6,824 research outputs found

    Exploring dependence between categorical variables: benefits and limitations of using variable selection within Bayesian clustering in relation to log-linear modelling with interaction terms

    Get PDF
    This manuscript is concerned with relating two approaches that can be used to explore complex dependence structures between categorical variables, namely Bayesian partitioning of the covariate space incorporating a variable selection procedure that highlights the covariates that drive the clustering, and log-linear modelling with interaction terms. We derive theoretical results on this relation and discuss if they can be employed to assist log-linear model determination, demonstrating advantages and limitations with simulated and real data sets. The main advantage concerns sparse contingency tables. Inferences from clustering can potentially reduce the number of covariates considered and, subsequently, the number of competing log-linear models, making the exploration of the model space feasible. Variable selection within clustering can inform on marginal independence in general, thus allowing for a more efficient exploration of the log-linear model space. However, we show that the clustering structure is not informative on the existence of interactions in a consistent manner. This work is of interest to those who utilize log-linear models, as well as practitioners such as epidemiologists that use clustering models to reduce the dimensionality in the data and to reveal interesting patterns on how covariates combine.Comment: Preprin

    Simultaneous Coherent Structure Coloring facilitates interpretable clustering of scientific data by amplifying dissimilarity

    Get PDF
    The clustering of data into physically meaningful subsets often requires assumptions regarding the number, size, or shape of the subgroups. Here, we present a new method, simultaneous coherent structure coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance regarding the underlying structure of the data. sCSC performs a sequence of binary splittings on the dataset such that the most dissimilar data points are required to be in separate clusters. To achieve this, we obtain a set of orthogonal coordinates along which dissimilarity in the dataset is maximized from a generalized eigenvalue problem based on the pairwise dissimilarity between the data points to be clustered. This sequence of bifurcations produces a binary tree representation of the system, from which the number of clusters in the data and their interrelationships naturally emerge. To illustrate the effectiveness of the method in the absence of a priori assumptions, we apply it to three exemplary problems in fluid dynamics. Then, we illustrate its capacity for interpretability using a high-dimensional protein folding simulation dataset. While we restrict our examples to dynamical physical systems in this work, we anticipate straightforward translation to other fields where existing analysis tools require ad hoc assumptions on the data structure, lack the interpretability of the present method, or in which the underlying processes are less accessible, such as genomics and neuroscience

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks
    • …
    corecore