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Spatially-Coupled LDPC Codes for
Decode-and-Forward Relaying of Two Correlated

Sources over the BEC
Stefan Schwandter, Alexandre Graell i Amat, Senior Member, IEEE, and Gerald Matz, Senior Member, IEEE

Abstract—We present a decode-and-forward transmission
scheme based on spatially-coupled low-density parity-check (SC-
LDPC) codes for a network consisting of two (possibly correlated)
sources, one relay, and one destination. The links between the
nodes are modeled as binary erasure channels. Joint source-
channel coding with joint channel decoding is used to exploit
the correlation. The relay performs network coding. We derive
analytical bounds on the achievable rates for the binary era-
sure time-division multiple-access relay channel with correlated
sources. We then design bilayer SC-LDPC codes and analyze
their asymptotic performance for this scenario. We prove ana-
lytically that the proposed coding scheme achieves the theoretical
limit for symmetric channel conditions and uncorrelated sources.
Using density evolution, we furthermore demonstrate that our
scheme approaches the theoretical limit also for non-symmetric
channel conditions and when the sources are correlated, and we
observe the threshold saturation effect that is typical for spatially-
coupled systems. Finally, we give simulation results for large
block lengths, which validate the DE analysis.

Index Terms—Binary erasure channel, cooperative commu-
nications, correlated sources, decode-and-forward, distributed
coding, relay channel, spatially-coupled low-density parity-check
codes, threshold saturation.

I. INTRODUCTION

The three-node relay channel was introduced by van der
Meulen in [1] and the first capacity results were presented
in [2]. Recent years have seen a vast amount of research
on relaying, both in the information theory and coding com-
munities. While the capacity for the general relay channel
is still unknown, a number of relaying strategies have been
devised, which establish achievable rates. One of the most
prominent examples is the decode-and-forward (DF) relaying
scheme, introduced in [2]. With DF, the relay fully decodes
the source data and provides a re-encoded copy of the source
message to the destination. Apart from information theoretical
considerations, there has also been a huge interest in designing
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practical relaying schemes. Several papers have considered
practical implementations of DF based on convolutional codes
[3], turbo codes [4] or low-density parity-check (LDPC)
codes [5]. In [6], so-called bilayer (BL-) LDPC codes were
introduced and were shown to closely approach the theoretical
DF rate. Recently, a combination of the bilayer structure
with spatially-coupled LDPC (SC-LDPC) codes [7]–[9] was
investigated in [10] and it was shown that BL-SC-LDPC codes
can actually achieve the Shannon limit of a DF relay system
with orthogonal binary erasure channel (BEC) links. As the
SC-LDPC code ensembles are regular, the design complexity
is very low compared to schemes based on irregular LDPC
code ensembles, which require extensive optimization.

Despite the complexity that is inherent already in the three-
node relay channel, more complicated networks have been
investigated as well. For example, in a practical system, the
need may arise that one relay assists more than just one
single source. Such a system, in which multiple sources share
one relay, is modeled by the multiple access relay channel
(MARC). Capacity results for the MARC with independent
sources were given in [11]. Information theoretical bounds for
the MARC with correlated sources have been recently given
in [12]. A common assumption is that the transmissions in the
relay system are orthogonalized using time division multiple-
access (TDMA). For the time division MARC (TD-MARC),
several coding schemes have been proposed based on regular
LDPC codes [13], irregular LDPC codes [14], and serially-
concatenated codes [15]. The authors recently proposed a
scheme based on SC-LPDC codes [16]. However, none of
these works considered correlated sources.

The task of efficiently transmitting the correlated data from
two or more source nodes to one or more destination nodes in a
communications network is a topic currently undergoing high
research activity. This so-called “sensor reach-back problem”
[17], [18] occurs, e.g., in wireless sensor networks [19], where
measurements of neighboring sensors can be spatially corre-
lated. In the simplest case, two correlated sources transmit
their data directly to one common destination. For independent
discrete memoryless channels, it has been shown that the sepa-
ration of source and channel coding is asymptotically optimum
in this (and more general) scenario(s) [17], [18]. Therefore, the
achievable rates for such a system can be derived assuming this
separation. However, for designing practical schemes, many
works take a joint source-channel coding (JSCC) approach,
where the uncompressed source data is directly encoded
with channel codes, and the correlation is exploited at the
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receiver using joint channel decoding (JCD). There are several
reasons for not separating source and channel coding in a
practical system: First, the design of practical source codes for
correlated sources is an open problem [20]. Secondly, errors
introduced by the channel decoder could be catastrophic for
the source decoder. Thirdly, the implementation of JCD in
form of an iterative decoder based on a factor graph [21]
is conceptually simple and appealing, and it allows analysis
through the density evolution (DE) technique [22]. Early
works on practical transmission schemes for two correlated
sources were based on turbo codes and low-density generator
matrix (LDGM) codes [23]–[25]. More recent works, e.g.,
[26], [27], used DE and extrinsic information transfer (EXIT)
chart techniques to optimize irregular LDPC codes. Recently,
a scheme based on regular SC-LDPC codes has been shown
to achieve a performance close to the theoretical limits [28].
The results suggest that this near-optimum performance is due
to the threshold saturation effect exhibited by SC-LDPC codes
[9].

In this paper, we consider a system in which the data of
two (possibly correlated) sources is transmitted to a common
destination, with the help of a relay. The links between the
nodes are modeled as BECs and they are orthogonalized
using TDMA. The main contributions of this paper are the
following: We derive an achievable rate for the TD-MARC
with correlated sources. Since the links in our system are inde-
pendent, the maximum rate is achieved by separate source and
channel coding [18]. We then propose a two-user bilayer SC-
LDPC coded relaying scheme for this scenario and analyze its
behavior for the case of asymptotically large block length. The
system uses JSCC for the transmission to both the relay as well
as the destination nodes. In addition, the relay implicitly uses
network coding to combine the sources data before forwarding
it to the destination. Since the SC-LDPC codes used are regu-
lar, their design is simple, does not involve the optimization of
the degree distributions, and simplifies to choosing appropriate
node degrees of the component codes for given link qualities.
The factor-graph-based design of the joint source-channel-
network decoder at the destination node incorporates aspects
of the decoders for correlated sources described in [29] and
extends the two-user bilayer relaying scheme proposed by the
authors in [16] to the scenario with correlated sources. We give
DE results that show that the performance of the proposed
relaying scheme is very close to the theoretical limit. We
also show that the phenomenon of threshold saturation occurs,
which is responsible for the outstanding performance. Finally,
for the special case of uncorrelated sources and symmetric link
capacities, we prove that our scheme achieves the maximum
rate achievable by decode-and-forward relaying. Simulation
results for large block lengths are also given.

The remainder of the paper is structured as follows. Sec-
tion II introduces the system model. In Section III, we re-
visit the achievable DF rates of the two-source TD-MARC
and extend the analysis to the case where the sources are
correlated. In Section IV, we give a brief overview of SC-
LDPC codes. Our main contribution, the two-user bilayer SC-
LDPC coded relaying scheme, is presented in Section V.
DE for the proposed bilayer SC-LDPC codes is discussed

Fig. 1: Two-user relay network in which all links are modeled
as binary erasure channels (links are labeled with erasure
probabilities).

in Section VI. A proof that the proposed coding schemes
achieves the DF TD-MARC theoretical limit for symmetric
channel conditions and uncorrelated sources is also given in
this section. In Section VII, we derive the achievable region of
channel parameters, which serves as a theoretical benchmark
to which the proposed bilayer codes must be compared. DE
results are presented in Section VIII, which demonstrate that
our scheme performs very closely to the theoretical limit
also for non-symmetric channels and correlated sources, and
show the threshold saturation phenomenon. Finally, Section IX
concludes the paper.

II. SYSTEM MODEL

We consider the relay network depicted in Fig. 1, consisting
of four nodes: Two sources, s1 and s2, transmit correlated
data to a single destination d with the help of a relay r. The
links between the nodes are modeled as BECs with erasure
probabilities εs1r, εs2r, εs1d, εs2d, and εrd, where the first
subscript denotes the transmitter, and the second subscript
the receiver in each link. One transmission block is split into
three phases in order to orthogonalize the transmission links.
In each phase only one node transmits and the others listen.
In phase i (i = 1, 2), source si transmits a length-ni codeword

x(i) !
(

x(i)
1 , . . . , x(i)

ni

)

T, obtained by encoding ki information

bits u(i) !
(

u(i)
1 , . . . , u(i)

ki

)

T with a code of rate Ri ! ki/ni.

The relay receives x(i) over the si-r link, which has capacity
Csir = 1− εsir. The destination receives the same codewords
over the si-d links with capacities Csid = 1− εsid. The relay
decodes both transmissions, combines the decoded sources
data as described below, and encodes the resulting kr bits into
a codeword of length nr using a code of rate Rr. In the third
phase, this codeword is forwarded to the destination over the
r-d link, with capacity Crd = 1− εrd. The whole transmission
block consists of N ! n1 + n2 + nr bits. The length of
each phase relative to the total block length is θj ! nj/N ,
j = (1, 2, r). The effective1 transmission rates of the sources
are defined as

R′
i !

ki
N

=
kiθi
ni

= θiRi source bits/transmission block.

(1)
The sum rate of the system is Rsum ! k1+k2

N = R′
1 +R′

2.
In the system described above, source coding is not consid-

ered. For deriving the maximum achievable rate for this sys-

1Throughout the paper we use a prime superscript to indicate an effective
transmission rate.
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tem, however, we consider that the sources data is compressed
before transmission: Source si compresses ki information bits
with a source coding rate

Rsi !
k̄i
ki
,

resulting in k̄i compressed bits. Then, it uses a channel code of
rate Rci !

k̄i

ni
to encode the compressed bits into ni code bits.

The overall transmission rates including source and channel
coding are therefore

Ri =
ki
ni

=
ki
k̄i

k̄i
ni

=
Rci

Rsi
source bits/channel use. (2)

The effective channel code rates are defined as

R′
ci !

k̄i
N

=
k̄iθi
ni

= θiRci. (3)

Combining (1), (2), and (3) results in

R′
i =

R′
ci

Rsi
. (4)

The correlation between the sources is modeled in the
following way [29]: Let Zn be a binary random variable
(RV) in a length-k sequence Z of independent and identically

distributed RVs with Pr(Zn = 1) = p. The source bits U (1)
n

and U (2)
n have the following relationship,

(

U (1)
n , U (2)

n

)

=

{

independent Bernoulli-12 RVs, if Zn = 0

same Bernoulli-12 RV Ui, if Zn = 1.

It is assumed that the decoder knows the realization z of Z

[29]. Let U(i) = (U (i)
1 , . . . , U (i)

k )T. The joint entropy of the
two source bit sequences U(1) and U(2) is (with slight abuse
of notation for brevity) H(U1, U2) = 2−p, and the conditional
entropies are H(U1|U2) = H(U2|U1) = 1− p.

III. THEORETICAL LIMITS

In this section we derive the achievable DF rates for the TD-
MARC described in the previous section, when the sources are
correlated. Since the derivations are based on the achievable
DF rates for uncorrelated sources, we first revisit those for
clarity purposes.

A. Uncorrelated sources

The achievable DF transmission rates for a TD-MARC with
independent sources are given by [30]

R′
c1 ≤ θ1Cs1r (5)

R′
c2 ≤ θ2Cs2r (6)

R′
c1 ≤ θ1Cs1d + θrCrd (7)

R′
c2 ≤ θ2Cs2d + θrCrd (8)

R′
c1 +R′

c2 ≤ θ1Cs1d + θ2Cs2d + θrCrd. (9)

Under the assumptions Cs1r ≥ Cs1d, Cs2r ≥ Cs2d, Crd ≥ Cs1d

and Crd ≥ Cs2d, the time allocation leading to the maximum
achievable effective rates is [30]

θ∗1 =
Crd

(1 + σκ)Crd + (1 + σ)Cs1r − Cs1d − σκCs2d
(10)

θ∗2 = κθ∗1 , (11)

θ∗r = 1− θ∗1 − θ
∗
2 , (12)

where κ ! Cs1r/Cs2r and σ ! R′
c2/R

′
c1. This

time allocation results in the effective rates R′
c1 =

Cs1rCrd

(1+σκ)Crd+(1+σ)Cs1r−Cs1d−σκCs2d
and R′

c2 = σR
′
c1. Note that

in the uncorrelated case, the effective channel coding rates are
equal to the effective transmission rates, R′

i = R′
ci.

B. Correlated sources

For the transmission of correlated sources to a common
destination over independent discrete memoryless channels, it
was shown in [18] that it is optimum to consider source coding
and channel coding separately (for infinitely long blocks):
First, the source data is compressed up to the Slepian-Wolf
limit [31], then the compressed data is channel encoded with
capacity-achieving codes and transmitted over the channels.
We apply this strategy to obtain the achievable rates for the
transmission of correlated sources over the TD-MARC.

The achievable source coding rates given by Slepian and
Wolf [31] are

Rs1 ≥ H(U1|U2) (13)

Rs2 ≥ H(U2|U1) (14)

Rs1 +Rs2 ≥ H(U1, U2), (15)

The part of the region given by (13)-(15) that gives the low-
est possible rates (i.e., maximal compression of the sources)
is the one given by

H(U1|U2) ≤ Rs1 ≤ H(U1), Rs2(Rs1) = H(U1, U2)−Rs1.
(16)

We will implicitly assume (16) whenever we write Rs2 from
now on.

In the rest of the paper, we assume k1 = k2 ! k, which
entails R′

1 = R′
2 ! R′, for simplicity. From the bounds on

the achievable effective transmission rates for the TD-MARC
with uncorrelated sources (5)-(9), considering the fact that we
compress the sources data before transmission over the links
(4), we obtain the following bounds for the achievable effective
transmission rate for the TD-MARC with correlated sources,

R′ ≤
1

Rs1
θ1Cs1r ! f1 (17)

R′ ≤
1

Rs2
θ2Cs2r ! f2 (18)

R′ ≤
1

Rs1
(θ1Cs1d + θrCrd) ! f3 (19)

R′ ≤
1

Rs2
(θ2Cs2d + θrCrd) ! f4 (20)

R′ ≤
1

H(U1, U2)
(θ1Cs1d + θ2Cs2d + θrCrd) ! f5, (21)

where the source coding rates Rsi (with the restrictions in (16))
and the time allocation parameters θ1, θ2 and θr = 1−θ1−θ2
are free parameters that have to be optimized to obtain the
maximum achievable rate

R′
max ! max

θ1,θ2,Rs1

R′.

This maximum is given in the following theorem.
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Theorem 1. The maximum rate achievable on the TD-MARC

with correlated sources is

R′
max =

1

R∗
s1

θ∗1Cs1r,

where the optimum time allocation parameters and source

coding rates are

θ∗1 =
Crd

(1 + κ′)Crd + H(U1,U2)
R∗

s1

Cs1r − Cs1d − κ′Cs2d

θ∗2 = κ′θ∗1

R∗
s1 =











H(U1|U2) if κ > ν

1 if κ < ν

arbitrary in [H(U1|U2), 1] if κ = ν,

with

κ =
Cs1r

Cs2r
, κ′ = κ

(

H(U1, U2)

R∗
s1

− 1

)

, ν =
Crd − Cs1d

Crd − Cs2d
.

Proof: See Appendix.

IV. SC-LDPC CODES

We briefly review SC-LDPC codes. A regular (l, r) SC-
LDPC code with variable node degree l and check node degree
r is defined by an infinite parity-check matrix

H
T

=





















. . .
. . .

H
T

0(0) . . . H
T

ms
(ms)

. . .
. . .

H
T

0(t) . . . H
T

ms
(t+ms)

. . .
. . .





















,

(22)
where superscript T denotes the matrix transpose. The Tanner
graph describing such a code is divided into “positions” or
“time instants” t, similar to the trellis sections in classical
convolutional codes. At each position t ∈ (−∞,∞) there are
M variable nodes, and M l

r check nodes. This is reflected in

the parity-check matrix by the fact that each submatrix H
T

j (t+
j), j ∈ [0,ms], is a sparse M × (M l

r ) binary matrix. For our
application we will consider terminated spatially-coupled code
ensembles, where the codeword is restricted to t ∈ [1, L], and
the parity-check matrix is therefore of finite size.

We use the regular (l, r, L, w,M ) ensemble described in [9].
In this ensemble, a variable node at position t has l connections
to check nodes at positions from the range [t, t+w−1], where
w = ms + 1. For each connection, the position of the check
node is uniformly and independently chosen from that range.
This randomization results in simple DE equations and thus
renders the ensemble accessible to analysis. For transmission
over the BEC, the code rate of the (l, r, L, w,M ) ensemble
tends to the one of the underlying block code ensemble,
limw→∞ limL→∞ limM→∞ R(l, r, L, w,M ) = 1 − l

r , as M ,
L and w go to infinity, in that order. Furthermore, its belief
propagation (BP) threshold εBP tends to the maximum a pos-
teriori (MAP) threshold εMAP of the underlying ensemble, i.e.,
limw→∞ limL→∞ limM→∞ εBP(l, r, L, w,M ) = εMAP(l, r).

On the BEC, the Shannon limit for transmission at rate R is
given by εSh = 1−R, below which reliable (error-free) trans-
mission is possible. The MAP threshold of a regular LDPC
block code ensemble tends to the Shannon limit exponentially
fast in l if the design rate R(l, r) is kept fixed (cf. [9, Lemma
8]),

lim
l→∞

εMAP

(

l, r =
l

1−R(l, r)

)

= 1−R(l, r) = εSh. (23)

Therefore, the BP threshold of the (l, r, L, w,M ) ensemble
asymptotically tends to the Shannon limit.

V. TWO-USER BILAYER SC-LDPC CODE

We now present the main contribution of this paper, a
two-user bilayer SC-LDPC code for the two-source relaying
scenario with correlated sources. Before we go into the details
of the relaying scheme, we first give a high-level overview
of the proposed coding structure: Each source uses an SC-
LDPC code to transmit its data. The rates of the codes are
chosen such that the decoder at the relay can perfectly recover
the sources data (note that, since the decoder exploits the
known correlation between the sources, the rates can be higher
than the respective link capacities). The relay recovers the
codewords transmitted by the sources, and generates additional
“syndrome” bits, which are transmitted to the destination pro-
tected by a channel code that allows error-free transmission.
The decoder at the destination uses the known correlation of
the sources and, additionally, the syndrome bits provided by
the relay, to construct an overall code for both users that is
decoded jointly in order to reconstruct the original sources
data.

A. Code structure

Sources s1 and s2 use codes from the ensembles
C1(l1, r1, L, w,M1) and C2(l2, r2, L, w,M2), respectively,
with design rates Ri = k

ni
= k

LMi
, and parity-check ma-

trices H1 ∈ [0, 1](n1−k)×n1 and H2 ∈ [0, 1](n2−k)×n2 (for
simplicity, we assume L1 = L2 = L and w1 = w2 = w
without loss of generality). They constitute the first layer of
the bilayer structure. Their rates are designed such that the
relay is able to decode the source data error-free (see Section
V-B). If the codes in the first layer are designed properly,
the relay can recover the codewords x(1) and x(2) transmitted
by the sources. It then generates kr additional syndrome bits
according to

s =
[

H1
synd H2

synd

]

[

x(1)

x(2)

]

, (24)

using parity-check matrices H1
synd ∈ [0, 1]kr×n1

and H2
synd ∈ [0, 1]kr×n2 from the code ensembles

C1
synd(l

1
synd, r

1
synd, L, w,M1) and C2

synd(l
2
synd, r

2
synd, L, w,M2),

respectively. The extra parity-checks introduced by H1
synd and

Hsynd constitute the second layer of the bilayer code.
The syndrome bits are transmitted to the destination pro-

tected by another SC-LDPC code of rate Rr = Crd (its design
is independent of the other codes and will therefore not be
considered further). It is assumed that this code can be decoded



5

Fig. 2: Two-user bilayer SC-LDPC code parity-check matrix
structure (without the part due to correlation).

error-free, and separately from the other codes in the system.
With that assumption, the destination can now decode the
source bits using the parity-check matrix H of the overall

code

H

[

x(1)

x(2)

]

=









H1 0

0 H2

H1
synd H2

synd

H1
corr H2

corr









[

x(1)

x(2)

]

=









0

0

s

0









.

(25)
Here, Hi

corr = HZH
i
sys denotes a (k × ni) matrix, which

represents the parity-check equations that are due to the
correlation model: The (k × ni) matrices Hi

sys are used to
“extract” the systematic bits of the corresponding codeword,
i.e., Hi

sysx
(i) = u(i). HZ is a diagonal (k× k) matrix, where

the n-th diagonal entry is equal to zn (the n-th entry of z). In

this way, the parity-check u(1)
n ⊕ u(2)

n = 0 is enforced for all
indices n for which zn = 1.

Since the height of each component matrix in Hi
synd is

Mi
lisynd

risynd

(cf. Section IV), we see that the condition

M1

l1synd

r1synd

= M2

l2synd

r2synd

(26)

has to hold to have a proper alignment of the entries in H1
synd

and H2
synd (cf. Fig. 2). This alignment is necessary for the DE

analysis in Section VI.

We note that the overall matrix H does not have the band
structure of an SC-LDPC code (cf. (22)). Nevertheless, we
will analytically prove capacity-achieving performance for
symmetric channel conditions when there is no correlation
between the sources and, based on DE results, we conjecture
that capacity is achieved under general channel conditions and
with source correlation.

From (24) we see that each syndrome bit depends in general
on code bits from both sources. Of the total number kr of
syndrome bits, effectively kir bits (kr = k1r + k2r ) are used to
respectively decode si at the destination. The number of bits
from source si involved in one of the kr checks is given by
the check node degree risynd, since the degree is equal to the

number of ones in a row of Hi
synd. The effective number of

syndrome bits for source si is therefore kir = krµi, where

µi !
risynd

r1synd + r2synd

(27)

is the ratio between the number of bits of codeword x(i)

involved in one particular syndrome bit in s (cf. (24)) and
the total number of code bits involved in that syndrome bit.

We also define µ ! µ1

µ2
=

r1synd

r2synd
for later use.

The codes that are used at the relay to generate the syndrome
bits have rates

R1
synd ! 1−

kr
n1

, R2
synd ! 1−

kr
n2

. (28)

They are related according to

1−R1
synd

1−R2
synd

=
R1

R2
(29)

due to (28) and n1

n2
= R2

R1
, which follows from (2) and the

assumption k1 = k2 = k.

B. Code rate design

In the following, we derive the design rates R1, R2, R1
synd,

and R2
synd of the component codes of the two-user bilayer code

as well as the assignment µ1 and µ2 of syndrome bits to the
sources, for given link capacities. We distinguish between the
cases of uncorrelated sources and correlated sources.

1) Uncorrelated sources: In order to ensure reliable trans-
mission to the relay, we use channel codes of rate Ri = Csir

at the sources. The destination has to be able to decode the
bilayer code consisting of the bits transmitted by a source plus
the additional syndrome bits from the relay. The rate of the
overall bilayer code for source si is

Ri
bl !

ni − (ni − k + kir)

ni
=

k − kir
ni

= Ri − µi(1−Ri
synd).

(30)

For reliable transmission, we have to set Ri
bl = Csid. Since

µi =
Ri−Ri

bl

1−Ri

synd

=
Csir

−Csid

1−Ri

synd

(from (30)), we obtain using (29)

and µ1 + µ2 = 1,

µ =
µ1

µ2
=

Cs2r

Cs1r

Cs1r − Cs1d

Cs2r − Cs2d
, µ1 =

1

1 + µ−1
, µ2 =

1

1 + µ
.

(31)

Therefore, the rates of the codes used at the relay to generate
additional syndrome bits have to be set to

Ri
synd = 1−

1

µi
(Ri −Ri

bl) = 1−
1

µi
(Csir − Csid), (32)

i.e.,

R1
synd = 1− (2Cs1r − κCs2d − Cs1d) ,

R2
synd = 1−

(

2Cs2r −
1

κ
Cs1d − Cs2d

)

.
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It can easily be shown that this choice of code rates together
with Rr = Crd leads to the optimum time allocation (10),

θ1 =
n1

n1 + n2 + nr
=

1

1 + n2

n1
+ kr

Rrn1

=
Crd

Crd(1 + κ) + (1 −R1
synd)

= θ∗1 ,

for σ = 1. Similar calculations verify θ2 = θ∗2 and θr = θ∗r .

2) Correlated sources: To derive the rates for the case of
correlated sources, we again turn to the system with separate
source-channel coding, which we used to find the optimum
time allocation in Section III-B. The joint source-channel
coded system then uses channel codes of rates R1 and R2 that
are equal to the transmit rates (i.e., rates including source and
channel coding) of the system with separate source-channel
coding.

In the case of correlated sources, the codewords (as opposed
to the information sequences) of the two sources should ideally
be independent for transmission over independent channels
[18]. Therefore, we consider punctured systematic codes [29],
i.e., all systematic bits are punctured, to minimize the correla-
tion between codewords. If all systematic bits are punctured,
only ñ1 ! n1 − k and ñ2 ! n2 − k coded bits are transmitted
in the first two phases of the transmission block. The total
transmission length is then N = ñ1+ ñ2+nr and we redefine
θ1 = ñ1/N and θ2 = ñ2/N . With these redefinitions, the
relation between the effective and the actual transmission rates
(1) becomes

R′ =
k

N
=

kθi
ni − k

= θi
Ri

1−Ri
. (33)

We define the punctured code and transmission rates

R̃ci !
k̄i

ni − k̄i
=

Rci

1−Rci
, R̃i !

k

ni − k
=

Ri

1−Ri
.

From (33), (17) and (18), we obtain the optimum transmis-
sion rates for the first layer,

R1 = φ

(

Cs1r

R∗
s1

)

, R2 = φ

(

Cs2r

R∗
s2

)

,

where φ(x) ! x
1+x . In terms of the punctured transmission

rates,

R̃1 =
Cs1r

R∗
s1

, R̃2 =
Cs2r

R∗
s2

. (34)

The rates of the codes of the second layer can be obtained
from the optimum time allocation with Rr = Crd and

θr
θi

=
nr

ni − k
=

kr
(ni − k)Rr

=
1

Rr(1 −Ri)
(1−R1

synd). (35)

We have

R1
synd = 1−Rr(1−R1)

(

1

θ∗1
− κ′(R∗

s1)− 1

)

= 1− (1−R1)

(

H(U1, U2)

R∗
s1

Cs1r − κ
′Cs2d − Cs1d

)

and

R2
synd = 1−Rr(1 −R2)

(

1

θ∗2
−

1

κ′(R∗
s1)

− 1

)

= 1− (1 −R2)

(

H(U1, U2)

R∗
s2

Cs2r −
1

κ′
Cs1d − Cs2d

)

.

The punctured bilayer code rates are

R̃i
bl,c !

k̄i − kir
ni − k̄i

=
1

1−Rci

(

Rci − µi(1−Ri
synd)

)

,

and they have to satisfy R̃i
bl,c = Csid. Therefore we get

µ =
µ1

µ2
=

Rc1 − R̃1
bl,c(1−Rc1)

Rc2 − R̃2
bl,c(1−Rc2)

·
1−R2

synd

1−R1
synd

=
R̃c1 − R̃1

bl,c

R̃c2 − R̃2
bl,c

·
1−Rc1

1−Rc2
·
Rc2

Rc1

=
R̃c1 − R̃1

bl,c

R̃c2 − R̃2
bl,c

·
R̃c1

R̃c2

=
Cs1r − Cs1d

Cs2r − Cs2d
·
Cs2r

Cs1r
,

and we can obtain µ1 and µ2 from (31).

With that, we have determined the parameters R1, R2,
R1

synd, R2
synd, µ1 and µ2 of the bilayer SC-LDPC code for

the relaying system with two correlated sources for given link
capacities.

VI. DENSITY EVOLUTION AND A PROOF FOR SYMMETRIC

CONDITIONS AND UNCORRELATED SOURCES

In this section, we give the DE equations for the proposed
bilayer SC-LDPC codes on the BEC. First, we treat the case
of uncorrelated sources, then we extend our consideration to
the case of correlated sources. We also prove that the proposed
code construction achieves the maximum decode-and-forward
rate for the case of symmetric conditions and uncorrelated
sources.

A. Density evolution for uncorrelated sources

When there is no correlation between the sources, the
optimum decoder at the relay consists of two separate decoders
for codes C1 and C2, since the two source-to-relay links are
independent. On the other hand, the decoder at the destination
decodes both users jointly from the channel observations of
both source transmissions plus the additional syndrome bits
obtained from the relay. Fig. 3 shows the factor graph of the
decoder (if one ignores the “correlation” part).

For source si, we denote the messages (erasure probabilities)
sent from a variable node at position t in iteration I to a

check node in the first and the second layer as p(t,I)i and

p(t,I)synd,i, respectively. Likewise, the messages from check nodes

at position t in iteration I to variable nodes are called q(t,I)i

and q(t,I)synd,i. For t /∈ [1, L], we have p(t,I)i = p(t,I)synd,i = 0. The
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Fig. 3: Graph structure for the relay system with correlated
sources. x(1) and x(2) shown here are systematic bits. The
parity bits are connected to a channel factor node instead of
a correlation factor node. The spatial coupling is not shown.

DE update equations for source s1 for t ∈ [1, L] are given as

p(t,I+1)
1 = εs1d

(

1

w

w−1
∑

j=0

q(t+j,I)
1

)l1−1( 1

w

w−1
∑

j=0

q(t+j,I)
synd,1

)l1synd

,

q(t,I)1 = 1−

(

1−
1

w

w−1
∑

k=0

p(t−k,I)
1

)r1−1

, (36)

p(t,I+1)
synd,1 = εs1d

(

1

w

w−1
∑

j=0

q(t+j,I)
1

)l1( 1

w

w−1
∑

j=0

q(t+j,I)
synd,1

)l1synd−1

,

q(t,I)synd,1 = 1−

(

1−
1

w

w−1
∑

k=0

p(t−k,I)
synd,1

)r1synd−1

·

(

1−
1

w

w−1
∑

k=0

p(t−k,I)
synd,2

)r2synd

. (37)

The equations for source s2 are simply obtained by changing
the source indices. The coupling of the codes of the two
sources in the decoding process manifests itself in the mes-
sages (37) sent from the second layer check nodes.

B. Density evolution for correlated sources

The fact that the sources are correlated is important for the
design of the decoders both at the relay as well as at the desti-
nation. The task of the relay is to detect two correlated sources
whose data is transmitted over two independent noisy chan-
nels. A joint source-channel coding scheme for this scenario
based on SC-LDPC codes was described in [28]. We focus
therefore now on the decoder at the destination, assuming the
relay has successfully decoded the source data (which is the
common assumption for DF relaying schemes). The detector at
the destination has to incorporate the syndrome bits obtained
from the relay, in addition to taking the correlation between
the sources into account. The structure of the resulting BP
decoder (corresponding to the overall parity-check matrix H

from (25)) is depicted in Fig. 3. Note that the variable nodes
depicted in the figure correspond to systematic bits. For non-
systematic bits, the factor node due to the correlation model
does not exist; each non-systematic bit is connected to a factor
node describing the channel law (erasure probability of the
channel) instead.

For this decoder, the density evolution update equations for
source s1 are

p(t,I+1)
1 =

[

γ1f
(

p(t,I)corr,2

)

+ (1− γ1)εs1d
]

·

(

1

w

w−1
∑

j=0

q(t+j,I)
1

)l1−1( 1

w

w−1
∑

j=0

q(t+j,I)
synd,1

)l1synd

,

q(t,I)1 = 1−

(

1−
1

w

w−1
∑

k=0

p(t−k,I)
1

)r1−1

,

p(t,I+1)
synd,1 =

[

γ1f
(

p(t,I)corr,2

)

+ (1− γ1)εs1d
]

·

(

1

w

w−1
∑

j=0

q(t+j,I)
1

)l1( 1

w

w−1
∑

j=0

q(t+j,I)
synd,1

)l1synd−1

,

q(t,I)synd,1 = 1−

(

1−
1

w

w−1
∑

k=0

p(t−k,I)
synd,1

)r1synd−1

·

(

1−
1

w

w−1
∑

k=0

p(t−k,I)
synd,2

)r2synd

, (38)

p(t,I+1)
corr,1 =

(

1

w

w−1
∑

j=0

q(t+j,I)
1

)l1( 1

w

w−1
∑

j=0

q(t+j,I)
synd,1

)l1synd

.

Equation (38) for the updates from the relay check nodes to
the variable nodes of source s1 is valid under the assumption
(26). The fraction of systematic bits (which is equal to the un-
punctured code rate) is denoted as γ1. The equations for source
s2 have the same structure, with switched source indices. The
function of the correlation factor node is f(a) = (1−p)+pa,
where p is the correlation parameter. This expresses that a
factor node connecting the graphs of the two users exists
with probability p, and there is no connection with probability
(1− p) (cf. correlation model from Section II).

C. A proof for symmetric channels and uncorrelated sources

In the following, for the case of uncorrelated sources and
symmetric channel conditions, defined as εs1r = εs2r =
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εsr and εs1d = εs2d = εsd, we prove that the proposed
scheme achieves the highest possible DF rate on the TD-
MARC with BEC links. We call the two-user bilayer en-
semble consisting of Ci(l, r, L, w) and Ci

synd(lsynd, rsynd, L, w)
the Cbl(l, lsynd, r, rsynd, L, w) ensemble (we consider the case
M → ∞ in the remainder of this section).

Lemma 1. For the case of uncorrelated sources and symmetric

channel conditions and rsynd = r/2, the two-user bilayer code

Cbl(l, lsynd, r, r/2, L, w) achieves the same DE threshold for

each source-destination link as the single-layer code C(l +
lsynd, r, L, w).

Proof: First note that the choice rsynd = r/2 allows us to
write the DE equations in a form that we need to prove the
capacity-achieving property. However, this does not restrict the
possible rates available in the system and therefore the result
is general.

Assuming symmetric channel conditions, both source nodes
use codes Ci from the same ensemble (l, r, L, w), and the relay
generates the syndrome bits using two codes Ci

synd from the
same ensemble (lsynd, rsynd, L, w). This means l1 = l2 = l,
r1 = r2 = r, l1synd = l2synd = lsynd and r1synd = r2synd = rsynd.
The initial variable-to-check messages in the first iteration are

equal for both sources and both layers, p(t,1)1 = p(t,1)synd,1 =

p(t,1)2 = p(t,1)synd,2 = εsd. With rsynd = r
2 , (37) becomes equal to

(36), i.e., the check-to-variable messages of the two users in
both layers are equal. This means that in the second iteration
the variable-to-check messages will be equal again, and via
induction, the same will happen in all the following iterations.
Due to the assumed symmetry, the equations for the second
user are the same as for the first user. The DE for each user
can therefore be written as

p(t,I+1)
i = εsd

(

1

w

w−1
∑

j=0

q(t+j,I)
i

)l+lsynd−1

= εsd

(

1−
1

w

w−1
∑

j=0

(

1−
1

w

w−1
∑

k=0

p(t+j−k,I)
i

)r−1)l+lsynd−1

,

which is the update equation for a single-layer SC-LDPC code
ensemble (l + lsynd, r, L, w). The bilayer code ensembles for
both users will therefore have the same DE thresholds as the
single-layer ensemble.

Lemma 2. For uncorrelated sources and symmetric channel

conditions and rsynd = r/2, the design rate of the two-

user bilayer code Cbl(l, lsynd, r, rsynd, L, w) for each source-

destination link approaches that of the C(l + lsynd, r, L, w)
single-layer ensemble for L,w → ∞.

Proof: The design rate of an SC-LDPC code is R =
1− NC

NV
[9], where NV and NC denote the number of variable

nodes and check nodes, respectively, in the graph. The number
of variable nodes per user is NV = ML. The number of checks
per user in the first layer is

NC = M
l

r

[

L+ 1 + w − 2
w−1
∑

j=0

(

j

w

)r ]

,

and the number of checks, shared by both users, in the second
layer is

NC,synd = M
2lsynd

r

[

L+ 1 + w − 2
w−1
∑

j=0

(

j

w

)
r

2
]

.

As the checks in the second layer are shared equally between
the two users, the effective number of checks per user is
N eff

C,synd = NC,synd/2 (cf. (27)). The rate of the bilayer code for

each user is therefore Rbl = 1− NC+NC,synd/2
ML . For L,w → ∞,

in that order,

lim
w→∞

lim
L→∞

Rbl = 1−
l + lsynd

r
,

which is the same expression as for the rate of a single-layer
(l + lsynd, r, L, w) code ensemble in the limit L,w → ∞.

Corollary 1. For uncorrelated sources and symmetric

channel conditions, the two-user bilayer SC-LDPC code

Cbl(l, lsynd, r, r/2, L, w) has the rate of the single-layer (l +
lsynd, r, L, w) code,

lim
w→∞

lim
L→∞

R(l, lsynd, r, r/2, L, w) = 1−
l+ lsynd

r
.

For fixed (l + lsynd)/r, its BP threshold tends to the Shannon

limit,

lim
(l+lsynd)→∞

lim
w→∞

lim
L→∞

εBP(l, lsynd, r, r/2, L, w) =
l+ lsynd

r
.

Proof: From Lemmas 1 and 2 we know that in the limit
of large w and L, the bilayer code ensemble has the same rate
and DE threshold as the single-layer (l + lsynd, r, L, w) code
ensemble. Therefore, the corollary follows from [9, Theorem
10 and Lemma 8].

Theorem 2. For a binary erasure TD-MARC with two uncor-

related sources, one relay, one destination, and for symmetric

channel conditions, there exists an SC-LDPC code C and an

associated two-user bilayer code Cbl such that C achieves

the capacity for both source-relay links and Cbl achieves

capacity for both source-destination links. In addition, this

code construction achieves the highest possible rate with DF

relaying.

Proof: Recall that the capacities of the source-relay links
are Csr = 1− εsr. We use capacity-achieving SC-LDPC codes
from the ensemble C(l, r, L, w), with

l

r
= εsr, (39)

which are known to be asymptotically capacity achieving
(cf. (23)), and therefore the relay will be able to decode
successfully.

Let NV be the number of variable nodes in C. In the
limit L → ∞ there are NC = l

rNV check nodes. The
effective number of additional bits needed by the destination
and provided by the relay is (cf. (27), (32), µi = 1/2)

N eff
C,synd = NC,synd/2 = NV(Csr−Csd) = NV(εsd− εsr). (40)
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As rsynd = r/2, the additional effective N eff
C,synd check nodes

from the second layer add NC,syndr/2 = rN eff
C,synd edges. The

variable node degree lsynd is

lsynd = rN eff
C,synd/NV = r(εsd − εsr). (41)

From Corollary 1, together with (39) and (41), it follows that

lim
w→∞

lim
L→∞

R(l, lsynd, r, r/2, L, w) = 1−
l+ lsynd

r
= 1− εsd,

and for fixed (l + lsynd)/r,

lim
(l+lsynd)→∞

lim
w→∞

lim
L→∞

εBP(l, lsynd, r, r/2, L, w) = εsd.

Therefore, we see that Cbl achieves the capacity of the source-
destination links Csd = 1 − εsd for both users. The num-
ber of channel uses in the first two transmission phases is
n1 = n2 = NV. A capacity-achieving SC-LDPC code is
used to transmit the NC,synd syndrome bits in the third phase,
using nr = NC,synd/Crd channel uses. Thereby we have shown
(using (40))

ni

n1 + n2 + nr
=

Crd

2Crd + 2(Csr − Csd)
= θ∗i ,

i.e., our code design uses the optimum time allocation (10),
which maximizes the achievable rate.

While a proof for the general case of correlated sources and
non-symmetric channel conditions is more difficult to obtain,
in Section VIII we use DE to demonstrate that the proposed
code construction approaches capacity also for the general
scenario.

VII. ACHIEVABLE CHANNEL PARAMETERS FOR GIVEN

CODE RATES

In this section, we derive the theoretical achievable region
of channel parameters (εs1r, εs2r) and (εs1d, εs2d) for the s-
r and s-d channels, respectively, corresponding to the pairs
of channel parameters for which error-free transmission is
possible, given the transmission rates R1, R2, R1

synd and

R2
synd. This region is the theoretical benchmark to which the

performance of the proposed two-user bilayer code ensembles
must be compared. We carry out the derivations first for non-
punctured codes (to be used for uncorrelated sources) and then
for punctured codes (used for correlated sources).

We consider the si-r links first. From (17) and (18), we
obtain

R1 ≤
1

Rs1
(1− εs1r), R2 ≤

1

Rs2
(1− εs2r),

⇒ εs1r ≤ 1−Rs1R1, εs2r ≤ 1−Rs2R2. (42)

The system with joint source-channel coding does not
have specific source coding rates. We obtain the achievable
(εs1r, εs2r)-region as the union of all regions defined by the
inequalities (42) for all H(U1|U2) ≤ Rs1 ≤ 1. The result-
ing region is a pentagon with corner points (0, 0), (asr, 0),
(asr, bsr), (csr, dsr), and (0, dsr), where

asr = 1−H(U1|U2)R1, dsr = 1−H(U2|U1)R2,

csr = 1− R1, bsr = 1−R2.

For the si-d links, we consider the inequalities (19), (20)
and (21). Using

θr
θi

=
nr

ni
=

kr
niRr

=
1

Rr
(1−R1

synd)

and Rr = Crd, we obtain the following expressions. From (19)
we obtain

Rs1R′ − θrCrd

θ1
≤ 1− εs1d

⇒ εs1d ≤ 1−

(

Rs1R1 −
1−R1

synd

Rr
Crd

)

= 1−
(

Rs1R1 − (1−R1
synd)

)

. (43)

From (20) we get

εs2d ≤ 1−
(

Rs2R2 − (1−R2
synd)

)

. (44)

Finally, from (21) we obtain

εs2d ≤ 1−

(

R2H(U1, U2)−
R2

R1
(1− εs1d)− (1− R2

synd)

)

.

(45)
We obtain the achievable (εs1d, εs2d)-region as the intersection
of the union of all regions defined by inequalities (43) and (44)
for H(U1|U2) ≤ Rs1 ≤ 1 with the region defined by (45) for
0 ≤ εs1d ≤ 1. It is again a pentagon with corner points (0, 0),
(asd, 0), (asd, bsd), (csd, dsd), and (0, dsd), where

asd = 1− (H(U1|U2)R1 − (1−R1
synd)),

dsd = 1− (H(U2|U1)R2 − (1−R2
synd)),

csd = 1−R1,

bsd = 1−R2.

When systematic punctured codes are used, we obtain the
following modified limits. For the s-r links, instead of (42),
we have

εs1r ≤ 1−Rs1R̃1, εs2r ≤ 1−Rs2R̃2.

The resulting achievable rate region (εs1r, εs2r) is a pentagon
with corner points

apsr = 1−H(U1|U2)R̃1, dpsr = 1−H(U2|U1)R̃2,

cpsr = 1− R̃1, bpsr = 1− R̃2.

The inequalities for the s-d links are

εs1d ≤ 1−
1

1−R1

(

Rs1R1 − (1−R1
synd)

)

,

εs2d ≤ 1−
1

1−R2

(

Rs2R2 − (1−R2
synd)

)

,

εs2d ≤ 1−
1

1−R2

(

H(U1, U2)R2

−
R2

R1
(1 −R1)(1 − εs1d)− (1−R2

synd)

)

.
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Fig. 4: 3D EXIT chart h(1)(εs1d, εs2d) for code A, source s1, correlation parameter p = 0.3. The chain-length is a) L = 10 b)
L = 20 c) L = 300.

TABLE I: Code ensembles.

Label (l1, r1) (l2, r2) (l1synd, r
1

synd) (l2synd, r
2

synd) µ1 µ2 w L R̃1 R̃2 R1

synd R2

synd

Code A (6, 10) (6, 10) (2, 10) (2, 10) 0.5 0.5 10 600 0.6446 0.6446 0.7973 0.7973

Code B (12, 20) (14, 20) (4, 14) (3, 14) 0.5 0.5 10 600 0.6427 0.4080 0.7102 0.7827

The pentagon describing the achievable (εs1d, εs2d)-region has
the corner points

apsd = 1−

(

H(U1|U2)R̃1 −
1

1−R1
(1−R1

synd)

)

, (46)

dpsd = 1−

(

H(U2|U1)R̃2 −
1

1−R2
(1−R2

synd)

)

, (47)

cpsd = 1− R̃1, bpsd = 1− R̃2. (48)

Examples for these achievable regions are given in the next
section.

VIII. NUMERICAL RESULTS

The outstanding performance of SC-LDPC ensembles is due
to the saturation of the BP threshold to the MAP threshold
of the underlying block code ensemble. This phenomenon
has been proven to occur in single-user SC-LDPC (l, r, L, w)
ensembles for the BEC [9]. As we showed in Section VI-C,
the density update equations of the two-user bilayer SC-
LDPC code ensemble reduce to the ones of a single-user code
in the case of uncorrelated sources and symmetric channel
conditions. Therefore, for this case, threshold saturation oc-
curs. In the following, we use BP EXIT functions [22] to
give empirical evidence that threshold saturation does also
occur for the non-symmetric scenario with correlated sources.
Furthermore, we show how the joint decoding of both users
makes the system more robust.

To assess the performance of the proposed relaying scheme,
we construct three two-user bilayer SC-LDPC code ensembles.
Their parameters are given in Table I. For Code A, the same
code ensembles are used for C1 and C2, and for C1

synd and C2
synd,

i.e., this bilayer code is designed for the symmetric case. On

the other hand, code B is designed for a system with si-r links
of different reliabilities, which is reflected by the use of codes
C1 and C2 with different rates. Note that in some cases, the
ensembles used at the relay to generate extra syndrome bits
have variable node degree 2. However, this is not a problem,
since these codes are never used alone, but within the bilayer
structure.

We use a two-dimensional EXIT analysis to show that the
BP threshold of the bilayer SC-LDPC code ensembles closely
approaches the limits derived in Section VII. In our system,
there are two users and two decoders. We concentrate on
the decoder at the destination, since the one at the relay
was already described in [28]. For each source, the decoding
performance depends on both channel erasure probabilities
εs1d and εs2d. The two-dimensional EXIT function for source
si is

h(i)(εs1d, εs2d) !
1

L

L
∑

t=1

m(i)
t ,

where

m(i)
t ! lim

I→∞

(

1

w

w−1
∑

j=0

q(t+j,I)
i

)li( 1

w

w−1
∑

j=0

q(t+j,I)
synd,i

)lisynd

.

To obtain a single parameter for the whole code chain, we
average over all messages at different time instants (cf. [9]).

Fig. 4(a) shows the EXIT surface for source s1 for Code
A (see Table I for code parameters), correlation parameter
p = 0.3, and a chain length of L = 10. The region where
h(1)(εs1d, εs2d) ≡ 0 corresponds to the channel parameters
(εs1d, εs2d) for which error free decoding of s1 is possible. In
the other region, h(1)(εs1d, εs2d) > 0. Fig. 4(b) shows the same
scenario for L = 20. The transition from the error-free region
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Fig. 5: a) Achievable (εs1d, εs2d)-region and theoretical limit for Code A, p = 0 (no correlation). b) Achievable (εs1r, εs2r)-region
and theoretical limit for Code A, p = 0. c) Achievable (εs1d, εs2d)-region and theoretical limit for Code A, p = 0.3.
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Fig. 6: Achievable (εs1d, εs2d)-regions and theoretical limits for Code B. a) p = 0, w = 10. b) p = 0.2, w = 10. c) p = 0.2,
w = 4, 6, 8 and 10.

to the region where h(1) is close to one is steeper. The thresh-
old saturation phenomenon is already observed in Fig. 4(c) for
L = 300. In this case the transition is very steep. Increasing the
chain length further results in very small changes of the shape
of the surface, denoting threshold saturation. While threshold
saturation to the MAP threshold holds for the uncorrelated
case with symmetric channel conditions, we remark that we
cannot claim threshold saturation to the MAP threshold for
the general case. However, the results in Fig. 4(c), suggest
that threshold saturation also holds for this case.

To compare the performance predicted by DE with the
theoretical limits, we define the achievable (εs1d, εs2d)-region
A as the region where both users can be decoded successfully
at the destination,

A = {(εs1d, εs2d)|h
(1) ≡ 0 and h(2) ≡ 0}.

Fig. 5(a) shows A (dotted area) for Code A, for the case
where the sources are uncorrelated (p = 0). The figure also
depicts the theoretical limit given by (46)-(48) (black line).
The proposed bilayer codes are near universal for the region
(εs1d, εs2d), i.e., they perform close to the theoretical limit

for all channel conditions. We observe a largely uniform gap
between the DE result and the theoretical limit of less than
0.02. It can also be observed that a lower link quality for
one user is compensated by a better quality on the other link.
Note that this is possible because the data of both sources is
combined via network coding at the relay and joint decoding at
the destination. We can plot a similar figure for the achievable
(εs1r, εs2r)-region (Fig. 5(b)), obtaining a similar behavior
than for the region A. Note that both sources can be decoded
successfully both at the destination and at the relay for all pairs
(εs1d, εs2d) and (εs1r, εs2r) within the dotted areas in Fig. 5(a)
and Fig. 5(b), respectively.

In Fig. 5(c) we plot A and the theoretical region for Code
A and p = 0.3. Compared to the uncorrelated case, the
theoretical region as well as A become bigger. Now, the
additional parity-checks due to the correlation model in the
factor graph of the decoder allow successful decoding at higher
channel erasure probabilities.

In Figs. 6(a) and 6(b), we plot A and the theoretical region
for Code B for p = 0 and p = 0.2, respectively. As expected,
both A and the theoretical region are now non-symmetric
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because of its dependency on R1 and R2. The DE results
show again near universal performance. However, for both
p = 0 and p = 0.2 we can observe a slightly larger gap to
the theoretical limit on the side with the better limit (y-axis).
When all parameters go to infinity, we would expect the whole
theoretical region to be achieved.

We also analyzed the performance of the proposed bilayer
codes as a function of the code parameters w, l and r. In
Fig. 6(c) we plot A for Code B and several values of w,
w = 4, 6, 8 and 10, for p = 0.2. (We remark that the
theoretical region is slightly different for different values of
w, as the resulting coding rates –which depend on w– are
slightly different. However, the four regions are very similar
and, for the sake of clarity, in the figure we only plot the
theoretical region corresponding to w = 10). It is interesting
to see that for w = 4 and 6 the achievable rate region is
significantly smaller than the theoretical region. We recall that
the theoretical limit is achieved by letting w → ∞. In practice,
for w ≥ 8, near universal performance is obtained. A similar
behavior is observed for the uncorrelated case. On the other
hand, we observed that varying l and r, while keeping constant
w, leads to similar achievable regions. This seems to indicate
that the impact of parameter w on the performance is larger
than that of the variable and check node degrees.

Finally, in Fig. 7 we give bit erasure rates for Code A with
M = 1800, as a function of εs1d. The correlation is p =
0.3. The blue curve with triangles shows the performance for
εs1d = εs2d, the black curve with circles for fixed εs2d = 0.4
and the red curve with squares for εs2d = 0. The corresponding
DE thresholds and theoretical limits (cf. Fig. 5(c)) are also
given. We observe a performance close to the DE thresholds
(note that the DE results require M → ∞).

IX. CONCLUSIONS AND DISCUSSION

In this work, we presented a bilayer spatially-coupled low-
density parity-check code design for a system where two
correlated sources transmit their data to a common destination
with the help of a relay over BECs. The scheme combines
joint source channel coding at the sources together with joint
detection at both the relay and the destination to exploit the
correlation. The relay employs network coding in order to
enable joint decoding of both sources at the destination even in
the non-correlated case, thereby improving the robustness of
the system. We derived theoretical bounds on the achievable
system rate, based on separate source and channel coding.
Using density evolution, we showed that the proposed scheme
approaches the theoretical limit for the general case of corre-
lated sources and non-symmetric channel conditions. For the
particular case of uncorrelated sources and symmetric channel
conditions we proved analytically that our code construction
achieves the heoretical limit.

The use of BECs in this paper is motivated by the fact
that it simplifies the DE analysis and allows to derive relevant
proofs. In a more practical scenario, one should consider other
channels, such as the Gaussian MARC. While most of the
literature on SC-LDPC codes, and in particular those focused
on its analysis, consider the BEC, we remark that it has
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Fig. 7: Bit erasure rates (solid curves with markers), DE
thresholds (dashed lines) and theoretical limits (solid lines)
for Code A, p = 0.3.

been shown that SC-LDPC codes also perform well for other
channels. For instance, for the 2-user Gaussian MAC channel,
SC-LDPC codes have been shown to approach capacity [28].
Therefore, we expect the codes proposed in this paper to
perform close to the theoretical limit for the Gaussian MARC.

An alternative to SC-LDPC codes would be use of irregular
LDPC codes. In [32], irregular LDPC codes are optimized
for the transmission of two correlated sources over BECs.
It is shown that, while performance close to the theoretical
limit can be achieved for a range of channel parameters, for
balanced channel parameters (i.e., similar erasure probabilities
in the links) the codes perform away from the theoretical limit.
As a result, the codes are not universal. A similar observation
was made in [27]. Note that transmission from the sources to
the relay corresponds to the scenario in [27], [32]. Therefore,
it is reasonable to conjecture that irregular LDPC codes are not
universal for the (more general) relaying scenario considered
in this paper. In contrast, our DE results show that bilayer
SC-LDPC code ensembles are near universal for the two-
source relay channel (i.e., they perform close to the theoretical
limit for the whole regions (εs1d, εs2d) and (εs1r, εs2r)). On
the other hand, we would like to remark that irregular LDPC
codes require a degree distribution optimization using, e.g.,
differential evolution, which is computationally expensive. In
the scenario considered in this paper, changing the channel
conditions (i.e., the erasure probabilities εs1r, εs2r, εs1d, and
εs2d) would not only have and impact on the code rates of
each level, but it also requires a complete degree distribution
optimization. This is not required for SC-LDPC codes, which
makes the code design much simpler.

A. Extension to n sources

The proposed bilayer SC-LDPC code can be extended to
the n-source scenario. In this case, we can construct a bilayer
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code with parity check matrix

H =



















H1 0 · · · 0

0 H2 · · · 0

... 0
. . . 0

0 · · · 0 Hn

H1
synd H2

synd · · · Hn
synd

H1
corr H2

corr · · · Hn
corr



















.

For the uncorrelated case, the theoretical limits for the n-
source scenario can be found in [15] and the code rates should
be optimized according to these. We would like to remark that
for the uncorrelated case and symmetric channel conditions
(in this case we can set li = l, ri = r, lisynd = lsynd and

risynd = rsynd, for i = 1, . . . , n), as for the two-source case,
the DE equation for each user (with rsynd = r/n) can be
written again as the DE equation for a single layer SC-LDPC
code ensemble, and the proof in Section VI-C can be easily
extended to the n-source case.

APPENDIX

PROOF OF THE ACHIEVABLE DF RATE FOR THE TD-MARC
WITH CORRELATED SOURCES

To obtain the maximum R′, we have to optimize the time
allocation given by θ1, θ2 and θr, and the source coding
rates Rs1 and Rs2. For this, we have to solve the following
optimization problem

maximize min{(f1, . . . , f5)(θ1, θ2, Rs1)}

s.t. H(U1|U2) ≤ Rs1 ≤ H(U1),

Rs2 = H(U1, U2)−Rs1,

θr = 1− θ1 − θ2,

0 ≤ θ1, θ2 ≤ 1,

Csir ≥ Csid,

Crd ≥ Csid.

The functions f1, . . . , f5 are defined in (17)-(21). Let θ∗1 , θ∗2
and R∗

s1 be the values for which R′ is maximized. To solve
this optimization problem, we assume that out of the five
inequalities (17)-(21), only three are active at the optimum
(θ∗1 , θ

∗
2 , R

∗
s1), namely (17), (18) and (21). The optimum cor-

responds to the point where the three hyperplanes described
by the three inequalities (taken as equalities) have their inter-
section. Then we will show that the other two constraints are
not active at the optimum.

First we set f1(θ1, Rs1) = f5(θ1, θ2). This gives the relation

θ∗2 = θ∗1
Cs1r

Cs2r

(

H(U1, U2)

Rs1
− 1

)

= κ′(Rs1)θ
∗
1 , (49)

where κ′ = κ
(

H(U1,U2)
Rs1

− 1
)

. Then we set f2(θ2, Rs1) =

f5(θ1, θ2) and insert (49) for θ2, obtaining

θ∗1(Rs1) =
Crd

(1 + κ′)Crd +
H(U1,U2)

Rs1
Cs1r − Cs1d − κ′Cs2d

.

(50)
Using (17) the resulting achievable rate is

R′(Rs1) =
1

Rs1
θ∗1Cs1r. (51)

We still have to maximize this expression over H(U1|U2) ≤
Rs1 ≤ 1 to obtain the maximal achievable rate. The behavior
of this function is determined by the value of α = (1−κ)Crd−
Cs1d + κCs2d. For α = 0, i.e.,

Cs1r

Cs2r
=

Crd−Cs1d

Crd−Cs2d
, (51) does

not depend on Rs1. For α > 0, it is monotonically decreasing
in Rs1 and therefore the maximum R′ is achieved for

R∗
s1 = H(U1|U2), R∗

s2 = H(U2) = 1.

For α < 0, it is monotonically increasing, and therefore the
optimum choice is R∗

s1 = 1 and R∗
s2 = H(U2|U1). This

result tells us that, in general, one source should be maximally
compressed while the other should not be compressed at all.
Only in the special case α = 0 the choice of Rs1 can be
made arbitrarily within the constraint (16) without affecting
the effective transmission rate.

We still have to show that inequalities (19) and (20) are
fulfilled at the optimum (θ∗1 , θ∗2 and R∗

s1). First we show that
the right-hand side of (17) is smaller than the right-hand side of
(19), i.e., f1(θ∗1 , R

∗
s1) ≤ f3(θ∗1 , θ

∗
2 , R

∗
s1). From f1(θ∗1 , R

∗
s1) =

f5(θ∗1 , θ
∗
2) we obtain

(1− θ∗1 − θ
∗
2)Crd =

H(U1, U2)

Rs1
θ∗1Cs1r − θ

∗
1Cs1d − θ

∗
2Cs2d.

(52)
Inserting this into (19) gives

θ∗1Cs1r

R∗
s1

(

H(U1, U2)

R∗
s1

−

(

H(U1, U2)

R∗
s1

− 1

)

Cs2d

Cs2r

)

≥
θ∗1Cs1r

R∗
s1

,

since
H(U1,U2)

Rs1
≥ 1 and Cs2r ≥ Cs2d. We can show in a

similar way that inequality (20) is loose by comparing it to
(18).
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