1,101 research outputs found

    Direct Support Professionals\u27 Perspectives on Using Technology to Help Support Adults With Autism Spectrum Disorder: Mixed Methods Study.

    Get PDF
    BACKGROUND: Documentation is a critical responsibility for direct support professionals (DSPs) who work with adults with autism spectrum disorder (ASD); however, it contributes significantly to their workload. Targeted efforts must be made to mitigate the burden of necessary data collection and documentation, which contributes to high DSP turnover rates and poor job satisfaction. OBJECTIVE: This mixed methods study aimed to explore how technology could assist DSPs who work with adults with ASD and prioritize aspects of technology that would be most useful for future development efforts. METHODS: In the first study, 15 DSPs who worked with adults with ASD participated in 1 of the 3 online focus groups. The topics included daily tasks, factors that would influence the adoption of technology, and how DSPs would like to interact with technologies to provide information about their clients. Responses were thematically analyzed across focus groups and ranked by salience. In the second study, 153 DSPs across the United States rated the usefulness of technology features and data entry methods and provided qualitative responses on their concerns regarding the use of technology for data collection and documentation. Quantitative responses were ranked based on their usefulness across participants, and rank-order correlations were calculated between different work settings and age groups. The qualitative responses were thematically analyzed. RESULTS: In study 1, participants described difficulties with paper-and-pencil data collection, noted benefits and concerns about using technology instead, identified benefits and concerns about particular technology features, and specified work-environment factors that impact data collection. In study 2, participants rated multiple features of technology as useful, with the highest usefulness percentages endorsed for task views (ie, by shift, client, and DSP), logging completed tasks, and setting reminders for specific tasks. Participants also rated most data entry methods (eg, typing on a phone or tablet, typing on a keyboard, and choosing from options on a touch screen) as useful. Rank-order correlations indicated that the usefulness of technology features and data entry methods differed across work settings and age groups. Across both studies, DSPs cited some concerns with technology, such as confidentiality, reliability and accuracy, complexity and efficiency, and data loss from technology failure. CONCLUSIONS: Understanding the challenges faced by DSPs who work with adults with ASD, and their thoughts about using technology to meet those challenges, represents an essential first step toward developing technology solutions that can increase DSPs\u27 effectiveness and job satisfaction. The survey results indicate that technology innovations should incorporate multiple features to account for different needs across DSPs, settings, and age groups. Future research should explore barriers to adopting data collection and documentation tools and elicit input from agency directors, families, and others interested in reviewing data about adults with ASD

    Music 2025 : The Music Data Dilemma: issues facing the music industry in improving data management

    Get PDF
    © Crown Copyright 2019Music 2025ʼ investigates the infrastructure issues around the management of digital data in an increasingly stream driven industry. The findings are the culmination of over 50 interviews with high profile music industry representatives across the sector and reflects key issues as well as areas of consensus and contrasting views. The findings reveal whilst there are great examples of data initiatives across the value chain, there are opportunities to improve efficiency and interoperability

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Towards a User Privacy-Aware Mobile Gaming App Installation Prediction Model

    Full text link
    Over the past decade, programmatic advertising has received a great deal of attention in the online advertising industry. A real-time bidding (RTB) system is rapidly becoming the most popular method to buy and sell online advertising impressions. Within the RTB system, demand-side platforms (DSP) aim to spend advertisers' campaign budgets efficiently while maximizing profit, seeking impressions that result in high user responses, such as clicks or installs. In the current study, we investigate the process of predicting a mobile gaming app installation from the point of view of a particular DSP, while paying attention to user privacy, and exploring the trade-off between privacy preservation and model performance. There are multiple levels of potential threats to user privacy, depending on the privacy leaks associated with the data-sharing process, such as data transformation or de-anonymization. To address these concerns, privacy-preserving techniques were proposed, such as cryptographic approaches, for training privacy-aware machine-learning models. However, the ability to train a mobile gaming app installation prediction model without using user-level data, can prevent these threats and protect the users' privacy, even though the model's ability to predict may be impaired. Additionally, current laws might force companies to declare that they are collecting data, and might even give the user the option to opt out of such data collection, which might threaten companies' business models in digital advertising, which are dependent on the collection and use of user-level data. We conclude that privacy-aware models might still preserve significant capabilities, enabling companies to make better decisions, dependent on the privacy-efficacy trade-off utility function of each case.Comment: 11 pages, 3 figure

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system
    corecore