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Abstract—As the use of Internet of Things (IoT) devices for
monitoring purposes becomes ubiquitous, the efficiency of sensor
communication is a major issue for the modern Internet. Channel
coding is less efficient for extremely short packets, and traditional
techniques that rely on source compression require extensive
signaling or pre-existing knowledge of the source dynamics. In
this work, we propose an encoding and decoding scheme that
learns source dynamics online using a Hidden Markov Model
(HMM), puncturing a short packet code to outperform existing
compression-based approaches. Our approach shows significant
performance improvements for sources that are highly correlated
in time, with no additional complexity on the sender side.

Index Terms—Combined source-channel coding, Internet of
Things, Markov processes

I. INTRODUCTION

Over the last few years, the vision of the Internet of Things
(IoT) has become a reality: all over the world, billions of
wireless sensors gather and transmit data about all facets
of our lives [1], from Smart City applications such as live
road traffic and parking spot mapping to industrial ones
such as the structural monitoring of buildings and bridges,
or even environmental ones such as weather and pollution
measurement. In this context, the traditional Internet packet
structure can become inefficient: the short length of the packet
payload makes the overhead from protocol headers become
more significant [2], and channel codes need to be designed
for the short packet regime [3].

However, IoT sensors have some common features that
can be exploited to increase transmission efficiency: as the
processes they monitor are often slow-varying and highly
correlated in time [4], [5], they can be represented with Hidden
Markov Models (HMMs) [6]. The overall objective of this
work is to show how learnable features of the source can de-
crease the communication requirements as learning progresses
and a Markov source is one of the simplest ways to show this
effect. The standard approach to exploit some regularities in
the source data is is source compression [7]: as packets are
highly correlated in time, the sensed data can be compressed
using previously transmitted data as a reference, reducing the
amount of data sent with no loss of accuracy [8]. However,
compression-based schemes have two drawbacks: firstly, they
need to be shared by both endpoints of the communication. If
the source’s statistics are time-varying, and the compression
needs to be adapted to its changes over time, the transmitter

and receiver need to exchange a significant amount of signal-
ing for the latter to be able to decode messages. Secondly,
the estimation of the source statistics needs to be performed
by the source itself, i.e., the battery-powered IoT sensor. This
operation can be computationally expensive, reducing or even
canceling the energy efficiency gains in the communication.

The decoder can also be adapted to exploit information
from previous packets, obtaining the Maximum A Posteriori
(MAP) decoding: the optimal Low Density Parity Check
(LDPC) decoder for Markovian sources was derived in [9].
In the case of variable length encoding [10], the source-aware
decoder becomes more efficient in the case of long symbol
sequences, as its does not increase the size of the decoding
trellis. If the Markov model is not known at the beginning,
the authors of [11] propose an implementation of Irregular
Repeat Accumulate (IRA) codes that can take into account its
learned transition probability in the message passing process.
In this work, we take a similar approach: by modeling the
temporally correlated source as an HMM, we can gradually
learn the statistics of the underlying process at the receiver
side, allowing a MAP decoding of messages sent over a
noisy channel. Instead of compressing messages to remove
redundant information (i.e., the correlation between subse-
quent packets), we exploit it at the receiver side to improve
decoding, and puncture short Bose-Chaudhuri-Hocquenghem
(BCH) codes [12] to increase efficiency. BCH is a practical
explicit coding scheme, which can give better results with
compression schemes than the short packet coding bounds,
which are not associated with a practical code construction.
Our proposed modifications in encoding and decoding are
independent of a specific scheme and will work well with
any other code.

In our scheme, we divide messages in a correlated state
and an uncorrelated message, then remove the state bits from
the encoded message by puncturing. The punctured part of
the message can be recovered by using the parity bits and
the side information from previous packets. Previous works
had explored MAP decoding for temporally correlated sources
for turbo codes [13] and LDPC codes [14], but to the best
of our knowledge this is the first work to propose a scheme
that exploits time correlation in the source for short packets.
We assume no initial knowledge of the Markov transition
probabilities, which are learned on the fly by the transmitter
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Fig. 1: Hidden Markov model for decoding: S hidden states, 2n

observed states (received packets) and transition matrix T̂

and receiver. Our scheme significantly outperforms traditional
encoding and compression schemes as long as the source
shows significant correlation, both for ergodic and time-
varying sources whose transition probabilities change over
time. Furthermore, unlike other HMM schemes for longer
codes, it requires no additional complexity on the sender side,
relieving battery-powered IoT node of the additional compu-
tational complexity, and the consequent energy expenditure,
that efficient source compression requires.

The rest of this paper is divided as follows: Sec. II presents
the model of the encoder and decoder and the proposed coding
scheme, while Sec. III shows the simulation results for all
considered techniques. Finally, Sec. IV concludes the paper
and lists some possible avenues for future work.

II. SYSTEM MODEL

Let the information source be represented by a Markov
chain with state space S, whose cardinality is S. The Markov
chain is defined by its S × S sparse transition matrix T .
When the source is in state s, it randomly generates messages
from set M(s); we assume that the message set size is
the same for all states, i.e., |M(s)| = M, ∀s ∈ S. Each
message m ∈ M(s) is generated with uniform probability
1
M . The entropy of the message is then log2(M) bits, and
the source state entropy is bounded by log2(S). Hence, the
number of information bits required to represent a message is
k = log2(S)+log2(M). The information source needs to send
the message to a receiver over a Binary Symmetric Channel
(BSC) with bit error probability pb, so it uses a BCH code:
codewords are composed of n ≥ k bits.

In traditional networking, each packet is encoded indepen-
dently, and the encoding assumes that the state s has a uniform
distribution. However, this does not exploit the temporal corre-
lation in the system state. It is possible for the receiver to use
the transition matrix of the source as additional information to
improve the decoding process. Let the codeword obtained on
encoding state s ∈ S and m ∈M(s) be x(s,m) and X (s) be
the set of codewords corresponding to state s. We can then see
this as an HMM, as shown in Fig. 1: the received packet at
time t is denoted as yt ∈ Y , can be seen as an observation of
the hidden state, which corresponds to the state of the source
st. We can then get the emission probabilities for the HMM
as follows:

P (Yt = yt|St = st) =
1

M

∑
x∈X (st)

(
pb

1− pb

)dxy

(1− pb)n,

(1)

where dxy is the Hamming distance between x and y. We
use Forward algorithm [6] for MAP decoding of the packets.
Formally, we can define this by obtaining prior and posterior
probabilities. The probability of getting a received word y
when x is sent is given by:

pY |X(y|x) =

(
pb

1− pb

)dxy

(1− pb)n. (2)

If we assume that the receiver has a prior distribution P̂t for
the state of the system, the a posteriori decoding probability
is:

p′
Xt|Yt,P̂t

(x|yt, p̂t) =
pXt|P̂t

(x|p̂t)pYt|Xt
(yt|x)

pYt|P̂t
(yt|p̂t)

=
p̂t(s(x))

(
pb

1−pb

)dxyt

∑
s∈S

∑
x′∈X (s)

p̂t(s)
(

pb

1−pb

)dx′yt
,

(3)

where s(x) is the state to which x belongs. For states, the a
posteriori probability can be calculated as:

p′
St|Yt,P̂t

(s|yt, p̂t) =
p̂t(s)pYt|St

(yt|s)
pY |P̂t

(yt|p̂t)

=

p̂t(s)
∑

x∈X (s)

(
pb

1−pb

)dxyt

∑
s′∈S

∑
x′∈X (s)

p̂t(s′)
(

pb

1−pb

)dx′yt
.

(4)

We can define the a priori probability as:

p̂t+1(s) =
∑
s′∈S

(Ts′sp
′
St|Yt,P̂t

(s′|yt, p̂t)). (5)

The state and message are then inferred as follows:

ŝt = arg max
s∈S

(
p′
St|Yt,P̂t

(s|yt, p̂t)
)

; (6)

m̂t = arg min
m∈M(ŝt)

(dx(ŝt,m)yt
). (7)

A. Delayed MAP decoding

We can also consider delayed MAP decoding, including
both previous packets and future ones. Naturally, considering
future packets requires allowing a delay of d packets to find the
MAP probability P (st|y1, y2, ..., yt, ..., yt+d) using a forward-
backward algorithm [6] on the Markov model. For a given
delay d, the a priori probability for any sequence of states
s = {st, st+1, ..., st+d} ∈ Sd+1 with prior p̂t(s) (from above)
can be calculated as:

p̂(s) = p̂t(s)
t+d∏

i=t+1

Tsi−1si (8)

The conditional probability of the received sequence y =
{yt, yt+1, ..., yt+d} is:

pY|S(y|s) =

t+d∏
i=t

 1

M

∑
x∈X (si)

(
pb

1− pb

)dxy
i

 (9)
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The a posteriori probability of the sequence and statecan be
obtained using Bayes’ theorem:

pS|Y,P̂ (s|y, p̂) =
pY|S(y|s)p̂(s)∑

s′∈Sd+1

p̂(s′)pY|S(y|s′)
(10)

pSt|Y,P̂ (st = s|y, p̂) =
∑

s∈Sd+1:st=s

pS|Y,P̂ (s|y, p̂) (11)

We can then infer the most likely state and message as above,
using the additional information. If the decoding at time t
is extremely uncertain, the next packet might be enough to
remove the uncertainty, using the information from the next
packet to infer a posteriori the state of the system at time
t. The MAP decoding approach is not commonly used in
decoding because of its computational cost, as the decoder
needs to evaluate all possible codewords at every decoding,
but it is practical for short-packet codes with a limited number
of options, with O(MS2) complexity.

B. Coding schemes

The MAP approach can reduce the packet error rate by ex-
ploiting the time-dependent information, particularly so when
using a forward-backward solution with delayed decoding, but
it is possible to improve performance even further by proper
code design by the sender.

Traditionally, this can be accomplished with source com-
pression, encoding states into fewer than log2(S) bits based
on the Markov chain transition matrix. Considering the same
packet size n, source compression of the state can increase
protection by using more parity bits. We considered three
different legacy schemes based on source compression:

1) Legacy encoding: This scheme does not use any tem-
poral information on the source in the encoding. The
k-bit payload representing the state and message are
concatenated and then encoded using BCH into n bits.

2) Stationary compression encoding: The state bits are
compressed using Huffman coding based on the station-
ary distribution Π of the Markov chain with transition
matrix T . We obtain a variable length code for states.
These bits are concatenated with message bits and
encoded using BCH, which is then punctured to obtain a
codeword of length n. The decoding schemes mentioned
above can be directly applied here.

3) Conditional compression encoding: Suppose we are
in state st−1 at time t − 1. The state at time t is com-
pressed using Huffman coding based on the conditional
distribution Tst−1s = P (St = s|St−1 = st−1). Since
the transition matrix is assumed to be sparse, using the
conditional distribution for coding requires fewer bits.
Every tc-th packet is a check packet which is a packet of
the same size but is encoded using combined encoding
(the state bits are not compressed).

Our punctured encoding scheme does not act on source
compression, but rather changes the coding scheme to provide
additional protection to the message. The state and message
are concatenated to form a k-bit payload and then encoded

Fig. 2: (a) Legacy encoding. (b) Punctured encoding (dashed box
represents punctured bits)

using BCH into (n+ log2(S)) bits. The log2(S) state bits are
then removed to get a codeword of n bits. By puncturing the
state bits, we provide more protection to the message bits. The
proposed scheme, along with the legacy coding, is shown in
Fig. 2.

C. Learning Parameters

Since we do not assume any prior knowledge of the
scenario, the receiver needs to learn the BSC parameter (pb)
and the transition matrix for the Markov source. The bit flip
probability for the channel can be estimated by beginning the
transmission of updates using a highly redundant encoding.

p̂b =
Number of bit flips

Total bits sent
. (12)

In the beginning of communication, the receiver assumes a
uniform transition matrix. Since the statistics of the source are
unknown to the receiver, the sender cannot use compression
encoding, but legacy or punctured encoding work, although
with lower performance. Each received packet is decoded
using either of the above mentioned decoding schemes. The
estimated transition matrix is then updated based on the
observed transitions.

T̂sisj =
Nsisj + α∑

s′∈S
(Nsis′ + α)

. (13)

where α is a non-zero parameter which can be varied to vary
the speed of learning of parameters and Nsisj is the number
of transitions observed from state si to state sj . The transition
matrix and channel error probability is updated online by using
the estimators over a sliding window of 1000 packets, in order
to deal with fluctuations in the source and channel.

III. RESULTS

We simulated the communication strategies from the previ-
ous section using a Monte Carlo approach. We obtained the
steady state performance by simulating 10 sequences of 105

packets each. We considered a packet size of n = 20 bits, with
S = 32 and M = 32. The transition matrix for the Markov
chain is generated randomly for each sequence as a sparse
matrix. We study the variation in packet errors by varying the
bit error probability pb, the density of the transition matrix and
the decoding delay. The density of the sparse matrix is defined
as the number of non-zero elements over the total number of
elements. It is directly proportional to the entropy rate of the
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Fig. 3: Packet error rate as a function of pb for various encoding
schemes with MAP decoding (T is a sparse matrix with density
0.125)
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Fig. 4: Packet error rate as a function of pb for various encoding
schemes with Delayed decoding (delay d = 1 and T is a sparse
matrix with density 0.125)

Markov source. The results showing the parameter learning
transient were averaged over 500 sequences.

We first consider the steady-state performance of the
schemes, evaluated in terms of packet error probability as a
function of the BSC bit error probability pb. Fig. 3 and Fig. 4
show performance of different encoding schemes for MAP
and delayed decoding respectively. As expected, packet errors
increase with higher bit error probability and both MAP and
delayed decoding significantly outperform minimum distance
decoding. Punctured encoding has a significant advantage
over the traditional encoding schemes when we use delayed
decoding, and a smaller but still significant advantage in
case of MAP decoding, as it can make better use of the
temporal correlation between successive states. The results for
conditional compression encoding are for tc = 2, as it was the
setting that gave the best performance.

Fig. 5 shows the effect of the sparsity of transition matrix
on packet error probability once steady state is reached. Un-
surprisingly, minimum distance decoding does not depend on
sparsity of the transition matrix, while other decoding schemes
can exploit their knowledge of the Markovian source to have
much better results for sparser matrices, i.e., for less dynamic
sources whose state is highly correlated in time. Punctured
encoding is designed to exploit the knowledge about the
Markov source; hence, it performs better than legacy encoding
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Fig. 5: Packet error probability as a function of the density of the
transition matrix (pb = 0.05). Delay d = 1 in all cases of delayed
decoding
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Fig. 6: Packet error probability as a function of the delay d for
combined encoding (pb = 0.05 and T is a sparse matrix with density
0.125)

for sparser transition matrices, but becomes inefficient if the
transition matrix is very dynamic. In realistic IoT scenarios,
we expect transition matrices to be relatively sparse, as sensors
often measure processes such as temperature or air pollution,
which are highly correlated in time. In this case, compressed
encoding schemes performed worse than either legacy or
punctured encoding, so they were not included in the plot.

As Fig. 6 shows, the benefits of delayed decoding are
significant even with a delay of just 1 packet. Further im-
provements from increasing the delay to 2 or more packets
become negligible, as the state of the source is Markovian.

Fig. 7 shows performance before the system reaches steady
state, i.e., how packet error probabilities for different schemes
vary over time if the system starts with no knowledge of
the source parameters. The learning parameter α has been
set to 0.1, which showed the best results. The dashed lines
represent the perfect-knowledge packet error probabilities,
which assume that the receiver has perfect knowledge of the
transition matrix. Source compression is not an option here, as
we first have to learn the statistics of the source to use those
encoding schemes. The figure shows that the system converges
to a packet error rate very close to the perfect-knowledge
performance after 2000 packets, and that punctured encoding
has a better performance than the legacy scheme during all
phases of the initial transition to steady state.
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Fig. 7: Packet error probability as a function of the number of packets
received for various schemes. The dashed line represent the packet
error probability if the receiver perfectly knows the transition matrix.
(T is a sparse matrix with density 0.25). Delay d = 1 in all cases
of delayed decoding
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Fig. 8: Packet error probability as a function of the number of packets
received for a dynamic source with delayed decoding. The grey
plots show the perfect knowledge performance, while the blue plots
represent when receiver learns the transition matrix with time. T1 and
T2 are sparse matrices with density 0.125 and delay d = 1

Finally, we simulate a dynamic source, whose underlying
Markov chain changes over time: two sparse matrices (T1 and
T2) are generated randomly and the transition matrix of the
source at any moment is a convex combination of T1 and T2.

T =

(
1− t

ttotal

)
T1 +

t

ttotal
T2 (14)

where ttotal is the total number of packets sent (ttotal = 10000
in Fig. 8) and t is the packet number of each packet. This
process is repeated for 500 sequences and the averaged results
are shown in Fig. 8. As the figure shows, our scheme can
deal with a time-varying transition matrix, achieving most
of the benefits of perfect knowledge of the transition matrix.
In this kind of system, source compression is not an option,
as the source would have to periodically renew its encoding
of the state and transmit the map to the receiver to allow
decoding. The higher packet error rate in the middle is due to
the lower sparsity of the transition matrix caused by the linear
combination of the two matrices.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a puncturing-based en-
coding and decoding scheme that improves the transmission

of short packets from time-correlated sources, modeled as
HMMs. Our scheme significantly outperforms compression-
based approaches, especially for more stable sources.

There are several avenues of future work that we plan to
follow: the extension of the scheme to Hybrid Automatic
Repeat Request (HARQ) schemes, with partial retransmission
of the data in case of failure, is an interesting possibility, as is
its natural extension to multiple sources of information. The
state of each source would be exploited to improve the source
identification, reducing the need for long packet headers, and
the correlation between adjacent sources could be exploited to
improve reliability even further, adding a spatial component
as well as the temporal one we analyzed in this work.
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