocessing Phase

The preprocessing phase is a one-time offline step. For answering localized mining

queries using POQM, we extend ideas from two works. First, as summarized by Boulicaut

(? ), existing works prestore frequent itemsets in a compact hierarchical itemset-based in-

dex such as a closed IT-tree (ZH02). At query-time, the index can be utilized for rule

generation and to verify if the generated rules qualify the minsupp and minconf thresh-

olds. Next, Das et al. (DPDK11) answer windowed frequent itemset queries by prestoring

the bounding boxes of the window attributes. We thus propose to utilize a multidimen-

sional index to store bounding boxes of itemsets. But in our relational model as range and

item are specified at query-time, the multidimensional index must be more flexible than

required by their transactional model. In contrast to these two works, we find that our
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target problem requires both features of an itemset to be prestored. Thus, for each itemset

we prestore (a.) the bounding box of the itemset within the multidimensional space and

(b.) the items composing the itemset in a compact hierarchical index. While feature (a.)

enables us to search overlaps between the focal subset and the pre-stored itemsets, (b.)

helps in efficient online rule generation and threshold verification.

Similar to prior online rule mining works (AY01a, DPDK11), we prestore all item-

sets that satisfy a domain-specific primary support threshold by employing a rule mining

algorithm (Charm (ZH02)) to collect all the closed frequent itemsets at an offline step.

However, the support and confidence of the rules composed from the prestored itemsets

are determined at query-time based on the focal subset. Extending our knowledge from

Section 3.1.1, in a multidimensional space of n (=3 in Figure 3.1) attributes, we con-

struct a hierarchy of itemsets upto 2-itemsets, starting with the n-itemset cells at the finest

granularity. This hierarchical collection of itemset partitions the multidimensional space

into bounding boxes denoted by {DP}. We call these partitions Multidimensional Itemset

Partitions (MIPs). Each MIP, denoted by IPk , represents both the bounding box DP
k of

the itemset in a multidimensional space as well as the actual items (attribute-value pairs)

composing the itemset I. In other words, the symbols DP
k and IPk are henceforth used in-

terchangeably in the rest of this document to denote a MIP for an itemset I. As shown in

Figure 3.1, each i-itemset MIP at level i is composed of one or more (i+1)-itemset MIPs.

This MIP-index enables downward closure property to be implicitly applied during on-

line mining such that if an MIP I at level i does not qualify the minsupp, all (i+1)-itemset

MIPs that contain I can also be eliminated.

3.2.3 The Two Level MIP-index

We adopt a two-layered structure to store the two features of the MIPs, namely, (a.) the

bounding boxes and (b.) the items composing the itemsets, as follows.
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The Multidimensional Index for MIPs. The bounding boxes of MIPs can be indexed

using any multidimensional index. Here, we use an R-tree, as it is proven to be efficient

for searches over multidimensional boxes (KF93). An R-tree index can be used to perform

a range search to retrieve the MIPs that overlap with the focal subset DQ. An R-tree

supports partitions of different granularities as well as overlaps and containments among

partitions. An example R-tree is shown in Figure 3.3.(a).

The Closed IT-tree for Itemsets. We employ the itemset-tidset search tree (ZH02),

or in short the IT-tree1. The IT-tree is compact as it stores only the closed frequent item-

sets. As shown by Zaki et al. (ZH02), there are significant gains both in storage and

computation time by utilizing the closed IT-tree for rule generation. An example closed

IT-tree is shown in Figure 3.3.(b).

Offline MIP-index Construction. Construction of MIP-index at the offline step con-

sists of first generating all closed frequent itemsets (CFIs) using the CHARM algorithm

(ZH02) using the primary support threshold. The generated CFIs are stored in an IT-tree.

The details of time and space complexity of generating CFIs and constructing IT-tree can

be found in (ZH02). Further, we construct the R-tree using bounding boxes of the closed

frequent itemsets. As this is a one time offline construction, we employ the R-tree pack-

ing scheme proposed by (KF93). They proposed a method to build a packed R-tree that

achieves (almost) 100% space utilization. A detailed time and space analysis for R-tree

construction can be found in (KF93). In this work we focus on online query processing

costs that are more important than costs of one-time offline MIP-index construction costs

for the problem of online localized rule mining.

1Detailed description of the IT-tree can be obtained from (ZH02).
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3.2.4 Online Query Processing

In the online query processing phase, the user submits a localized mining query Q with

four parameters Arange, Aitem, minsupp and minconf. Arange defines the focal subset DQ.

The candidate frequent itemsets for DQ are identified by performing a range search using

the focal subset DQ over the MIPs {DP} pre-stored in a R-tree. The candidate itemsets,

denoted by {IQS }, only contain the itemsets within the item attributes Aitem . Next, for

each candidate itemset I ε {IQS }, rules are generated using the IT-tree and the minsupp

and minconf thresholds with respect to the focal subset DQ are verified. Here, we make

a simplifying assumption that the users are allowed to specify Arange with the prestored

n-itemset cells at the lowest granularity to avoid sub-cell computations. For example, if

age attribute is specified in the MIP-index with increments of 10 as {20-30, 30-40, . . .},

the user selection must align with them and ranges such as Age=25-30 or Age=35-40

cannot be specified. This is a valid assumption as optimal discretization decisions using

key ideas from (SA95, SA96, HF95) can be made for a given dataset during preprocessing

based on the domain and the data characteristics.

Figure 3.4: Itemsets Covering the Cells.

Containment vs. Partial Overlap. Based on the expanse of the focal subset DQ,

the precomputed MIPs can be categorized into three mutually exclusive groups, namely,

contained within DQ ({DP}c), partially overlapping with DQ ({DP}p) and disjoint with

DQ ({DP}d). Figure 3.4 illustrates five MIPs (marked with different patterns) of a dataset
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D, {DP
1 , . . . ,D

P
5 }. For an example focal subset DQ

1 , the MIPs DP
1 and DP

2 are fully

contained in it, i.e., {DP}c = {DP
1 ,DP

2 }. There are no partially overlapped MIPs, i.e.,

{DP}p = ∅. The rest are disjoint MIPs, i.e., {DP}d = {DP
3 ,DP

4 ,DP
5 }. Example focal

subset DQ
1 is straightforward to process as only contained MIPs exist eliminating the

need for record-level processing.

The focal subset DQ
2 (Figure 3.4) represents a distinct scenario with partially over-

lapped MIPs {DP}p = {DP
3 ,DP

4 ,DP
5 } and disjoint MIPs {DP}d = {DP

1 ,DP
2 }. There are

no contained MIPs, i.e., {DP}c = ∅. In such cases, for each partially overlapped MIP DP
k

(ε {DP}p), the records lying at the intersection of DQ and DP
k must be collected using a

costly database scan. The collected records must then be used to verify the thresholds for

the candidate itemset {IPk }. Hence, processing partially overlapped MIPs is much costlier

than processing fully contained MIPs. In a query scenario, different DQ may vary in their

sizes and locations within the multidimensional space. Overall, a variety of query sce-

narios are possible ranging from all contained MIPs, to mix of contained and partially

overlapped MIPs, to all partially overlapped MIPs. A single solution may not be suitable

to process all query scenarios in the most efficient manner. Therefore, we develop a suite

of alternate mining plans and an online optimizer for selection of the most efficient plan

to execute online localized mining requests.

3.3 Strategies for Online Mining

As opposed to treating the rule mining process as a black box, we now isolate each step

in the process as an operator. Each operator has precise inputs, outputs and functionality.

The goal is to find scope for optimizing each isolated operator without affecting the other

operators. We first present the overall plan for processing online localized rule mining

queries using the MIP-index, followed by our proposed optimizations. The plan consists

92



3.3 STRATEGIES FOR ONLINE MINING

(a) S-E-V (b) S-VS (c) SS-E-V

Figure 3.5: The POQM Mining Plans.

Symbol Definition
CI Number of singleton items in an Itemset I.

TRconst Constant cost of reading records from an R-tree node.
h Height of the R-tree.

Nj Number of nodes at level j of the R-tree.
D
Q
iavg

Avg. extent of the ith range attribute in the focal subset.
DPj,iavg

Avg. extent of the MIPs in R-tree at level j and attribute i.
{R} Candidate set of rules for confidence check.

Table 3.2: Notation Used in Cost Estimates.
of a pipeline of three basic operators as shown in Figure 3.5.(a).

1. SEARCH: Given the range attributes Arange in the WHERE clause of Query Q,

the R-tree is searched to output overlapping candidate itemsets denoted by {IQS }.

The SEARCH operator is defined as S[Arange, R − tree] −→ {IQS }. Details of the

R-tree search can be found in (TSS00).

2. ELIMINATE: Given the list of candidate itemsets {IQS } output by the SEARCH

operator and the item attributes Aitem, the support of the candidate itemsets must

satisfy the minsupp and the itemsets must be composed of only the item attributes

Aitem. Thus, a reduced list of candidate itemsets, denoted as {IQE }, is produced.

The ELIMINATE operator is defined as E[{IQS }, Aitem, minsupp] −→ {IQE }.

3. VERIFY: Given the reduced list of candidate itemsets {IQE }, the closed IT-tree
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(ZH02) and the records in DQ are used to first generate rules and then verify

whether the confidence values of the rules satisfy the minconf threshold. The rules

{RQ} are returned to the user. The VERIFY operator is defined as V[{IQE }, min-

conf ] −→ {RQ}. Refer to (ZH02) for details on the traditional algorithms for rule

generation and minconf verification using the IT-tree.

Below, we apply several novel optimization principles in the context of online lo-

calized rule mining. Each resulting optimized plan comes, not only with the benefits

achieved, but also with some overhead costs. We design a model for estimating the costs

of each plan. For each online request, a single most efficient plan is used for execution.

We conclude this section with a summary of the six proposed alternative mining plans in

Table 3.3.

3.3.1 The Basic S-E-V Plan

The basic mining plan can be composed by pipelining the three operators, namely, SEARCH,

ELIMINATE and VERIFY. The resultant S-E-V plan is depicted in Figure 3.5.(a). The

SEARCH operator, performing an R-tree search to output the overlapping MIPs {IQS },

works as an inexpensive coarse granularity filter. For each candidate itemset I ε {IQS },

the ELIMINATE operator filters items using Aitem and verifies if local support SuppQI ex-

ceeds the user-defined minsupp. The qualified candidate itemsets {IQE } (where {IQE } ⊆

{IQS }) are used in the VERIFY operator to generate rules. For each rule r, only if its local

confidence (ConfQr ) satisfies the user-defined minconf will r get included in the final out-

put {RQ}. The detailed algorithm for threshold verification and rule generation using the

IT-tree can be found in (ZH02). Both the ELIMINATE and the VERIFY operators require

finer granularity checks at the record-level, i.e., the records that lie at the intersection of I

and DQ. The candidate itemsets {IQS } and {IQE } produced by SEARCH and ELIMINATE
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respectively may contain false positives but are guaranteed to not generate any false neg-

atives as even the partially overlapping itemsets are pushed up as candidates, but itemsets

that must form the answers are never eliminated.

Execution Costs and Analysis. The cost of the SEARCH operator (i.e., an R-tree

lookup), depends on the expected number of disk accesses (TSS00). Lemma 3.3.11 gives

an estimated count of the candidate itemsets ({IQS }) output by SEARCH.

An R-tree storing a set of N MIPs {DP
1 , . . . ,DP

N} with average extent for the ith

attribute as DP
iavg and the focal subset DQ with average extent of the ith attribute as

D
Q
iavg

, for n attributes; the average number of candidate itemsets {IQS } intersected by DQ

is approximately computed as:

|{IQS }| = N ×
∏n

i=1(D
P
iavg +D

Q
iavg

)

While the cost for ELIMINATE is given in Equation 3.1, Lemma 3.3.12 gives the

estimated count of candidate itemsets ({IQE }) output by ELIMINATE.

Given a set of candidate itemsets {IQS } with itemset I having local support SuppQI

and the focal subset DQ with threshold requirement of minsupp, the average number of

candidate itemsets {IQE } output by ELIMINATE is:

|{IQE }| =
∑

iε{IQS }
(SuppQi +minsupp)

In the VERIFY operator, the output ruleset {RQ} can be generated using the IT-tree.

For an itemset I, one needs to traverse the IT-tree up to the level of I in the IT-tree (Lemma

3.3.13). The overall cost of the S-E-V plan as an addition of the individual costs is shown

in Equation 3.1.

1Derived from the R-tree search algorithm (TSS00).
2Derived from the IT-tree minsupp check algorithm (ZH02).
3Derived from the IT-tree rule generation algorithm (ZH02).
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Figure 3.6: Supported R-tree.

The level of the IT-tree at which an itemset I exists equals the number of singleton

items composing I denoted by CI .

COST (S − E − V ) = COST (S)+COST (E)+COST (V ), where,

COST (S) = [

h−1∑
j=1

{Nj ×
n∏
k=1

(DPj,iavg
+D

Q
kavg

)}],

COST (E) = [|{IQS }| × |D
Q|],

COST (V ) = [
∑

iε{IQ
E
}

(Ci × |DQ|)+
∑
rε{R}

(ConfQr +minconf)].

(3.1)

The SEARCH is inexpensive as it is a coarse granularity check. However, if a larger

range is chosen by the user it may require multiple disk accesses and may impact the

execution costs. In summary, the S-E-V plan would perform well for small DQ expanses

when most of the MIPs are filtered out in the R-tree search. The VERIFY operator re-

quires record-level operations and multiple iterations over the IT-tree. Thus it tends to be

the bottleneck of this plan. The S-E-V plan is effective if the ELIMINATE achieves high

reduction of candidate itemsets from {IQS } to {IQE }, with possibly low overhead. The

smaller the set {IQE } reaching the costly VERIFY operator, the better the plan’s perfor-

mance. However, a small overhead for performing the record-level ELIMINATE operator

arises.
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(a) SS-VS (b) SS-E-U-V (c) ARM

Figure 3.7: More Mining Plans.

3.3.2 Pushing Selection Up The Plan

The reduction of the candidate itemsets by ELIMINATE is factor affecting the effective-

ness of the S-E-V plan. However, if the expensive record-level ELIMINATE filters no

or very few candidate itemsets, i.e., {IQE } ' {I
Q
S }, then ELIMINATE no longer remains

a beneficial filter. We now introduce the S-VS strategy that rewrites the S-E-V plan by

merging the ELIMINATE and the VERIFY operations into a single operator called the

SUPPORTED-VERIFY operator (defined below). The S-VS plan is depicted in Figure

3.5.(b).

SUPPORTED-VERIFY Operator. This operator is represented as V S[{IQS }, Aitem,

minsupp, minconf ] −→ {RQ}. It takes as input the candidate itemsets from the SEARCH

({IQS }), the item attributes Aitem and the thresholds minsupp and minconf from the query.

It first filters itemsets not in Aitem. With the remaining qualified itemsets, a set of rules

{R} is generated but only the rules satisfying both minsupp and minconf are output as

{RQ}.

Execution Costs and Analysis. SEARCH cost for S-VS remains the same as S-E-V.

The minsupp-based elimination of itemsets is interleaved with the minconf verification

using the IT-tree. For cases {IQE } ' {I
Q
S }, S-VS is bound to outperform S-E-V. This plan
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is depicted in Fig. 3.5.(b) and Eq. 3.2 shows the overall costs.

COST (S − V S) = COST (S)+COST (V S), where,

COST (V S) = [
∑

iε{IQ
S
}

(Ci × |DQ|)+
∑
rε{R}

(ConfQr +minconf)].
(3.2)

3.3.3 The Supported R-tree Filter

In the above two plans, SEARCH selects all MIPs overlapping with with DQ for the ex-

pensive record-level support check irrespective of the extent of overlap, i.e., MIPs over-

lapping by as few as a single record are also chosen. In cases where DQ partially overlaps

with a large number of MIPs, an excessive number of record-level support checks are

needed. With the goal of further reducing {IQS }, we now design the SS-E-V plan (depicted

in Fig. 3.5.(c)). The SEARCH operator is modified using the insights from Lemma 3.3.3.

Given a focal subset DQ (⊆ D) and any itemset I whose bounding box overlaps DQ,

the number of records in DQ that contain I, denoted by |DQ
I |, has an upper bound |DG

I |,

where |DG
I | denotes the total number of records supporting I in the full dataset D. In

short, |DQ
I | ≤ |DG

I |.

Let |DG
I | (e.g., 2000) denote the global count of prestored itemset I with respect to

the entire dataset D (e.g., 100000). Given a focal subset DQ (e.g., 10000) and minsupp

= 25%, we define |D
G
I |

|DQ| (here, 2000/10000 = 20%) as the upper bound of the local support

of I, i.e., SuppQI ≤
|DGI |
|DQ| (using Lemma 3.3.3). SuppQI = |DGI |

|DQ| only if all records of D

that contain I are included in DQ. By prestoring global support counts (|DG
I |) of an

itemset I with its MIP bounding box inside the R-tree, we can eliminate I if minsupp >
|DGI |
|DQ| . This customized R-tree structure is henceforth called the Supported R-tree (Figure

3.6). This supported R-tree filter may significantly reduce the list of candidate itemsets

without having to perform a record-level support checks. The modified SEARCH operator

exploiting the supported R-tree is defined below.

SUPPORTED-SEARCH Operator. The SS[Arange, minsupp] −→ {IQSS} operator
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takes in the range attributes Arange and the minsupp threshold. It outputs the candidate

itemsets {IQSS} that overlap with the Arange only if their global support counts exceed

the minsupp. Thus the SS operator works as a coarse granularity supported R-tree filter

together with performing the range search.

Execution Costs and Analysis. The costs incurred by the SS-E-V are shown in Equa-

tion 3.3. Unlike the regular SEARCH operator, the selectivity of the SS operator also takes

the support of the stored MIPs and the minsupp into account. This coarse granularity min-

supp check can be cheaply interleaved with the range search. The costs of ELIMINATE

and VERIFY are identical to Equation 3.1. The key contribution of the SS-E-V plan is

that the SUPPORTED-SEARCH potentially generates fewer candidate itemsets ({IQSS})

than produced by the original SEARCH operator, i.e., {IQSS} � {I
Q
S }. Thus, potentially

reducing the inputs to ELIMINATE and VERIFY operators.

COST (SS − E − V ) = COST (SS)+COST (E)+COST (V ), where,

COST (SS) = [

h−1∑
j=1

{Nj ×
n∏
k=1

(DPj,kavg
+DQkavg

)×

(Suppj +minsupp)}].

(3.3)

3.3.4 Pipelining both Supported Operators

The SS-E-V plan can run into the same issues with the ELIMINATE as the S-E-V plan,

i.e., if {IQE } ' {I
Q
SS}, then ELIMINATE may not be an effective filter. We may instead

opt to pipeline SUPPORTED-SEARCH and SUPPORTED-VERIFY operators resulting

in the SS-VS plan (Figure 3.7.(a)).

Execution Costs and Analysis. The cost incurred by the SS-VS (Equation 3.4) is the

sum of the costs of SS and VS operators. The VS operator processes candidate itemsets

{IQSS} output by SS. SS-VS is guaranteed to outperform SS-E-V when {IQE } ' {I
Q
SS}.

COST (SS − V S) = COST (SS)+COST (V S). (3.4)
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Mining Plan Optimization Query Cost
S-E-V Basic SEARCH+ELIMINATE+VERIFY plan COST(S) + COST(E) + COST(V)
S-VS Selection push-up COST(S) + COST(VS)
SS-E-V Supported R-tree filter COST(SS) + COST(E) + COST(V)
SS-VS Supported R-tree filter + selection push-up COST(SS) + COST(VS)
SS-E-U-V Supported R-tree filter + differential treatment of containment and

overlap
COST(SS) + COST(E) + COST(U) + COST(V)

ARM Traditional rule mining over focal subset COST(σ) + COST(εAR)

Table 3.3: Summary of the Six Mining Plans.

3.3.5 Treating Contained and Overlapped MIPs Differently

In the plans described thus far, irrespective of whether a MIP is fully contained within

DQ or it only overlaps by as few as a single record, it is sent for the record-level threshold

check. We now introduce a key property in Lemma 3.3.5 that opens a new opportunity

for optimization.

If the MIP bounding box DP
I of an itemset I is completely contained within the focal

subset DQ, the local support of I equals its global support. In other words, if (DP
I ⊆DQ),

then (SuppQI = SuppGI ). Proof is trivial.

By Lemma 3.3.5, once a fully contained Itemset I is included in the candidate list

{IQSS} by the SS operator, any record-level check of I’s support is redundant. Therefore,

we now propose a mining plan that treats the fully contained MIPs differently from the

partially overlapped MIPs. The MIPs contained within DQ, denoted by {IQSS}c, can be

safely sent to VERIFY for rule generation and minconf verification. Only the MIPs that

partially overlap with DQ, denoted by {IQSS}p, are required to undergo the expensive

record-level support check. Here, subscripts c and p stand for contained and partially

overlapped, respectively. ELIMINATE outputs the candidate itemsets {IQE}p (⊆ {IQSS}p).

Figure 3.7.(b) depicts the resultant SS-E-U-V plan. Lastly, we introduce an itemset-level

UNION operator to merge the two lists of itemsets to form a single list of itemsets for

rule generation in VERIFY.

UNION Operator. This operator, denoted by U[{IQI1}, {I
Q
I2}, . . .] −→ {IQ}p,c, takes
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as input two or more lists of itemsets, (here, {IQE}p and {IQSS}c) and produces a single list

which is the union of the two inputs.

Execution Costs and Analysis. The SS-E-U-V plan now incorporates all the opti-

mizations designed above. It is expected to be highly effective in processing a large spec-

trum of query requests. The SS operator’s cost remains the same as SS-VS, but SS now

splits the candidate itemsets into two mutually exclusive sets, namely, the contained MIPs

{IQSS}c and partially overlapped {IQSS}p MIPs. The partially overlapped MIPs ({IQSS}p)

must first pass through ELIMINATE to produce a reduced list {IQE }p (⊆ {IQSS}p). As

the two lists {IQSS}c and {IQE }p merged by UNION are mutually exclusive (requiring no

duplicate removal), UNION incurs a constant cost. VERIFY processes a total of (|{IQE }p|

+ |{IQSS}c|) candidate itemsets for rule generation (Equation 3.5).

COST (SS − E − U − V ) = COST (SS)+COST (E)+COST (U)+

COST (V ), where,

COST (U) = [Uconst],

COST (V ) = [
∑

iε({IQ
E
}p+{IQ

SS
}c)

(Ci × |DQ|)+

∑
rε{R}

(ConfQr +minconf)].

(3.5)

3.3.6 Employing the Traditional Mining Plan

For the extreme case when huge numbers of partially overlapped MIPs might require ex-

pensive record-level checks, a traditional two-step rule mining algorithm may be more

practical than employing the sophisticated MIP-index-based mining plans. This tradi-

tional plan may employ a mining algorithm (Charm (ZH02)) directly over the extracted

focal subset DQ. We refer to this baseline plan as the ARM plan (Figure 3.7.(c)) that is

composed of the following two operators:

SELECT Operator. Denoted as σ[Arange, D] −→ DQ, SELECT takes as input the

range attributes Arange and the dataset D to output the records of the focal subset DQ.
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ARM Operator. This operator, denoted by εAR[DQ, Aitem, minsupp, minconf ] −→

{RQ}, performs the traditional Association Rule Mining (ARM) from scratch. It takes

the focal subset DQ, the item attributes Aitem and the thresholds minsupp and minconf as

inputs. It outputs the desired ruleset {RQ}.

Execution Costs and Analysis. SELECTION using an R-tree requires extracting the

records from the overlapped bounding boxes. The costs for the rule mining step depend

on the input data size, the length of the maximum frequent itemset and the number of

dimensions. The costs of this baseline plan is computed by adding the SELECTION and

ARM costs (Equation 3.6).

COST (ARM − Plan) = COST (σ)+COST (εAR), where,

COST (σ) = [(

h−1∑
j=1

{Nj ×
n∏
k=1

(DPj,kavg
+DQkavg

)})× TRconst],

COST (εAR) = [|DQ| × ( max
Iε{IQ}

(CI))× n].

(3.6)

3.4 Experimental Validation of the COLARM Framework

In this section we provide experimental results to explore the validity of our COLARM

framework. We focus on three questions:

• Is the COLARM framework capable of providing correct decisions regarding the

best choice among the set of six plans?

• Do the proposed optimizations in the five MIP-index based mining plans achieve

the expected execution cost benefits for the tested datasets?

• What is the extent of Simpson’s Paradox observed in the context of localized rule

mining?
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We conducted experiments on a Windows 7 machine with Intel(R) Xeon(R) CPU

X3440@2.53 GHz processor and 8 GB of RAM. The mining plans and the COLARM

optimizer are coded using C++.

Experimental Datasets. We use three real benchmark datasets from the UC Irvine

Machine Learning Repository (UCI15), namely, chess, mushroom and PUMSB. Chess

contains 3196 records with 76 distinct items. Mushroom contains 8124 records with

120 distinct items. PUMSB contains 49046 records with 7117 distinct items. Figure

3.8 depicts the number of closed frequent itemsets stored in the MIP-index structure for

chess, mushroom and PUMSB datasets, respectively as we vary the primary threshold

values1. For both Chess and PUMSB datasets the number of closed itemsets drastically

increases with a decrease in the primary threshold. The change in Mushroom is rather

gradual. A detailed analysis of the three chosen datasets including a discussion of the

distribution of closed frequent itemsets (CFIs) by their length can be found in (ZH02).

The length of an itemset I corresponds to the number of singleton items in I, also denoted

by CI (see Table 3.2). In other words, the length also denotes the number of attributes

(dimensions) in the R-tree. Overall, chess and PUMSB have a symmetric distribution of

CFIs whereas mushroom has a bi-modal distribution of closed frequent itemsets (CFIs).

Thus, these three datasets represent diverse characteristics for testing the effectiveness

of the COLARM framework in terms of local itemsets discovered and selecting mining

plans with quick response times.

Preparing the MIP-index is a one-time offline step irrespective of the number of online

requests processed thereafter. Thus, the index construction costs are of less importance.

Infact, prior works (ZH02, LMR+13) have studied, in particular, the impact of the num-

ber of prestored itemsets on the subsequent online execution. For the online local mining

experiments, we focus on a different set of measurements as described below. For our

1The primary support ranges are as suggested in (ZH02).
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tested scenarios of online mining queries, we use the MIP-index structures created using

primary support 60% for chess, 5% for mushroom and 80% for PUMSB datasets, respec-

tively. The corresponding MIP-index structure stores approximately 300000, 10000 and

450000 closed frequent itemsets for chess, mushroom and PUMSB, respectively.

Experimental Methodology. Our experiments test two metrics, namely, (a.) the

query response time benefits of using the cost-based optimizer for plan selection, and (b.)

the extent of Simpson’s paradox in localized mining. The range and item attributes are

part of the user request (see Q in Sec. 3.1.2). This query-time selection from a common

pool of attributes means that existing solutions (DPDK11) are not applicable and thus can

not be compared against. We study the following measures:

1. Execution Time Metric: We compare the average execution times of the six alter-

nate mining plans for different query parameter settings i.e., by changing the focal

subset size, minsupp and minconf, respectively. We compare plan selection by the

COLARM optimizer based on the estimated costs with the actual execution costs

of the plans.

2. Optimization Benefits: In addition to the above factors derived from the cost

model, we also evaluate the effectiveness of our optimized MIP-index-based mining

plans measured by their respective gains in reducing the execution costs compared

with the basic S-E-V plan.

3. Local Rules vs. Global Rules: For the tested local mining sccenarios, we compare

the counts of fresh local rules versus the global rules to determine the extent of

Simpson’s paradox observed.
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Figure 3.8: # Frequent Itemsets by Primary Thresholds.

3.4.1 Accuracy of the COLARM Optimizer

Here we present our experiments to validate the COLARM optimizer’s capability to iden-

tify the most cost effective plan for a diversity of tested mining requests. We vary the

mining parameters such as DQ size (4 distinct values), minsupp (3 distinct values) and

minconf (3 distinct values) to create a total of 36 distinct localized mining requests for

each of the three datasets. For each tested mining request, the COLARM optimizer com-

putes the estimated costs of the six plans using the cost formulae derived in Section 3.3

and suggests the plan with the minimum estimated cost. To demonstrate the effectiveness

of our COLARM optimizer, we plot the average execution times of the six plans for the

tested scenarios and indicate with an arrow the plan chosen by COLARM in majority of

the cases.

In our experiments we vary the DQ sizes as % of the complete dataset D, namely,

50%, 20%, 10% and 1%. Similarly, different minsupp (as % of subset DQ) values are

used, namely, {80, 85, 90} for the chess dataset, {70, 75, 80} for the mushroom dataset

and {85, 88, 91} for the PUMSB dataset, respectively. Further, we used high minconf

values, namely, {85, 90, 95}, for all datasets. These chosen minsupp and minconf val-

ues are based on the primary support values chosen for creating the MIP-index and the

analysis of the distribution of their closed frequent itemsets by their lengths provided in
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Figure 3.9: Avg. CPU Costs of Mining Plans for Chess Dataset.

(ZH02).

Impact of Varying Focal Subset Sizes. Figures 3.9, 3.10 and 3.11 depict the average

execution times of the six mining plans for chess, mushroom and PUMSB, respectively.

For each |DQ| (say, 50% of |D|), the execution time is averaged over several runs by

submitting queries with fixed sized DQ over different regions of the dataset. The plan

chosen by the COLARM optimizer on majority of runs based on the estimated costs is

marked with an arrow. We fix the minconf to 85%. For each dataset, |DQ| equals (a)

50%, (b) 20%, (c) 10% and (d) 1% of |D| of the tuples. For all datasets (Figures 3.9, 3.10

and 3.11), with a decrease in the focal subset size from 50% to 1% (charts (a) to (d)),

the execution costs of the plans decrease drastically. This conforms to predicted trends of

the cost model. The smaller the focal subset |DQ|, the fewer the overlapping MIPs to be

verified. This leads to a faster response times.

Impact of Varying Minimum Support. For the chess dataset (Figures 3.9 (a)-(d)),
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Figure 3.10: Avg. CPU costs of mining plans for mushroom dataset.

our proposed mining plans consistently outperform the traditional ARM plan. As ex-

pected, the SS-E-U-V plan is optimized to deliver the best execution time. This trend is

attributed to the sparse population of itemsets in chess and a symmetric distribution of

itemsets by length. In Figures 3.10 (a)-(d) a similar trend is observed for the mushroom

dataset. We also observe that among the MIP-index based plans the average execution

cost decreases from S-E-V to SS-E-U-V in most cases as each of the optimizations are

employed. In Figures 3.11 (a)-(d) for the PUMSB dataset, the MIP-index-based mining

plans continue to perform distinctly better at the lower |DQ| sizes. However, for the higher

|DQ| (50% and 20%), we observed no clear winner. In some cases, the baseline ARM

plan outperforms the other plans. This distinct trend in PUMSB dataset is attributed to

due the symmetric distribution of itemsets by length and high density of the dataset. The

impact of varying minconf is similar to, yet less drastic than, that of varying minsupp.

Thus, those experimental results are omitted due to space constraints.
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Figure 3.11: Avg. CPU Costs of Mining Plans for PUMSB Dataset.

Plan Selection Accuracy of COLARM Optimizer. In Figures 3.9, 3.10 and 3.11,

we depict with an arrow the mining plans chosen by the COLARM optimizer using our

cost model. As the results are averages over several runs, the arrow indicates the plan

that was chosen in majority. Thus, we find that COLARM indeed almost always selects

the most efficient plan. Out of the total 108 distinct tested request scenarios (3 datasets

and 36 parameter settings), COLARM makes erroneous decisions for only three cases,

namely, in Figure 3.10.(d) for minsupp = 75% and in Figure 3.11.(c) for minsupp 88%

and 91%. Thus, COLARM is more than 93% accurate. When failing to select the optimal

plan, COLARM selects a plan with at most 5% extra cost compared with the optimal.

3.4.2 Measuring the Optimization Benefits

Here, we zoom into the optimized operators of the MIP-index based mining plans. We

use the S-E-V plan as the baseline and compare its execution costs against our optimized
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Figure 3.13: Average Local vs. Global CFIs.

plans, namely, S-VS, SS-E-V, SS-VS and SS-E-U-V. For a plan P, the gain is computed

as (CPUSEV −CPUP )
CPUSEV

. Figure 3.12 depicts the % gain for each optimized plan. In Figure

3.12, the benefits of pushing selection up, i.e., the VS operator, are minor. On the other

hand, the plans using the SS operator show 8% to 44% gains, indicating the success of

the supported R-tree filter. Particularly, SS-E-U-V exhibits high gains (∼22% to 44%).

3.4.3 Comparing Local vs. Global Rules

In Figure 3.13 we summarize the average number of closed frequent itemsets (CFIs)

mined in our tested cases. Here it is important to understand that these local frequent

itemsets were captured in the offline MIP-index construction due to the use of low pri-

mary support, namely, 60% for chess, 5% for mushroom and 80% for PUMSB datasets,

respectively. These local itemsets qualify at high support (≥80% for chess, ≥69% for

mushroom, and≥85% for PUMSB) only at the 1%-50% subset granularities. These local

CFIs will be either missed when reasonable global minsupp (> primary threshold) values

are input, or will be hidden within a large number of itemsets if the user inputs a global

minsupp less than the primary threshold.

Compared with the global itemsets mined at reasonable minsupp values 80% for chess

and 60% for mushroom, we find that majority of the CFIs mined in the tested query
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scenarios are local CFIs, providing strong evidence for Simpson’s paradox. For exam-

ple, for the mushroom dataset, when a subset of mushroom samples with attribute-value

pair stalk-shape=tapering is chosen, we observe 32 local CFIs emerge that have a low

global support of'39%. Two example CFIs are {stalk-surface-below-ring=smooth, veil-

color=white} and {stalk-surface-above-ring=smooth, veil-type =partial, ring-number=one}.

These 32 CFIs are hidden in the global context as 625 other CFIs exist in the global

context with higher support values. For this subset of mushroom samples satisfying

attribute-value pair stalk-shape=tapering, these CFIs have local support values ≥69%.

For PUMSB the itemsets mined with global minsupp = 85% are in majority also for the

local queries, yet several additional prominent local CFIs are discovered as well.

Experimental Conclusions. Our main experimental findings are summarized as fol-

lows:

• The experimental evaluation establishes the accuracy of the cost model as the trends

observed are coherent with the predictions of the cost model.

• In most of our tested cases, the SS-E-U-V plan consistently outperforms the other

plans. In some cases for PUMSB, the ARM plan marginally outperforms the others.

Overall, no single mining plan is a clear winner.

• The COLARM optimizer successfully identifies the most efficient plan with more

than 93% accuracy for all our tested cases including extreme cases where the traditional

ARM plan is most efficient.

• Among the MIP-index-based mining plans, the plans using the SS operator are

significantly less expensive indicating the success of the supported R-tree filter.

•We observe strong evidence for Simpson’s paradox in the context of local rule min-

ing requests.
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3.5 Related Work

Aggarwal et al. (APY02) identify the importance of localized rules. Yet, they propose

a one-time clustering-based summary of the market basket dataset with a fixed minsup-

port value. Han et al. (NLHM99) propose a 2-phased processing framework for online

constraint-based mining. However, both these works improve existing query-time rule

mining algorithms rather than precomputing itemsets for online mining of localized rules.

These improved algorithms are thus orthogonal to our efforts and could in fact be used in

conjunction with our proposed strategies.

Two recent works on mining rules on multidimensional data (WTH06, DPDK11) re-

late to our work. However, a closer analysis reveals that they solve a different problem al-

together. First, they assume that in a transactional data model (e.g., market basket dataset

(APY02)), there is a set of window attributes, such as location and time of transaction,

on which partitions are created. Thus, in their data model, the transaction data forming

the itemsets are required to be distinct from the partitioning attributes. In contrast, our

work focuses on a relational data model, such as in (SA96), where the subset attributes

and the items used for forming rules are from a common pool of attribute-value pairs.

The offline assumptions to aid the precomputation as done in (DPDK11) are unrealistic

in our model. Thus, these existing approaches (WTH06, DPDK11) are inapplicable to the

relational model.

3.6 Conclusion

We address the novel problem of online localized rule mining. We design a novel MIP-

index that makes POQM feasible for our target problem. Using the efficient two-layered

MIP-index, we design several alternate mining plans that employ sophisticated optimiza-

tion strategies such as selection pushup, supported R-tree filter and differential treatment
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of contained versus partially overlapped MIPs. Our COLARM optimizer selects the

most efficient plan for processing each mining request. Our extensive experiments using

benchmark datasets establish the effectiveness of our COLARM framework in a rich va-

riety of tested cases. We also find strong evidence of Simpson’s paradox in the context of

localized rule mining.
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4

Mobile Context Sequence Modeling

with OLAPH

4.1 Background

Modern day mobile devices are capable of logging their sensor and app data such as app

usage, location, call/SMS logs, battery usage, and calendar events. In the ubiquitous

computing literature (KLJ+08, SH11, WLLB05) such mobile usage data is called mobile

context data, as the data provides context about the user such as her location, application

usage, online activity, call and SMS behavior, charging behavior, and battery usage. A

large volume of research in the Ubicomp community has been devoted to using the raw

location and physical sensor data to infer and log higher level user context such as jog-

ging, driving, in meeting and at work (Nat12). A supervised approach is used with labeled

data for each context, i.e., labeled data is collected while jogging, driving, in meeting and

at work. Then a model is generated that infers each of these contexts in real-time. Con-

trary to these works, part III of this dissertation focuses on learning user’s mobile context

patterns from longitudinal logs of the collected mobile context data in an unsupervised
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manner.

Mobile context patterns can be expressed in a number of different ways, such as fre-

quently co-occurring context items (e.g., {Morning,AtHome,ReadNews,ListenToJazz})

(SMM+14) or a frequent sequence (e.g., on weekend evenings, user typically exhibits the

pattern [{ShoppingMall}, {MovieTheatre}, {Dinner}]) (MSW14). The overarching vi-

sion of this research is to use longitudinal smartphone context to infer diverse frequent

patterns that capture different aspects of the users context, and explore the utility of each

type of pattern in improving overall user experience. A key aspect of this research is

to leverage the computing potential of modern smartphones to perform the pattern min-

ing entirely on the device. Therefore, below description assumes that all mobile context

events and mined patterns are specific to a single user and within her own mobile device.

4.1.1 Definitions

Symbol Description
e Mobile context event is a 2-tuple (C,T)
C Context data {<D:A:V>1,<D:A:V>2,. . .}
T Timestamp, duration and derived time features {tf1,tf2,tf3,. . .}.
D Data type, e.g., AppUsage, Location, Call, SMS, etc.
A Attribute of context, e.g., AppUsed, Location Provider, Location PlaceID.
V Value of attribute, e.g., Facebook app, GPS, at work.
S Sequence of mobile context events

[ei, ei+1, . . . , en]
θT Maximum allowable time gap between two consecutive elements of a

sequence (in minutes).

Table 4.1: Notation Used in OLAPH.

Mobile Context Event. Mobile usage data can be modeled as a time-series where

each context event has an associated timestamp. In Table 4.1, we define notation used in

this work. A mobile context event e is a 2-tuple (C,T ), comprising of a context C and a

time T . The context C is denoted as a list of data {<D:A:V>1,. . .,<D:A:V>n}, where
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Context Attribute Values
AppUsage AppUsed Outlook | Facebook | Uber | GMaps | ....
Location Provider GPS | Cell |Wi-Fi

PlaceID Home |Work | Gym |Mall | ....
MotionState Stationary (0) |Moving (1)

Call Contact <set of contacts>
Type Incoming | Outgoing |Missed | Voicemail

SMS Contact <set of contacts>
Type Incoming | Outgoing

Time DaySegment Morning | Afternoon | Evening | Night
DayOfWeek Sunday,Monday,...,Saturday
DayType Weekday |Weekend

Table 4.2: Examples of Mobile Context Data.

D is the data type, A is the attribute name and V is the value of the attribute. Examples

of context data are provided in Table 4.2. For each of data type there is a primary at-

tribute and the rest are secondary. For example, AppUsage:AppUsed, Location:PlaceID,

Call:Contact and SMS:Contact are primary attributes. Examples of secondary attributes

are Location:Provider, Call:Type, and SMS:Type. In this work, we mainly focus on the

primary attributes. However, in particular, for Call and SMS data types, the attribute Type

is important as an incoming call semantically differs from an outgoing call or a missed

call.

Time Features. The time T for a context event may be a single timestamp t (e.g.,

{<SMS:Contact:Bob>,<SMS:Type:Incoming>},t) or may have an interval (e.g., {<Call:

Contact:Bob>,<Call:Type:Outgoing>}, {tstart,tend}). To generalize for all events, in this

work we denote the time T of a context event as an interval. SMS can thus be a context

event with tstart=tend. In order to compute frequencies, exact timestamps are of little use.

For example, a user may check her email on Outlook at 8AM on one day, and at 8:15AM

on another day. In both instances, the frequent pattern to be captured is that the user

checks her email on Outlook every morning. Therefore, to compute frequencies at the

time granularity of segments of the day, we add the DaySegment time feature. A user
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may be going for a nearby hike every Saturday or going to the Gym every Thursday. To

capture day specific patterns, we add the DayOfWeek time feature. Further, a user may be

using certain apps such as a video game only on the weekends, or receiving an incoming

call from a work colleague on weekdays only. To capture frequency of mobile context

events at such granularity, we add DayType time feature. Similarly, in an extension to

our data model, monthly patterns can be captured using Month as the attribute. In other

words, given the timestamp t of the context event, we generate all the time features.

Sequenceid Sequence
S10 [e1, e2, e3, e4, e6]
S20 [e3, e5, e10]
S30 [e4, e1, e2, e3, e2, e3]
S40 [e5, e6, e10, e12]
... ...

Table 4.3: Example Sequence DB.

4.1.2 Sequence Prediction Problem Statement

Sequence of Mobile Context Events. A sequence, denoted by S, is an ordered list of

mobile context events [ei, ei+1, . . . , en]. The number of context events in a sequence is

called the length of the sequence. A sequence with length l is called an l-sequence. A

sequence database SDB is a set of tuples <sid,S >, where sid is a sequence identifier and

S is a sequence. Table 4.3 depicts an example sequence DB with sequence identifiers and

sequences. A tuple <sid, S > is said to contain a sequence α as a sub−sequence, if α

is a subset of S, i.e., α ⊆ S. The support of a sequence α in a sequence database SDB

corresponds to the number of tuples in the database containing α, i.e., supportSDB
(α) =

| < sid, S > |(< sid, S > ∈ SDB) ∧ (α ⊆ S) |. For example, the sequence α = [e1, e2, e3]

is a 3-sequence. α is a subset of sequences with identifiers s10 and s30 in Table 4.3, and

supportSDB
(α) = 2.

Sequencing Parameters. Given a positive integer I as the support threshold, a

sequence α is called a (frequent) sequence in the sequence database SDB, if at least I tuples
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in the database contain the sequence α, i.e., supportSDB
(α)≥ I. Further, a maximum gap

parameter θT is defined for all valid sequences [ei,ej ,. . ., ek] (say with start timestamps

ti,tj ,. . .,tk) to be included in sequence DB. The consecutive events must be separated in

time by no more than the maximum gap θT . For example, if θT = 30 minutes and two

consecutive events ei and ej differ in time by more than 30 minutes (tj− ti > θT ), the

later event ej will be part of a separate sequence. Sequence mining literature also defines

a maximum length parameter, but we do not use it for simplicity.

Sequence Prediction. Given the sequence models generated from the training se-

quence DB, the sequence prediction is defined as follows. For a sequence S = [et1 , et2 , . . . , etn ]

of n elements, the suffix of s of size y with 1≤ y≤ n is defined as Py(s) = [etn−y+1 , etn−y+2 , . . . , etn ].

Predicting the next items of s is performed by identifying the sequences similar to Py(s),

i.e., the sequences containing all context events in Py(s) in any order. The purpose of

sequence prediction is to predict the next context event that best matches certain score

defined in the prediction model.

4.1.3 Frequent Sequences vs. Frequent Itemsets

Given the individual mobile context events [ei, ei+1, . . . , en], in contrast to OLAPH, Mo-

bileMiner (SMM+14) learns co-occurrence patterns of events. A very small fraction of

consecutive events ei and ei+1 will be overlapping with each other. For example, using

Facebook while listening to music. Therefore, MobileMiner has a lenient definition of co-

occurrence, i.e., set of events that occur within 30 seconds to each other. In (RMD+16)

Rawassizadeh et al. extend the definition of co-occurring events by exploring a variety

of temporal granularities ranging from 5 seconds to 120 seconds to find what best fits

different mobile context logs. On the generated sets of context events, frequent itemset

mining or association rule mining is performed (AIS93, AS94a, AS96).

MobileMiner achieves 60-70% accuracy when predicting the next most likely event
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for the mobile context data collected using a crowd-sourcing platform (WWBMT14)

(same as OLAPH). To further improve prediction accuracy, MobileMiner explores using

top 3,5 and 7 predictions. With 3-5 being acceptable number of predictions, and provid-

ing 80+% accuracy. Our hypothesis is that sequential patterns better capture the mobile

usage patterns as often mobile contexts are used in an order rather than simultaneously.

Further, frequent sequence modeling is known to be computationally and spatially more

expensive than frequent itemset mining (FVLG+16, PHMA+04). Therefore, we conduct

experimental evaluation to validate if sequence prediction modeling can achieve better

than 60-70% accuracy of frequent co-occurrence models.

4.2 Approach

Below we first describe the overall architecture of On-device Lifelogging And Predicting

Habitual Behavior using Sequence-based Context Predictor (OLAPH) followed by a de-

tailed description of each of the components.

4.2.1 OLAPH Architecture

Figure 4.1 depicts how the (OLAPH) engine runs on a smartphone with a running ex-

ample using app usage logs. Mobile context logs are collected using a data collection

service (API+11, Sen) running on phone and stored in a mysql database. The choice of

this database is not important and logs could alternatively be stored on files. The Context

Event Pre−processor first extracts the events from the respective context logs and adds

the time features that we discussed earlier in Section 4.1. The output of this step are

the individual context events eti as shown in step I of Figure 4.1. During the Sequence

DB Generator step, the consecutive context events are combined to form the sequences

to be stored in a sequence DB. The sequence DB can be built incrementally over time,
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Figure 4.1: The OLAPH Architecture with a Running Example Using CPT (GFVT13).
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Figure 4.2: Generation of intervaled
app usage events.

Figure 4.3: Sample clusters of fre-
quently visited locations.

say, once a week. At each increment, once the sequence DB is generated (as shown in

Figure 4.1), the Sequence−based Context Model Trainer (step III in Figure 4.1) builds a

sequence model from the data in the sequence DB. All the above steps are scheduled as

background tasks at idle times when the phone is on charging and not being used. This

way, interference with user experience is avoided. The Real-time Context Predictor com-

ponent performs context-aware predictions and recommendations using the model and

current mobile context data. Various apps can then subscribe to the predictor, supplying

the current context and receiving back the predicted next context.

4.2.2 Context Event Pre-processor

The purpose of the pre-processing step is to convert context data from the life-log mysql

database format to a unified format of the mobile context events as described in Section

4.1, i.e., (C,T ). Each probe type in the database exists in a different format. While

location consists of latitude and longitude data together with other attributes, call consists

of contact, call type and call duration (see Table 4.2). Each probe type thus requires

slightly different pre-processing. The overall pre−processing step consists of two main

tasks: (i.) generating intervaled context events and b. adding time features, as described
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below.

4.2.2.1 Intervaled Event Generation

Below we describe how context events with time interval [tstart, tend] are generated from

different logs.

App Usage. The app usage log consists of the name of the foreground app sampled at

a certain rate (say, every 30 seconds) as depicted in Figure 4.2. Multiple consecutive

readings over time are aggregated to achieve intervaled app usage events. For example, if

an app is used for 10 minutes, at 30 seconds per entry, the app usage log will contain 20

consecutive entries. These are aggregated into a single intervaled context event with start

and end times.

Location. The original location log consists of latitude and longitude values sampled

from the phone GPS sensor at a certain rate (say, every 5 minutes) together with Provider

and MotionState. As human’s tend to stay at certain locations most of the time except

moving from one place to the other, a low sampling rate is sufficient for location. The

attribute Provider is the source of location. Phones mostly determine location using GPS

but other less battery consuming options are known Wi-Fi SSIDs such as Home or Work

Wi-Fi. Using the inertial sensors and GPS, the location data can also provide the Mo-

tionState, i.e., whether the device is stationary or moving. We also aggregate the location

logs into intervaled context events. Consecutive latitude and longitude values may not

be identical even when user is stationary. We aggregate all latitude and longitude values

within a certain radius (say, 0.5 mile) to denote a specific PlaceID as depicted in Figure

4.3. Further, semantic tags can be attached to the aggregated PlaceIDs such as home

(user spends nights and weekends) and work (user spends weekdays 10AM to 4PM) can

be derived by using time-based logic. Therefore, the visited locations are represented as

clusters {C1,C2, . . .}. All (latitude, longitude) outside the 0.5 mile radius of the centroid
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of the PlaceIDs are marked as outside. The PlaceIDs can also be generated incrementally

as more user data is processed each week.

Call and SMS Logs. Call logs are the records from the calling app including out-

going, incoming, missed and voicemail calls. Calls are already intervaled whereas SMS

logs are the SMSs recorded on the phone; they are sparse and infrequent for most users.

Overall, this time-intervaled aggregation of mobile context events achieves about 60-

80% compression from the original life-logs. In particular, the compression is highest for

the location log followed by the app usage log. The intervals of location logs depend on

how long the individual user stays at each location, how often she moves and how many

different places the user visits typically.

4.2.2.2 Time Features

The time feature of an intervaled context event has the format [tstart, tend]. The intervaled

event (Facebook,[10:00-10:10]) is similar to another intervaled event (Facebook,[10:05-

10:15]), as both denote usage of Facebook app for 10 minutes in the morning. In order

to do frequency counts over the intervaled events, time features such as DaySegment,

DayOfWeek and DayType are added to the context events as defined in Section 4.1.

4.2.3 Sequence Database Generator

After the pre-processing step, all mobile context events e appear in the unified format

(C,T ) irrespective of their source. To generate sequence database SDB over mobile con-

text data, OLAPH uses two parameters, namely, support threshold I and maximum allow-

able time gap θT . All sequences in the sequence DB must satisfy a support exceeding the

support threshold. The support threshold I is a domain or data driven criteria. For exam-

ple, while a mobile user may typically use an app 15 times per day, they may typically

only visit 3-4 places per day. Further some users may communicate with certain contacts
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Figure 4.4: Meaningful and Non-meaningful Sequences.

multiple times a day via SMS while others may be messaging a maximum of 1-2 contacts

per week. Sequential patterns on mobile context data may repeat daily or weekly. In

OLAPH, the time features such as DayOfWeek and DayType capture different temporal

granularities of the sequences. The highest granularity of time that OLAPH focuses on is

a week; thus, a sequence α is said to be frequent if it occurs minimum ofI= 3 times in a

week.

Maximum allowable time gap is the criteria used in OLAPH to assign events into

different sequences. Maximum sequence length is an alternate criteria to be determined.

For sequence DB generation, we use 10 as the value of maximum sequence length. We

conducted a few empirical experiments to determine a reasonable maximum time gap θT

as 30 minutes which is practical from mobile context data perspective. For our collected

user logs, the maximum time gap assigns the context events to different sequences even if

within the maximum sequence length threshold most of the time. Although more sophis-

ticated behavior-oriented time segmentation proposed by Sarker et al. (SCKH18) may

also be adapted.
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4.2.4 Sequence Prediction Model Trainer

Next, we discuss how OLAPH trains the sequence prediction model over the sequences

stored in the sequence DB SDB. We first discuss how we introduce a filter expression to

generate only meaningful sequence in the sequence DB and then describe the sequence

prediction algorithms used for modeling.

Generating Meaningful Frequent Sequences. In OLAPH, for a sequence S =

[e1,. . .,ei+1,. . ., en] to be meaningful, other than qualifying the parameters I, maximum

time gap and maximum sequence length, each event ei of S must contain the primary at-

tribute of the context event and the same time feature(s) across all events in the sequence.

In Figure 4.4 we present, in two columns, the lists of meaningful and non-meaningful

derived sequences. As depicted in Figure 4.4, we are able to denote the meaningful se-

quences into generalized regular expressions. Therefore, we add a filter expression logic

in the sequence modeling to generate only meaningful frequent sequences.

Sequence Prediction Algorithms. Several sequence prediction models have been

proposed that capture sequential patterns in compact data structures and thus are relatively

efficient for predictions. Most popular models are based on the Markov property, for

example, Dependency Graph (DG) (PM96), All-K-Order-Markov (AKOM) (PP99), and

Transition Directed Acyclic Graph (TDAG) (LS94). These works are inspired by the

Prediction by Partial Matching (PPM) approach (CW84). PPM is an adaptive statistical

data compression technique based on context modeling and prediction. PPM models use

a set of previous symbols in the uncompressed symbol stream to predict the next symbol

in the stream.

Below we describe with a running example, how a Markov-based sequence prediction

model is trained. A sequence α = [e1, e4] denotes a consecutive occurrence of e1 followed

by e4. in Table 4.4, the sequence DB contains the sequence α in two sequences, i.e.,

S2 and S5. Therefore, in Table 4.5, the transition count for {e1} (row) to e4 (column) is
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2. The transition probability of sequence {e1, e4} is computed as the fraction of count

for {e1, e4} (=2) and the count of all transitions starting with e1. Similarly, the rest of

the transition probabilities are captured in 1st order transition probability matrix. The

sequence {e1, e4} is followed by event e5 in sequence S5 of the sequence DB in Table

4.4. Therefore, the transition count of {e1, e4} followed by e5 is 1 in the 2nd order tran-

sition probability matrix captured in Table 4.6. Similarly, for any order k, the transition

probabilities are captured. So we demonstrate in this work how by increasing order k,

the state complexity and the accuracy achieved change. More details about each of these

approaches can be found in (FVLG+16).

Sequenceid Sequence
S1 [e3, e2, e1]
S2 [e3, e5, e2, e1, e4]
S3 [e4, e5, e2, e1, e5, e4]
S4 [e3, e4, e5, e2, e1]
S5 [e1, e4, e2, e5, e4]

Table 4.4: Sequence DB.

1st order e1 e2 e3 e4 e5
{e1} 0 0 0 2 1
{e2} 4 0 0 0 1
{e3} 0 1 0 1 1
{e4} 0 1 0 0 2
{e5} 0 3 0 2 0

Table 4.5: 1st Order Transition Probability Matrix.

2nd Order e1 e2 e3 e4 e5 2nd Order e1 e2 e3 e4 e5
{e1, e4} 0 1 0 0 0 {e3, e5} 0 1 0 0 0
{e1, e5} 1 0 0 1 0 {e4, e2} 0 0 0 0 1
{e2, e1} 0 0 0 1 1 {e4, e5} 0 2 0 0 0
{e2, e5} 0 0 0 1 0 {e5, e2} 3 0 0 0 0
{e3, e2} 1 0 0 0 0 {e3, e4} 0 0 0 0 1

Table 4.6: 2nd Order Probability Matrix.

The various approaches (CW84, PM96, LS94, PP99, DK04) assume that the Marko-

vian hypothesis holds true, i.e., each event solely depends on the previous events. Mark1

(CW84) is a Prediction by Partial Matching (PPM) approach that assumes that immediate

previous event is sufficient to predict the current event. Mark1 predictions may be inac-

curate over noisy data as it does not look far enough into the past. As a result, in order to

obtain good predictions higher-order models must be used. Unfortunately, these higher-

order models have a number of limitations associated with (i) high state-space complexity,

(ii) reduced coverage, and (iii) sometimes even worse prediction accuracy. For example,
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AKOM uses PPM from 1 to k order. AKOM is usually more accurate but the model can

get exponentially large if k is not restricted. As illustrated in the above running exam-

ple, increasing the order of Markov models induces higher state complexity, thus making

sequence prediction models impractical for many real-life applications.

While most of the PPM based approaches have focused on reducing temporal and

spatial complexity of these models, a recent Compact Prediction Tree (CPT) approach

and its improved variant CPT+ store a compressed lossless representation of training se-

quences and measure the similarity of a sequence to the training sequences to perform a

prediction. CPT is composed of three data structures: (1) a Prediction Tree (PT), (2) an

Inverted Index (II) and (3) a Lookup Table (LT) (see Figure 4.1). The training is done

using sequences from the sequence DB. Sequences are inserted one at a time in the PT

and the II.

The Prediction Tree is recursively defined as a node. A node contains a context event

e, a list of children nodes and a pointer to its parent node. A sequence is represented

within the tree as a full branch or a partial branch; starting from a direct child of the root

node. The second structure is the Inverted Index. It is designed to quickly find in which

sequences a given item appears. Hence, it can also be used to find all the sequences con-

taining a set of events. The II is defined as a hash table containing a key for each unique

context event encountered during the training. Each key leads to a bitset that indicates

IDs of the sequences where the context event appears. The third and last structure is the

Lookup Table. It links the II to the PT. For each sequence ID, the LT points to the last

node of the sequence in the PT. The LT purpose is to provide an efficient way to retrieve

sequences from the PT using their sequence IDs

The main distinctive characteristics of CPT with respect to other prediction models

are that (1) CPT stores a compressed representation of training sequences with no loss or

a small loss and (2) CPT measures the similarity of a sequence to the training sequences
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to perform a prediction (GFVT13, GFVRT15). In theory, CPT+ is up to 98 times smaller

than CPT, performs predictions up to 4.5 times faster, and is up to 5% more accurate.

These improvements are attributed to the compression strategies such as frequent sub-

sequence compression (FSC) and simple branches compression (SBC). The prediction

with improved noise reduction strategy further optimizes the prediction time. The dif-

ferent approaches optimize for the compressed structure to represent the model and on

approximation of the transition scores. More details about each of these approaches can

be found in (FVLG+16).

In this work, our focus is to demonstrate how these existing sequence prediction

models can be executed directly on mobile devices and how mobile context data can

be adapted to fit these models. We further examine the trade-off between the accuracy

achieved and the state complexity as well as computational complexity of model training

as we vary order k of the sequence prediction modeling that practically works for mobile

context data.

Real-time Predictions. Once the model is generated, in real-time the model is used

to predict the current context. In order for the prediction to work, two pieces of data

are prepared instantly, (1.) from the logs, the previous k (order of the model) contexts

in a sequence are generated together with their time features, and (2.) using the current

time, current time features are generated. We call the previous sequence the prefix. Using

the prefix against the model, at most top-N predictions are retrieved {eP1 , eP2 , eP3 , . . . , ePN}.

The current time features are then used to further filter the predictions to get the final

prediction {ePf }. Ties are broken by selecting any one prediction at random. One way

of presenting the prediction to the user is to have a widget on the home screen with

the predicted values. Thus, as soon as the phone screen is turned on by user, either by

pressing a key or in newer phones by face recognition, the widget containing predicted

recommendations is presented to the user.
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4.3 Experimental Evaluation

Here we present a thorough evaluation of OLAPH. We measure the performance and

accuracy of OLAPH on Samsung S8 with snapdragon 835, 8 core and 4GB RAM. Below,

we begin by describing the evaluation methodology.

4.3.1 Evaluation Methodology

We evaluate the usability and effectiveness of OLAPH. Two aspects that were examined

are: 1. accuracy of sequence prediction models for a variety of mobile contexts, and

2. feasibility of on-device training of sequence prediction models. Below we list the

highlights of our evaluation and then elaborate on each of them in detail thereafter.

1. We conducted our experiments on data collected from 85 subjects using a data col-

lection app (API+11, Sen). First, we present the data characteristics of the collected

mobile context data including app usage, location, call and SMS logs.

2. We compared six state-of-the-art sequence prediction algorithms. We present inter-

esting, and, in some cases, contrasting observations of applying sequence models

over mobile context data, compared with prior use of these models in (GFVRT15).

Further, as described in Section 4.2.4, order k of the Markov models is an important

factor. Therefore, we study the trade-off between accuracy achieved and compu-

tational complexity of model training by varying order k of sequence prediction

models for mobile context data.

3. We evaluate how many weeks of data is sufficient to train a prediction model with

good accuracy and reasonable training times. Based on our analysis, we come up

with a scheme for incrementally scheduling OLAPH training on phones.
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4. Finally, each component of OLAPH is evaluated for its resource utilization includ-

ing execution time, memory and CPU utilization as well as battery usage.

4.3.2 Context Data Collection

To evaluate OLAPH, we collected mobile context data via a commercial crowd-sourcing

platform (WWBMT14). In total 85 users signed up for data collection; with a good

gender and age mix; and over 100K hours of data was collected. The total cost of data

collection was dramatically lower than for alternative methodologies, with total subject

compensation under $3.5K US, and a total of less than 10 hours/week spent by researchers

managing the study. While our entire data collection effort lasted more than 3 months,

we observed that some users were more active in the data collection, while other users

participated only for a few days before disabling or uninstalling the application. In Figure

4.5, we show the distribution of the number of full days of data (in increments of 14

days or 2 weeks) that we effectively collected from 71 of the users. The rest of the 14

users either discontinued participation or contributed insufficient data, so we eliminated

them. Out of 71, 30 users collected more than 42 full days of data, while around 29 users

collected 15-42 days of data. 12 users collected less than 15 days of data. More details of

the data collection effort can be found in (WWBMT14).

For our evaluation, we include the following time-stamped context events: (1) apps

used including time and duration, (2) call events including call type (incoming, outgoing,

missed, voice mail), time, duration, and contact, (3) location PlaceIDs. The contact at-

tribute for both Call and SMS logs are one-way hashed to anonymize and preserve privacy

of data collection participants.

Figures 4.6 and 4.7 (a) and (b) depict the overall characteristics of the mobile context

data by log types for 4 weeks of mobile context data1. The plots depict all 4 data logs,

1We establish that 4 weeks of data as sufficient to achieve good accuracy, yet have manageable resource
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Figure 4.5: Number of Users with Days of
Data Collected.

Figure 4.6: Distribution of Data Sizes Col-
lected Across 71 Mobile Users.

(a) Distinct Context Events Per Log Type. (b) Sequence DB Count.

Figure 4.7: Characteristics of Mobile Context Events and Generated Sequences.

namely, app usage, location, call and SMS logs. Figure 4.6 illustrates the distribution of

the data sizes per log across the users. Overall, app usage has the largest dataset size with

median of 40 MB, followed by location with 18 MB whereas both call logs and SMS logs

each use less than 8 MB (median) of space. After pre-processing, the median number of

distinct apps installed on user devices is 78, with 75th percentile of around 100, whereas

median count of distinct locations visited is 27. Call and SMS logs have a median of

10-15 distinct contacts per 4 weeks (Figure 4.7 (a)). Figure 4.7 (b) depicts per log type

utilization, as shown in Section 4.3.3 III.
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(a) App Usage. (b) Location.

Figure 4.8: Distribution of Sequence Lengths Per Log Type: App Usage and Location Logs.

(a) Call. (b) SMS.

Figure 4.9: Distribution of Sequence Lengths Per Log Type: Call and SMS Logs.

distribution of the counts per user of sequences in the sequence DB. While the sequence

DB stores median of approximately 2800 app usage sequences over 4 weeks, location

(median=1100), call (median=900) and SMS (median=420) logs generate moderate to

low number of sequences.

In Figures 4.8 and 4.9, we further present the characteristics of the generated se-

quences, in particular, the distribution of sequence lengths for each log type using se-

quences from 4 weeks worth of data of 5 users. We mix the sequences into a single pool

for this analysis. We find that the distribution of sequence lengths differ by log type. In
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Figure 4.8 (a), 70% of the app usage sequences are composed of total of 3-6 app usage

events. The maximum length is at times 9, but for only 8% of sequences. The loca-

tion sequences range from 2 to 7 context events (Figure 4.8 (b)) However, majority ('

75%) of sequences are composed of 3 to 5 location visits. The call logs form shorter

sequences (leq 4), with only 35% with lengths 3 or 4. About 30% are single calls and

35% are of length 2. In contrast, SMS logs are often series of messages ranging between

1 to 6 consecutive SMSs. However, majority of them (42%) are 2-3 consecutive SMS

communications. Overall, the sequence lengths would also impact the choice of order k.

Empirical Tuning of Model Parameters. For all prediction models, we have con-

ducted empirical evaluation to apriori set their parameters to optimal values. For the

empirical experiments, we sampled a total of 10 datasets out of the 30 users with greater

than 42 days of data. Mark1 and LZ78 do not have parameters. DG and AKOM have

respectively a window of four and an order of five (details on the selection of order k for

AKOM see Section 4.3.3 II.). Maximum depth for TDAG is restricted to 6, due to limited

memory. CPT+ has six parameters; three for the FSC strategy, two for the PNR strategy

and splitLength from CPT. The values of these parameters have also been empirically

optimized for the 10 datasets and kept constant for the main experiments using full data.

4.3.3 System Performance

This section of the evaluation is based on the app usage log as it has the largest in storage

requirements and computation overheads as shown above. We evaluated the following

aspects.

I. Which sequence prediction model is best for mobile context data?

One key contribution of OLAPH is that this work adapts sequence prediction models

to the paradigm of mobile context data. In other words, we prepare the mobile con-

text data for generating a sequence prediction model. The six state-of-the-art sequence
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(a) Training Set. (b) Test Set.

Figure 4.10: Accuracy of Models with Order k=5.

prediction models are: (1.) Dependency Graph (DG), (2.) Transition Directed Acyclic

Graph (TDAG), (3.) Compact Prediction Tree (CPT+), (4.) First-Order Markov (Mark1),

(5.) All-k-Order Markov (AKOM), and (6.) Lz78. The SPMF open-source library

(FVLG+16) includes the java implementations of the above six algorithms, which we

integrated into our Android app.

Figures 4.10 (a) and (b) depict the distribution of training and test accuracy of the 6

sequence prediction techniques for the 71 users over their consecutive 4 weeks (28 days)

of app usage data. The consecutive 4 weeks are chosen starting at a random week. We use

random sub-sampling to determine training accuracy. Then the following (5th) week is

used as the test data. Clearly, for both training and test, TDAG and AKOM achieve 90+%

median accuracy followed by LZ78. In contrast to the results for traditional benchmark

data sets shown in (GFVRT15), CPT+ approach performs very poorly for mobile context

data with less than 50% accuracy. First order markov (Mark1) achieves less than 60 %

median accuracy. In particular, these results demonstrate that for mobile context data, the

first order is insufficient and models with higher order k are required.

Figure 4.11 (a) illustrates the training times of the six sequence prediction models
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(a) Training Time (b) Size (MB)

Figure 4.11: Training Execution Times and Model Sizes for the Six Sequence Models.

over those same 4 weeks of user data. This includes time for generating the model, given

the sequence DB. Pre-processing and sequence DB generation times are the same across

these techniques. Overall, all approaches have reasonable computation times of less than

10 minutes. The First order Markov (Mark1) outperforms the rest of the approaches, yet

as shown in Figures 4.10 (a) and (b), the accuracy of Mark1 is poor. Both approaches

with the highest accuracy, namely, TDAG and AKOM, have reasonable execution times

(' 5 minutes); with overall TDAG being slightly faster than AKOM.

Figure 4.11 (b) illustrates the model sizes for the six approaches. TDAG has a high

storage requirement, i.e., median 10 MB for model generated over 4 weeks of data. This

makes it potentially unsuitable for execution on a mobile device. The rest of the models

are stored compactly. All-k-order Markov (AKOM), the storage requirement is about 0.2

MB and the entire model can be reasonably loaded in-memory for context prediction.

Using AKOM for modeling, approximately 40+ MB of raw data (Figure 4.6 (a)) can be

compactly stored into 0.2 MB of sequence model. Therefore, based on training and test

accuracy as well as execution times and model sizes, we select AKOM as the model for

our OLAPH system.
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Figure 4.12: Impact of Varying Order k for AKOM: Accuracy.

(a) Training Time (b) Model Size

Figure 4.13: Impact of Varying Order k for AKOM: Training Time and Model Size.

II. What minimum order k of Markov model is sufficient to achieve reasonable se-

quence prediction accuracy over mobile context data?

Now that the All-k-Order Markov (AKOM) is the model of choice, we next explore the

trade-off between the computational complexity of and the accuracy achieved by and

varying order k of AKOM for the mobile context data. We thus compare the prediction

accuracy of the AKOM with different k values. We demonstrate using a sample of 30

users’ data chosen at random. Figure 4.12 depicts that as value of order k goes from 2 to

7, the median accuracy improves from 65% (k=2) to 95% (k=7). For k = {2,3}, the accu-
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racy is poor (median = <75%). For all values of k, the 25th percentile to 75th percentile

distribution is >10% indicating that trends vary depending on the user data. However,

between k=4 and k=5 median accuracy increases from 81% to 91%, yet beyond k=5, the

median accuracy increases slightly (' 3%) to 94% for k=7.

Figures 4.13 (a) and (b) depict the training time and the model sizes for the AKOM

models generated by varying order k for the same 30 users as above. In Figure 4.13 (a),

We observe that for low values of order (k = {2, 3, 4}), median values of training time

are within 5 minutes. For k=5 the median training time is 6 minutes, and 75th percentile

is about 10 minutes. For k =6 and k=7, AKOM requires median of 11 and 20 minutes,

respectively. In particular, for k=7, the trends reach high (' 30+ minutes of training times

for 75th percentile). Figure 4.13 (b) shows similar trends for model sizes with increase in

median sizes (measured in MB) from 0.1 MB for k=2, up to 1 MB for k=7. For k=5, even

the 75th percentile value is within 0.5 MB.

Overall, we find that order values beyond k=5 do not provide significant gains com-

pared to the increase in the training times and the model sizes. Therefore, we conclude

that for our tested mobile context data order k of sequence prediction models is impor-

tant, and for mobile context data order k=5 achieves high accuracy while maintaining

reasonably less state complexity and model size.

III. How many weeks of data is sufficient to achieve reasonable accuracy?

To answer this question we used the data collected from another set of 30 users that have

6+ weeks (>42 days) of data. We use their app usage data as that has the highest number

of sequences compared with the other 3 logs. Figure 4.14, illustrates the comparison be-

tween total training time required versus the training accuracy achieved with the number

of weeks of data used for training the model. The training time is further divided into the

3 phases of pre-processing, sequence DB generation and model training (including the fil-

ter). For each user, we first divide up the data per week and select combinations of consec-
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Figure 4.14: Accuracy vs. Training Times by Number of Weeks.

utive weeks of data, i.e., {(week1), (week1, week2), . . . , (week1, week2, . . . , weekN)}.

We use AKOM of order k=5, with random sub-sampling for cross-validation.

We observe that as the number of weeks of data grows, the accuracy improves sig-

nificantly up to 4 weeks; beyond which accuracy gains are slow, maxing out at 94% at 8

weeks. Using 4 weeks of data, the accuracy achieved is 90+%. Overall, we observe that

with addition of every week, the overall training time increases between 30% to 55%. At

4 weeks, the total execution time is <20 minutes; the time jumps to 33+ minutes when

using 5 consecutive weeks of data or more. Therefore, beyond 4 weeks, the gain in ac-

curacy is not significant given the 65+% additional training time. Thus, we conclude that

for the 30-user mobile context data, 4 weeks of data would be a good trade-off to achieve

sufficient accuracy yet spend a reasonable time training the model.

IV. How can OLAPH training be scheduled on the phone?

Modern smartphones have powerful octa-core processors (Sam) and are also typically

unused for a majority of the time such as at night when the user is sleeping and the phone
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is charging. OLAPH may be executed on the phone periodically during this idle time with

little or no impact to the phone usage experience of the end user. We define the phone to be

idle whenever it is charging, there are no foreground applications, and the battery level is

at least 80%. Srinivasan et al. (SMM+14) have shown that users have between 1-10 hours

of idle time each week. Overall, as a sequence DB can be collected cumulatively, our

proposal is to pre-process the sequence DB generation first and thereafter to incrementally

update it with each new week’s data. This would typically take a total of 2-3 minutes

for 1 week’s mobile context data. Sequence DB creation is followed by modeling over

the past 4 weeks of data, which takes about 5 minutes. Therefore, in total, 7-8 minutes

per week of computation is required for OLAPH. In each iteration, 3 weeks of previously

generated sequences and 1 week of freshly created sequences in the sequence DB are used

for training a new model each week. In future work we plan to explore incremental model

training approaches. The sequences in the sequence DB and log data which are older are

deleted periodically. This incremental processing could even be performed every day,

however, it would be unnecessary to schedule this process daily.

V. Is it feasible to run OLAPH components on phone?

To address this question, we evaluated the execution time, memory, CPU utilization for

the different components of OLAPH according to the scheduling scheme proposed above.

Therefore, we evaluate metrics for pre-processing and generation of sequence DB over

data processed per week. On the other hand, metrics for modeling and prediction are

evaluated over 4 weeks of data. Table 4.7 illustrates the different performance metrics.

Pre-process and sequence DB generation steps combined take <4 minutes per week,

and model training time is <9 minutes per week. The CPU utilization of each of the

OLAPH components is less than 24%. Finally, in Table 4.7, we report the energy con-

sumed by OLAPH as a percentage of the Galaxy S8s full battery charge (3,000mAh), as-

suming we perform the training once per week. For 3 sample users, we run only OLAPH
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Performance Pre-process Seq. DB Seq. Modeling: Predictions
Metrics generation AKOM
Execution time < 1 min < 2 mins 5 mins 1 sec
Memory 14 MB 23.2 MB 19.8 MB 0.7 MB
CPU utilization 18.1% 23.4% 20.5% 12.4%
% of full battery 0.14% 0.36% 0.18% < 0.01%

Table 4.7: On-device Performance of OLAPH.

on the phone and monitor the battery level of the phone before and after execution of each

component. If we run OLAPH once per week for < 10 minutes, as training is performed

during the surplus time when the phone is plugged in and fully charged, the effective

power consumption of OLAPH could be zero or negligible. The prediction is also light

weight. Each prediction takes 1 second. If for prediction OLAPH loads the entire AKOM

model, generated over 4 weeks of data, the memory requirement is approximately 0.2 MB

and CPU utilization is also low.

4.4 Related Work

The relevant prior arts can be divided into two categories, namely, A. machine learning

over mobile context data, and B. Sequence prediction modeling.

A. Machine Learning over Mobile Context Data. Context-aware computation on

mobile devices has gained much interest recently (Nat12, SMM+14, SKJ18, MSW14).

Existing cloud-based services (e.g., Google Assistant) leverage instantaneous knowledge

including current location, recent browsing history and calendar to present relevant weather

information, directions, recommendations and appointment reminders. However, only a

few recent works (Nat12, SMM+14, SKJ18, MSW14) have explored using longitudinal

mobile context data for mining typical user behaviors.

While Nath (Nat12) provides a cloud-based solution for mobile context rule mining
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to sense the user’s context in an energy-efficient manner, Srinivasan et al. (SMM+14,

SKJ18) propose MobileMiner to explore on-device co-occurrence mining among context

events for variety of use cases including app usage prediction. (SMM+14) evaluated Mo-

bileMiner on the same set of collected data (WWBMT14). MobileMiner achieves 60-70%

accuracy for single prediction. To further improve prediction accuracy, MobileMiner ex-

plores using top 3,5 and 7 predictions. With 3-5 being acceptable number of predictions,

and providing 80+% accuracy. Further, MSM (MSW14) identifies that co-occurrence pat-

terns are inadequate as much of mobile context may not co-occur but follow a sequential

pattern. (MSW14) also demonstrate that running on-device sequence mining algorithm

such as PrefixSpan (PHMA+04) on mobile devices has high computational complexity,

as demonstrated by (FVLG+16), and utilizing the mined results for prediction requires

additional sequence prediction logic (RLM13, LRM13).

Rawassizadeh (RTWT13) propose a lightweight, configurable and extendable life-

log framework, called UbiqLog, that establishes that life logging is feasible over mobile

devices by efficient opportunistic sensing. Moreover, frequent human behavioral (FBP)

patterns can then be mined over the collected temporal life-logs (RMD+16). However,

FBP focuses on determining what the best temporal granularity to mine frequent itemsets

may be. In contrast, our work follows the lead of the above works to explore compact and

efficient sequence prediction approaches to identify sequential patterns in mobile context

data for real-time context prediction.

B. Sequence Prediction Modeling. In contrast to sequence mining approaches such

as PrefixSpan (PHMA+04) that store the sequential patterns in a compact structure, sev-

eral sequence prediction models have been proposed that generate transition probabilities

of sequences and store in compact data structures, ready for predictions. Most popu-

lar models are based on the Markov property, for example, Dependency Graph (DG)

(PM96), All-K-Order-Markov (AKOM) (PP99), and Transition Directed Acyclic Graph
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(TDAG) (LS94). These works are inspired by the Prediction by Partial Matching (PPM)

approach (CW84). PPM is an adaptive statistical data compression technique based on

context modeling and prediction. PPM models use a set of previous symbols in the un-

compressed symbol stream to predict the next symbol in the stream. Besides, several

compression algorithms have been adapted for sequence predictions (ZL78). While most

of these prior works have focused on reducing temporal and spatial complexity of these

models, few recent works, namely, CPT (GFVT13) and CPT+ (GFVRT15), attempted to

increase their accuracy.

The approaches (CW84, PM96, LS94, PP99) assume that the Markovian hypothesis

holds true, i.e., each event solely depends on the previous events. In contrast, AKOM

(PP99) typically considers only the last k items of training sequences to perform a predic-

tion, where k is the order of the model. One may think that a solution to this problem is to

increase k to improve accuracy. However, increasing the order of Markov models induces

higher state complexity, thus making sequence prediction models impractical for many

real-life applications. Gueniche et al. (GFVRT15) compare these sequence prediction

models over a variety of benchmark datasets to establish that these models can achieve a

maximum accuracy in the range 60-74%. In this work, our focus is to demonstrate how

these existing sequence models can be generated directly on mobile devices and how mo-

bile context data can be adapted to fit these models; and thus be used for prediction of

mobile context in real-time. We further identify the order k of the sequence prediction

modeling that practically works for mobile context data. More details about each of these

approaches can be found in (FVLG+16).
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4.5 Conclusion

In this work, we present OLAPH, an on-device context-aware service that learns phone

usage behavioral patterns over the rich mobile context data and provides device intelli-

gence via sequence-based predictions. We compared six sequence prediction models for

performance and accuracy over data collected from 85 users. We discovered interesting,

and, in some cases, contrasting observations of applying sequence models over mobile

context data. The best model AKOM achieves a median of 90+% sequence prediction

accuracy. As AKOM has higher state complexity compared to other first order markov

approaches, we identify that AKOM with order k = 5 can achieve an overall high accuracy

yet have reasonable state complexity and model size. We also demonstrate that models

trained on 4 consecutive weeks of data provide good prediction accuracy with reasonable

training times. Based on our analysis, we come up with a feasible scheduling scheme for

OLAPH training on phones. OLAPH is generic and apps such as Google Assistant can

subscribe to OLAPH to provide real-time context aware predictions to enhance mobile

user experience.

142



5

Conclusions of This Dissertation

The theme of this dissertation is scalable and efficient data mining to improve user ex-

perience. This dissertation addresses two key challenges, namely, (i.) data mining lacks

support for interactive real-time exploration, and (b.) mining algorithms are prohibitively

compute-intensive to run on limited resources of a mobile device. Data analysts often

need to perform numerous successive trial-and-error interactions and compare mining re-

sults with varying parameter values to find interesting rules. Further, analysts may need to

interactively separate spurious rules from genuine ones. Due to high computation costs,

even the fast implementations of mining algorithms are unsuitable for real-time interac-

tive analysis.

Besides having high response times, the parameterized nature of these mining algo-

rithms poses another challenge. Poor selection of parameters may lead to failure in dis-

covering true patterns. Often algorithms may report spurious patterns that do not exist or

overestimate the significance of the reported patterns. The task of distinguishing spurious

patterns from real ones, as part of sense-making of the mined results, requires significant

manual effort with little or no help from existing systems. The role of parameter selec-

tion is significant, yet appropriate parameter values are difficult to determine apriori, as
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they tend to differ for different datasets, contexts and analysts’ objectives. Therefore, an

interactive data mining system, capable of not only answering mining queries but also

providing parameter tuning recommendations at near real-time speed is important for de-

cision making. Building on these insights, this dissertation aims to provide and end-to-end

solution to support visual mining and analytics over large datasets.

Besides mining of global associations with the threshold measures of minsupport and

minconfidence as user inputs, another requirement for interactive rule exploration is to

allow the analyst to submit a localized mining query having two types of parameters,

namely, a.) the data subset to mine rules from, which we call the focal subset, and b.)

the items of interest to view rules on. Running the association rule mining algorithm re-

peatedly with varying thresholds and focal subsets can be prohibitively costly. In the pre-

process-once-query-many paradigm, one-time high cost of pre-processing significantly

reduces the turnaround times during online mining. Thus, in practice, POQM has been

proven to be a worthwhile investment. In this dissertation, I focus on providing support

for global and local association rule mining queries to enhance data mining systems.

Data mining algorithms, which provide useful insights into data sets of interest, have

been traditionally considered prohibitively costly for mobile devices. Mobile sensing and

context-aware computation on mobile devices has gained much interest recently. With

powerful octa-core processors now available on modern smartphones, we demonstrate

that such compute-intensive user pattern mining algorithms may be run on the phone itself

to provide real-time, privacy preserving, context-aware predictions to enable personalized

intelligent assistance.

As the first part of my dissertation, I have addressed the problem of enabling data min-

ing at the speed of thought. The solution is achieved by breakthrough innovation ranging

from the back end efficient management of mined results to the front end interactive rule

exploration. In our PARAS back end framework for fast online association mining, we
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propose a novel parameter space model for pre-storing rules such that a near real-time per-

formance is guaranteed for online mining queries. In the context of the parameter space,

we achieve surprisingly compact parameter space representations at pre-processing time,

such that both space complexity of our proposed PSpace index and the online query pro-

cessing costs are greatly reduced. In a variety of tested cases, PARAS outperforms the

four competitor techniques, each by several orders of magnitude.

We then designed, implemented and evaluated an innovative visualization technol-

ogy for interactive rule exploration called the FIRE framework. FIRE offers parameter

recommendations and enhanced sense-making of rules and their relationships. Particu-

larly, we propose two linked views, namely, PSpace and RSpace views. Both views are

supplemented with innovative visualizations and interactions that enable analysts to ef-

fectively conduct visual rule exploration. While PSpace offers a rule distribution abstrac-

tion, RSpace facilitates detailed analysis of rules and their relations. In addition our novel

RSpace glyph display enables visual comparison of rule shapes further augmented by

glyph placement strategies. Our case study using the Bike sharing dataset (Bik15) illus-

trates the capabilities of the FIRE system and compares it with that of the state-of-the-art

ARulesViz rule visualizations. Further, our user study with 22 subjects demonstrates the

usability of the proposed FIRE framework using several benchmark datasets.

In the second part of my dissertation, I address the problem of online localized rule

mining. We designed the MIP-index that makes POQM feasible for the targeted prob-

lem. Using the efficient two-layered MIP-index, we design several alternate mining plans

that employ optimization strategies such as selection pushup, supported R-tree filter and

differential treatment of contained versus partially overlapped MIPs. Our COLARM

optimizer selects the most efficient plan for processing each mining request. Our exten-

sive experiments using benchmark datasets establish the effectiveness of our COLARM

framework in a rich variety of tested cases. We also find strong evidence of Simpson’s
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paradox in the context of localized rule mining. Overall, in this research work we extend

the database technologies such as optimization of isolated operators and cost-based plan

selection to apply them to online mining of localized rules.

Finally, we presented OLAPH, an on-device context-aware service that learns phone

usage behavioral patterns over the rich mobile context data and provides device intelli-

gence via sequence-based predictions. We compared 6 sequence prediction models for

performance and accuracy over data collected from 85 users. We discovered interesting,

and, in some cases, contrasting observations of applying sequence models over mobile

context data. The best model AKOM achieves a median of 90+% sequence prediction ac-

curacy. We also identify that sequence prediction model of order 5 can achieve an overall

high accuracy yet have reasonable state complexity and model size. We also demonstrate

that models trained on 4 consecutive weeks of data provide good prediction accuracy with

reasonable training times. Based on our analysis, we come up with a feasible scheduling

scheme for OLAPH training on phones.

In summary, this dissertation addresses key challenges of enhancing the performance

and usability of data mining. Our proposed PARAS and FIRE systems provide solu-

tions for interactive mining of global association rules. Further, our proposed COLARM

system addresses the online mining of localized association rules. Finally, the OLAPH

on-device service leverages mobile context data such as app usage, location, call and SMS

logs to provide device intelligence via sequence-based predictions. Overall, this research

encompasses significant contributions at the intersection of data mining, knowledge man-

agement and visual analytics to enhance the applicability of data mining over disparate

data sources ranging from scientific benchmark datasets to mobile context data collected

from several user devices.
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6

Future Work

6.1 PSpace Paradigm and Online Mining Support

Here I discuss several extensions of the parameter space paradigm for exploring mined

patterns in the context of association rules.

Extensions in Data Mining Technologies. PARAS/FIRE works have been the base-

line for several subsequent works by PhD students in the DSRG lab at WPI. As an en-

hancement to PARAS, Qin et al. (QAL+14) extend PARAS to perform incremental in-

stead of batch construction of the parameter space of rules. In (LMRW14), my fellow

PhD student Xika extends the concept of parameter space-based exploration to negative

rules. Further, Qin et al. (QAL+16) add a temporal dimension to the parameter space

model to track changes across time. Further, the parameter space paradigm is applicable

to other data mining approaches. Cao et al. (CWR14) support the interactive explo-

ration of outliers in big data streams. Cao et al. (CWYR15, WCC+17) further propose

the ONION framework that provides rich interactive support for efficiently analyzing

outliers. ONION features an innovative exploration model that offers an outlier-centric

panorama into big data streams.
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Extending PSpace Paradigm Beyond Data Mining. In (MWB+13), we explore hy-

pothesis and evidence in the parameter space context. The parameter space for evidence-

hypothesis relationship consists of parameters such as belief and plausibility. We explore

bayesian as well as DempsterShafer generalization of Bayesian theory. Therefore, the

overall parameter space based paradigm proposed in my dissertation research and its ex-

tensions are well acknowledged in the research community. The

Mining of Localized Rules. Further, two additional problems related to localized

association rule mining are interesting, namely, (a.) mining the subset range, support and

confidence parameters from the data in an automatic and efficient way; and (b.) multi-

query optimization in the context of localized association rule mining. While COLARM

allows arbitrary subset of data, the key idea for automatic mining of parameters is to learn

the most meaningful parameters such that mined results are of interest also for subsets

of data. The idea on multi-query optimization for localized association rule mining is

particularly important for shared data and infrastructure such that query results can be

efficiently cached and multiple queries can be jointly resolved. The challenge will be

twofold. Firstly, to apriori prepare the data efficiently not only based on just subsets but

also interestingness measures such as support and confidence. Secondly, at query time, to

understand the users’ interest and improve the interactive experience.

6.2 On-device Mining and Prediction Modeling

As a prequel of our OLAPH service, my joint work at Samsung R&D titled MobileM-

iner (SMM+14) explored on-device mining of co-occurrence patterns over mobile con-

text data. This work was well-received as a Best Paper Nominee at ACM UbiComp

2014. It was also adjudged the most innovative solution within Samsung and received

the Gold medal at Samsung Best Paper Award Contest 2014. Mobile Sequence Miner
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(MSW14) extends the notion of on-device mining to exploring the feasibility of running

compute−intensive sequence mining (PrefixSpan) inside a mobile device.

Adding a User Study on Real-time Prediction Widget. Although adding a widget

to home screen is an engineering task, learning how well the prediction is performing in

real-time would be an interesting study. Further in this work we only explore generating

a single prediction, however, as described in the MobileMiner (SMM+14), the widget

can display multiple (top-N) predictions. The user survey conducted in MobileMiner

indicated 3-5 predictions are acceptable by users. The accuracy measure will then be

different, less strict from the current evaluation of OLAPH as we will consider top-N

predictions instead of just the most likely one.

Multi-modal Sequence Modeling. In OLAPH, I build on the insights gained from

these prior works to explore sequence prediction models that are computationally less

intensive than PrefixSpan, plus thus achieving a compact representation of the sequential

patterns mined over the mobile context data. In this dissertation, I only explored sequence

mining over single modality (e.g., AppUsage or Location or Call or SMS). In other words,

I do not inter-mix events across different log types. As the next step, I will explore

multi-modal sequence modeling, i.e., generating sequences across different data streams

such as app usage, location, call and SMS logs. One key challenge I envision is that the

frequency of different apps used on phone differs greatly from the locations. Further, for

a typical user Call and SMS logs are quite infrequent. Therefore, the challenge is to solve

for different granularity of support thresholds. I would further extend to additional data

logs such as Screen times, battery usage and calendar. Apple launched a Screen time

feature (Scr) in iOS 12 giving users insights on their mobile usage. Also battery usage

(Bat) based studies are gaining popularity too. Learning of user’s patterns to provide

personalized recommendations on screen times and battery usage will further enable a

mobile device to improve it’s user experience and guide the users to utilize the mobile
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device constructively.

Common Sequences Across Users. Yet another interesting study will be to ana-

lyze the patterns across users and build a common sequences knowledge base. The key

challenge here would be that each user has unique set of mobile context data such as

personalized set of contacts, or installed apps or visited locations. However, if certain ad-

ditional knowledge about, say, relationships of locations (e.g., home, work, gym, nearby

mall, and grocery store) or apps (e.g., social media, office/personal email, maps, and mu-

sic) or contacts (e.g., spouse, parents, children, friends, colleagues) is built, then certain

common patterns across users can be learnt. This will allow to bootstrap context aware

services for a new user, until sufficient knowledge is collected for that new user.

Newer ML Technologies. I will further apply more advanced machine learning tech-

niques such as Recurrent Neural Networks (RNN) (XLZ+18) and deep learning frame-

works that run on mobile devices (LBM+17). Efficient machine learning frameworks

such as tensorflow have been developed even for mobile devices (ten). Further, RNN

(LSTM) and deep learning based models are well-suited for sequence modeling and

known to be highly accurate given sufficient amount of training data (BVJS15, LBM+17).

One limitation of applying deep learning based techniques for our collected data set would

be that the data may not be large enough for deep learning to be effective. However, with

multi-modal sequences the data would increase and may be well applicable.
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