41,630 research outputs found

    272nd Army Field Artillery Battalion (SC 3665)

    Get PDF
    Finding aid only for Manuscripts Small Collection 3665. Materials collected by Haskell Pedigo, a World War II veteran of the U.S. Army’s 272nd Field Artillery Battalion. Includes copies of reports of actions against the enemy, August 1944-June 1945; unit histories, 1944-1945, and other historical data and reminiscences; and reunion materials, lists of attendees, and memorial rolls

    Multi-cultural visualization : how functional programming can enrich visualization (and vice versa)

    Get PDF
    The past two decades have seen visualization flourish as a research field in its own right, with advances on the computational challenges of faster algorithms, new techniques for datasets too large for in-core processing, and advances in understanding the perceptual and cognitive processes recruited by visualization systems, and through this, how to improve the representation of data. However, progress within visualization has sometimes proceeded in parallel with that in other branches of computer science, and there is a danger that when novel solutions ossify into `accepted practice' the field can easily overlook significant advances elsewhere in the community. In this paper we describe recent advances in the design and implementation of pure functional programming languages that, significantly, contain important insights into questions raised by the recent NIH/NSF report on Visualization Challenges. We argue and demonstrate that modern functional languages combine high-level mathematically-based specifications of visualization techniques, concise implementation of algorithms through fine-grained composition, support for writing correct programs through strong type checking, and a different kind of modularity inherent in the abstractive power of these languages. And to cap it off, we have initial evidence that in some cases functional implementations are faster than their imperative counterparts

    Total Haskell is Reasonable Coq

    Full text link
    We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, "Hutton's razor", and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification.Comment: 13 pages plus references. Published at CPP'18, In Proceedings of 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP'18). ACM, New York, NY, USA, 201

    Learn Physics by Programming in Haskell

    Full text link
    We describe a method for deepening a student's understanding of basic physics by asking the student to express physical ideas in a functional programming language. The method is implemented in a second-year course in computational physics at Lebanon Valley College. We argue that the structure of Newtonian mechanics is clarified by its expression in a language (Haskell) that supports higher-order functions, types, and type classes. In electromagnetic theory, the type signatures of functions that calculate electric and magnetic fields clearly express the functional dependency on the charge and current distributions that produce the fields. Many of the ideas in basic physics are well-captured by a type or a function.Comment: In Proceedings TFPIE 2014, arXiv:1412.473

    Learn Quantum Mechanics with Haskell

    Full text link
    To learn quantum mechanics, one must become adept in the use of various mathematical structures that make up the theory; one must also become familiar with some basic laboratory experiments that the theory is designed to explain. The laboratory ideas are naturally expressed in one language, and the theoretical ideas in another. We present a method for learning quantum mechanics that begins with a laboratory language for the description and simulation of simple but essential laboratory experiments, so that students can gain some intuition about the phenomena that a theory of quantum mechanics needs to explain. Then, in parallel with the introduction of the mathematical framework on which quantum mechanics is based, we introduce a calculational language for describing important mathematical objects and operations, allowing students to do calculations in quantum mechanics, including calculations that cannot be done by hand. Finally, we ask students to use the calculational language to implement a simplified version of the laboratory language, bringing together the theoretical and laboratory ideas.Comment: In Proceedings TFPIE 2015/6, arXiv:1611.0865
    • …
    corecore