1,568,571 research outputs found

    Metadata

    Get PDF
    Metadata, or data about data, play a crucial rule in social sciences to ensure that high quality documentation and community knowledge are properly captured and surround the data across its entire life cycle, from the early stages of production to secondary analysis by researchers or use by policy makers and other key stakeholders. The paper provides an overview of the social sciences metadata landscape, best practices and related information technologies. It particularly focuses on two specifications - the Data Documentation Initiative (DDI) and the Statistical Data and Metadata Exchange Standard (SDMX) - seen as central to a global metadata management framework for social data and official statistics. It also highlights current directions, outlines typical integration challenges, and provides a set of high level recommendations for producers, archives, researchers and sponsors in order to foster the adoption of metadata standards and best practices in the years to come.social sciences, metadata, data, statistics, documentation, data quality, XML, DDI, SDMX, archive, preservation, production, access, dissemination, analysis

    Utilization of big data to improve management of the emergency departments. Results of a systematic review

    Get PDF
    Background. The emphasis on using big data is growing exponentially in several sectors including biomedicine, life sciences and scientific research, mainly due to advances in information technologies and data analysis techniques. Actually, medical sciences can rely on a large amount of biomedical information and Big Data can aggregate information around multiple scales, from the DNA to the ecosystems. Given these premises, we wondered if big data could be useful to analyze complex systems such as the Emergency Departments (EDs) to improve their management and eventually patient outcomes. Methods. We performed a systematic review of the literature to identify the studies that implemented the application of big data in EDs and to describe what have already been done and what are the expectations, issues and challenges in this field. Results. Globally, eight studies met our inclusion criteria concerning three main activities: the management of ED visits, the ED process and activities and, finally, the prediction of the outcome of ED patients. Although the results of the studies show good perspectives regarding the use of big data in the management of emergency departments, there are still some issues that make their use still difficult. Most of the predictive models and algorithms have been applied only in retrospective studies, not considering the challenge and the costs of a real-time use of big data. Only few studies highlight the possible usefulness of the large volume of clinical data stored into electronic health records to generate evidence in real time. Conclusion. The proper use of big data in this field still requires a better management information flow to allow real-time application

    Between Scylla and Charybdis: reconciling competing data management demands in the life sciences

    Get PDF
    Background: The widespread sharing of biological and biomedical data is recognised as a key element in facilitating translation of scientific discoveries into novel clinical applications and services. At the same time, twenty-first century states are increasingly concerned that this data could also be used for purposes of bioterrorism. There is thus a tension between the desire to promote the sharing of data, as encapsulated by the Open Data movement, and the desire to prevent this data from ‘falling into the wrong hands’ as represented by ‘dual use’ policies. Both frameworks posit a moral duty for life sciences researchers with respect to how they should make their data available. However, Open data and dual use concerns are rarely discussed in concert and their implementation can present scientists with potentially conflicting ethical requirements. Discussion: Both dual use and Open data policies frame scientific data and data dissemination in particular, though different, ways. As such they contain implicit models for how data is translated. Both approaches are limited by a focus on abstract conceptions of data and data sharing. This works to impede consensus-building between the two ethical frameworks. As an alternative, this paper proposes that an ethics of responsible management of scientific data should be based on a more nuanced understanding of the everyday data practices of life scientists. Responsibility for these ‘micromovements’ of data must consider the needs and duties of scientists as individuals and as collectively-organised groups. Summary: Researchers in the life sciences are faced with conflicting ethical responsibilities to share data as widely as possible, but prevent it being used for bioterrorist purposes. In order to reconcile the responsibilities posed by the Open Data and dual use frameworks, approaches should focus more on the everyday practices of laboratory scientists and less on abstract conceptions of data

    Management of Research Data in Image Format: An Exploratory Study on Current Practices

    Get PDF
    Research data management is the basis for making data more Findable, Accessible, Interoperable and Reusable. In this context, little attention is given to research data in image format. This article presents the preliminary results of a study on the habits related to the management of images in research. We collected 107 answers from researchers using a questionnaire. These researchers were PhD students, fellows and university professors from Life and Health Sciences, Exact Sciences and Engineering, Natural and Environmental Sciences and Social Sciences and Humanities. This study shows that 83.2% of researcher use images as research data, however, its use is generally not accompanied by a guidance document such as a research data management plan. These results provide valuable insights into the processes and habits regarding the production and use of images in the research context. (c) 2020, Springer Nature Switzerland AG

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org

    “Be sustainable”: EOSC-Life recommendations for implementation of FAIR principles in life science data handling

    Get PDF
    The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences

    Monitoring of Wild Animal Species in the Czech Republic

    Get PDF
    AbstractIn the paper, the method of data collection, processing and visualization of the occurrence of non-indigenous and endangered animal species in the Czech Republic is described. Our new software enables easy data entry about the observation of monitored species to the expert public. The data obtained is then used by expert and scientific institutions in order to search for optimal solutions of nature protection and population management and results are open to the public.This analytic and software solution was developed by the Department of Information Technologies, Czech University of Life Sciences; the data has been also used by the Forestry and Wood Faculty and the Faculty of Life Sciences
    corecore