39 research outputs found

    Mobile Multiuser Detection Technique

    Get PDF
    In mobile / cellular networks the multiuser detection technology emerged in early 80s. it is now developed in to an important full-fledged field in multi-access communication. In the conventional single user detector in DS-CDMA system, MAI and near-far effect cause limitation of capacity. On the other hand the optimal MUD suffers from computational complexity that grows exponentially with number active user. During a last two decade there has been a lot of interest of sub optimal multiuser detector which are low in complexity but deliver negotiable performance. This topic highlighted various detection techniques. As in Multiuser MIMO system a base station equipped with multiple antennas serves a number of users. Conventionally the communication between the BS and the user is performed by orthogonalizing the channel so that the BS communicates with each user in separate time frequency resources. This is not optimal from an information theoretic point of view and high rate can be obtained, if the BS communicates with several users in same time frequency response. DOI: 10.17762/ijritcc2321-8169.15082

    Smart antennas: state of the art

    Get PDF
    Aim of this contribution is to illustrate the state of the art of smart antenna research from several perspectives. The bow is drawn from transmitter issues via channel measurements and modeling, receiver signal processing, network aspects, technological challenges towards first smart antenna applications and current status of standardization. Moreover, some future prospects of different disciplines in smart antenna research are given.Peer Reviewe

    Méthode de détection à usagers multiples pour les systèmes de communication DS-CDMA

    Get PDF

    Técnicas de igualização adaptativas com estimativas imperfeitas do canal para os futuros sistemas 5G

    Get PDF
    Wireless communication networks have been continuously experiencing an exponential growth since their inception. The overwhelming demand for high data rates, support of a large number of users while mitigating disruptive interference are the constant research focus and it has led to the creation of new technologies and efficient techniques. Orthogonal frequency division multiplexing (OFDM) is the most common example of a technology that has come to the fore in this past decade as it provided a simple and generally ideal platform for wireless data transmission. It’s drawback of a rather high peak-to-average power ratio (PAPR) and sensitivity to phase noise, which in turn led to the adoption of alternative techniques, such as the single carrier systems with frequency domain equalization (SC-FDE) or the multi carrier systems with code division multiple access (MC-CDMA), but the nonlinear Frequency Domain Equalizers (FDE) have been of special note due to their improved performance. From these, the Iterative Block Decision Feedback Equalizer (IB-DFE) has proven itself especially promising due to its compatibility with space diversity, MIMO systems and CDMA schemes. However, the IB-DFE requires the system to have constant knowledge of the communication channel properties, that is, to have constantly perfect Channel State Information (CSI), which is both unrealistic and impractical to implement. In this dissertation we shall design an altered IB-DFE receiver that is able to properly detect signals from SC-FDMA based transmitters, even with constantly erroneous channel states. The results shall demonstrate that the proposed equalization scheme is robust to imperfect CSI (I-CSI) situations, since its performance is constantly close to the perfect CSI case, within just a few iterations.Redes sem fios têm crescido de maneira contínua e exponencial desde a sua incepção. A tremenda exigência para altas taxas de dados e o suporte para um elevado número de utilizadores sem aumentar a interferência disruptiva originada por estes são alguns dos focos que levaram ao desenvolvimento de técnicas de compensação e novas tecnologias. “Orthogonal frequency division multiplexing” (OFDM) é um dos exemplos de tecnologias que se destacaram nesta última década, visto ter fornecido uma plataforma para transmissão de dados sem-fio eficaz e simples. O seu maior problema é a alta “peak-to-average power ratio” (PAPR) e a sua sensibilidade a ruído de fase que deram motivo à adoção de técnicas alternativas, tais como os sistemas “single carrier” com “frequency domain equalization” (SC-FDE) ou os sistemas “multi-carrier” com “code division multiple access” (MC-CDMA), mas equalizadores não lineares no domínio de frequência têm sido alvo de especial atenção devido ao seu melhor desempenho. Destes, o “iterative block decision feedback equalizer” (IB-DFE) tem-se provado especialmente promissor devido à sua compatibilidade com técnicas de diversidade no espaço, sistemas MIMO e esquemas CDMA. No entanto, IB-DFE requer que o sistema tenha constante conhecimento das propriedades dos canais usados, ou seja, necessita de ter perfeito “channel state information” (CSI) constantemente, o que é tanto irrealista como impossível de implementar. Nesta dissertação iremos projetar um recetor IB-DFE alterado de forma a conseguir detetar sinais dum transmissor baseado em tecnologia SC-FDMA, mesmo com a informação de estado de canal errada. Os resultados irão então demonstrar que o novo esquema de equalização proposto é robusto para situações de CSI imperfeito (I-CSI), visto que o seu desempenho se mantém próximo dos valores esperados para CSI perfeito, em apenas algumas iterações.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Cooperative Uplink Inter-Cell Interference (ICI) Mitigation in 5G Networks

    Get PDF
    In order to support the new paradigm shift in fifth generation (5G) mobile communication, radically different network architectures, associated technologies and network operation algorithms, need to be developed compared to existing fourth generation (4G) cellular solutions. The evolution toward 5G mobile networks will be characterized by an increasing number of wireless devices, increasing device and service complexity, and the requirement to access mobile services ubiquitously. To realise the dramatic increase in data rates in particular, research is focused on improving the capacity of current, Long Term Evolution (LTE)-based, 4G network standards, before radical changes are exploited which could include acquiring additional spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell-edge users vulnerable to heavy inter cell interference in addition to the other factors such as fading and path-loss. In this direction, this thesis focuses on improving the performance of cell-edge users in LTE and LTE-Advanced networks by initially implementing a new Coordinated Multi-Point (CoMP) technique to support future 5G networks using smart antennas to mitigate cell-edge user interference in uplink. Successively a novel cooperative uplink inter-cell interference mitigation algorithm based on joint reception at the base station using receiver adaptive beamforming is investigated. Subsequently interference mitigation in a heterogeneous environment for inter Device-to-Device (D2D) communication underlaying cellular network is investigated as the enabling technology for maximising resource block (RB) utilisation in emerging 5G networks. The proximity of users in a network, achieving higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the evolved Node B (eNodeB) i.e. by direct communication between User Equipment (UE), has been explored. Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for D2D receivers, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNodeB in the network. It is finally demonstrated that the application, as an extension to the above, of a novel receiver beamforming technique to reduce interference from D2D users, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond the-state-of-the-art LTE system-level-simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards

    Méthodes d'estimation de canal et de détection itérative pour les communications CDMA

    Get PDF

    Transmitter based techniques for ISI and MAI mitigation in CDMA-TDD downlink

    Get PDF
    The third-generation (3G) of mobile communications systems aim to provide enhanced voice, text and data services to the user. These demands give rise to the complexity and power consumption of the user equipment (UE) while the objective is smaller, lighter and power efficient mobiles. This thesis aims to examine ways of reducing the UE receiver’s computational cost while maintaining a good performance. One prominent multiple access scheme selected for 3G is code division multiple access. Receiver based multiuser detection techniques that utilise the knowledge of the downlink channel by the mobile have been extensively studied in the literature, in order to deal with multiple access and intersymbol interference. However, these techniques result in high mobile receiver complexity. Recently, work has been done on algorithms that transfer the complexity from the UE to the base station by exploiting the fact that in time division duplex mode the downlink channel can be known to the transmitter. By linear precoding of the transmitted signal the user equipment can be simplified to a filter matched to the user’s spreading code. In this thesis the problem of generic linear precoding is analysed theoretically and a method for analytical calculation of BER is developed. The most representative of the developed precoding techniques are described under a common framework, compared and classified as bitwise or blockwise. Bitwise demonstrate particular advantages in terms of complexity and implementation but lack in performance. Two novel bitwise algorithms are presented and analysed. They outperform significantly the existing ones, while maintain a reduced computational cost and realisation simplicity. The first, named inverse filters, is the Wiener solution of the problem after applying a minimum mean squared error criterion with power constraints. The second recruits multichannel adaptive algorithms to achieve the same goal. The base station emulates the actual system in a cell to converge iteratively to the pre-filters that precode the transmitted signals before transmission. The advantages and the performance of the proposed techniques, along with a variety of characteristics are demonstrated by means of Monte Carlo simulations

    Power control in multimedia CDMA cellular networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2000.Wireless mobile communication is witnessing a rapid growth in, and demand for, improved technology and range of information types and services. Further, third generation cellular networks are expected to provide mobile users with ubiquitous wireless access to a global backbone architecture that carries a wide variety of electronic services. We examine the topic of power control and models that arc suitable for modem third generation wireless networks. CDMA technology is proving to be a promising and attractive approach for spectrally efficient, economical and high quality digital communications wireless networks. This thesis addresses the challenge of integrating heterogeneous transmitting sources with a broad range of Quality of Service characteristics in the cellular COMA networks. Provided the right power control can be devised, COMA offers the potential of extracting gain from the statistical multiplexing of such sources. A distributed power control algorithm is proposed which is required to update the transmitted power of the mobiles in each of the service classes locally. and enhance the performance of the system significantly. Algorithms for pragmatic issues like power level quantization and truncation of power are derived and incorporated into the proposed distributed power control algorithm

    Link level performance evaluation and link abstraction for LTE/LTE-advanced downlink

    Get PDF
    Els objectius principals d'aquesta tesis són l'avaluació del rendiment a nivell d'enllaç i l'estudi de l'abstracció de l'enllaç pel LTE/LTE-Advanced DL. S’ha desenvolupat un simulador del nivell d'enllaç E-UTRA DL basat en la tecnologia MIMO-OFDM. Es simulen els errors d'estimació de canal amb un model d'error de soroll additiu Gaussià anomenat CEEM. El resultat d'aquest simulador serveix per avaluar el rendiment a nivell d'enllaç del LTE/LTE-Advanced DL en diferents entorns . La idea bàsica dels mètodes d'abstracció de l'enllaç és mapejar el vector de SNRs de les subportadores a un valor escalar, l'anomenada ESNR, la qual és usada per a predir la BLER. Proposem un innovador mètode d'abstracció de l'enllaç que pot predir la BLER amb bona precisió en esvaïments multicamí i que inclouen els efectes de les retransmissions HARQ. El mètode proposat es basa amb l'estimació de la informació mútua entre els bits transmesos i els LLRs rebuts.The main objectives of this dissertation are the evaluation of the link level performance and the study of link abstraction for LTE/LTE-Advanced DL. An E-UTRA DL link level simulator has been developed based on MIMO-OFDM technology. We simulate channel estimation errors by a Gaussian additive noise error model called CEEM. The result of this simulator serves to evaluate the MIMO-OFDM LTE/LTE-Advanced DL link level performance in different environments. The basic idea of link abstraction methods is to map the vector of the subcarrier SNRs to a single scalar, the ESNR, which is then used to predict the BLER. We propose a novel link abstraction method that can predict the BLER with good accuracy in multipath fading and including the effects of HARQ retransmissions. The proposed method is based on estimating the mutual information between the transmitted bits and the received LLRs.Postprint (published version
    corecore