8,354 research outputs found

    Sustainable economic development : concept, principles and management from Islamic perspective

    Get PDF
    The basic concern of development in Islamic economic system is on human welfare. This is in line with the very basic objective of Islamic jurisprudence (Shari’ah ) which puts important to the welfare of the people and their relief from hardship. Economic development should be consistent with this central objective of shari`ah. The center for development process in Islam relies on man as an economic agent. It is man to be educated on the entire development process by integrating sosial development, economic development and environmental conservation and protection. This paper attempts to explain the concept, principles and management of sustainable economic development from Islamic perspective. The paper would start by defining the concept of sustainable economic development and development goals. Next, the Islamic principles for sustainable economic development would be discussed, followed by the discussion on the management of sustainable economic development from Islamic perspective. In conclusion, the paper strongly suggests the economic development process to fully adhere to the Islamic principles as the key for sustainable development which covers both the material and non-material aspects of life. Keywords: Sustainable development, Economic development, management, Islamic economics, economic syste

    Valuing flexibility in the migration to flexgrid networks

    Get PDF
    Flexible optical networking can now be installed to increase network capacity in light of future traffic demands. This paper researches the different migration paths using a real option analysis, showing the impact of uncertainty

    Coexistence of continuous variable QKD with intense DWDM classical channels

    Full text link
    We demonstrate experimentally the feasibility of continuous variable quantum key distribution (CV-QKD) in dense-wavelength-division multiplexing networks (DWDM), where QKD will typically have to coexist with several co- propagating (forward or backward) C-band classical channels whose launch power is around 0dBm. We have conducted experimental tests of the coexistence of CV-QKD multiplexed with an intense classical channel, for different input powers and different DWDM wavelengths. Over a 25km fiber, a CV-QKD operated over the 1530.12nm channel can tolerate the noise arising from up to 11.5dBm classical channel at 1550.12nm in forward direction (9.7dBm in backward). A positive key rate (0.49kb/s) can be obtained at 75km with classical channel power of respectively -3dBm and -9dBm in forward and backward. Based on these measurements, we have also simulated the excess noise and optimized channel allocation for the integration of CV-QKD in some access networks. We have, for example, shown that CV-QKD could coexist with 5 pairs of channels (with nominal input powers: 2dBm forward and 1dBm backward) over a 25km WDM-PON network. The obtained results demonstrate the outstanding capacity of CV-QKD to coexist with classical signals of realistic intensity in optical networks.Comment: 19 pages, 9 figures. Revised version, to appear in New Journal of Physic

    Ultimate low system dark count rate for superconducting nanowire single-photon detector

    Full text link
    The dark count rate (DCR) is a key parameter of single-photon detectors. By introducing a bulk optical band-pass filter mounted on a fiber-to-fiber optical bench cooled at 3 K and blocking down to 5 micrometer, we suppressed the DCR of a superconducting nanowire single-photon detector by more than three orders of magnitude. The DCR is limited by the blackbody radiation through a signal passband of 20 nm bandwidth. The figure of merit, system detection efficiency, and DCR were 2.7 x 10^11, 2.3 %, and 0.001 Hz, respectively. Narrowing the bandwidth to 100 GHz suppresses the DCR to 0.0001 Hz and the figure of merit increases to 1.8 x 10^12.Comment: to appear in Optics Letter

    Entanglement Distribution in Optical Networks

    Full text link
    The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here we show the design of a metropolitan optical network consisting of tree-type access networks whereby entangled photon-pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users, thus allowing classical and one-way quantum communication as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the original network design by extending its reach, number of users and capabilities.Comment: 26 pages, 12 figure

    Valuing flexibility in the migration to flexible-grid networks

    Get PDF
    Increasing network demand is expected to put pressure on the available capacity in core networks. Flexible optical networking can now be installed to increase network capacity in light of future traffic demands. However, this technology is still in its infancy and might lack the full functionality that may appear within a few years. When replacing core network equipment, it is therefore important to make the right investment decision between upgrading toward flexible-grid or fixed-grid equipment. This paper researches various installation options using a techno-economic analysis, extended with real option insights, showing the impact of uncertainty and flexibility on the investment decision. By valuing the different options, a correct investment decision can be made

    Design and simulation of 1.28 Tbps dense wavelength division multiplex system suitable for long haul backbone

    Get PDF
    Wavelength division multiplex (WDM) system with on / off keying (OOK) modulation and direct detection (DD) is generally simple to implement, less expensive and energy efficient. The determination of the possible design capacity limit, in terms of the bit rate-distance product in WDM-OOK-DD systems is therefore crucial, considering transmitter / receiver simplicity, as well as energy and cost efficiency. A 32-channel wavelength division multiplex system is designed and simulated over 1000 km fiber length using Optsim commercial simulation software. The standard channel spacing of 0.4 nm was used in the C-band range from 1.5436-1.556 nm. Each channel used the simple non return to zero - on / off keying (NRZ-OOK) modulation format to modulate a continuous wave (CW) laser source at 40 Gbps using an external modulator, while the receiver uses a DD scheme. It is proposed that the design will be suitable for long haul mobile backbone in a national network, since up to 1.28 Tbps data rates can be transmitted over 1000 km. A bit rate-length product of 1.28 Pbps.km was obtained as the optimum capacity limit in 32 channel dispersion managed WDM-OOK-DD system.Comment: Accepted for publication in Journal of Optical Communications - De Gruyte
    corecore