182 research outputs found

    Side-Information Coding with Turbo Codes and its Application to Quantum Key Distribution

    Full text link
    Turbo coding is a powerful class of forward error correcting codes, which can achieve performances close to the Shannon limit. The turbo principle can be applied to the problem of side-information source coding, and we investigate here its application to the reconciliation problem occurring in a continuous-variable quantum key distribution protocol.Comment: 3 pages, submitted to ISITA 200

    Distributed coding using punctured quasi-arithmetic codes for memory and memoryless sources

    Get PDF
    This correspondence considers the use of punctured quasi-arithmetic (QA) codes for the Slepian–Wolf problem. These entropy codes are defined by finite state machines for memoryless and first-order memory sources. Puncturing an entropy coded bit-stream leads to an ambiguity at the decoder side. The decoder makes use of a correlated version of the original message in order to remove this ambiguity. A complete distributed source coding (DSC) scheme based on QA encoding with side information at the decoder is presented, together with iterative structures based on QA codes. The proposed schemes are adapted to memoryless and first-order memory sources. Simulation results reveal that the proposed schemes are efficient in terms of decoding performance for short sequences compared to well-known DSC solutions using channel codes.Peer ReviewedPostprint (published version

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea

    Hidden Markov Model-Based Encoding for Time-Correlated IoT Sources

    Get PDF
    As the use of Internet of Things (IoT) devices for monitoring purposes becomes ubiquitous, the efficiency of sensor communication is a major issue for the modern Internet. Channel coding is less efficient for extremely short packets, and traditional techniques that rely on source compression require extensive signaling or pre-existing knowledge of the source dynamics. In this work, we propose an encoding and decoding scheme that learns source dynamics online using a Hidden Markov Model (HMM), puncturing a short packet code to outperform existing compression-based approaches. Our approach shows significant performance improvements for sources that are highly correlated in time, with no additional complexity on the sender side.Comment: Preprint version of the paper published in IEEE Communications Letter
    • …
    corecore