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a b s t r a c t

This manuscript is concerned with relating two approaches that can be used to explore
complex dependence structures between categorical variables, namely Bayesian partition-
ing of the covariate space incorporating a variable selection procedure that highlights the
covariates that drive the clustering, and log-linear modelling with interaction terms. We
derive theoretical results on this relation and discuss if they can be employed to assist log-
linearmodel determination, demonstrating advantages and limitationswith simulated and
real data sets. The main advantage concerns sparse contingency tables. Inferences from
clustering can potentially reduce the number of covariates considered and, subsequently,
the number of competing log-linear models, making the exploration of the model space
feasible. Variable selection within clustering can inform onmarginal independence in gen-
eral, thus allowing for a more efficient exploration of the log-linear model space. However,
we show that the clustering structure is not informative on the existence of interactions in
a consistent manner. This work is of interest to those who utilize log-linear models, as well
as practitioners such as epidemiologists that use clustering models to reduce the dimen-
sionality in the data and to reveal interesting patterns on how covariates combine.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Detecting high-order interactions is becoming increasingly important for investigators in many fields of research. It is
now understood that covariates may combine to affect the probability of an outcome, and that the effect of a particular
covariatemay only be important in the presence of other covariates. For example, in epidemiology it is of interest to examine
the presence of interactions between smoking, environmental pollutants and dietary habits (Bingham and Riboli, 2004). In
genetic association studies, it is of interest to detect gene–gene and gene-environment interactions in high dimensional data
(Wakefield et al., 2010).

In this manuscript, we examine and discuss the relation between variable selection within Bayesian partitioning on
one hand and log-linear modelling with interactions on the other, and the extend to which this relation can be explored
in log-linear model search. Log-linear modelling is the most popular approach when searching for interactions, used by
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statisticians as well as practitioners in substantive applications. In a classical setting, attempting to fit a linear model with
a large number of parameters sometimes requires an impractically large vector of observations to produce valid inferences
(Burton et al., 2009). Within the Bayesian framework, the use of prior distributions alleviates identifiability or maximum
likelihood estimation difficulties; see Dobra and Massam (2010). However, the space of competing models becomes vast,
and model search algorithms like the Reversible Jump approach (Green, 1995) require a large number of iteration before
they converge and produce reliable posterior model probabilities (Clyde and George, 2004; Dobra, 2009). With regard to
contingency tables, the number of cells and possible graphical log-linear models that explain the cell counts increases
exponentially with the number of covariates. For example, considering 20 covariates with 3 levels implies 320 cells and
approximately 1.5 × 1057 possible models.

Due to the difficulties associated with searching for interactions within a linear modelling framework, alternative
approaches were adopted focusing on the reduction of the dimensionality in the data. Clustering is often the tool used
to reduce dimensionality (see, for example Zhang et al., 2010), sometimes combined with a variable selection step (Chung
andDunson, 2009).Whilst log-linearmodelling is a standardmathematical construction, there aremany different clustering
modelling approaches. For the purposes of this manuscript, we choose to focus on Bayesian clustering based on the Dirichlet
process. The Dirichlet process produces flexible partitioning, allowing for the evaluation of the uncertainty with regard to
the clustering of the subjects.We use a combination of Dirichlet processmodelling and variable selection, implementing the
modified variable selection step described in Papathomas et al. (2012), so that the covariates that contribute substantially
to the clustering are identified.

We focus on categorical variables and log-linear models, as this is the standard framework for modelling interactions. In
fact, for a set of categorical variables, where at least one is binary, there is a correspondence between log-linear and logistic
regression modelling, and under certain conditions it is valid to translate inferences from the log-linear framework to the
logistic one, regarding the presence of main effects and interactions; see Agresti (2002) and Papathomas (2015).

We explore the relation between log-linear modelling and clustering for two reasons. First, practitioners such as
epidemiologists often use clustering in order to explore the manner in which covariates combine to affect the risk for
disease; see Papathomas et al. (2011b). They frequently question if the clustering structures may inform in someway on the
existence of interactions in associated log-linear models, and our investigation aims to provide some answers. Second, we
aim to explore if any relation between log-linear modelling and clustering can be utilized to assist the exploration of large
log-linear model spaces and the search for high-order interactions. The intuitive idea is that models that combine clustering
and variable selection do not select covariates in accordance with the size of their marginal effect. Covariates are selected
because they work together and combine with each other to create distinct groups of subjects. Consequently, this type of
modelling may be able to inform on covariates that combine to describe the structure in the data, rather than covariates
with a strong marginal signal.

In this manuscript, we are not concerned with the large-p problem, where thousands or hundreds of thousands of
covariates are considered; see, for example, Hans et al. (2007), Richardson et al. (2010), or Cho and Fryzlewicz (2012) for a
comprehensive review. Although our discussion is relevant to data sets of higher dimension, we focus on a relativelymodest
number of categorical variables, say one hundred or fewer, with fewer than twenty involved in interaction terms.

We demonstrate that inferences from clustering can potentially reduce the number of factors considered, by determining
covariates that are independent of all others. Subsequently, the number of competing log-linear models is reduced, making
the exploration of the model space feasible. This is crucial when analysing data that form large sparse contingency tables.
We introduce a novelmodel search approach for a log-linearmodel space, informed by results from variable selectionwithin
clustering.Wedemonstrate that thismodel search algorithmcan identify parts of themodel space that containmodels of low
probability (thus helping to locate the highest probability model in less iterations, on average, compared to a less informed
approach), especially in the presence of covariates that are independent of all other factors. With regard to limitations, first
we show that there is no dependable correspondence between the covariate profile of the generated clusters and the log-
linear model that best describes the data. More importantly, using simulated and real data, we show that variable selection
within Bayesian clustering does not consistently detect marginal independence between covariates when the independent
covariates form interaction terms with other factors.

Studies on the relation between the two different modelling approaches are not commonplace. In Dunson and Xing
(2009), a Dirichlet process mixture of product multinomial distributions defines the prior on a set of categorical variables.
Bhattacharya andDunson (2012)model the joint distribution of categorical variables using simplex factormodels. In contrast
to our approach, variable selection switches are not considered in the aforementionedmanuscripts, and no direct connection
is made with log-linear model search. We are aware of three recent manuscripts that utilize clustering. The first is Marbac
et al. (2014), where the clustering is applied to the covariates. This is different to the clustering we consider, widely used
by practitioners, where the partitioning is applied to the subjects of the study. The second, Johndrow et al. (2014), has
some connection to our work. In this preprint, the authors examine situations where the joint distribution implied by a
sparse log-linear model has a low-rank tensor factorization. Relevant to our work is also the third, Zhou et al. (2015). This
manuscript introduces and utilizes the idea thatmarginally independent variables reduce the dimensionality of the problem.
This approach, central also to our work, was conceived and developed independently in parallel in our manuscript. The
modelling in Zhou et al. (2015) with regard tomarginal independence has similarities with the onewe adopt, and significant
differences. Our focus is different from Zhou as we utilize results from clustering to accelerate Bayesian log-linear graphical
model selectionwith the Reversible Jump, a novel approach in log-linearmodel determination.We comeback to these points
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of comparison in the Discussion Section. Section 2, provides a brief description of the clustering and log-linear modelling
approaches and contains concepts and notation important to the rest of the manuscript. In Section 3, we present theoretical
results on the correspondence between marginal independence on one hand, and variable selection within the Dirichlet
process clustering approach on the other, as well as a novel model search approach for log-linear models. Five simulated
data sets are analysed in Section 4, and two real data sets in Section 5. We conclude with a discussion.

2. Clustering and log-linear models

2.1. A Dirichlet process clustering model

TheDirichlet process (DP) is especially suited to the problemof clustering observations x1, . . . , xn, without pre-specifying
the number of clusters. It is assumed that given parameters µi, xi is drawn from F(µi). The mixing distribution over the
parametersµi is denoted by G. A suitable prior for G is a Dirichlet process with scale parameter α and mean distribution G0.
Using G0 and α, the DP partitions theµi parameters into a discrete set in a flexible way, allowing the sharing of information
between different but similar observations. Dirichlet process mixture models have been thoroughly investigated in the past
(Ferguson, 1973; Lo, 1984; MacEachern and Müller, 1998; Walker et al., 1999; Green and Richardson, 2001). They are used
in a wide range of applications, including epidemiology and genetic studies (Huelsenbeck and Andolfatto, 2007; Dunson
et al., 2008; Sinha et al., 2010; Reich and Bondell, 2011).

We adopt the conjugate Dirichlet process mixture model used in Molitor et al. (2010) and Papathomas et al. (2011b)
for profiling patterns of covariates in epidemiological studies. For subject i, a covariate profile xi is a vector of categorical
covariate values xi = (xi1, . . . , xiP), where P is the number of covariates. Let z = {z1, . . . , zn}, where zi is an allocation
variable, so that zi = c denotes that subject, i, belongs to cluster c. Denote with φc

p(x) the probability that the pth covariate
x.p is equal to x, when the individual belongs to cluster c. Given that zi = c , covariate x.p has a multinomial distribution with
cluster specific parameters φc

p = [φc
p(1), . . . , φ

c
p(Mp)]. Here,Mp denotes the number of categories of x.p. We assume that, a

priori, φc
p ∼ Dirichlet(λ1, . . . , λMp), Denote with ψ = {ψc, c ∈ N} the probabilities that a subject is assigned to cluster c .

We adopt a flexible ‘stick-breaking’ prior on the allocation weights ψc , with a random parameter α (West, 1992; Ishwaran
and James, 2001). For φ = {φc

p, c ∈ N, p = 1, . . . , P}, the model is written as,

xi|z, φ ∼

P
p=1

φzi
p (xip) for i = 1, 2, . . . , n.

φc
p(xip) ∼ Dirichlet(λ1, . . . , λMp) for c = 1, 2, . . .

P(zi = c|ψ) = ψc for i = 1, 2, . . . , n, and c = 1, 2, . . .

ψc = Vc


l<c

(1 − Vl) for c = 2, 3, . . . with ψ1 = V1,

Vc ∼ Beta(1, α) for c = 1, 2, . . . .

This implies the more recognizable mixture for the likelihood of the covariate observations,

Pr(xi|φ,ψ) =

∞
c=1

Pr(zi = c|ψ)
P

p=1

Pr(xip|zi = c) =

∞
c=1

ψc

P
p=1

φc
p(xip).

To identify the covariates that are important for the formation of clusters we consider the variable selection approach
described in Papathomas et al. (2012), which is inspired from Chung and Dunson (2009). In summary, consider cluster
specific binary indicators, γ c

p , so that γ c
p = 1 when covariate x.p is important for allocating subjects to cluster c; otherwise

γ c
p = 0. Denote by πp(xip) the marginal probability that covariate x.p takes the value xip, P(x.p = xip). Note that caution

should be exercised when interpreting this probability, as it is linked to the sampling frame. The probability that covariate
x.p is observed as xip, when subject, i, belongs to cluster c , is written as,

P(x.p = xip | zi = c) = [φc
p(xip)]

γ c
p × [πp(xip)](1−γ

c
p ). (1)

Utilizing πp(xip) in (1) when x.p does not contribute to subject allocation to cluster c is intuitively appropriate, as P(x.p =

x|zi = c) = P(x.p = x) implies by Bayes Theorem that P(zi = c|x.p = x) = P(zi = c). Now, we can write,

πp(xip) = P(x.p = xip) =


c

ψc[φ
c
p(xip)]

γ c
p × [πp(xip)](1−γ

c
p ).

We assume that the γ c
p are independent Bernoulli variables with γ c

p ∼ Bernoulli(ρp), 0 < ρp < 1. Here, ρp describes
the probability that covariate x.p is important for the partitioning of the subjects, in relation to the whole process rather
than a specific cluster. For ρp, we consider a sparsity inducing prior with an atom at zero, so that ρp ∼ 1{wp=0}δ0(ρp) +

1{wp=1}Beta(αρ, βρ), where wp ∼ Bernoulli(0.5). This prior is appropriate when it is required to clearly discriminate
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Table 1a
Cluster profiles in hypothetical simple illustration, defined by the φc

p multinomial probabilities, for covariate x.p and cluster c.

x.1 x.2 x.3 x.4 x.5 x.6

Cluster 1 (0.01, 0.3, 0.69) (0.01, 0.3, 0.69) (0.1, 0.1, 0.8) (0.1, 0.1, 0.8) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1)
Cluster 2 (0.01, 0.5, 0.49) (0.01, 0.5, 0.49) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1)
Cluster 3 (0.29, 0.7, 0.01) (0.29, 0.7, 0.01) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1)

Table 1b
Summary cluster profiles in hypothetical simple illustration. The ‘<’ (‘>’) symbol denotes that observation
x of covariate x.p in cluster c is more (less) likely compared to the average in the whole sample; otherwise,
the ‘0’ symbol is used.

x.1 x.2 x.3 x.4 x.5 x.6

Median(ρp) 0.8 0.8 0.9 0.9 0.001 0.001
Cluster 1 <<> <<> < 0 > < 0 > 000 000
Cluster 2 < 0 > < 0 > > 0 < > 0 < 000 000
Cluster 3 >>< >>< > 0 < > 0 < 000 000

between important and non-important covariates. The Dirichlet process model described in this Section is fitted using the
R package PReMiuM (Liverani et al., 2015).

To create an easily interpretable clustering end-product, whilst the rich MCMC output is utilized and uncertainty is ac-
counted for, we have adopted the model averaging approach described in Papathomas et al. (2012). One aspect of this ap-
proach is the derivation of a specific partition that best represents the variable clustering of the subjects during the MCMC
run. We refer to this as the ‘representative partition’. To clarify our model and notation we give a simple illustrative exam-
ple. Consider six categorical covariates, x.1, . . . , x.6, taking values 0,1 and 2. Suppose that subjects are typically allocated
into three sub-populations, with probabilities ψ1 = 0.3, ψ2 = 0.3 and ψ3 = 0.4. The multinomial probabilities for the six
covariates, given the allocation zi of subject i, is given in Table 1a. For instance, for z2 = 3 the second subject is allocated to
the third group, and the multinomial probabilities for x.1 with regard to that subject are, φ3

1 = (0.29, 0.7, 0.01). Covariates
x.5 and x.6 clearly do not contribute to the clustering of the subjects, as the multinomial probabilities are the same across
clusters. This implies that γ c

5 = γ c
6 = 0 for all c. The proportions for the covariate values across the whole sample can be

evaluated in accordancewith theψc andφc
p parameters. For example,π1(0) = 0.3×0.01+0.3×0.01+0.4×0.29 = 0.122.

For x.5 and x.6 this evaluation is trivial; for example π5(0) = 0.8. After sampling from this population, a hypothetical sum-
mary profile of the three clusters can be derived using the posterior distributions of the model parameters; see Table 1b.
For each covariate x.p and each possible observation x = 0, 1, 2, we consider the 95% credible interval (CI) for the difference
between the probability φc

p(x) of attribute x in group c , and the corresponding frequency of x.p = x in the whole sample.
Suppose that, with regard to the first group and the first covariate, the two CIs that correspond to x = 0, 1 are both below
zero, whilst the CI that corresponds to x = 2 is above zero. So, for subjects in the first group, it is less likely to observe 0 or 1
at the first covariate, compared to the whole sample, and more likely to observe 2. We denote this information with the ‘<’
and ‘>’ symbols. We use the ‘0’ symbol when the CI contains zero. In Table 1b, where we also provide hypothetical posterior
medians for the selection probabilities ρp, p = 1, . . . , 8, one can see the hypothetical summary structure in the population.

2.2. Log-linear graphical models

Denote withP the finite set of the P categorical covariates or factors. The resulting data can be arranged as counts in a P-
way contingency table. A Poisson log-linear interactionmodel is a generalized linearmodelwhere the data are the cell counts
of the contingency table; see Supplemental material, Section S1 (Appendix B), for a formal definition of an interaction term
in a log-linear model. The number of all possible log-linear models is 2(2

P ). It can be very large for non-trivial applications.
For example, the number of possible log-linear models for six factors is approximately 184 × 1019. Graphical models are a
subset of the class of log-linearmodels. They are represented by a graphwhere each node (or vertex) is an element ofP . Any
two nodes may be connected by an edge. Nodes not connected directly by a single edge are independent conditionally on
the factors represented by all other nodes (pairwise Markov property). Also, conditionally on nodes to which x.p is directly
connected, x.p is independent of all other nodes (local Markov property). Finally, two sets of nodes are independent when
they are separated by another set, conditionally on the separating set (global Markov property); see Lauritzen (2011) for
more details. The number of possible graphicalmodels is 2H , whereH = P!/(2(P−2)!), assuming the intercept and all factor
main effects are included in the model. For example, the number of possible graphical models for six covariates is 32768.

3. Results on marginal independence and a novel model search algorithm

3.1. Clustering and independence

Theorem 1. Consider random variables x.p and x.q, 1 ≤ p, q ≤ P, p ≠ q. If
C

c=1 γ
c
p ×γ c

q = 0 then x.p and x.q are independent.
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Proof. See Appendix A.

Theorem 2. Consider a set of random variables {x.1, . . . , x.P}. If, for some p ∈ {1, . . . , P},
C

c=1 γ
c
p × γ c

q = 0, for all q ≠ p,
then x.p is independent of {x.1, . . . , x.P} \ x.p.

Proof. See Appendix A.

Note that pairwise independence does not imply independence between sets of random variables. For example, if x.1 is
independent of x.2 and of x.3, it is not implied that x.1 is independent of {x.2, x.3}. It is also crucial to note that the converse
of Theorems 1 and 2 is not necessarily true. The previous Theorems lead to the following Corollary,

Corollary. Consider a set of random variables {x.1, . . . , x.P}. If for some p ∈ {1, . . . , P},
C

c=1 γ
c
p = 0, then x.p is independent

of {x.1, . . . , x.P} \ x.p.

Therefore, if the selection probability ρp for x.p is zero or close to zero, something that implies that
C

c=1 γ
c
p is also zero or

close to zero, we can assume that x.p is not connected with an edge with another covariate. If our interest lies in exploring
interactions, to reduce the dimensionality of the problem when fitting log-linear models to sparse contingency tables, x.p
could be removed from the analysis.

3.2. Construction and interpretation of matrix Tγ

Considering the results in Section 3.1, we construct Tγ , a matrix that summarizes the variable selection output, and
translates it into information that is relevant to log-linear modelling. The algorithm for the formation of Tγ is given below.

• For iteration it and for each cluster c with more than one subject, form matrix T c,it , so that element (p1, p2), 1 ≤ p1 <
p2 ≤ P is either zero or one, and equal to γ c

p1(it)× γ c
p2(it). All other matrix cells are empty.

• Sum up all matrices T c,it , weighing by cluster size, to create an information matrix Tγ ,

Tγ =


it


c

nc,it × T c,it

where nc,it is the size of cluster c at iteration it . Therefore, Tγ is a straightforward summary of all T c,it matrices into one,
with small clusters contributing less to this summary.

• For ease of interpretation reweight the elements of Tγ so that the maximum element is one, Tγ = (max{Tγ })−1
× Tγ .

Matrix Tγ is constructed in such a manner so that if element tγ (p1, p2), 1 ≤ p1 < p2 ≤ P , is close to zero, this implies that
an edge between x.p1 and x.p2 is not likely to be present in a highly supported graphical model.

3.3. A modified log-linear model search algorithm

In this subsection, we propose a novel model comparison approach based on the Reversible Jump MCMC algorithm
implemented in Papathomas et al. (2011a). We allow for the removal, addition or replacement of one edge in the graph
with another. Whilst in the aforementioned manuscript the choice of edge was completely random, we now inform this
choice by the clustering output using Tγ .

To propose the addition of an edge to the currently accepted model, we consider the elements of Tγ that correspond to
pairs of covariates not currently connected with an edge, transform so that they sum to one, and sample an edge using the
derived probabilities. To suggest an edge for removal, we consider the elements of Tγ that correspond to pairs of covariates
already connected with an edge, transform so that they sum to one, and sample an edge using complimentary probabilities.
To choose one edge to replace another, we sample both edges as previously. A detailed demonstration of the calculations
described in this subsection is presented in the Supplemental material, Sections S2 and S3 (Appendix B).

4. Simulation studies

The translation we implement between clustering and log-linear model search is novel. We therefore present an
extensive range of simulation studies to demonstrate advantages and limitations. The first describes a relatively simple
dependence structure. More complex structures are studied in the next two simulations, whilst the last two demonstrate
the benefit of our approach with regard to the analysis of sparse contingency tables.

4.1. The simulated data sets

The specifications for the five simulations are shown in Table 2. For simulations 1–3, the majority of the subject
observations (80%) is simulated using Model 1. The rest of the subjects are simulated using Models 2 and 3 in a balanced
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Table 2
Simulation specifications.

Number of
subjects

Number of
covariates

Number of levels
of covariates

Number of cells in
contingency table

Approximate
number of models

Number of covariates
that form interactions

Simulation 1 10,000 10 2 1024 3.5184 × 1013 7
Simulation 2 10,000 10 2 1024 3.5184 × 1013 6
Simulation 3 10,000 10 2 1024 3.5184 × 1013 9
Simulation 4 5,000 20 3 3.4 × 109 1.5 × 1057 6
Simulation 5 10,000 100 2 1.27 × 1030 24950 8

Table 3
MCMC specifications for the clustering analyses, and also for the log-linear model comparison Reversible jump chains. Clustering analyses were performed
using the R package PReMiuM. Reversible jump analyses were performed using Matlab code. All analyses performed on a PC equipped with an Intel(R)
Core(TM)i7-2600K CPU 3.40 GHz with 8GB RAM.

Clustering algorithms
Burn-in Iterations after burn-in Run time in minutes (approx.) Comment

Simulation 1 40,000 20,000 24
Simulation 2 40,000 20,000 24
Simulation 3 40,000 20,000 24
Simulation 4 100,000 20,000 30
Simulation 5 100,000 20,000 90
Edwards and Havranek data (CHD) 40,000 20,000 3
Genetic-environmental data 40,000 20,000 10

Reversible jump chains
Burn-in Iterations Run time in minutes Comment

Simulation 1 10,000 100,000 420
Simulation 2 10,000 100,000 420
Simulation 3 10,000 100,000 420
Simulation 4 2,000 10,000 360 after discarding 14 covariates
Simulation 5 50,000 106 240 after discarding 92 covariates
Edwards and Havranek data (CHD) 20,000 106 65
Genetic-environmental data 20,000 106 65 after discarding 18 SNPs

manner. The models are presented in Fig. 1. Simulation 1 is based on two distinct sets of covariates, where covariates that
belong to different sets are independent. Simulations 2 and 3 describe more complex structures compared to simulation 1,
since interaction terms share common covariates. We provide additional information on the designmatrices and parameter
coefficients of the utilized log-linear models in the Supplemental material, Section S4 (Appendix B). We used three models
to generate each simulated data set, rather than one, in order to emulate more accurately the variability and complexity
within a real data set.

Two more simulated data sets were created to demonstrate how our approach can be used for the analysis of sparse
contingency tables. In simulation 4, only six out of twenty factors are important for explaining the variability associated
with the cell counts. In simulation 5, only eight out of 100 factors are important for explaining the variability associated
with the cell counts. Three models were used for the generation of the fourth and fifth simulated data sets, seen in Fig. 1,
with probabilities {032%, 0.29%, 0.29%} and {0.8%, 0.1%, 0.1%} respectively.

The size of themodel space in simulations 4 and 5 renders conventional model comparison algorithms like the reversible
jumpMCMC unfeasible. The cluster specific variable selection approach should detect that 14 and 92 covariates respectively
are not important. Thiswill allow for the removal of these covariates from subsequent analyses, forming a drastically smaller
model space that can be explored in practice.

4.2. MCMC specifications, prior distributions and model search strategies

Information on the size of the chains, as well as run times, is provided in Table 3. The log-linear models were fitted
and compared within the reversible jump MCMC framework described in Papathomas et al. (2011a). Simulation 4 contains
factors with three levels each. Subsequently, models contain, on average, a larger number of parameters compared to the
other simulations, resulting in a slower Reversible Jump algorithm. Hence, the relatively small number of iterations. Samples
are rather small for accurately estimating posterior probabilities of less prominent models, in model spaces as large as the
oneswe consider. However, these chains provide valuable information for themixing performance of the different reversible
jump MCMC algorithms.

The following prior specifications were adopted. For the clustering Dirichlet process model we considered a sparse prior
for ρp with a point mass at zero (see Section 2.1), to force a clear distinction between the covariates that contribute to
the clustering and the ones that do not. Conjugate Dirichlet priors with λ1 = · · · = λMp = 0.5 were adopted for the
φc
p parameters. Chains were initialized by allocating subjects randomly to ten groups. Initial values for all other model
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Fig. 1. The graphical models used for the five simulations.

parameters were random. Regarding the log-linear model comparison analyses, unit information priors (Ntzoufras et al.,
2003) were adopted for the model parameters. All graphs are equally likely a priori. The majority of the specifications
described above are also adopted in the real data analyses presented in Section 5, with differences indicated clearly therein.

Following standard practice when building a reversible jump MCMC chain, in 60% of the iterations, a new set of values
for the parameters of the currently accepted model is proposed. A jump to a different graphical model is attempted in 40%
of the iterations, where it is equally likely to attempt the addition, removal or replacement of one edge with another. We
compare four model search strategies:

(a) Uniformly random selection. An unrefined model search strategy where all candidate edges are equally likely to be
selected.

(b) The cluster specific approach described in Section 3.3.
(c) A combination of (a) and (b), where (a) is employed in 30% of the iterations and (b) in 10% of the iterations.
(d) A balanced combination of (a) and (b)where the twomodel search approaches are each employed in 20%of the iterations.
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In all analyses, proposals for the model parameters are derived as in Papathomas et al. (2011a) manuscript where the
unrefined model search strategy (a) is adopted. To allow for an intelligible comparison with this standard approach, we
refer to the Reversible jump algorithm that employs (a) as the PDV approach using the authors’ initials. We do not refer to
(a) as PDV when covariates are discarded after implementing the clustering algorithm, because this is not a standard step.
Note that parameter proposals could also be constructed following Forster et al. (2012), although the two approaches share
many characteristics.

4.3. Simulation results

4.3.1. Variable selection within clustering and marginal independence
The flexible clustering algorithm discriminated clearly between important and unimportant covariates in all five

simulations; see Table 4 for the posteriormedian selection probabilitiesρp. Regarding simulations 4 and 5, the originalmodel
space contains 1.5 × 1057 and 24950 graphical models respectively. Implementing the PDV algorithm on such vast model
spaces is not feasible, since model comparison would be compromised in terms of convergence and numerical stability. For
simulation 4, the variable selection approach described in Section 2.1 correctly reduced the number of covariates to six,
after discarding 14 covariates with posterior median selection probabilities less than 0.14, whilst E(ρp) < 0.0045, p =

7, . . . , 20. Regarding simulation 5, the number of covariates was correctly reduced to eight, with posterior median selection
probabilities for the 92 unimportant covariates equal to zero or less than 0.01.

4.3.2. The representative cluster profiles in relation to the presence of interactions
In most simulations we observe some correspondence between the observed clustering structure and the simulated

interactions. However, this correspondence is often blurred, and it is not obvious how to infer and untangle the different
interaction terms simply by inspecting the cluster profiles shown in Table 4. For simulation 1, three clusterswere highlighted
in the output summary, as indicated by the patterns of ‘>’ and ‘<’ (see the end of Section 2.1). Clusters 1 and 2 correspond
to the simulated ‘ABCD’ and ‘HIJ’ interactions. The posterior median for the selection probability for ‘C’ is only slightly lower
than the medians of other important covariates, however ‘C’ does not appear to contribute to the formation of the cluster
profiles as strongly as the other important covariates. Cluster 3 clearly corresponds to the ‘HIJ’ interaction. In accordance to
the simulation set-up, ‘E’ and ‘F’ have very low selection probabilities. Hence in this simulation, the cluster profile ‘matches’
quite clearly the simulated interactions. For simulation 2, five clusters were highlighted in the output. Clusters 2–5 seem to
correspond to the ‘ABCD’ and ‘AFG’ interactions, and the selection probabilities for ‘H’,‘I’ and ‘J’ are low in accordancewith the
simulation set-up. Two clusters were highlighted in simulation 3. Their profiles seem to correspond to the ‘ABCD’ and ‘AFG’
interactions. The posterior selection probabilities for ‘H’, ‘I’ and ‘J’ are as high as the posteriormedians of the other important
covariates while that of ‘E’ is small, in accordance with the simulation mechanism.With regard to the fourth simulated data
set, Table 4 presents results from the flexible clustering analysis in relation to the first six covariates, correctly selected
by the clustering algorithm. Six clusters comprise the representative partition, but do not display clear separating patterns
suggestive of the existence of specific interactions. This is also the case for simulation 5.

Overall we see that, although suggestive in some cases, the covariate profiles of representative clusters do not inform
conclusively on interaction termswithin a log-linearmodelling framework. This note of caution is of interest to practitioners
that employ clustering approaches, as the relation between covariate profiles and interactions within a linear modelling
framework is often a matter of inquiry.

4.3.3. The derived Tγ matrices
The constructed Tγ matrices are shown below. We display with bold font the values of elements that correspond to an

existing edge in the most probable model; see Section 4.3.4 for posterior model probabilities.
The Tγ matrices recover the graph of the most likely model well for Simulations 1 and 2, as expected from our discussion

of the representative profiles. In terms of picking up existing or non-existing edges, it is clear in simulations 1–3 that,
overall, smaller weight is given to non-existing edges, compared to existing ones. We also notice a ‘spill-over’ effect in
the Tγ matrices, with blocks of high valued elements corresponding to important covariates that are not connected in the
simulated graph.

In simulations 4 and 5, considering the important covariates, the elements of Tγ are all large, whether they correspond to
an existing edge or not. This illustrates that the converse of the Theorems in Section 3.1 does not hold. There is no significant
difference in the derived Tγ matrices, when the clustering is performed again on the reduced set of covariates.

Importantly, small elements in the Tγ matrices always correspond to a non-existing edge. They never indicate that an
existing edge is absent, something that would be detrimental to a model search algorithm. If the value of an element
tγ (p1, p2) is low, say less than 0.1, then it is always the case that the edge between xp1 and xp2 is absent from the high
probability graphicalmodel. Elements tγ that correspond to existing edges are usuallymuch larger, at least one or two orders
of magnitude larger compared to elements with a clearly low value. These results confirm the correspondence between the
two types of structures, the specificity of the pattern of small elements in Tγ , and highlight the potential role of clustering
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Table 4
Cluster profiles for the five simulations. In parenthesis the number of subjects typically allocated to each representative cluster. All posterior median
selection probabilities for the remaining 14 covariates in Simulation 4 were less than 0.14. Posterior median selection probabilities for the remaining 92
covariates in Simulation 5 were either equal to zero or smaller than 0.01.

Simulation 1
A B C D E F G H I J

Median(ρp) 0.36 0.78 0.32 0.75 0.06 0.05 0.00 0.48 0.57 0.50
Cluster 1 (5465) >< <> 00 <> 00 00 00 >< >< <>

Cluster 2 (3159) <> >< 00 >< 00 00 00 >< <> ><

Cluster 3 (1376) 00 >< 00 00 00 00 00 <> <> <>

Simulation 2
A B C D E F G H I J

Median(ρp) 0.63 0.38 0.35 0.53 0.00 0.50 0.51 0.16 0.07 0.09
Cluster 1 (1153) 00 00 00 00 00 >< >< 00 00 00
Cluster 2 (1926) <> >< 00 >< 00 >< >< 00 00 00
Cluster 3 (2031) <> <> >< >< 00 >< >< 00 00 00
Cluster 4 (2466) <> >< <> <> 00 >< >< 00 00 00
Cluster 5 (2424) >< <> 00 <> 00 <> <> 00 00 00

Simulation 3
A B C D E F G H I J

Median(ρp) 0.38 0.50 0.30 0.54 0.07 0.34 0.49 0.41 0.43 0.66
Cluster 1 (7676) <> >< 00 >< 00 >< >< 00 00 00
Cluster 2 (2324) >< <> 00 <> 00 <> <> 00 00 00

Simulation 4
A B C D E F

Median(ρp) 0.92 0.87 0.97 0.56 0.70 0.46
Cluster 1 (2986) ><> ><> ><> ><> ><> ><>

Cluster 2 (306) 000 <>< <>< 0 > 0 < 00 000
Cluster 3 (700) ><> >< 0 ><> <>< <>< <><

Cluster 4 (260) <>< <>< <>< <>< <>< <><

Cluster 5 (354) <>< <>< 00 > 000 0 >< 000
Cluster 6 (394) <>< 0 > 0 <>< 000 0 <> 0 ><

Simulation 5
A B C D E F G H

Median(ρp) 0.96 0.95 0.97 0.93 0.97 0.96 0.97 0.96
Cluster 1 (4036) >< <> <> <> <> >< <> <>

Cluster 2 (3813) >< <> <> <> >< <> >< ><

Cluster 3 (399) >< 00 <> >< <> >< >< <>

Cluster 4 (720) <> >< >< >< <> >< <> <>

Cluster 5 (902) <> >< >< >< >< <> >< ><

Cluster 5 (130) <> >< >< >< >< <> >< <>

Edwards and Havranek data (CHD)
A B C D E F

Median(ρp) 0.86 0.92 0.94 0.26 0.81 0.10
Cluster 1 (900) >< <> >< 00 <> 00
Cluster 2 (941) <> >< <> 00 >< 00

Genetic-environmental data (GE)
rs8034191 (A) rs4324798 (B) rs1950081 (C) age (D) sex (E) smoking (F)

Median(ρp) 0.01 0.00 0.10 0.92 0.82 0.85
Cluster 1 (2222) 00 00 00 >< >< <>

Cluster 2 (2059) 00 00 00 <> <> ><

algorithms to assist log-linear model search algorithms.

T sim1
γ =



A B C D E F G H I J
A 0.52 0.08 0.50 0.04 0.02 0.02 0.20 0.27 0.15
B 0.45 1 0.06 0.04 0.03 0.47 0.64 0.47
C 0.45 0.02 0.02 0.009 0.12 0.23 0.16
D 0.06 0.04 0.03 0.45 0.65 0.48
E 0.003 0.003 0.03 0.04 0.03
F 0.002 0.02 0.03 0.03
G 0.02 0.02 0.02
H 0.61 0.56
I 0.74


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T sim2
γ =



A B C D E F G H I J
A 0.57 0.37 0.72 0.04 0.96 1 0.19 0.06 0.05
B 0.43 0.36 0.02 0.38 0.27 0.08 0.03 0.02
C 0.63 0.02 0.24 0.24 0.05 0.03 0.03
D 0.03 0.48 0.54 0.13 0.04 0.05
E 0.03 0.03 0.005 0.002 0.003
F 0.83 0.20 0.05 0.04
G 0.18 0.05 0.04
H 0.01 0.01
I 0.005



T sim3
γ =



A B C D E F G H I J
A 0.69 0.15 0.60 0.06 0.48 0.70 0.16 0.21 0.55
B 0.46 0.91 0.07 0.52 0.86 0.27 0.38 0.72
C 0.69 0.02 0.10 0.27 0.14 0.19 0.30
D 0.07 0.34 0.70 0.27 0.39 0.66
E 0.03 0.06 0.03 0.03 0.06
F 0.95 0.18 0.44 0.80
G 0.30 0.56 1
H 0.49 0.62
I 0.81


,

T sim4
γ =


A B C D E F

A 0.95 1 0.77 0.85 0.72
B 0.98 0.77 0.83 0.72
C 0.78 0.87 0.73
D 0.72 0.66
E 0.69



T sim5
γ =



A B C D E F G H
A 0.99 1 1 1 1 1 1
B 0.97 0.99 0.99 0.99 0.99 0.99
C 0.99 0.99 0.99 0.99 0.99
D 0.99 1 1 1
E 1 1 1
F 1 1
G 1


.

4.3.4. Log-linear model selection with the aid of the clustering output
Due to the relatively small number of subjects in relation to the number of cells in the contingency tables, and the

variability inherent in such simulations, posterior model probabilities are not 80%, 10% and 10% for Models 1,2, and 3
shown in Fig. 1. In Fig. 2, the top 3 models a posteriori as well as model probabilities are presented for each simulation.
For simulations 1 to 4, the most likely model a posteriori is the same as the main model used to create the data (Model 1
in Fig. 1), whilst this is not the case for simulation 5. Model probabilities were derived using the Reversible jump algorithm
and search strategy (d); see results presented in Table 5.

Simulations 1 to 3 generate contingency tables that are not sparse. The Reversible Jump algorithm can explore the whole
set of possible graphical models without removing any covariates from the analysis. In contrast, with regard to simulation
4, the removal of 14 marginally independent covariates reduced the size of the contingency table from 3.4 × 109 to 729
cells, and the number of log-linear graphical models from 1.5 × 1057 to a more manageable 32768. We performed model
comparison on the reduced data set with six covariates, using variation (a) where all proposedmoves are random, in effect a
variation that corresponds to using PDV after reducing themodel space with the cluster specific approach. We also consider
the three model search variations that utilize Tγ , (b), (c) and (d).

Removing 92 marginally independent covariates from the simulation 5 analysis reduced the size of the contingency
table from 1.27 × 1030 to 256 cells, and the number of log-linear graphical models from 24950 to 28; a huge gain. Although
simulation 5 mainly illustrates the utility of clustering output in reducing the number of covariates for sparse contingency
tables, it also illustrates the fact that the converse of Theorem 1 does not hold. For the covariates kept in the analysis,
all weights in the Tγ matrix are effectively equal to one, even for non-existing edges. Consequently, after removing the
unimportant covariates, it is not possible to improve on the standard search algorithm by considering the cluster specific
output. In fact,model comparison on the reduced data setwas performed using only one search strategy, as all four strategies
are equivalent. In general, if there is little variability in the elements of the Tγ matrix, we do not expect that this matrix will
be informative to the model search.
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Table 5
Mixing performance of samplers. Median of iterations to best model is calculated after 30 runs of the reversible jump MCMC chain. First and
third quartiles are given in parentheses. PDV denotes the unrefined model search strategy adopted in Papathomas et al. (2011a). See Fig. 2 for
the highest posterior probability model.

Acceptance rate as a
percentage

Iterations (median) to highest
posterior probability model

Posterior probability for
highest probability model

Simulation 1
(a) Uniformly random (PDV) 5.1 590 (452,821) 0.55
(b) Cluster specific 3.8 247 (164,369) 0.55
(c) Combined (30%,10%) 5.3 540 (290,674) 0.53
(d) Combined (20%,20%) 4.9 403 (312,493) 0.55

Simulation 2
(a) Uniformly random (PDV) 4.4 717 (475,990) 0.60
(b) Cluster specific 4.4 189 (147,238) 0.58
(c) Combined (30%,10%) 4.4 417 (346,354) 0.60
(d) Combined (20%,20%) 4.5 257 (181,314) 0.59

Simulation 3
(a) Uniformly random (PDV) 3.2 657 (545,1065) 0.62
(b) Cluster specific 3.1 445 (335,592) 0.60
(c) Combined (30%,10%) 3.3 538 (431,701) 0.60
(d) Combined (20%,20%) 3.2 560 (368,815) 0.61

Simulation 4 (considering only the 6 important covariates)
(a) Uniformly random 2.2 661 (550,746) 0.55
(b) Cluster specific 2.08 685 (534,1015) 0.49
(c) Combined (30%,10%) 2.5 625 (543,806) 0.42
(d) Combined (20%,20%) 2.2 733 (551,947) 0.62

Simulation 5 (considering only the 8 important covariates)
Any of the 4 equivalent strategies 1.1 5183 (3711,6590) 0.74

In Table 5, we present results on the performance of the different reversible jump chains and search strategies. The
cluster specific approach (b) outperforms the other search strategies, in terms of iterations to best model. This effect is more
prominent in simulations 1 and 2. Search strategy (b) offers a noticeably lower acceptance rate in simulation 1, where we
observe a trade-off between acceptance rate and number of iterations to the bestmodel. Intuitively, by havingmore targeted
moves, the overall chance of jumping decreases, but the chainmovesmore quickly to the higher posterior probability region.

Overall, results in simulations 1 to 3 show the benefit of search strategy (b), where information from variable selection
within clustering is included in log-linear model search. With regard to simulation 4, there is little improvement when
the T sim4

γ matrix is employed; see Table 5. This was expected, as there is little variability in the elements of T sim4
γ . In the

Supplemental material, Section S5 (Appendix B), we examine the rate of accumulated mass of posterior model probability
for the first 3 simulations and the different search strategies employed. The reported results also support the argument for
incorporating information from variable selection within clustering.

Although our experimental results support search strategy (b), strategy (d), where (a) is combined in a balanced manner
with (b), also performs well, offering a good balance between acceptance rate and iterations to best model. Although we
did not observe this in any of our analyses, it is prudent to include random search steps that do not depend on the derived
Tγ matrix as a safeguard, in case variable selection within clustering does not detect an existing edge in a high probability
graphical model. In this hypothetical scenario, the search moves that do not depend on Tγ will allow for the detection of
the covariate space that is not supported by the clustering. Note that edges not reflected in Tγ are likely to exist in lower
probability models.

5. Real data illustrations

MCMC specifications for the two real data illustrations, as well as run times, are given in Table 3. Prior distributions were
the same as the ones adopted in the analysis of the simulated data, described in Section 4.2.

5.1. Risk factors for coronary heart disease

Edwards and Havránek (1985) presented a 26 contingency table in which 1841 men were cross-classified by six risk
factors for coronary heart disease (CHD). We assume that main effects are always present and compare the 32768 possible
graphical log-linear models. Due to the large number of times this data set has been analysed in the past [see, for example,
Dellaportas and Forster (1999)] the top two graphical models (‘ADE+AC+ BC+ BE+ F’ and ‘AE+DE+AC+ BC+ BE+ F’,
following the notation in Agresti (2002)) and associated posterior model probabilities (0.28 and 0.23 respectively for unit
information priors) are known. All other graphical models have posterior probabilities lower than 0.1.
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Fig. 2. The resulting best models from the five simulations.

In Table 4, we present the covariate profiles of the representative clusters createdwith the Bayesian partitioning analysis.
The subjects are divided in two clusters, and it is not straightforward to disentangle the log-linear model interactions that
are present from the cluster profiles.

The two-way interactions ‘AC’, ‘AE’, ‘BC’ and ‘BE’ are clearly captured by Tγ ; see below. As in Section 4.3.3, we display
with bold font the values of elements that correspond to an existing edge in themost probablemodel. This demonstrates the
applicability of our approach. Elements tγ (1, 4) = 0.14 and tγ (4, 5) = 0.12 that correspond to the three-way interaction
‘ADE’ are smaller. We believe this is due to the signal in the data not being strong. The two likely models have combined
posterior probability equal to 0.51, whilst only one of them contains the three-way interaction ‘ADE’. No other model is
associated with probability greater than 0.1. Nevertheless, the two elements tγ (1, 4) and tγ (4, 5) are still one order of
magnitude larger compared to the five elements that correspond to ‘F’. Factor ‘F’ does not interact with any other covariate,
and this matches the low posterior selection probability E(ρ6) = 0.10, implying it is not likely to propose the addition of
an edge in the graphical model from covariate ‘F’ to another covariate. Of the eleven edges that are not present in the high
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Table 6
Mixing performance of samplers.Median of iterations to bestmodel is calculated after 300 runs of the reversible jumpMCMC chain. First and third quartiles
are given in parentheses. PDV denotes the unrefined model search strategy adopted in Papathomas et al. (2011a).

Edwards and Havranek data (CHD)
Acceptance rate as a percentage Iterations (median) to highest

posterior probability model
Posterior probability for
highest probability model
‘ADE + AC + BC + BE + F’

(a) Uniformly random (PDV) 5.2 314 (215,582) 0.28
(b) Cluster specific 3.7 244 (162,378) 0.28
(c) Combined (30%,10%) 4.9 273 (172,470) 0.27
(d) Combined (20%,20%) 4.6 248 (155,392) 0.28

Genetic-environmental data [including important (characterized as such by clustering) representative SNPs]
Acceptance rate as a percentage Iterations (median) to highest

posterior probability model
Posterior probability for
highest probability model
‘A + B + C + DEF’

(a) Uniformly random 6.3 564 (257,1205) 0.53
(b) Cluster specific 8.4 196 (83,443) 0.51
(c) Combined (30%,10%) 6.9 310 (147,670) 0.51
(d) Combined (20%,20%) 7.5 235 (91,516) 0.52

probability model, five correspond to very small elements tγ . Using Tγ to inform the model search algorithm, results in the
identification of a large part of the model space that is associated with low probability.

T Real data (CHD)
γ =


A B C D E F

A 0.81 0.81 0.14 0.56 0.04
B 1 0.16 0.75 0.05
C 0.16 0.75 0.05
D 0.12 0.01
E 0.05

 .
In Table 6, we present model selection results. It is clear that adopting search strategy (b) to incorporate information from
the clustering analysis reduces the average number of iterations to the best model. Model search strategy (d), where (a) and
(b) are combined also performs well, as was the case in the simulations.

5.2. Genetic and other risk factors

We consider thirty single nucleotide polymorphisms (SNPs) in chromosomes 6 and 15. These are data from 4260 subjects
that participated in a genome-wide association study of lung cancer presented in Hung et al. (2008). The thirty most
significant SNPs in terms of marginal p-value are analysed. Some of these genetic markers were identified as associated
with the phenotype in Papathomas et al. (2012). We consider two levels for each marker (0 – wild type; 1 – homozygous or
heterozygous variant).

Twelve SNPs were indicated as important by variable selection within clustering; two from chromosome 15 and ten
from chromosome 6. Nine of the selected chromosome 6 SNPs are highly correlated. The two selected chromosome 15 SNPs
are also highly correlated. Therefore, we decided to include three SNPs in the log-linear graphical model as representatives
of the selected SNPs; rs8034191 from chromosome 15 and {rs4324798,rs1950081} from chromosome 6. We also include
age, gender and smoking status in the log-linear graphical model, to search for gene-environment interactions as well as
gene–gene interactions. We consider two levels for smoking (0 – non or ex smoker; 1 – smoker) and age (below and above
median). The variables will be referred to as A to F, with {A,B,C} denoting the genetic factors.

Reducing the number of SNPs from 30 to 12, and then to 3, allows for the use of reversible jump MCMC to compare
competing graphical models. The 233 contingency table would be too sparse with the vast majority of cells equal to
zero.

The highest posterior probability model is ‘A+B+C+DEF’, which does not support the presence of gene–gene or gene-
environment interactions. On the other hand, a three-way interaction ‘DEF’ is suggested, which implies different patterns
of smoking behaviour by age and gender. The presence of such an interaction is in line with epidemiological understanding,
and shows that our algorithm performs well. In Table 4, we present the profiles of the representative clusters created
with the Bayesian partitioning analysis. The subjects are typically divided in two clusters which correspond to the ‘DEF’
interaction.

The derived Tγ matrix is shown below, after the first stage clustering analysis is performed afresh for the six covariates.
We did not cluster the subjects using all 12+3 covariates because the 12 highly correlated important SNPswould ‘swamp’ the
3 environmental factors. The Tγ matrix correctly indicates the presence of the three-way interaction ‘DEF’. It also correctly
indicates that the first three covariates do not form any interaction terms. In this case, we do see a close correspondence
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between the clustering pattern and interactions in the associated log-linear model.

T Real data (GE) (2nd run)
γ =


A B C D E F

A 0.002 0.01 0.06 0.06 0.06
B 0.001 0.02 0.02 0.02
C 0.09 0.07 0.08
D 1 0.98
E 0.88

 .
Similarly to the previous real data analysis, using the Tγ matrix to inform the model search algorithm results in the
identification of part of the model space that is associated with low probability and improvement in model search (Table 6).

We also investigated an alternative approach for assessing the evidence for the presence of an edge, where the pairwise
association between two factors is evaluated by the estimation of odds-ratios. See the Supplemental material, Section
S6 (Appendix B), for more details on these calculations, as well as an illustration on the two real data sets analysed
in this manuscript. Results demonstrate that our approach, based on a clustering procedure that considers all variables
simultaneously, gives different information on the presence of interactions (two-way and higher) than an approach which
is based purely on pairwise associations. For example, for the genetic data analysed in this subsection, the pairwise approach
fails to capture an association between D and F, despite the three-way interaction ‘DEF’ present in the prominent highest
posterior probability model; see Table S2 in the Supplemental material (Appendix B). We further discuss this in the next
section.

6. Discussion

The advantage in utilizing variable selection within partitioning to inform log-linear model selection is mostly pertinent
to marginal independence. For sparse contingency tables, this information can lead to the substantial reduction of the
number of covariates considered, making the exploration of the model space feasible. For example, in the second real data
illustration, it would be impossible to explore the model space for a 233 contingency table by conventional methods such
as the Reversible jumpMCMC, without the considerable reduction in the number of SNPs through the first clustering stage.
Theoretical results presented in Section 3.1 show that covariates x.p with posterior median selection probability ρp equal
to zero (or very close to zero in practice) do not form interaction terms. This appears to be true even when a sparse prior
distribution is adopted for the selection parameters ρp, as was the case for all simulation studies and real data analyses in
this manuscript.

With regard to detecting conditional independence, utilizing the output from a clustering model, where all variables are
considered simultaneously, offers different results compared to methods based on pairwise associations for the detection
of edges. This was illustrated empirically on the two real data examples; see results presented in the Supplemental material
(Appendix B). Intuitively, considering all variables simultaneously, rather than in a pairwise fashion, should increase
the likelihood of detecting dependence structures that are more complex than pairwise dependencies such as two-way
interactions. Nonetheless, it is possible that incorporating in some manner information coming from odds-ratios could be
beneficial, given that multiple testing concerns are addressed. Note that our approach utilizes a variable selection approach
where all factors are included simultaneously in the model, with a prior assigned to the probability of inclusion. This makes
it less susceptible to multiple testing concerns, and particularly suitable for reducing the search space in cases where a large
number of factors is investigated; see Scott and Berger (2010).

Adopting search strategy (b) and informing the model search algorithm with Tγ often improves the efficiency of the
search. Although marginal independence was not always detected, because the converse of the Theorems in 3.1 does not
hold, in themajority of the analyses Tγ identified parts of themodel space that containedmodels of low probability, leading
to more efficient model search steps. Importantly, using Tγ to assist the model search never resulted in a worse algorithm,
compared to the standard model search approach in Papathomas et al. (2011a). In terms of number of iterations to the
best model, the model search algorithm that is informed by clustering performed better or at least as efficiently as the
standard algorithm. The additional computational cost for the clustering is minimal when the R package PReMiuM is used
(Liverani et al., 2015), which is primarily written in C++ and R; see the run times reported in Table 3. The approach where
the naivemodel search (a) is combined in a balancedmanner with (b), where the Tγ matrix is employed, also performswell,
offering a good balance between acceptance rate and number of iterations to the best model. Combining a ‘naive’ with a
more ‘targeted’ search approach ensures a comprehensive and efficient exploration of the model space, in the same spirit
as the simultaneous sampling from ‘hot’ and ‘cold’ chains in simulated tempering (Geyer and Thompson, 1995).

In Johndrow et al. (2014), the authors consider standard and novel latent class structures. The DP is a special case, and
its rank is defined as the minimum number of clusters required to describe the joint probability tensor for the categorical
covariates. The authors relate log-linear modelling with latent class modelling, investigating if a trivial relationship exists
between the two modelling approaches, as we do in this manuscript, albeit from a different standpoint. Bounds are derived
for the rank of the latent class model, in relation to the number and structure of the interactions that are present in a weakly
hierarchical log-linear model. In one of the results, a massive reduction in the upper bound of the latent class model’s rank
is shown, under a sparse log-linear model; a model is defined as sparse when the number of non-zero model parameters is
much smaller compared to the number of parameters in the saturated model. The authors also demonstrate that the rank
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of the latent structure depends only on variables that are not marginally independent. A straightforward application of one
of the results in Johndrow et al. (2014), gives that an upper bound of the rank of the latent class model corresponding to the
prominent model of simulation 1 is 27, rather than the default 29. The upper bound corresponding to the prominent model
of simulation 5 is 28, rather than the default 299.

Zhou et al. (2015) also utilizes the idea that marginally independent variables reduce the dimensionality of the model
required to describe the joint probability distribution between the covariates. A PARAFAC factorization is adopted, which
can be viewed as a more general representation of the Dirichlet process. Dimensionality reduction is achieved with the
introduction of the sparse PARAFAC (sp-PARAFAC) formulation, where marginal independence is modelled with fixed
baseline vectors, quantities that correspond to the πp(x) quantities we introduced in this manuscript. These are the main
similarities between the two approaches, although there are significant differences too. In Zhou et al. (2015) the focus
of the theoretical results are in providing expressions for parameters of the log-linear models that correspond to the
adopted latent classmodel, assessing the level of induced shrinkage, and assessing the convergence of the probability tensor
induced by the sp-PARAFAC formulation to the true probability tensor. In contrast, we focus our theoretical investigation
on the variable selection switches and what they imply with regard to marginal independence. The prior formulation for
detectingmarginally independent covariates and reducing dimensionality is also different in the two approaches. Finally, the
objectives in the two manuscripts are different, as we focus on accelerating log-linear model selection with the Reversible
Jump approach by utilizing output from the clustering process.

A limitation of the approach introduced in this manuscript, as well other approaches we discussed, is the inability to
detect conditional independence through the clustering output in a consistent and wieldy manner. One recent attempt at
tackling this problem is Kunihama and Dunson (2014), where the concept of mutual information is introduced. Results
similar to the ones in Section 3.1, concerning conditional independence, would be useful as conditional independence
between variables is keywhenbuilding the joint distribution of {x.1, . . . , x.P}using graphicalmodels. Investigating a possible
direct link between variable selection within clustering and conditional independence is the subject of ongoing research.
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Appendix A

Proof of Theorem 1. Assume that the subjects are grouped into C clusters. As
C

c=1 γ
c
p × γ c

q = 0, without any loss of
generality, assume that, for x.p and x.q,

γ c
p = 0, γ c

q = 1, for c ∈ Γ1,

γ c
p = 1, γ c

q = 0, for c ∈ Γ2,

γ c
p = 0, γ c

q = 0, for c ∈ Γ3 = {1, . . . , C} ∩ (Γ1 ∪ Γ2)
{,

where Γ1 ∩ Γ2 = ∅. To simplify the notation, we suppress the x and x′ from P(x.p = x, x.q = x′), and write P(x.p, x.q). We
also write φc

p instead of φc
p(x), and πp instead of πp(x). Finally, we write


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, l = 1, 2, 3, instead of


c∈Γl

. Then,

P(x.p, x.q) =

C
c=1

ψc{(φ
c
p)
γ c
p (πp)

1−γ c
p }{(φc

q)
γ c
q (πq)

1−γ c
q }

= πp


Γ1

ψcφ
c
q + πq


Γ2

ψcφ
c
p + πpπq


Γ3

ψc .

Also,

P(x.p)P(x.q) =


Γ1

ψcπp +


Γ2

ψcφ
c
p +


Γ3

ψcπp


×


Γ1

ψcφ
c
q +


Γ2

ψcπq +


Γ3

ψcπq



= πp


Γ1

ψcφ
c
q


1 −


Γ2

ψc


+ πq


Γ2

ψcφ
c
p


1 −


Γ1

ψc



+πpπq


Γ1

ψc


Γ2

ψc


+


Γ3

ψc


+


Γ2

ψcφ
c
p


Γ1

ψcφ
c
q


.



62 M. Papathomas, S. Richardson / Journal of Statistical Planning and Inference 173 (2016) 47–63

Now,

P(x.p, x.q)− P(x.p)P(x.q) = 0
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This is always true since, for example, as πp(x) = P(x.p = x),
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Proof of Theorem 2. Without loss of generality, to simplify the notation assume that p = 1. Then, for all q ∈

{2, . . . , . . . , P},
C

c=1 γ
c
1 × γ c

q = 0. From Theorem 1, x.1 is independent of x.q, for any 2 ≤ q ≤ P . Such pairwise
independence does not imply that x.1 is independent of {x.2, . . . , x.P}. To show this assume, also without loss of generality,
that γ c

1 = 0, for c ∈ Γ1 and γ c
1 = 1, for c ∈ Γ2. The Γ1 and Γ2 sets can be empty. Now, since,
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and x.1 is independent of {x.2, . . . , x.P} as required.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jspi.2016.01.002.
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