55 research outputs found

    Efficient Certified RAT Verification

    Get PDF
    Clausal proofs have become a popular approach to validate the results of SAT solvers. However, validating clausal proofs in the most widely supported format (DRAT) is expensive even in highly optimized implementations. We present a new format, called LRAT, which extends the DRAT format with hints that facilitate a simple and fast validation algorithm. Checking validity of LRAT proofs can be implemented using trusted systems such as the languages supported by theorem provers. We demonstrate this by implementing two certified LRAT checkers, one in Coq and one in ACL2

    QRAT+: Generalizing QRAT by a More Powerful QBF Redundancy Property

    Full text link
    The QRAT (quantified resolution asymmetric tautology) proof system simulates virtually all inference rules applied in state of the art quantified Boolean formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding and deleting clauses and universal literals that have a certain redundancy property. To check for this redundancy property in QRAT, propositional unit propagation (UP) is applied to the quantifier free, i.e., propositional part of the QBF. We generalize the redundancy property in the QRAT system by QBF specific UP (QUP). QUP extends UP by the universal reduction operation to eliminate universal literals from clauses. We apply QUP to an abstraction of the QBF where certain universal quantifiers are converted into existential ones. This way, we obtain a generalization of QRAT we call QRAT+. The redundancy property in QRAT+ based on QUP is more powerful than the one in QRAT based on UP. We report on proof theoretical improvements and experimental results to illustrate the benefits of QRAT+ for QBF preprocessing.Comment: preprint of a paper to be published at IJCAR 2018, LNCS, Springer, including appendi

    Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML

    Get PDF
    Modern SAT solvers can emit independently-checkable proof certificates to validate their results. The state-of-the-art proof system that allows for compact proof certificates is propagation redundancy (PR). However, the only existing method to validate proofs in this system with a formally verified tool requires a transformation to a weaker proof system, which can result in a significant blowup in the size of the proof and increased proof validation time. This article describes the first approach to formally verify PR proofs on a succinct representation. We present (i) a new Linear PR (LPR) proof format, (ii) an extension of the DPR-trim tool to efficiently convert PR proofs into LPR format, and (iii) cake_lpr, a verified LPR proof checker developed in CakeML. We also enhance these tools with (iv) a new compositional proof format designed to enable separate (parallel) proof checking. The LPR format is backwards compatible with the existing LRAT format, but extends LRAT with support for the addition of PR clauses. Moreover, cake_lpr is verified using CakeML ’s binary code extraction toolchain, which yields correctness guarantees for its machine code (binary) implementation. This further distinguishes our clausal proof checker from existing checkers because unverified extraction and compilation tools are removed from its trusted computing base. We experimentally show that: LPR provides efficiency gains over existing proof formats; cake_lpr ’s strong correctness guarantees are obtained without significant sacrifice in its performance; and the compositional proof format enables scalable parallel proof checking for large proofs

    cake_lpr: Verified Propagation Redundancy Checking in CakeML

    Get PDF
    Modern SAT solvers can emit independently checkable proof certificates to validate their results. The state-of-the-art proof system that allows for compact proof certificates is propagation redundancy (PR). However, the only existing method to validate proofs in this system with a formally verified tool requires a transformation to a weaker proof system, which can result in a significant blowup in the size of the proof and increased proof validation time. This paper describes the first approach to formally verify PR proofs on a succinct representation; we present (i) a new Linear PR (LPR) proof format, (ii) a tool to efficiently convert PR proofs into LPR format, and (iii) cake_lpr, a verified LPR proof checker developed in CakeML. The LPR format is backwards compatible with the existing LRAT format, but extends the latter with support for the addition of PR clauses. Moreover, cake_lpr is verified using CakeML’s binary code extraction toolchain, which yields correctness guarantees for its machine code (binary) implementation. This further distinguishes our clausal proof checker from existing ones because unverified extraction and compilation tools are removed from its trusted computing base. We experimentally show that LPR provides efficiency gains over existing proof formats and that the strong correctness guarantees are obtained without significant sacrifice in the performance of the verified executable

    Even Shorter Proofs Without New Variables

    Get PDF

    Exponential Separations Using Guarded Extension Variables

    Get PDF
    We study the complexity of proof systems augmenting resolution with inference rules that allow, given a formula ? in conjunctive normal form, deriving clauses that are not necessarily logically implied by ? but whose addition to ? preserves satisfiability. When the derived clauses are allowed to introduce variables not occurring in ?, the systems we consider become equivalent to extended resolution. We are concerned with the versions of these systems without new variables. They are called BC?, RAT?, SBC?, and GER?, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some restricted version of the ability to make assumptions that hold "without loss of generality," which is commonly used informally to simplify or shorten proofs. Except for SBC?, these systems are known to be exponentially weaker than extended resolution. They are, however, all equivalent to it under a relaxed notion of simulation that allows the translation of the formula along with the proof when moving between proof systems. By taking advantage of this fact, we construct formulas that separate RAT? from GER? and vice versa. With the same strategy, we also separate SBC? from RAT?. Additionally, we give polynomial-size SBC? proofs of the pigeonhole principle, which separates SBC? from GER? by a previously known lower bound. These results also separate the three systems from BC? since they all simulate it. We thus give an almost complete picture of their relative strengths

    Even shorter proofs without new variables

    Full text link
    Proof formats for SAT solvers have diversified over the last decade, enabling new features such as extended resolution-like capabilities, very general extension-free rules, inclusion of proof hints, and pseudo-boolean reasoning. Interference-based methods have been proven effective, and some theoretical work has been undertaken to better explain their limits and semantics. In this work, we combine the subsumption redundancy notion from (Buss, Thapen 2019) and the overwrite logic framework from (Rebola-Pardo, Suda 2018). Natural generalizations then become apparent, enabling even shorter proofs of the pigeonhole principle (compared to those from (Heule, Kiesl, Biere 2017)) and smaller unsatisfiable core generation.Comment: 21 page

    Exponential separations using guarded extension variables

    Get PDF
    We study the complexity of proof systems augmenting resolution with inference rules that allow, given a formula Γ\Gamma in conjunctive normal form, deriving clauses that are not necessarily logically implied by Γ\Gamma but whose addition to Γ\Gamma preserves satisfiability. When the derived clauses are allowed to introduce variables not occurring in Γ\Gamma, the systems we consider become equivalent to extended resolution. We are concerned with the versions of these systems without new variables. They are called BC{}^-, RAT{}^-, SBC{}^-, and GER{}^-, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some restricted version of the ability to make assumptions that hold "without loss of generality," which is commonly used informally to simplify or shorten proofs. Except for SBC{}^-, these systems are known to be exponentially weaker than extended resolution. They are, however, all equivalent to it under a relaxed notion of simulation that allows the translation of the formula along with the proof when moving between proof systems. By taking advantage of this fact, we construct formulas that separate RAT{}^- from GER{}^- and vice versa. With the same strategy, we also separate SBC{}^- from RAT{}^-. Additionally, we give polynomial-size SBC{}^- proofs of the pigeonhole principle, which separates SBC{}^- from GER{}^- by a previously known lower bound. These results also separate the three systems from BC{}^- since they all simulate it. We thus give an almost complete picture of their relative strengths
    corecore