34 research outputs found

    ROVER: a DNS-based method to detect and prevent IP hijacks

    Get PDF
    2013 Fall.Includes bibliographical references.The Border Gateway Protocol (BGP) is critical to the global internet infrastructure. Unfortunately BGP routing was designed with limited regard for security. As a result, IP route hijacking has been observed for more than 16 years. Well known incidents include a 2008 hijack of YouTube, loss of connectivity for Australia in February 2012, and an event that partially crippled Google in November 2012. Concern has been escalating as critical national infrastructure is reliant on a secure foundation for the Internet. Disruptions to military, banking, utilities, industry, and commerce can be catastrophic. In this dissertation we propose ROVER (Route Origin VERification System), a novel and practical solution for detecting and preventing origin and sub-prefix hijacks. ROVER exploits the reverse DNS for storing route origin data and provides a fail-safe, best effort approach to authentication. This approach can be used with a variety of operational models including fully dynamic in-line BGP filtering, periodically updated authenticated route filters, and real-time notifications for network operators. Our thesis is that ROVER systems can be deployed by a small number of institutions in an incremental fashion and still effectively thwart origin and sub-prefix IP hijacking despite non-participation by the majority of Autonomous System owners. We then present research results supporting this statement. We evaluate the effectiveness of ROVER using simulations on an Internet scale topology as well as with tests on real operational systems. Analyses include a study of IP hijack propagation patterns, effectiveness of various deployment models, critical mass requirements, and an examination of ROVER resilience and scalability

    Statistical learning in network architecture

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 167-[177]).The Internet has become a ubiquitous substrate for communication in all parts of society. However, many original assumptions underlying its design are changing. Amid problems of scale, complexity, trust and security, the modern Internet accommodates increasingly critical services. Operators face a security arms race while balancing policy constraints, network demands and commercial relationships. This thesis espouses learning to embrace the Internet's inherent complexity, address diverse problems and provide a component of the network's continued evolution. Malicious nodes, cooperative competition and lack of instrumentation on the Internet imply an environment with partial information. Learning is thus an attractive and principled means to ensure generality and reconcile noisy, missing or conflicting data. We use learning to capitalize on under-utilized information and infer behavior more reliably, and on faster time-scales, than humans with only local perspective. Yet the intrinsic dynamic and distributed nature of networks presents interesting challenges to learning. In pursuit of viable solutions to several real-world Internet performance and security problems, we apply statistical learning methods as well as develop new, network-specific algorithms as a step toward overcoming these challenges. Throughout, we reconcile including intelligence at different points in the network with the end-to-end arguments. We first consider learning as an end-node optimization for efficient peer-to-peer overlay neighbor selection and agent-centric latency prediction. We then turn to security and use learning to exploit fundamental weaknesses in malicious traffic streams. Our method is both adaptable and not easily subvertible. Next, we show that certain security and optimization problems require collaboration, global scope and broad views.(cont.) We employ ensembles of weak classifiers within the network core to mitigate IP source address forgery attacks, thereby removing incentive and coordination issues surrounding existing practice. Finally, we argue for learning within the routing plane as a means to directly optimize and balance provider and user objectives. This thesis thus serves first to validate the potential for using learning methods to address several distinct problems on the Internet and second to illuminate design principles in building such intelligent systems in network architecture.by Robert Edward Beverly, IV.Ph.D

    A longitudinal study of DNS traffic: understanding current DNS practice and abuse

    Get PDF
    This thesis examines a dataset spanning 21 months, containing 3,5 billion DNS packets. Traffic on TCP and UDP port 53, was captured on a production /24 IP block. The purpose of this thesis is twofold. The first is to create an understanding of current practice and behavior within the DNS infrastructure, the second to explore current threats faced by the DNS and the various systems that implement it. This is achieved by drawing on analysis and observations from the captured data. Aspects of the operation of DNS on the greater Internet are considered in this research with reference to the observed trends in the dataset, A thorough analysis of current DNS TTL implementation is made with respect to all response traffic, as well as sections looking at observed DNS TTL values for ,za domain replies and NX DOMAIN flagged replies. This thesis found that TTL values implemented are much lower than has been recommended in previous years, and that the TTL decrease is prevalent in most, but not all EE TTL implementation. With respect to the nature of DNS operations, this thesis also concerns itself with an analysis of the geoloeation of authoritative servers for local (,za) domains, and offers further observations towards the latency generated by the choice of authoritative server location for a given ,za domain. It was found that the majority of ,za domain authoritative servers are international, which results in latency generation that is multiple times greater than observed latencies for local authoritative servers. Further analysis is done with respect to NX DOM AIN behavior captured across the dataset. These findings outlined the cost of DNS miseonfiguration as well as highlighting instances of NXDOMAIN generation through malicious practice. With respect to DNS abuses, original research with respect to long-term scanning generated as a result of amplification attack activity on the greater Internet is presented. Many instances of amplification domain scans were captured during the packet capture, and an attempt is made to correlate that activity temporally with known amplification attack reports. The final area that this thesis deals with is the relatively new field of Bitflipping and Bitsquatting, delivering results on bitflip detection and evaluation over the course of the entire dataset. The detection methodology is outlined, and the final results are compared to findings given in recent bitflip literature

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Supporting Device Mobility and State Distribution through Indirection, Topological Isomorphism and Evolutionary Algorithms

    Get PDF
    The Internet of Things will result in the deployment of many billions of wireless embedded systems, creating interactive pervasive environments. These pervasive networks will provide seamless access to sensor actuators, enabling organisations and individuals to control and monitor their environment. The majority of devices attached to the Internet of Things will be static. However, it is anticipated that with the advent of body and vehicular networks, we will see many mobile Internet of Things Devices. During emergency situations, the flow of data across the Internet of Things may be disrupted, giving rise to a requirement for machine-to-machine interaction within the remaining environment. Current approaches to routing on the Internet and wireless sensor networks fail to address the requirements of mobility, isolated operation during failure or deal with the imbalance caused by either initial or failing topologies when applying geographic coordinate-based peer-to-peer storage mechanisms. The use of global and local DHT mechanisms to facilitate improved reachability and data redundancy are explored in this thesis. Resulting in the development of an Architecture to support the global reachability of static and mobile Internet of Things Devices. This is achieved through the development of a global indirection mechanism supporting position relative wireless environments. To support the distribution and preservation of device state within the wireless domain a new geospatial keying mechanism is presented, this enables a device to persist state within an overlay with certain guarantees as to its survival. The guarantees relating to geospatial storage rely on the balanced allocation of distributed information. This thesis details a mechanism to balance the address space utilising evolutionary techniques. Following the generation of an initial balanced topology, we present a protocol that applies Topological Isomorphism to provide the continued balancing and reachability of data following partial network failure. This dissertation details the analysis of the proposed protocols and their evaluation through simulation. The results show that our proposed Architecture operates within the capabilities of the devices that operate in this space. The evaluation of Geospatial Keying within the wireless domain showed that the mechanism presented provides better device state preservation than would be found in the random placement exhibited by the storage of state in overlay DHT schemes. Experiments confirm device storage imbalance when using geographic routing; however, the results provided in this thesis show that the use of genetic algorithms can provide an improved identity assignment through the application of alternating fitness between reachability and ideal key displacement. This topology, as is commonly found in geographical routing, was susceptible to imbalance following device failure. The use of topological isomorphism provided an improvement over existing geographical routing protocols to counteract the reachability and imbalance caused by failure
    corecore