156 research outputs found

    Analysis of interference to cable television due to mobile usage in the Digital Dividend

    Get PDF
    The start of use of mobile applications in the 800 MHz band, which forms part of the ‘Digital Dividend’, will cause interference to TV signals under certain conditions. The new mobile applications (called LTE, Long Term Evolution) use frequencies also used in cable TV networks. This report examines how much interference may occur when providing digital television over cable networks

    Radio frequency interference to DVB-T reception from LTE systems in adjacent bands

    Get PDF
    Australians have recently benefited from the switch-over to digital television which has freed many channels called digital dividend. Australia's digital dividend is the frequency range of 694 MHz to 820 MHz which is used to operate Long Term Evolu- tion (LTE) technology. In Australia there were 57 VHF and UHF channels used for television broadcasting. After the completion of switch-over process, UHF channels 52 to 69 were freed up which is considered as Australian digital dividend. When LTE Frequency Division Duplex (FDD) system and digital television services operate in adjacent UHF bands, LTE FDD transmitters can cause harmful interference to digital video broadcasting-terrestrial (DVB-T). So in this study, we have presented the compatibility of operating LTE FDD services in the digital dividend spectrum identified in Australia. We have used interference analysis method to calculate the minimum separation distance between LTE FDD and DVB-T sys- tem and Monte Carlo Simulation for calculating the probability of location within considered DVB-T area that suffer maximum level of interference. Also, there are some unused channels where digital television operates called TV White Spaces (TVWS). TVWS can be utilized to operate the secondary devices such as LTE Time Division Duplex (TDD) which helps to address spectrum scarcity issue. We have presented the study of the interference on DVB-T when LTE TDD are operating on TVWS. We have used interference analysis method to calculate mini- mum separation distance between LTE TDD and DVB-T. The results of our study show that increasing the guard band reduces the interference to adjacent channel

    Field Measurements in Determining Incumbent Spectrum Utilization and Protection Criteria in Wireless Co-existence Studies

    Get PDF
    Studies of spectrum sharing and co-existence between different wireless communication systems are important, as the current aim is to optimize their spectrum utilization and shift from static exclusive spectrum allocation to more dynamic co-existence of different systems within same frequency bands. The main goal of this thesis is to provide measurement methodologies for obtaining realistic results in modeling incumbent spectrum utilization and in determining incumbent protection criteria. The following research questions are considered in this thesis: Q1) How should field measurements be conducted and used to model incumbent spectrum utilization? Q2) How should field measurements be conducted and used to determine protection criteria for incumbents in a co-existence scenario with mobile broadband? and Q3) Which licensing methods and technological solutions are feasible to enable spectrum sharing in frequency bands with incumbents? To answer to Q1, this thesis describes the development of a spectrum observatory network concept created through international collaboration and presents measurement methodologies, which allow to obtain realistic spectrum occupancy data over geographical areas using interference map concept. A cautious approach should be taken in making strong conclusions from previous single fixed location spectrum occupancy studies, and measurements covering larger geographical areas might be needed if the measurement results are to be used in making spectrum management decisions. The field interference measurements considered in Q2 are not covered well in the current research literature. The measurements are expensive to conduct as they require substantial human resources, test network infrastructure, professional level measurement devices and radio licenses. However, field measurements are needed to study and verify hypotheses from computer simulations or theoretical analyses in realistic operating conditions, as field measurement conditions can not or are not practical to be adequately modeled in simulations. This thesis proposes measurement methodologies to obtain realistic results from field interference measurements, taking into account the propagation environments and external sources of interference. Less expensive simulations and laboratory measurements should be used both to aid in the planning of field measurements and to complement the results obtained from field measurements. Q3 is investigated through several field interference measurement campaigns to determine incumbent protection criteria and by analyzing the spectrum observatory data to determine the occupancy and trends in incumbent spectrum utilization. The field interference measurement campaigns have been conducted in real TV White Space, LTE Supplemental Downlink and Licensed Shared Access test network environments, and the obtained measurement results have been contributed to the development of the European spectrum regulation. In addition, field measurements have been conducted to contribute to the development and technical validation of the spectrum sharing frameworks. This thesis also presents an overview of the current status and possible directions in spectrum sharing. In conclusion, no single spectrum sharing method can provide universally optimal efficiency in spectrum utilization. Thus, an appropriate spectrum sharing framework should be chosen taking into account both the spectrum utilization of the current incumbents and the future needs in wireless communications.Siirretty Doriast

    Impacto do comportamento transitório de sistemas de radiocomunicações na gestão do espectro

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThis PhD Thesis falls within the domain of spectrum engineering and spectrum management, and intends to address current and concrete problems, with which, regulators have to deal. Particularly, the definition of technical conditions to be met by radio systems, which will operate in specific bands, selected to introduce novel concepts such as flexibility and technological neutrality. The Block Edge Mask approach was adopted to define technical conditions of operation, in those bands. However, this model, based on spectral masks, which are defined in the frequency domain, do not take into account the transient behavior or time-varying characteristics of signals used by emerging radio communication systems. Furthermore, measurement methodologies developed for validation of technical parameters associated to these models, which are recommended by international bodies, potentially lead to practical issues that must be scrutinized. Thus, alternative time-frequency mixed domain signal processing techniques are explored, in this thesis, to be used for assessing the compliance of radio systems operating under such constraints.Esta Tese de Doutoramento insere-se nos domínios da engenharia do espectro e da gestão do espectro radioelétrico, e pretende abordar problemas atuais e concretos com que os reguladores se deparam. Em particular, a definição de condições técnicas a serem cumpridas pelos sistemas rádio que irão operar em determinadas faixas de frequências, selecionadas para a introdução de abordagens de gestão do espectro mais flexíveis e tecnologicamente neutras. O modelo de Máscara Delimitadora de Bloco (Block Edge Mask) foi adotado, a nível europeu, como estratégia de definição de condições técnicas de operação, nessas faixas. Contudo, este modelo, que recorre a restrições que são apenas estabelecidas no domínio da frequência, não entra em linha de conta com comportamentos transitórios ou com a variabilidade temporal de sinais inerentes aos sistemas de radiocomunicações atuais. Para além disso, a medição e validação de parâmetros técnicos associados a estes modelos, conforme definidas nas recomendações internacionais aplicáveis, levantam problemas práticos que importa escalpelizar. Nesse sentido, são exploradas, nesta tese, técnicas alternativas de processamento de sinal no domínio misto tempo-frequência, tendo em vista a sua utilização na avaliação de conformidade dos sistemas rádio em face das restrições aplicáveis

    Solutions for New Terrestrial Broadcasting Systems Offering Simultaneously Stationary and Mobile Services

    Get PDF
    221 p.[EN]Since the first broadcasted TV signal was transmitted in the early decades of the past century, the television broadcasting industry has experienced a series of dramatic changes. Most recently, following the evolution from analogue to digital systems, the digital dividend has become one of the main concerns of the broadcasting industry. In fact, there are many international spectrum authorities reclaiming part of the broadcasting spectrum to satisfy the growing demand of other services, such as broadband wireless services, arguing that the TV services are not very spectrum-efficient. Apart from that, it must be taken into account that, even if up to now the mobile broadcasting has not been considered a major requirement, this will probably change in the near future. In fact, it is expected that the global mobile data traffic will increase 11-fold between 2014 and 2018, and what is more, over two thirds of the data traffic will be video stream by the end of that period. Therefore, the capability to receive HD services anywhere with a mobile device is going to be a mandatory requirement for any new generation broadcasting system. The main objective of this work is to present several technical solutions that answer to these challenges. In particular, the main questions to be solved are the spectrum efficiency issue and the increasing user expectations of receiving high quality mobile services. In other words, the main objective is to provide technical solutions for an efficient and flexible usage of the terrestrial broadcasting spectrum for both stationary and mobile services. The first contributions of this scientific work are closely related to the study of the mobile broadcast reception. Firstly, a comprehensive mathematical analysis of the OFDM signal behaviour over time-varying channels is presented. In order to maximize the channel capacity in mobile environments, channel estimation and equalization are studied in depth. First, the most implemented equalization solutions in time-varying scenarios are analyzed, and then, based on these existing techniques, a new equalization algorithm is proposed for enhancing the receivers’ performance. An alternative solution for improving the efficiency under mobile channel conditions is treating the Inter Carrier Interference as another noise source. Specifically, after analyzing the ICI impact and the existing solutions for reducing the ICI penalty, a new approach based on the robustness of FEC codes is presented. This new approach employs one dimensional algorithms at the receiver and entrusts the ICI removing task to the robust forward error correction codes. Finally, another major contribution of this work is the presentation of the Layer Division Multiplexing (LDM) as a spectrum-efficient and flexible solution for offering stationary and mobile services simultaneously. The comprehensive theoretical study developed here verifies the improved spectrum efficiency, whereas the included practical validation confirms the feasibility of the system and presents it as a very promising multiplexing technique, which will surely be a strong candidate for the next generation broadcasting services.[ES]Desde el comienzo de la transmisión de las primeras señales de televisión a principios del siglo pasado, la radiodifusión digital ha evolucionado gracias a una serie de cambios relevantes. Recientemente, como consecuencia directa de la digitalización del servicio, el dividendo digital se ha convertido en uno de los caballos de batalla de la industria de la radiodifusión. De hecho, no son pocos los consorcios internacionales que abogan por asignar parte del espectro de radiodifusión a otros servicios como, por ejemplo, la telefonía móvil, argumentado la poca eficiencia espectral de la tecnología de radiodifusión actual. Asimismo, se debe tener en cuenta que a pesar de que los servicios móviles no se han considerado fundamentales en el pasado, esta tendencia probablemente variará en el futuro cercano. De hecho, se espera que el tráfico derivado de servicios móviles se multiplique por once entre los años 2014 y 2018; y lo que es más importante, se pronostica que dos tercios del tráfico móvil sea video streaming para finales de ese periodo. Por lo tanto, la posibilidad de ofrecer servicios de alta definición en dispositivos móviles es un requisito fundamental para los sistemas de radiodifusión de nueva generación. El principal objetivo de este trabajo es presentar soluciones técnicas que den respuesta a los retos planteados anteriormente. En particular, las principales cuestiones a resolver son la ineficiencia espectral y el incremento de usuarios que demandan mayor calidad en los contenidos para dispositivos móviles. En pocas palabras, el principal objetivo de este trabajo se basa en ofrecer una solución más eficiente y flexible para la transmisión simultánea de servicios fijos y móviles. La primera contribución relevante de este trabajo está relacionada con la recepción de la señal de televisión en movimiento. En primer lugar, se presenta un completo análisis matemático del comportamiento de la señal OFDM en canales variantes con el tiempo. A continuación, con la intención de maximizar la capacidad del canal, se estudian en profundidad los algoritmos de estimación y ecualización. Posteriormente, se analizan los algoritmos de ecualización más implementados, y por último, basándose en estas técnicas, se propone un nuevo algoritmo de ecualización para aumentar el rendimiento de los receptores en tales condiciones. Del mismo modo, se plantea un nuevo enfoque para mejorar la eficiencia de los servicios móviles basado en tratar la interferencia entre portadoras como una fuente de ruido. Concretamente, tras analizar el impacto del ICI en los receptores actuales, se sugiere delegar el trabajo de corrección de dichas distorsiones en códigos FEC muy robustos. Finalmente, la última contribución importante de este trabajo es la presentación de la tecnología LDM como una manera más eficiente y flexible para la transmisión simultánea de servicios fijos y móviles. El análisis teórico presentado confirma el incremento en la eficiencia espectral, mientras que el estudio práctico valida la posible implementación del sistema y presenta la tecnología LDM c

    Spectrum avaílability assessment tool for TV white space

    Get PDF
    The growth of wireless communication relies on the availability of radio frequency for new services. More efficient spectrum allocations are required to serve the increasing data per user. The major regulatory bodies are formulating new spectrum management techniques to forge the growing spectrum scarcity. Exclusive use of spectrum is proved to be inefficient in many spectrum occupancy measurement campaigns. As a result, spectrum sharing methods are being considered. TV broadcasting is not using the allocated frequency in some geographic areas, creating coverage holes known as TV white spaces. Both the industry and the regulators are investigating the capability of TVWS, as a potential source of spectrum for emerging wireless services. The FCC, in the US, has already released the requirements for opportunistic access to the TV whites paces. In a similar fashion, ECC, the pan-European regulator is finalizing the work on the technical and operational requirements for the possible use of cognitive radio in this spectrum. In this thesis work, an integrated web-based spectrum availability assessment tool is developed for Finland. The tool is a front-end visualization of a time intensive computational process to answer key technical questions related to TVWS - what secondary data rate can be supported in the available white space spectrum? The assessment involves estimation of the available TVWS and its capacity for cellular-type secondary systems. The relative effects of the secondary system parameters on the TV system are compared using appropriate signal to noise and interference ratio plots. The tool uses dynamic web technologies for a seamless and user-friendly visualization of the assessment

    Design and Analysis of Forward Error Control Coding and Signaling for Guaranteeing QoS in Wireless Broadcast Systems

    Get PDF
    Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.Siirretty Doriast
    corecore