
Statistical Learning in Network Architecture

by

Robert Edward Beverly IV

B.S., Georgia Institute of Technology (1997)

S.M., Massachusetts Institute of Technology (2004)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

June 9, 2008

Certified by. .

Dr. Karen R. Sollins

Principal Research Scientist

Thesis Supervisor

Accepted by .

Terry P. Orlando

Chairman, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4408733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statistical Learning in Network Architecture

by

Robert Edward Beverly IV

Submitted to the Department of Electrical Engineering and Computer Science
on June 9, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The Internet has become a ubiquitous substrate for communication in all parts of society.
However, many original assumptions underlying its design are changing. Amid problems
of scale, complexity, trust and security, the modern Internet accommodates increasingly
critical services. Operators face a security arms race while balancing policy constraints,
network demands and commercial relationships. This thesis espouses learning to embrace
the Internet’s inherent complexity, address diverse problems and provide a component of
the network’s continued evolution.

Malicious nodes, cooperative competition and lack of instrumentation on the Internet
imply an environment with partial information. Learning is thus an attractive and prin-
cipled means to ensure generality and reconcile noisy, missing or conflicting data. We use
learning to capitalize on under-utilized information and infer behavior more reliably, and
on faster time-scales, than humans with only local perspective. Yet the intrinsic dynamic
and distributed nature of networks presents interesting challenges to learning. In pursuit
of viable solutions to several real-world Internet performance and security problems, we
apply statistical learning methods as well as develop new, network-specific algorithms as a
step toward overcoming these challenges. Throughout, we reconcile including intelligence
at different points in the network with the end-to-end arguments.

We first consider learning as an end-node optimization for efficient peer-to-peer overlay
neighbor selection and agent-centric latency prediction. We then turn to security and use
learning to exploit fundamental weaknesses in malicious traffic streams. Our method is both
adaptable and not easily subvertible. Next, we show that certain security and optimization
problems require collaboration, global scope and broad views. We employ ensembles of weak
classifiers within the network core to mitigate IP source address forgery attacks, thereby
removing incentive and coordination issues surrounding existing practice. Finally, we argue
for learning within the routing plane as a means to directly optimize and balance provider
and user objectives.

This thesis thus serves first to validate the potential for using learning methods to
address several distinct problems on the Internet and second to illuminate design principles
in building such intelligent systems in network architecture.

Thesis Supervisor: Dr. Karen R. Sollins
Title: Principal Research Scientist

See first, think later, then test. But always see first. Otherwise you will only see what you

were expecting.

- Douglas Adams

Acknowledgments

As sounding boards, purveyors of constructive criticism and sources of inspiration, my thesis

advisors were unparalleled. In retrospect, I realize just how effective their subtle suggestions

and prodding were in shaping my thinking and honing my ideas. For their support and

guidance, I must thank:

• Karen Sollins: Karen’s unassuming nature belies her huge body of experience and

keen understanding of systems. Karen allowed me to pursue the research I found

most interesting and encouraged useful tangents while redirecting me as necessary.

She showed me how dead-ends are inevitable when tackling difficult problems, yet

incredibly important to the final research product. Moreover, she was always ready

with practical advise on everything from research to Scottish dance. I am indebted

to Karen as a mentor, advisor and colleague these past six years.

• Dave Clark: Having been involved in just about every facet of the Internet in one

way or another, Dave’s perspective was unparalleled. Dave often helped me to step

back, extract and articulate larger lessons, and place my work in the proper context.

My ability to get Dave excited about a piece of research became my litmus test and

I thank him for suffering through the bad ideas while encouraging the good ones.

• Tommi Jaakkola: Tommi’s machine learning class was my first introduction to

statistical learning theory and served as the impetus for tackling ideas in this thesis. I

am extremely grateful, therefore, to have had Tommi on my committee to help bridge

the gap between networking and learning.

At MIT, I was lucky enough to work with some extraordinarily talented individuals:

• Mike Afergan: Although he was never able to adequately explain either his super-

naturally quick matriculation or the Red Sox victory, Mike brightened every part of

my graduate career. Mike’s ability to distill complicated problems down to their rele-

vant parts and insightful bits was invaluable in challenging my ideas and making them

stronger. I will miss bouncing ideas around in the office and poking fun at academia

while in the gym – thanks for your friendship.

• Steve Bauer: Steve was my partner in crime for several measurement projects and

papers. During this time, I realized how talented Steve is as a researcher. Steve always

5

lent a willing ear to any crazy idea that might pop into my head and I’ll remember all

of the long-Friday lunches deep in discussion over some piece of arcana. I truly hope,

and expect, to work with Steve again someday in the future.

• John Wroclawski: John has an uncanny knack for quickly honing in on not only

strengths, but also weaknesses in any research. While frustrating, the end product is

always stronger and this thesis is better as a result of my discussions with John. I

thank him for always pushing me and my research to be better.

Within the Advanced Network Architecture group, many unique and interesting stu-

dents, especially Simson Garfinkel, Richard Hansen, George Lee, Ji Li, Nishanth Sastry

and Tim Shepard, were great colleagues. Arthur Berger and Bruce Davie deserve special

recognition. Arthur was fantastic to work with and contributed significant rigor to my

research and our papers. Bruce brought his expertise in operational carriers to all of our

discussions and encouraged relevant research directions. Becky Shepardson and Susan Perez

helped in more ways than I can remember or acknowledge.

Much of this work would not have been possible without funding from the National

Science Foundation, in particular awards CNS-0137403, CNS-0626904 and CCF-0122419. I

thank the NSF for their tireless dedication to the pursuit of fundamental research. Later

bits of work were funded by Cisco through their university research program. I am grateful

for Cisco’s support in pursuing this research and their excellent feedback.

I would be remiss not to thank Neil Gershenfeld at the Media Lab. Neil is a rare breed,

combining real smarts with a research agenda that includes a future most of us cannot

envision. It was a privilege to work with Neil. I wish Neil, Kerry Lynn and all of the

Internet 0 folks the best.

Upstairs, Nick Feamster, Srikanth Kandula, Dina Katabi, Sachin Katti, Nate Kushman,

Hariharan Rahul and Stan Rost all improved my research by reviewing early drafts, listening

to practice talks and generally contributing their keen research sense. Hari Balakrishnan’s

graduate networking class showed me how much I did not yet know, and how fun networking

research can be. Hari was a fantastic teacher always ready with significant research insights.

Prior to MIT, I had the pleasure of working with Randy Nicklas, Kevin Thompson, Greg

Miller and Vint Cerf – all of whom were more than supportive and contributed to where I

am today. k claffy at CAIDA has been an inspiration for many of my initiatives over the

past ten years and I must recognize her dedication and support. Also in the real world, Jeff

Barrows, John Curran and Marty Hannigan were great friends and kept me grounded in

reality while my head was off in academia.

At the onset of this thesis, I met a girl at random who took my breath away. She still

does; my wife Kelly is my best friend and confidant. Thanks for everything, pup.

It is with great humility that I dedicate this thesis to my grandparents, people of great

character who worked tirelessly to provide the opportunities I have enjoyed. Any difficulties

I encountered in writing this thesis pale in comparison to their sacrifices.

This same strength of character pervades every aspect of my parents and I am forever

indebted to them for instilling these same values in me despite my frequent resistance. Even

when I did not believe in myself, your confidence in my ability always brought me through.

You broadened my world, introduced me to everything and let me choose my own path.

You rode bikes and played soccer with me, took me for walks and gave me an appreciation

for the journey, the trees and flowers along the way. You’ve inspired me in more ways than

you will ever know. My love to you forever.

7

8

Contents

1 Introduction 17

1.1 The Role of Learning in an Evolving Internet 18

1.2 Why Machine Learning? . 20

1.3 Relation to Prior Work . 22

1.4 Research and Thesis Overview . 23

1.5 Key Contributions . 25

1.6 Bibliographic Notes . 26

2 Learning Background 27

2.1 Types of Learning . 27

2.2 Key Concepts . 29

2.3 Key Terms . 39

2.4 Summary . 40

3 Application-Layer Learning 43

3.1 Introduction . 43

3.2 Problem: Overlay Neighbor Selection . 44

3.3 Discussion . 52

3.4 Conclusions . 54

4 End-Node Intelligence 55

4.1 Introduction . 55

4.2 Problem 1: Network Latency Prediction . 56

4.3 An IP Clustering Algorithm . 78

4.4 Problem 2: Transport-Level Characteristics of Spam 95

4.5 Summary . 115

5 Learning within the Network Core 117

5.1 Introduction . 117

5.2 Problem 1: Distributed Learning for IP Source Validation 118

5.3 Problem 2: An Intelligent Routing Plane . 142

9

5.4 Conclusions . 159

6 Discussion and Future Work 163

6.1 Key Contributions . 163

6.2 Lessons for Practitioners . 164

6.3 The Future of Learning and Networks . 165

6.4 Open Questions and Future Research . 166

Bibliography 167

10

List of Figures

2-1 Example of over-fitting . 30

2-2 A näıve Bayesian classifier for reachability inference 32

2-3 Bayesian representation of DoS attack inference 32

2-4 Hidden Markov Model for inferring congestion state 33

2-5 HMM with additional congestion state assumptions 34

2-6 A linear binary classifier on separable data 35

2-7 Minimum margin maximization . 36

2-8 Linear separation of XOR inputs not possible 37

3-1 Self-reorganization within a peer-to-peer overlay 44

3-2 Binary n-x-n overlay adjacency matrix and world token matrix 47

3-3 Representing data for a single overlay node 48

3-4 Formulating the machine learning task . 49

3-5 Neighbor prediction classification performance vs training size 50

3-6 Neighbor prediction performance for various feature selection algorithms . . 51

4-1 Intelligence in the Internet architecture in the context of user demands . . . 55

4-2 Global allocation of /8 IP address prefixes 57

4-3 Probability mass function of node latencies 60

4-4 Assessing the correlation between address distance and RTT 61

4-5 RTT-agreement probability distributions . 62

4-6 Probability mass function of IP address dispersion in data set 64

4-7 Kernel type and parameter selection . 65

4-8 Latency prediction mean error vs. input dimension 65

4-9 Feature selection: mean error vs. sequential bit chosen 66

4-10 Effect of feature selection in partitioning allocations 67

4-11 Latency prediction mean error vs. training size 68

4-12 Latency estimation performance . 69

4-13 Latency rank loss . 70

4-14 k-ranking performance versus training size 72

4-15 k-ranking mis-prediction error versus training size 73

11

4-16 k-relative ranking performance using adapted PRank algorithm 73

4-17 SVM model performance and stability over time 75

4-18 CUSUM algorithm applied to a synthetic change on real data 76

4-19 GLR algorithm applied to a synthetic change on real data 78

4-20 Inclan algorithm applied to a synthetic change on real data 79

4-21 Example clustering illustrating learning task 80

4-22 Example radix trees . 83

4-23 t-distribution as a function of degree of freedom 83

4-24 True allocation of a prefix showing maximal prefix split 84

4-25 Modified GLR to accommodate learning drift 87

4-26 Real vs. synthetic prefix distribution . 91

4-27 Latency prediction performance on synthetically generated data. 92

4-28 Prediction performance of IP clustering algorithm vs. support vector regression. 92

4-29 Induced change point game . 93

4-30 Change detection performance as a function of changed network size. 93

4-31 SpamFlow analyzes transport-layer packet headers 96

4-32 Comparison of ham and spam flow RTT estimation 97

4-33 Compromised “bot” host experiencing contention sending spam. 98

4-34 SMTP data collection . 99

4-35 Comparisons of spam and ham probability distributions for various features 101

4-36 Discriminating non-features within the dataset 103

4-37 Polynomial kernel selection in SpamFlow 105

4-38 Radial basis function kernel selection in SpamFlow 105

4-39 SpamFlow classification accuracy, precision and recall vs. training size . . . 106

4-40 SpamFlow receiver operating characteristic 107

4-41 Feature selection order probability distributions 108

4-42 SpamFlow performance vs. features count and selection strategy 109

5-1 In-window TCP reset attack . 121

5-2 DNS amplifier attack . 122

5-3 Circumventing provider SMTP filtering with spoofing 123

5-4 Cumulative distribution of source validation filter depth 125

5-5 Probability mass function of 30,000 node path lengths in data set. 128

5-6 Raskol classification accuracy, precision and recall vs. training size 129

5-7 Prediction accuracy vs. number of IP address most significant bits. 131

5-8 Simulation of worm attack, single source, random source addresses 136

5-9 Simulation of worm attack, single source, fixed source address 136

5-10 Simulation of worm attack, single source, valid source address 137

5-11 Simulation of worm attack, various voting methods 138

5-12 Simulation of DDoS attack . 138

12

5-13 A Linux IP tables implementation . 139

5-14 Raskol Linux implementation classification speed 140

5-15 Attack Simulation Setup . 140

5-16 Raskol protection performance against a random attack model 141

5-17 Changes to the TTL semantics to improve path security 142

5-18 Failures of policy enforcement in BGP. 146

5-19 Feasible path sub-optimality example . 147

5-20 Designing the routing plane for user control 149

5-21 Hot potato routing sub-optimality effects 151

5-22 Monetizing the routing tussle implies strategic games 152

5-23 Experimental transit network model . 156

5-24 Live trace simulation on Internet-like topologies 157

13

14

List of Tables

1.1 Outline of thesis problems . 24

2.1 HMM symbol emission probabilities . 34

2.2 Summary of learning methods considered 41

3.1 Gnutella datasets . 45

4.1 Induced geographical groupings by selecting first or second IP address bit . 67

4.2 Examples of maximal IP prefix division . 85

4.3 Flow properties used as classification features 100

5.1 Observed, relative and extrapolated IP source address spoofing coverage . . 124

5.2 Attack models based on source-IP address spoofing 126

5.3 Formalisms for spoofed source attacks and simulations 132

15

16

We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine

and Texas, it may be, have nothing important to communicate.

- Henry David Thoreau

Chapter 1

Introduction

A central question systems architects face is how to abstract, modularize and best place

functionality. The strength of an architecture often lies in its longevity – the ability to

support new or unanticipated demands. A canonical example in communication networks,

representing two ends of the functionality design spectrum, is the comparison between the

telephone network and the Internet. Neither design is necessarily superior; in fact much of

the Internet is built on top of transport circuits in the phone network. A key recognition is

that each is suited for different requirements and designed upon different assumptions.

While legacy networks such as the telephone system centralize the bulk of system func-

tionality, the Internet is unique in distributing functionality to the network edge. For

example, the Internet Protocol (IP) provides no guarantees of reliability, ordering, band-

width, latency, etc. Hosts or services which require such guarantees must implement them,

thereby alleviating the whole of the network from the burden of unneeded functionality.

First articulated by Saltzer, Reed and Clark as the “end-to-end argument” [131], these de-

sign principles are part of several architectural enablers identified in a retrospective analysis

of the Internet’s success [32, 41].

The end-to-end arguments have permitted the Internet to scale through several orders

of magnitude and allowed new, unforeseen applications such as the world wide web, peer-

to-peer (P2P) overlays, video, and IP telephony to emerge. However, many of the design

assumptions underpinning the original Internet architecture are changing or have already

changed.

A survey of the Internet’s evolution shows a tremendous shift in users, uses, nodes,

applications and societal perceptions [27, 12]. Businesses, governments and even emergency

services rely on the Internet as a common platform for distributed communication. Yet

the Internet’s importance belies modest origins. The Internet made a remarkable transi-

tion from an academic to a commercial network [83]. With roots in academia, the Internet

includes few or loose notions of security, auditing, pricing or management. While recog-

nized early on, these issues intentionally received secondary attention [41] and now have

profound implications. As a piece of critical infrastructure, the modern Internet faces

17

problems of security, complexity, resilience and trust. A crucial consideration is how the

Internet architecture can face existing problems, continue to evolve, resolve future conflict

and accommodate new demands [42].

1.1 The Role of Learning in an Evolving Internet

This thesis espouses learning to not only address many of the aforementioned challenges,

but also provide a general framework for network architecture in a complex world. Our

high-level sentiment is echoed by the knowledge plane [43] which recognizes failings in the

current Internet and argues for a distributed, cognitive system architecture.

We therefore consider where, if at all, intelligence should be placed in the network and

what form it should take. Because of the dynamic, complex and multi-party nature of the

Internet, we argue that any intelligence must include predictive learning where the network

can react to new or unknown situations, data and environments1. Indeed, the Internet

is characterized by many entities with conflicting interests and strategies, often commer-

cially driven, working through cooperative competition. Other entities are actively hostile

and adapt quickly to maximize malicious opportunities. In contrast to approaches that

use memoization or pure algorithmic optimization with complete knowledge, we explicitly

recognize and embrace the inherent complexity of the modern Internet.

1.1.1 Why Intelligence?

The success of the Internet begs the question of why future architectures should include

intelligence. The Internet’s heritage resulted in a design with significant advantages, but

also weaknesses under modern stresses. Broadly, stress on the current architecture, in the

form of scale, security, robustness and policy constraints demands increased intelligence.

Addressing diverse strains in a common and robust way is vital to the Internet’s continued

evolution:

• Security: The original lack of emphasis on security, trust, identity and accountability

has led to unsolicited commercial email (spam), social engineering (phishing), denial-

of-service (DoS) and other attacks on users, hosts and the infrastructure itself.

• Complexity: An ever increasing number of nodes, users and critical services attach

to the Internet. Meanwhile, functionality such as routing remains mired in legacy

notions. Implementing policy, commercial relationships, reconciling network demands

with economic factors and providing resilience is accomplished via available but inef-

ficient, indirect and brittle mechanisms. As a consequence, the Internet is less robust

due to incomplete network views, routing fragility and manual configuration.

1The precise meanings of “intelligence” and “learning” are the source of much debate and many theories.
We use them as umbrella terms here, but more generally view learning as using statistics to make decisions.
Chapter 2 refines this notion concretely.

18

• Trust: An undesirable artifacts of the Internet’s commercial transition is its inability

to accommodate “tussles.” As first expressed by Clark et al. [45], Internet protocols

must change to allow for the natural tussles that emerge as a result of both eco-

nomic, social and technical stakeholders. For example, the widespread success of P2P

overlays, where traditional clients also act as servers, raises tensions between users,

free-riders, networks, operators and copyright holders.

Intelligence provides a natural means to combat these inter-related strains on the ar-

chitecture. A predictive notion of learning promises networks that are adaptable, efficient

and resilient in ways not currently possible. Such an intelligent network could perform

diagnostics, recover from failures and stave off malicious attacks.

There exists a wealth of information at various levels and granularity on user, node

and network activity, reputation, behavior, etc. Unfortunately, this data is hard to gather

and aggregate with existing tools and available network support. In addition, the data is

sufficiently complex so that it is difficult to make useful inferences, diagnoses or decisions.

Our research leverages increased intelligence to extract, analyze and use information to the

benefit of the modern network, even amid a potentially hostile environment.

1.1.2 Where to Place Intelligence?

Given the motivation to include additional intelligence, where should that intelligence be

placed? Again, changing assumptions motivate seemingly non-traditional choices. For

example, in a world where all nodes are potential victims of attack, all nodes require pro-

tection. Thus, including attack mitigation intelligence within the network, and inducing a

cost on the network and its participants, is a reasonable design choice that does not violate

end-to-end principles. Throughout this thesis and in our examples, we reconcile including

intelligence at different points in the network while remaining consistent with the end-to-end

arguments.

• Edge Intelligence: The basic Internet architecture has enabled new applications to

emerge without additional network support. Several of the problems we tackle follow

an end system design perspective and endow end-nodes with additional intelligence.

While end-nodes already contain a variety of intelligent functionality, we show that

there is ample room for these nodes to gather and use available data in non-traditional

ways to their advantage. Because end-node intelligence is compatible with the current

Internet architecture, such schemes have the added advantage of immediate deploy-

ment without implementation hurdles.

• Core Intelligence: Some classes of problem are best solved by adding intelligence

to the network core, however. The core of the network affords a broader and more

complete view; intelligence can be placed on collections of users, traffic, etc. to better

19

optimize global and local performance or maintain security2. Consider a piece of email

as one trivial example. Many inferences are possible on that email by the receiver.

However, information such as how many other emails the sender has sourced, if the

sender is receiving incoming emails as well as sending, etc. expands the inference

space and therefore permits better decisions. Many of the security and optimization

problems the Internet faces require this sort of collaboration and global scope, thus

motivating our exploration into core intelligence.

As the Internet continues to grow in scale and scope, it penetrates more deeply and

broadly, across users and societies. The problems the Internet faces are global problems and

are therefore not well-solved by humans with only local perspective. Automated intelligence

can be especially useful in situations where it is not possible to wait for human intervention,

for example attacks, faults, worm propagation, etc. Further, as the network penetrates more

deeply, there is a smaller fraction of users expert in networking. All of these factors combine

to strongly motivate intelligence at different levels within the network.

1.2 Why Machine Learning?

In order to realize an intelligent network, we turn to learning methods, in particular machine

learning. Several properties of the Internet fit well with machine learning. The Internet

contains many data sources and data points in the form of users, networks, packets, flows

and more. Often, these data points are relatively cheap to obtain through either active or

passive measurement. However, the data is typically noisy; the Internet’s structure implies

partial, hidden, malicious and conflicting information. Machine learning uses statistics to

build models and form decisions, and is therefore particularly adept at dealing with the

uncertainty common to many of the aforementioned problems. For instance, one or more

agents3 may collect measurements which are used to form predictions, classifications or

decisions. Whereas traditional algorithms cannot easily handle the conflicting measurements

we would expect of Internet agents, machine learning is amenable to synthesizing data into

a model that generalizes well. This generality comes at the expense of potential errors,

however we show in §1.2.2 that many Internet problems can tolerate occasional predictive

error.

Despite these advantages, other fundamental characteristics of the Internet present chal-

lenges to realizing the utopia of a cognitive network. The Internet is both highly dynamic

and distributed. Traffic, topologies and policies shift in time, suggesting that traditional

supervised learning methods, i.e. “train-then-test,” require an internal notion of when the

underlying environment has changed and how to adapt in an efficient manner. Learning

must be on-line and continual. For many tasks, models and learning information needs to

2Core intelligence is contentious; we intend to be provocative by motivating such designs as sound.
3Again, we loosely define agents abstractly as intelligent hosts, users, networks or collections of networks.

20

be propagated between users, nodes or networks to be effective. An important aspect of this

work is identifying areas of network architecture amenable to statistical learning techniques.

1.2.1 For the Machine Learning Reader

Learning in systems design offers the potential to elegantly solve complex problems, yet

is often impractical due to algorithmic speed, convergence, scalability or simply relative

benefit. Many of the problems we face are non-traditional from an artificial intelligence

perspective. In contrast to supervised learning in stationary environments, networks are

highly dynamic and require continuous on-line learning. Often, artificial intelligence deals

with single agents acting autonomously; networks by definition may need distributed learn-

ing. Thus, the intrinsic characteristics of the Internet suggest interesting challenges to

machine learning.

An appealing feature of this thesis is in the novel application of learning methods to

problems in networks. Through our examples and experiments, we find suitable algorithms,

models and parameters. While we draw upon the available machine learning research, we

contribute valuable insights into the performance of particular methods and their generality.

Our hope is that this research serves as part of the valuable feedback loop in advancing learn-

ing research via practical application. In particular, §4.3 details an IP clustering algorithm

we develop that incorporates network-specific knowledge to overcome several important

domain challenges.

1.2.2 For the Network Architecture Reader

Network architects often speak of learning in the context of memorization, for example a

routing protocol that “learns” a path to a destination. Instead, we emphasize our predictive

notion of learning: the goal of a learning task is to generalize to unseen data or new

situations.

Introducing learning into the network architecture is anathema to many purists. It is

easy to improperly apply learning to problems we do not understand, or apply learning as

a poor solution to particularly hard problems. If there is no underlying structure in the

problem, no amount of learning is useful. For instance, consider building a model from

names and phone numbers in the telephone book. Regardless of the learning algorithm, the

model will not be able to predict an unknown person’s phone number. Similarly, we do not

advocate learning as a blanket solution, but instead incorporate domain and problem specific

knowledge to solve many common, highly complex tasks. Thus, the system architect must

understand when useful structure exists, but is too complex to exploit without learning.

A further source of discomfort for network builders is that learning methods imply

moving to a probabilistic world without correctness guarantees. The benefit of implementing

learning must exceed its cost. The learning machinery and models will make errors, in the

form of bad predictions, incorrect classifications, etc. which may be realized as dropped

21

packets, disconnected networks or other undesirable properties. However, we note that the

original Internet architecture provides few deterministic guarantees – packets are silently

discarded or reordered, routes change or disappear and the true original source of traffic

cannot be ascertained. Our research therefore strives to give system designers guidelines as

to when to apply learning.

We view the utility of learning in two different lights: i) as a performance optimization;

and ii) when the network is under duress. As a means to improve performance, learning

works well on tasks such as service selection, routing, etc. where failures and errors are

not fatal. For instance, consider an agent picking a service from among a set of identical,

replicated resources. An incorrect prediction, for instance a poor server, leads only to

degraded service. The agent may thus try a prediction, receive an answer, and then refine its

model. Additionally, there may be design tradeoffs where errors on low-priority traffic, users

or applications are acceptable in the name of achieving better performance for high-priority

services. Finally, and perhaps most importantly, errors are permissible when the network

is under attack or duress. Affecting a small percentage of legitimate users is preferable to

leaving an entire network incapacitated. The increasing complexity and sophistication of

attacks, for example adaptable malicious attackers, thus requires learning and cooperation.

1.3 Relation to Prior Work

While there is a wealth of both network and machine learning research, there is relatively

little work that combines the two. Throughout this multi-disciplinary thesis, we place our

contributions in the context of related work. However in this subsection, we outline general

research initiatives which apply learning to the network or Internet domain.

Unsolicited commercial email (spam) is simultaneously a great success story and failure

for learning at the application layer to handle untrusted, unauthenticated messages. Spam

filters [104] learn key features and characteristics of a users’ desired email in order to discern

unwanted email. Large email installations often aggregate feedback from all users as a form

of collaborative filtering to better classify junk email [135]. Content filtering amounts to

a classification problem in the domain of text retrieval. We similarly draw upon the rich

literature of prior work in text categorization, e.g. [80], [157] and [156].

Intrusion detection is a rich space similar in spirit to spam classification: determining if

traffic is malicious. Researchers actively debate whether it is feasible to classify “bad” traffic

when “bad” is a subjective definition. In fact, an April Fool’s Internet RFC [13] pokes fun

at such schemes by proposing an “evil bit” in the IP header. However, the abundance of

malicious attacks are driving commercial and research development toward ways to block

traffic classes.

Some of the first consideration for cognitive networks are brought forth in [43] and [53].

An observation from their research is that users often have little information available as to

22

the root cause of a network failure. With the Internet’s many administrative domains and

failure points, problems may span from an improperly configured computer to a backbone

fiber cut to congestion on the remote server. Recently, Lee investigates distributed diagnosis

and inference using Bayes’ nets in [92] and [94]. Other approaches use reinforcement learning

[96] to find and repair network faults.

Anomaly detection is the proactive dual of failure diagnosis and bears similarities to

intrusion detection, provided intrusions are the exception rather than the norm. Ahmed

et al. [4] use minimum volume sets to find traffic anomalies on the Abilene network while

[90] use feature distributions to find anomalies. Jin et al. use heuristics [79] to determine

behavior and intent of hosts appearing in IP “gray space.”

Other researchers examine machine learning for passive traffic inference. Many modern

applications do not use well-known port numbers [74] and are in effect “hidden.” Further,

the widespread deployment of filters has driven developers to use the web port (TCP port

80) for non-web applications. Offline, unsupervised clustering algorithms are thus useful

to deduce running applications in packet traces [56]. With machine learning clustering on

traffic features such as packet size, delay variation, etc. researchers have for example shown

that a large amount of traffic is P2P [85].

The research in §4.2 uses regression methods to exploit the natural structure in the

Internet address space. While our work is the first we are aware of to use this technique,

other researchers have since followed a similar approach. Mirza et al. use support vector

regression (SVR) to predict TCP throughput in [106].

1.4 Research and Thesis Overview

This thesis makes several broad observations on the current state of the Internet and trends

likely to influence its future and evolution. Issues of scale, security, efficiency and complexity

are prominent in our examination. From these observations, we posit learning as a key com-

ponent in an increasingly complex and malicious Internet. Specifically, we take statistical

learning as a class of algorithms to exploit the wealth of available, but under-utilized, infor-

mation in the network. Chapter 2 provides an introduction to machine learning concepts

used throughout.

Our research takes a bottom-up approach by applying learning in non-obvious ways to

several real-world network problems, outlined in Table 1.1. The problems we consider span

the design space continuum between upper and lower-layer network learning. In particular,

we demonstrate the utility and practicality of learning i) at the application layer; ii) in

end-nodes; and finally iii) within the core of the network. Our work progresses from simple,

autonomous learners operating in a traditional supervised mode to increasingly complex

models with distributed on-line learning, non-stationary environments, etc. Throughout

the research we appeal to the end-to-end arguments to guide decisions of when and where

23

Table 1.1: Outline of Networking Problems Examined in this Thesis

C
om

p
le

x
it
y

?

Network Problem Learning Task Learning Model

Overlay Formation Neighbor Selection Application-layer, supervised
classification (§3.2)

Service Selection Latency Prediction End-nodes, supervised
regression (§4.2)

Email Attacks Email Classification End-nodes, supervised
via Traffic Analysis classification (§4.4)

Spoofed Source Accurate Classification Distributed, ensemble of
Attacks weak learners (§5.2)
Efficient Routing Constrained Distributed, on-line
Policy Optimization learning (§5.3)

to place intelligent functionality.

Because learning implies creating a model based on observed phenomenon, our work in-

volves a substantial measurement component. We ask questions such as what information is

available to agents and how agents might obtain additional data to substantiate predictions

and future decisions. Our measurements further validate the research beyond theoretical

schemes, bridging the gap to operational systems.

Chapter 3 applies learning at the application layer to address the neighbor selection task

in P2P overlays. We show that learning enables nodes to locate and attach to peers likely

to answer future queries without a priori knowledge of the queries. Most importantly, we

employ feature selection in this distributed setting to reduce communication cost, thereby

removing one obstacle to realizing self-reorganizing overlays.

In Chapter 4, we create and test two operational end-host systems that make use of

ignored data. We observe that Internet addressing is hierarchical, but discontinuous and

fragmented, suggesting that learning can discover additional structure beyond what is avail-

able in routing tables or registries. We develop a network-specific clustering algorithm to

find common partitions across the entire Internet address space. Using this clustering

method, we endow agents with the ability to predict round-trip latencies to random Inter-

net destinations without any network or coordinated support (§4.2). Further, we adapt our

algorithm to accommodate structural and temporal dynamics.

In §4.4, we create a packet flow classification technique which detects traffic originating

from remote, resource constrained hosts. This method provides the basis for “SpamFlow,” a

novel spam detection tool that relies on neither content nor reputation analysis. In addition

to providing high spam classification accuracy, we detect the majority of false negatives

missed by traditional content filters. By using learning to exploit a fundamental weaknesses

in sourcing spam, we show that SpamFlow is adaptable and not easily subvertible.

We examine distributed learning within the network in Chapter 5. To ground our

24

discussion in a practical and current threat, we apply learning to the IP source address

validation problem. Current mitigation techniques are hampered by incentive issues; new

attacks based on IP source forgery appear continually. Our work exploits learning to al-

low the eventual recipient to form a classification decision on incoming packets, thereby

removing the incentive problem. Whereas existing techniques require global participation,

we demonstrate that the network core has a sufficiently broad view to filter the majority of

forged traffic with minimal collateral impact.

Section 5.3 takes routing as a final example of intelligence in the core. Because of the

lack of separation between reachability and policy in Internet routing, operational networks

are forced to drive behavior with low-level configuration. The resulting network is complex,

fragile and prone to pathologies and non-obvious failures. Given that providers have a rich

set of business goals, we propose an intelligent routing substrate that implements policy.

Through simulation, we examine the role of learning in realizing such future routing plane

architectures.

Chapter 6 summarizes our findings and key contributions. We provide guidelines for the

practical application of learning in system problems and conclude by discussing the future

of learning and networking.

1.5 Key Contributions

Learning provides a general framework for a wide class of problems that have, or likely

will, arise in networking. Our research demonstrates viable learning-based approaches to

several real-world and difficult networking tasks, but also allows us to draw insight on the

larger conclusions and implications for learning within the Internet. Our key contributions

include:

• Learning to optimize network performance

⋄ Demonstration of learning to address the neighbor selection problem in dis-

tributed P2P systems, revealing the power of feature selection to reduce commu-

nication complexity.

⋄ Application of learning to agent-centric latency prediction, giving insight into

the Internet’s IP address space structure.

⋄ Introduction of a new notion of QoS to resolve exploration vs. exploitation con-

vergence issues in a dynamic network. To this end, we show the natural and

strong link between such a routing infrastructure and learning.

• Learning to mitigate security threats

⋄ Development of “SpamFlow,” illustrating novel means to capitalize on available,

but unused information, exploit attack weaknesses and prevent evasion.

25

⋄ A machine learning-based IP source spoofing prevention mechanism that removes

existing incentive and coordination issues.

⋄ Use of an ensemble of weak learners to perform distributed classification within

the routing substrate. Our approach allows agents to combine and synthesize

multiple weak agent votes into a more accurate validity assertion.

⋄ Demonstration of tuning parametric models to meet specific problem require-

ments, for instance biasing against false positives in a security context.

• Learning as a fundamental element in network architecture

⋄ Development of an IP-specific on-line, non-stationary clustering algorithm.

⋄ Guidelines for system’s designers in the practical application of learning to In-

ternet problems. Examination of distinct real-world problems and their decom-

position to enable a statistical approach.

Beyond addressing current stressors and enabling new functionality, our hope is that this

work provides a step toward an architecture that naturally accommodates future “tussles”

and allows mediation within the system as part of its natural design. Thus, this thesis serves

first to validate the potential for using learning methods to address several distinct problems

on the Internet and second to illuminate design principles in building such intelligent systems

in network architecture.

1.6 Bibliographic Notes

Parts of Chapter 3 appeared as Machine Learning for Efficient Neighbor Selection in Un-

structured P2P Networks, Robert Beverly and Mike Afergan in the Proceedings of the 2nd

USENIX Tackling Computer Systems Problems with Machine Learning Techniques Work-

shop [19]. Portions of work from Chapter 4 appeared as SVM Learning of IP Address

Structure for Latency Prediction, Robert Beverly, Karen Sollins and Arthur Berger in the

ACM SIGCOMM Workshop on Mining Network Data [25]. SpamFlow in Chapter 4 was

published as a technical report [24] and is under current submission.

26

Bring new eyes to a world or even new lenses, and presto - new world.

- John Steinbeck

Chapter 2

Learning Background

Learning is a rich domain with active research in learning theory and application. A great

deal of machine learning research focuses on “traditional” topics such as vision, path plan-

ning, natural language processing, pattern recognition and medical diagnosis. Machine

learning has been applied with great success in financial markets for both prediction and

fraud detection. Recently, biology has seen a renaissance in using machine learning for DNA

sequencing and classification.

This chapter presents an overview of key machine learning concepts and methods used

throughout the thesis. For each learning technique, we provide an example of the method

applied to a networking problem. These examples are intended to relate techniques within

the context of communication networks and Internet architecture and illustrate the rela-

tive advantages of different methods. Naturally, we cannot hope to provide a complete

introduction to machine learning. Thus, we omit detail in favor of focusing on high-level

concepts.

These algorithms perform well on problems we examine, but are by no means complete.

Learning methods perform best with underlying domain knowledge. A natural component

of our research is in understanding applicable techniques, models and parameters which suit

a given networking problem in addition to domain-specific tailoring of these methods.

2.1 Types of Learning

What does it mean to “learn?” Avoiding the philosophical debate, this thesis defines learn-

ing on the basis of an agent or agents that act based on prior experience and available

inputs. Most generally, learning implies an agent or actor observing events, possibly with

delayed outcomes, building a model from observation and then forming predictions using

the model. Within this framework are many subtle details and variations. Instances of

these variations include whether the agent’s observations are within its control, delay in

receiving feedback, dynamics in the underlying environment, noisy feedback, etc.

Rather than simply memorizing outcomes, learning implies generality: the ability to

27

form a rational prediction given inputs or environments not previously encountered. In the

context of networking, a router is often said to ”learn” the route to a remote destination.

The definition of learning in this thesis is stronger. The router is merely assimilating

information and not forming predictions over the path to destinations for which is has no

routing information. Similarly, a host does not learn the IP address of a web server, it

queries the domain name system.

The inputs to the learner may be Boolean, discrete or continuous. Similarly, outputs are

Boolean (classification)1, discrete (ranking) or continuous (regression). Some examples of

high-level learning tasks and how they might map to intelligence network behavior include:

1. Classification, e.g. the ability to classify and block malicious traffic, email or nodes.

Typically a binary decision.

2. Prediction, e.g. the ability to infer network conditions, paths, etc. in order to optimize

performance or meet constraints. Analogous to classification, but with real valued

predictions.

3. Class discovery, e.g. the ability to determine logical groupings, clusters, etc for exam-

ple to determine anomalous events.

4. Reorganization, e.g. the ability adapt and reconfigure the routing system, ad-hoc

topology or overlay structure to optimize some metric of performance.

The performance of a learning agent is separated into structural and approximation

error. While approximation error is error resulting from limited understanding of the un-

derlying data, structural error is the result of a limited set of models. Put another way,

structural error is the error we obtain with an infinite amount of training data, but a model

unable to capture structure. Thus, choosing appropriate models and model classes is impor-

tant in effective application of machine learning techniques. Three widely accepted divisions

of learning are:

• Unsupervised : A model is built from observations where ground-truth is not available

to the agent. The most common form of unsupervised learning is clustering. Cluster-

ing is one approach to estimate the prevalence of different applications on the Internet

such as peer-to-peer, web, etc. from traffic communication patterns [85].

• Supervised : A model is built from observations on known data. The model balances

fit to the known data in such a way as to attempt to ensure accurate predictions on

new data. Common examples include voice and handwriting recognition.

• Reinforcement : A model is built from delayed observations to maximize a (discounted)

long-term reward function. An example of reinforcement learning is a chess playing

1Multi-class classification may be reduced to multiple binary classifications, or computed directly.

28

agent that learns the outcome of a long series of decisions at the end of play rather

than at each step of play.

This thesis focuses on the latter two techniques because they are most applicable to

networking problems and it is possible to evaluate their performance. In contrast, unsuper-

vised learning such as clustering is difficult to evaluate since it is generally impossible on

the Internet to know an actual or correct partitioning2

2.2 Key Concepts

2.2.1 Notation

To discuss learning concepts and formulations, we adopt the following notation throughout

the thesis. We denote vectors using bold fonts and matrices with bold capital variables.

Let xt ∈ Rd represent the t’th instance of d-dimensional real data in a learning problem.

Thus, n data points of dimension d may be compactly represented as the n-x-d matrix X.

With each data instance xt, there is an associated label yt. For binary classification, labels

are generally yt ∈ {±1} while regression typically implies yt ∈ R. We denote predictions or

estimations using a hat, e.g. ŷt.

In supervised learning, pairs of (xt, yt) training data are used to build a model. Super-

vised learning finds a function f , or parameters θ for a fixed function, that maps new data

instances to either discrete or continuous labels:

f : xt ∈ Rd → ŷt (2.1)

The model f is then used to evaluate new and unseen data points where the label is

not known. A common technique in building supervised learning models is to take a data

set and split it into training and test points. The accuracy of the model is then evaluated

against predictions on the test data, i.e. whether ŷt = yt. The performance of a particular

function may be evaluated in a number of ways. In binary classification, the common

zero-one loss function is simply:

V (yt, ŷt) =
(1− ytŷt)

2
(2.2)

such that a mistake on the t’th prediction induces one unit of loss while correct predic-

tions have zero loss. In regression, loss is commonly absolute or square error:

V (yt, ŷt) = (yt + ŷt)
2 (2.3)

We parameterize the prediction function f by θ. The learning task is then divided into

finding “good” functions and optimizing over θ in a principled manner. Throughout this

2One might use unsupervised learning in simulation where a repeatable experiment can be evaluated.

29

x

Figure 2-1: Over-fitting: A 4th degree polynomial produces zero training error, but performs
poorly on unseen data. The linear solution in contrast generalizes well.

thesis we discuss suitable model selection, but note that learning attempts to find models

that generalize well to new data instances the agent has yet to encounter.

2.2.2 Generality

A basic assumption in supervised learning is that finding a model which minimizes training

error will produce a model that performs well on unseen (test) data. Such an assumption is

reasonable if training and test samples are identically distributed and taken independently

at random. To meet this criteria, we randomly permute our datasets in any supervised

learning problem and evaluate the learning performance over multiple, independent trials.

However, minimizing training error alone may not ensure generality. Generality is a

key concept in learning. The task of learning is not to mimic previous observations, i.e.

memorization, but rather to find a model that is a suitable predictor of previously unseen

data instances. Over-fitting is the classic symptom of a model that does not generalize well.

Once the training error no longer approximates the test error, the model is said to overfit.

Models that overfit to the input training data produce very low error in the training phase,

but then subsequently perform poorly when forming predictions on new data points. For

instance, an n degree polynomial can perfectly fit any n training points with zero error, but

is likely to misclassify new data.

Figure 2-1 demonstrates an example of over-fitting. Here, empty circles represent train-

ing points. A 4th degree polynomial fits the training points with no error, but leads to

over-fitting. A new data point x (filled circle) produces high error even though it is drawn

from the same distribution as the training points. In contrast, the Figure shows that a

linear solution, generalizes well in this example well despite higher training error. A pre-

diction using the straight line regression on the new data point is more accurate than the

over-fitting model.

A good test of whether a model will generalize well is to determine its performance

under minor perturbations. For example, the model should not change drastically if one of

30

the training inputs is removed or modified. The stability of the model under these small

changes makes intuitive sense as a single data point that changes the overall solution will

be unlikely to perform well on unseen data. A common test of generality is cross validation

or leave-one-out validation. In leave-one-out validation, the learning algorithm successively

picks a single training point to remove. The overall model is then built from an average

estimation of the cross-validation.

Thus, learning algorithms often attempt to balance the empirical performance of a

solution with the model complexity. This tradeoff is known as regularization.

2.2.3 Bayesian Inference

In many contexts, obtaining causal probabilities is easier than diagnostic probabilities. A

classic example is in medical diagnosis where doctors can approximate the probability of a

symptom given a disease (causal), but cannot estimate the probability of a disease given a

symptom (diagnostic). Bayes’ rule provides a convenient mechanism to obtain the posterior

probability of a hypothesis ŷ from causal data X:

P (ŷ|X) =
P (X|ŷ)P (X)

P (ŷ)
(2.4)

We often wish to evaluate the probability of multiple hypotheses ŷi given some observed

data X, i.e. P (ŷi|X)∀i. In the binary case, for example, there are two potential hypotheses

ŷ1 = 1 and ŷ2 = −1. A prediction is made using all of the hypotheses weighted by

their probabilities. With underlying knowledge of the data given a particular hypothesis

(P (X|ŷi)), Bayes’ rule gives the most likely hypothesis. We employ the common simplifying

strategy of assuming that each piece of data xj ∈ X is statistically independent to obtain

the näıve Bayesian classifier:

P (ŷi|X) =

∏

j P (xj|ŷi)P (ŷi)

P (X)
(2.5)

While the data is typically not independent, the causal data is often independent given

the hypothesis in realistic scenarios. Näıve classifiers of this sort work surprising well in

practice [91]. Note that for classification, the denominator P (X) is the same for each

hypothesis. Therefore the observed data prior P (X), which may be difficult to obtain, does

not need to be explicitly computed for comparisons. Such classifiers have the advantage of

producing a maximum-likelihood guess along with a degree of confidence even in the fact

of incomplete or conflicting data.

Consider the problem of predicting whether the cnn.com web site is reachable3 as de-

picted in Figure 2-2. There may be a multitude of reasons why the CNN web site is down

from the perspective of a particular network. Given knowledge of congestion, connectivity

3See also our work on robust TCP/IP fingerprinting [17] as an additional application of a näıve Bayesian
classifier for network inference.

31

Google
Reachable

Big News
Day

Internet Link
Congestion

Reachable
cnn.com

Figure 2-2: One representation of a network reachability inference problem as a näıve
Bayesian classifier.

Internal Network
 Fast

Attack in
Progress

Weekend

Internet Link
Congestion IDS Alarm

Figure 2-3: Bayesian network representation of a denial-of-service attack inference problem

to other sites and whether there is a major news announcement, the agent forms a belief on

the ability to reach cnn.com. In this näıve formulation, each of the causal pieces of knowl-

edge are assumed to be independent. This graphical model is a special case of Bayesian

networks.

2.2.4 Bayesian Networks

Bayesian networks, or simply Bayes’ nets are probabilistic graphical models to efficiently

represent a full joint probability distribution by exploiting independence. A Bayes’ net is

a directed acyclic graph where nodes represent variables and edges represent dependence.

Figure 2-3 shows a toy example of a Bayes’ net representation of whether a denial-of-service

attack is in progress.

This example considers discrete Boolean variables, but continuous Bayes’ nets are just

as feasible. The directed edges indicate dependence; in this case “Internet link congestion”

depends on its two parent nodes: “weekend” and “internal network fast.” The network

captures independence. For example, “weekend” and “IDS alarm” are independent, demon-

32

1/10

1/10

Congested
Non Congested

9/10 9/10

Figure 2-4: Hidden Markov Model for inferring congestion state

strating how a designer’s assumptions and understanding of the underlying problem domain

shape the network4. The net also represents marginal independence. “Internet link conges-

tion” and “IDS alarm” are independent given nothing is known about “attack in progress.”

However, if the learner determines that the network is under attack, the two are dependent.

The important property of Bayes’ nets is the ability to compactly represent the full

joint probability table, in this case P (weekend, internalfast, congestion, IDS, attack). In

general, with n Boolean variables, the joint probability distribution requires 2n values, or 32

entries. For large problems, exponential scaling with the number of variables is not feasible

and hence the importance of identifying and exploiting independence in the problem. In

our example, only 1 + 1 + 4 + 1 + 4 = 11 probabilities need to be stored in order to answer

any question.

2.2.5 Hidden Markov Models

Hidden Markov Models (HMMs) allow us to tackle learning problems involving dynamics,

in particular reasoning over time or states. Environments amenable to HMMs are those

with partial or noisy precepts and changing states. A canonical example where HMMs have

been applied with good success is in speech recognition systems.

HMMs have a set of unobservable states (Q), transition probabilities between states (A),

an alphabet of symbols (Σ) and probabilities that a particular symbol σ ∈ Σ is emitted

in state q ∈ Q. To build an HMM, the environment is sliced into representative discrete

units. In order to make the problem tractable, HMMs include the Markov assumption

which simply says that the current state depends only on a finite number of previous states.

For instance, a first order Markov model has states where the current state depends only

on the previous state (has a single parent).

Whether the Markov assumption is reasonable depends on the domain, but often pro-

vides a reasonable means to approximate the solution as physical processes often have

independence between previous and future states.

With an HMM, several inferences are possible. Given a time series of observed evidence,

one may determine the most likely explanation of the set of hidden states which generated

4It is also possible to learn the best Bayes’ net, but we do not present this variation here.

33

Table 2.1: HMM symbol emission probabilities
ACK DupACK OOAck SACK

C 0.7 0.1 0.1 0.1

NC 0.97 0.01 0.01 0.01

NC1 NC NC

C C C

2 3

321

p=1.0 p=1.0

p=1.0 p=1.0

p=0.1

p=0.1

p=0.9

p=0.9

Figure 2-5: HMM with additional congestion state assumptions

the symbols. Alternatively, the HMM can predict the current or future state given the

evidence.

As a simple illustrative example of HMMs applied to a network problem, consider a

passive observer attempting to determine whether an end-to-end Internet connection is

congested. Researchers often wish to make inferences from passive observation, such as

passive traces collected from an Internet link. For example, Liu et al. use HMMs for a

similar inference problem in hybrid wired/wireless networks in [97]. From such passively

collected traces, the observer has no insight into the true states of the end TCP stacks;

these correspond to the hidden states.

We will model the congestion inference problem as the HMM in Figure 2-4. The system

has only two hidden states, congested or non-congested (Q = {C,NC}). Let the alphabet be

Σ = {ACK,DupACK,OOAck, SACK} corresponding respectively to evidence of normal,

duplicate, out-of-order and selective TCP acknowledgments. For the sake of this example,

we assume that the HMM emits symbols according to the probabilities in Table 2.1.

In this model, a TCP stack stays in its current state with probability 0.9 and switches to

a different state with probability 0.1. Given evidence xi ∈ Σ over time steps i = 0, ..., n, we

can use the HMM to determine what the most likely sequence of states the TCP connection

encountered, infer the current state or predict the next state.

The congestion HMM is quite simple and assumes that the transition probabilities are

the same in any time step. While this approximation may suffice, a more accurate model

might model temporal congestion properties by assuming that a congested connection re-

mains congested for at least two time steps. Similarly, Figure 2-5 shows that a non-congested

link remains non-congested for at least two time steps.

34

+
+

+

+

+

+

−

−

−
−

−
−

Figure 2-6: A linear binary classifier on separable data

2.2.6 Linear Binary Classifiers

A common learning task is to differentiate between a finite number of classes. In linear

binary classification, the task is find θ and θ0 that maps input instances x ∈ Rd to binary

labels:

f(x;θ, θ0) = sign(θTx + θ0) (2.6)

Geometrically, θTx + θ0 = 0 defines a d dimensional hyper-plane decision boundary. If

there exists a decision boundary such that all data points are classified with zero loss, the

points are separable. Figure 2-6 depicts positive and negatively labeled two-dimensional

data points along with a separating decision boundary. Positive samples are above the

decision boundary where yt

(

θTxt + θ0

)

> 0.

Note that if the points are linearly separable, there are an infinite number of possible

decision boundaries. To select a solution, the notion of margin allows us to incorporate

a model generality. Consider normal projections from the decision boundary to each data

point. Informally, the minimum distance normal projection defines the margin.

Figure 2-7 shows the same data set with two different decision boundaries. The dashed

lines indicate the margin. Each boundary provides a suitable decision function. However,

the margin in Figure 2-7(b) is larger than the margin in Figure 2-7(a). Assuming that new,

unclassified data points come from the same distribution on which the decision boundary

is found, maximizing the minimum margin ensures generality. To see this, note that in

Figure 2-7(a), a new data point next to the data point defining the minimum margin is

likely to be misclassified. In contrast, the same new data point is not misclassified with a

decision boundary that maximizes the minimum margin. Support Vector Machines (SVM)

[146] attempt to find models by maximizing the minimum margin directly.

2.2.7 Support Vector Machines

SVM classifiers find an optimal separating hyperplane that maximizes the margin between

two classes of data points. The hyperplane separator is orthogonal to the shortest line

35

+
+

+

+

+

+

−

−

−
−

−
−

(a)

+
+

+

+

+

+

−

−

−
−

−
−

(b)

Figure 2-7: Selection of decision boundary (solid) affects margin (dashed)

between the convex hulls of the two classes. Because this separator is defined only on the

basis of the closest points on the convex hull, SVMs generalize well to unseen data. These

closet points, those that define the margin, are termed “support vectors.” Additional data

points do not affect the final solution unless they redefine the margin. The primal form of

an SVM optimization is:

minimize
1

2
‖θ‖2 s.t. yt

(

θTxt + θ0

)

≥ 1 ∀ t = 1 . . . n (2.7)

To prevent over-fitting and balance between minimizing loss and model generality, SVMs

also include regularization. Regularization also allows the algorithm designer to include

domain-specific knowledge into the learning algorithm to penalize or encourage particular

properties. The more general primal form of Eq. 2.7 is:

min
1

2
‖θ‖2 + C

n
∑

t=1

V (yt, ŷt) s.t. yt

(

θTxt + θ0

)

≥ 1− V (yt, ŷt) ∀ t = 1 . . . n (2.8)

where C controls the tradeoff. Large values of C imply that the final solution places

a strong burden on incorrect solutions at the cost of more complex models, while small C

allow more errors. The constraints can be subsumed into the minimization problem using

Lagrange multipliers to give the SVM dual form:

J(θ∗,α) = max
α≥0
‖θ‖ −

n
∑

t=1

αt

[

yt

(

θTxt + θ0

)

− 1
]

(2.9)

which is solved by obtaining θ∗ as a function of α and then maximizing over the Lagrange

multipliers. It can be shown that the dual form is then to maximize:

36

+

−

−

+

?

?

?

Figure 2-8: Separating XOR inputs. No linear separator exists that correctly classifies all
four points with zero error.

n
∑

t=1

αt −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
T
i xj s.t. C ≥ αt ≥ 0,

n
∑

t=1

αtyt = 0 (2.10)

2.2.8 Kernels and Non-Linearity

Many real-world problems include data that is not linearly separable. A canonical example

that illustrates the problem well are the four XOR5 data points in Figure 2-8. No linear

separator exists that correctly classifies all four points with zero error.

However, the data is often linearly separable once it has been transformed from its orig-

inal input space to a new, higher-dimensional, feature space. Let φ(x) be a transformation

on the input space to a feature space. Particular instances of transformations known as

kernels have important mathematical properties.

Thus, while the separator may be linear in some higher-dimensional feature space, it

need not be linear in the input space. For example, the second degree polynomial kernel

for a two dimensional input space x = [x1, x2] is:

φ(x) = [1, x2
1, x

2
2,
√

2x1x2,
√

2x1,
√

2x2] (2.11)

Notice that the inner product of this second degree polynomial φ(x) · φ(x′) is (1 +

(xTx′))2. The inner product in the feature space does not need to be computed, a fea-

ture known as the “kernel trick.” The kernel trick replaces the dot products K(xi, xj) =

φ(xi)
T φ(xj). By Mercer’s theorem, any positive, semi-definite kernel can be expressed as a

dot product in a high-dimensional space.

The transformation to a higher-dimensional space could easily lead to over fitting, but is

prevented by the regularization penalty. The SVM formulation on the feature space is then

a similar minimization problem as Eq.2.10. Thus, for appropriate kernels, the maximization

problem becomes:

5XOR refers to the Boolean exclusive or function

37

n
∑

t=1

αt −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjK(φ(xi), φ(xj)) s.t. C ≥ αt ≥ 0,

n
∑

t=1

αtyt = 0 (2.12)

2.2.9 Feature Selection

Feature selection finds a subset of all features which provide the most discrimination power

[157]. The first feature selection method we consider is mutual information (MI). Mutual

information attempts to use combinations of feature probabilities to assess how much in-

formation each feature, i.e. word token, contains about the classification. MI evaluates the

mutual information score I(θi; y) for each feature θi ∈ X̂ and sequentially picks the highest

scoring features independently of the classifier. The MI score is in the range [0, 1] and will be

zero if the feature is completely independent of the label or one if they are deterministically

related.

I(θi; y) =
∑

θi∈{0,1}

∑

y∈{±1}

P̂ (θi, y)log2

P̂ (θi, y)

P̂ (y)P̂ (θi)
(2.13)

Secondly, we use greedy forward fitting (FF) feature selection. Forward fitting feature

selection simply finds, in succession, the next single feature that minimizes training error.

Therefore, training error decreases monotonically with the number of features. Feature

selection proceeds in rounds. For an error function V (f(θ), ·), find the next feature θi from

the remaining features not previously selected in X1, . . . ,Xi−1. Thus, we evaluate each

potential feature i for the fixed set of i− 1 features. Formally:

θi ← argmin
j

V (f(X̂, xj),y)∀xj /∈ X1, . . . ,Xi−1 (2.14)

We can also express feature selection more precisely using matrix notation. In round i

let Sj be an f x i binary selection matrix with sj,i = 1 and sk 6=j,i = 0. The i − 1 columns

of Sj are set in previous rounds. Recall that the data X is an n x f matrix containing n

examples with f features each. Let:

Zj = XSj (2.15)

Thus, Sj selects feature j in round i. Let F = {1 . . . f} indicate the set of all possible

features. We denote θi as the set of best features in round i. Then, for a prediction function

f(·) and error function V (·), find:

argmax
j∈F−θi−1

V (f(Zj),Y) (2.16)

The feature that best minimizes the error in round i is j, so we update the set of best

38

features: θi = θi−1 + j. Training error is typically an effective proxy for test error. One can

employ, for instance, SVM accuracy as the error function f(·), although forward fitting can

be used with any model and error function.

In some contexts it may be most important only to discover good features while in

others it may be important to understand the relationship between them. Forward fitting is

computationally expensive because it requires computing a combinatorial number of possible

feature combinations. Mutual information is much faster, but does not always find the

optimal features. A weakness of MI is that it may choose two features that are themselves

closely dependent and thus the second feature provides little additional classification power.

In contrast, forward fitting will continually seek the next best performing feature without

this potential dependence.

2.3 Key Terms

• Agent: a logical model or abstraction that describes software that acts. An agent

may act on behalf of a user or program and may interact with another user or other

program.

• Over-fitting: Developing a complex model that yields excellent predictions on the

input training data, but generalizes poorly to unseen data.

• Regularization: A penalization parameter against model complexity in order to enable

generality.

• Stability: A metric of generalization whereby the derived model does not change

significantly by perturbing the training set, i.e. by removing a training example.

• Input space: raw data points represented as d dimensional vectors x ∈ Rd.

• Feature space: a higher dimensional space f > d in which data points are linearly

separable.

• Kernel: A mapping from an input space to a feature space that allows a linear classifier

to solve a non-separable problem in the input space. By using kernels, the inner

product of feature spaces does not need to be explicitly computed.

• True/false positive/negative: A positive is a correct prediction ŷt = yt. A true positive

(TP) is a correct prediction where the label is 1, i.e. ŷt = yt = 1. True negatives (TN)

are correct predictions where ŷt = yt = −1. A false positive (FP , also known as a

type I error) is an incorrect prediction of 1, i.e. ŷt = 1 6= yt. A false negative (FN),

ŷt = −1 6= yt is also known as a type II error.

39

• Accuracy: is simply the ratio of correctly classified test samples to total samples. Let

P be the number of positive samples in the data set (P = TP + FN) and N the

number of negative samples, (N = TN + FP).

Accuracy =
TP + TN

P + N
(2.17)

• Precision: measures the number of positive predictions that were truly positive.

Precision =
TP

TP + FP
(2.18)

• Recall: synonymous with sensitivity and true positive rate. Recall provides a metric of

how many positive samples were predicted positive. All three measures are important

in assessing performance; for instance, a model may have high accuracy, but poor

recall.

Recall =
TP

P
(2.19)

• Specificity: determines how well the classifier identifies negative cases. The false

positive rate is 1− specificity.

Specificity =
TN

FP + TN
(2.20)

• Receiver Operating Characteristic: a plot that compares the false positive rate versus

the true positive rate as a function of the model parameters. Provides a graphical

and intuitive means to understand how parameters affect performance.

2.4 Summary

Unfortunately, there are no hard and fast rules as to which learning technique is superior.

Learning performance is typically domain, model and parameter dependent. The inputs

in many applications are sufficiently complex and not well-understood such that different

models perform differently based on their ability to extract useful causal, dependence and

generality information from the data. Further, the domain is often characterized by random-

ness and marked by theoretical and practical uncertainty, i.e. the domain is not completely

understood and practical details may prohibit complete understanding.

Therefore, any bootstrapping or inclusion of domain specific information within the

algorithm can aid performance significantly. For example, we consider an IP-specific clus-

tering algorithm in §4.3. Throughout this thesis, we seek to understand the models and

parameters that lend themselves to networking problems. Table 2.2 provides a summary of

techniques described in this Chapter along with the relative strengths and weaknesses as

they relate to networking problems.

40

Table 2.2: Summary of learning methods considered
Technique Domain Network Example Strengths Weaknesses

Näıve Bayes Probabilistic
classifier

Spam filter Produces most likely
estimation. Easy to
train, estimate each
distribution indepen-
dently.

Strong indepen-
dence assumption

Bayes’ Net Probabilistic in-
ference

Attack detection Captures indepen-
dence. Produces
probabilistic output.

Difficult to deter-
mine network struc-
ture. Can’t exploit
missed causal con-
nections

SVM/SVR Large data
sets containing
many variables
with unknown
distribution

Latency prediction Generalizes well by
penalizing model
complexity. Easily
allows non linear
input features to
be transformed into
higher dimension
where separable.

Difficult to deter-
mine kernel func-
tion. Can be com-
putationally inten-
sive.

HMM Dynamic, time-
series

TCP congestion infer-
ence

Incorporates non-
stationarity

Markovian assump-
tion

Mutual
Information

Determine cor-
relation between
features in-
dependent of
classifier

Neighbor selection Simple, computation-
ally fast

Performs worse
than forward fitting

Forward Fit-
ting

Greedily deter-
mine best fea-
tures using clas-
sifier

Neighbor selection Avoids duplicate
features that pro-
vide no additional
discrimination

Computationally
expensive. Poten-
tial for over-fitting.

41

42

At the first balloon flight, Ben Franklin was asked “What good could a balloon be?” to

which he replied: “What good is a newborn baby?”

Chapter 3

Application-Layer Learning

In this Chapter, we follow a traditional application-layer perspective on placing learning and

intelligent functionality. Specifically, we consider unstructured Peer-to-Peer (P2P) networks

as a nice example of applications built on top of the Internet to permit new functionality.

In P2P overlays, nodes act as both producers and consumers of data, effectively filling the

role of servers and clients simultaneously. Further, many P2P overlays provide the ability

to search for content in the network. Thus, P2P networks provide functionality at the

application layer in the absence of that functionality in the network itself.

Because of the separation between the application layer’s needs and the network’s sup-

port, applications must make inferences and will often attempt to optimize local or ap-

proximate global metrics. Thus, learning is a natural fit for many newer applications that

organize such overlays. This Chapter shows that there is ample room for networked appli-

cations to use learning to their advantage.

3.1 Introduction

Previous research has considered the concept of network self-reorganization, for instance in

mobile and P2P environments. We formulate the neighbor selection task in P2P networks as

a machine learning problem. Specifically, how a node can effectively (with high success) and

efficiently (with few queries) determine the suitability of another node. Using captured file

sharing data from a live P2P network, we demonstrate that nodes equipped with suitable

prediction mechanisms can organize for both local and global performance improvements.

We use forwarding fitting feature selection in conjunction with Support Vector Machines

(SVMs), to predict suitable neighbors with over 90% accuracy while requiring minimal

queries (<2% of features). Our technique efficiently chooses neighbors that successfully

answer not only current, but also future queries.

43

Figure 3-1: Self-reorganization within a peer-to-peer overlay. Nodes organically connect
and may optimize their connections based on utility, e.g. connecting to nodes with similar
interests, low load, etc.

3.2 Problem: Overlay Neighbor Selection

Simple unstructured Peer-to-Peer (P2P) overlay networks are both popular and widely de-

ployed [86, 126]. Nodes issue queries, for example file keywords, that propagate through

the overlay and receive answers from peers able to satisfy the query. Because unstruc-

tured overlays allow nodes to interconnect organically with minimal constraints, they are

well-suited to self-reorganization. Specifically, prior research investigates reorganization for

improved query recall, efficiency and speed, as well as increased system scalability and

resilience [9, 18, 37, 142, 144]. Figure 3-1 graphically depicts the basic intuition behind self-

reorganization within an overlay where nodes with common interest or type preferentially

interconnect.

In practice however, the benefit of reorganization is often lower than the cost in a classic

exploration versus exploitation paradox. A critical question prior research does not address

is how nodes within a self-reorganizing P2P system can determine the suitability of another

node, and hence whether or not to connect, in real-time. Nodes must classify potential

peers as good or poor attachment points both effectively (with high success) and efficiently

(with few queries). This task is the overlay neighbor selection problem.

Given an omniscient oracle able to determine a node’s future queries and the fraction

of those queries matched by other nodes, neighbor selection is readily realizable. Naturally,

nodes do not have access to such an oracle. This work seeks to understand how to emu-

late, in a distributed fashion with minimum communication cost, the functionality of an

online oracle as a component of a self-reorganizing network. In particular, nodes within a

self-reorganizing network face two primary challenges: minimizing load induced on other

network participants (exploration) and locating neighbors that are likely to answer future

queries (exploitation).

We abstract these challenges into a distributed, uncoordinated, per-node machine learn-

ing classification task. Based on minimal queries, nodes predict whether or not to connect

to a peer neighbor node. A key insight is that minimizing the induced load on other nodes

maps to a feature selection problem. We wish to build an effective classification model by

finding a small set of highly discriminatory queries.

44

Table 3.1: Gnutella datasets

DataSet Nodes Contains

Beverly, et al. 1,500 Queries, Files, Timestamps

Goh, et al. 4,500 Queries, Files, Timestamps

Our analysis uses live Gnutella [62] data to understand the efficacy and parameterization

of machine learning techniques for neighbor selection. We determine the accuracy, precision

and recall performance of SVMs for this task and empirically determine a training size with

high prediction performance. We then experiment with forward fitting and mutual infor-

mation feature selection algorithms as a means of finding queries with high discrimination

power.

3.2.1 Learning Approach

Locating peer nodes in unstructured P2P networks is accomplished in a variety of ways.

In Gnutella-like overlays, bootstrap nodes maintain pointers into the network while every

node advertises the IP addresses of its neighbors. However, it is not obvious how a node

can, in real-time, determine whether or not to connect to another node. Exploring other

nodes incurs cost and presents a paradox: the only way to learn about another node is to

issue queries, but issuing queries makes a node less desirable and the system less scalable.

A key insight of our research is that efficient neighbor selection maps to machine learning

feature selection. We ask: “for a node i, does there exist an efficient method, i.e. a small set

of key features, by which i can optimize its choice of neighbors?” While feature selection is

traditionally used in machine learning to reduce the computational complexity of performing

classification, we use it in a novel way. Specifically, we use feature selection to minimize the

number of queries, which equates to network traffic and induced query load.

Representing the Dataset

We experiment on real, live Gnutella datasets from two independent sources: our own

measurement of 1,500 nodes and a public repository of approximately 4,500 nodes from

Goh, et al. [63]. Table 3.1 describes the data. Both datasets include timestamped queries

and files offered across all nodes. Encouragingly, our experiments yield similar results using

either dataset, lending additional credence to our methodology. We consider only the Goh

dataset here.

While our datasets focus on Gnutella, we believe that they are sufficiently representative

of general P2P usage (in particular, the Gnutella network is estimated to contain approx-

imately 3.5M users [126]). It is reasonable to believe that most general-purpose networks

will see comparable usage patterns. Many additional motivations for using Gnutella as a

45

reference P2P network, including size, scope and growth, are given in [143].

Let N be the set of all nodes in the data set and n = |N |. Associated with each node

is a list of queries it issues and the names of files it shares. For example, the first query of

the first node is “ann her lee hate womack i” while the first file stored on the first node

is “The Doors - Light My Fire.mp3.” Unstructured P2P file sharing overlays typically

perform tokenization where the query and file name strings are separated on white-space.

From the resulting tokens, non-alphanumerics, stop-words and short words are removed.

We similarly follow this tokenization procedure according to the Gnutella protocol.

Let qi,k and f i,k be vectors representing the k’th tokenized query and file of node i

respectively. Thus, q1,1 = {ann, lee, hate, womack} and f1,1 = {doors, light, f ire}. We

index the r’th token using array notation, thus qi,k[r] is the r’th token of the k’th query

from node i, e.g. q1,1[2] = lee. The set of all query and file tokens for node i is the union of

the tokens of i’s individual queries and files:

qi =
⋃

k qi,k (3.1)

f i =
⋃

k f i,k (3.2)

We represent the set of all unique file tokens as F =
⋃

f i.

To qualitatively compare peers, we introduce the notion of a utility function. Given

qi,k and f i,k for every node i, we can evaluate whether a potential neighbor has positive

utility. Nodes are individual, selfish utility maximizers, i.e. their decisions reflect a desire

to increase utility without regard for global welfare. Utility may be a function of many

variables including induced query load, query success rate, etc. However, we are primarily

interested not in the specific mechanics of a utility-based self-reorganizing network, but

rather the neighbor selection task. Therefore, in this work, we define ui(j), node i’s utility

in connecting to node j, simply as the number of successful queries from i matched by j.

A single query from i matches a single file held by j if and only if all of the query tokens

are present in that file name1. For example, the first node would not match the two token

query “doors fire,” but would match “doors fire light.” Formally:

ui,k(j) =

1 if ∀r∃l s.t. qi,k[r] ∈ f j,l

0 otherwise
(3.3)

and

ui(j) =
k
∑

ui,k(j) (3.4)

1We also used more sophisticated decreasing marginal utility functions that consider both query matches
and induced system load along with an ǫ-equilibrium analysis for non-strict utility maximizers, but omit
results here.

46

i

N
od

e
i

. . .

. . .

Node j

. . .

. . .

0 00

Token Index

(a) Adjacency Matrix (b) File Store Matrix

N
od

e
i

kx
1
x xx1 2 3

y = sign(u (j))i,j

Figure 3-2: (a) The binary n-x-n adjacency matrix indicates whether node i wishes to
connect to node j based on utility ui(j). (b) We assign a unique index k to all file store
tokens and form a Boolean per-node word token presence matrix X.

We represent the dataset with the two matrices in Figure 3-2, an adjacency and word

token matrix:

• Adjacency Matrix Y: An n-x-n pair-wise connectivity matrix where Yi,j = sign (ui(j)).

Because our dataset includes all queries and files of every node, our omniscient sim-

ulator definitively knows how many queries of each node are matched by every other

peer. Thus, Yi,j = +1 indicates that node i wants to connect to node j.

• File Store Matrix X: Using all file store tokens, F , we assign each token a unique

index k. The word token Boolean matrix indicates the presence or absence of a given

file token for every node in the system. Xi,j = 1 ⇐⇒ Fj ∈ f i.

From the adjacency and file store matrices we create a per-node matrix, [Y(i, :)T ,X],

as shown in Figure 3-3. Note that we compute the adjacency and file store token matrices

explicitly only in order to evaluate the performance of our neighbor selection algorithm;

our scheme does not require complete knowledge of all files and queries in the network.

Rather, we employ the omniscient oracle only to evaluate the performance of our neighbor

prediction algorithm.

Formulating the Learning Task

Given the hypothetical off-line (oracle) representation of a node’s state as depicted in Fig-

ure 3-3, we now turn to the problem of classification. Note that the problem we face is

slightly non-standard – we have a separate classification problem for each node. That is,

the features that are optimal can, and likely will, be different from node to node. In ad-

dition, the optimal features need not match the node’s queries. For instance, while a node

may issue queries for “lord of the rings,” the single best selective feature might be “elves.”

This example provides some basic intuition of how our system finds peers that are capable

47

X

. . .

. . .

y
0 1 01
x x x

N
od

e
j

1 2 k

Figure 3-3: Representing the single node i: The i’th row of the adjacency matrix (fig 3-2a)
is the first column (shaded) and represents node i’s connection preferences (class labels).
To this the file store token matrix (X) is horizontally concatenated.

of answering future queries. By connecting to peers using “elves” as a selection criterion, a

future query for “the two towers” is likely to succeed given interest-based locality.

Figure 3-4 shows how the conjoined matrices as shown in Figure 3-3 are split and used

as input to machine learning algorithms. Some number of nodes, significantly fewer than

the total number of nodes n, are selected at random to serve as training samples. The

learner is given the word token features present for each training node (X̂ a row subset of

X) along with the corresponding classification labels (y). For our neighbor selection task,

the label is a binary decision variable, y ∈ {±1} where y = +1 indicates a good connection

and y = −1 a poor connection. The class labels are computed by calculating each node’s

utility as described previously. We consider the size and complexion of the training data in

the next Section. Using the training data, the learner develops a model that uses a small

number of features θ ∈ X̂ in order to predict future connection decisions. We evaluate the

efficacy of this model against the test data, i.e. whether the model correctly predicts the

unknown y connection labels in the test set. Thus, in the testing phase, the input to the

classifier is the small number features (θ1, · · · , θd) where d ≪ k, without either the labels

(y) or the full word tokens (x1, · · · , xk).

Notice that the features we train and test on do not include any queries Q from our

dataset. Only the y labels depend on the queries. Thus, successful connection predictions

imply the ability to predict queries yet to be asked.2

We find that some nodes in the dataset have queries that are matched by very few

other nodes. Therefore, a prediction model that deterministically predicts not to connect

will yield a high accuracy – and thus a misleading result. Consider a node whose query

is matched by only 1 of 500 other nodes. A classifier that always predicts not to connect

gives an accuracy of 499/500 = 99.8%. To better assess our neighbor selection scheme

without bias or skewing the results, we randomly select 50 nodes that have at least 20%

2Additionally, our prediction accuracy implies correlation between a single node’s file store and queries,
a result we analyze in detail in [18].

48

feature select

1
-1

0 0
1 1 1

0 01
1

...

...

-1

...

...

y

?

T
E

ST

T
R

A
IN

x 31 2x x
1

xk

1

0

?
?
?

θ1θ2 θd

PREDICT

Xy

Figure 3-4: The machine learning task: from randomly selected training samples, find the
best model and features (θ ⊂ X̂) to minimize training error. With this small set (d ≪ k)
of features, predict neighbor suitability (y class label).

positive labels, i.e. a non-trivial number of suitable potential peers. In this way, we choose

to evaluate the nodes that are most difficult to accurately perform predictions with and

thereby stress our approach.

These nodes include k = 37, 000 unique file store tokens. We provide both average and

variance measures across these nodes from our dataset. Thus, we wish to show that our

scheme is viable for the vast majority of all nodes.

We note that incorrect predictions in our scheme are not fatal. In the overlays we

consider, a node that attaches to a peer who in fact provides no utility can simply disconnect

that peer. Therefore, while the statistical methods we employ provide only probabilistic

measures of accuracy, they are well-suited to the neighbor selection task.

Methodology Summary

Our evaluation methodology simulates the following algorithm on nodes from our dataset

and measures prediction accuracy. For a node i ∈ N in the system that wishes to optimize

its connection topology:

49

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

T
es

t C
la

ss
ifi

ca
tio

n
P

er
ce

nt
ag

e

Training Size (Samples)

Accuracy
Precision

Recall

Figure 3-5: SVM Neighbor prediction: classification performance versus number of training
samples

Summary of Methodology

1. Randomly select T ⊂ N other peers as trainers, where |T | ≪ |N |

2. Receive file tokens xt from each t ∈ T

3. Determine utility of each training peer yt = sign (ui(t))

4. Let X =
⋃

xt and k = |X|

5. Find features θ1, · · · , θd ⊂ X, where d≪ k, which best predict ŷt = yt∀t ∈ T

6. Issue θ to test set M ∈ N − T , predict whether to connect to each peer j ∈M

3.2.2 Results

In many respects, our problem is most akin to text categorization and we draw upon the

rich literature of prior work espousing machine learning theory. One of the earlier works in

application of SVMs to text categorization is from Joachims [80]. Yang and Liu examine

several text categorization methods against standard new corpora, including SVMs and

Näıve Bayes [156]. Our results similarly find SVMs outperforming Näıve Bayes for our

application; we omit Näıve Bayes results here. Finally, as in Yang’s comparative study

[157], forward fitting also outperforms mutual information feature selection on our dataset.

SVMs are a natural selection for neighbor selection since the problem is separable, we

may need to consider high-dimensional data, and the underlying distribution of the data

points and independence are not fully understood. We use the MySVM package for our

experiments [80]. To reduce possible dependence on the choice of training set, all results we

50

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

T
es

t C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of Features

FF
MI

RND

(a) Neighbor Prediction Accuracy

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

T
es

t P
re

ci
si

on
Number of Features

FF
MI

RND

(b) Neighbor Prediction Precision

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

T
es

t R
ec

al
l

Number of Features

FF
MI

RND

(c) Neighbor Prediction Recall

Figure 3-6: Neighbor selection prediction performance for three different feature selection
algorithms: Mutual Information (MI), Forward Fitting (FF), and Random (RND) with an
SVM model. The points represent average performance across nodes in our dataset, while
the error bars show the standard deviation.

51

present are the average of five independent experiments. We randomly permute the order

of the dataset so that, after splitting, the training and test samples are different between

experiments. In this way, we ensure generality, a critical measure of learning effectiveness.

We evaluate model performance on the basis of classification accuracy, precision and recall

(see §2.3 for the ML definition of these terms). All three measures are important in assessing

performance; for instance, a model may have high accuracy, but poor recall as mentioned

in the previous section when nodes have few suitable peers in the entire system.

An important first consideration is the sensitivity of the model to the number of training

points (step 1 in §3.2.1). In Figure 3-5 we plot the test accuracy, precision and recall versus

the number of training points. Test error decreases significantly in the range [10,70]. Test

error is minimized around 150 points; beyond 100 training points, accuracy, precision and

recall all remain fairly stable. Because we are interested in obtaining the best combination

of the three performance metrics while minimizing the number of training points, we select

100 training points for the remainder of our experiments.

In order to find a small number of highly discriminative tokens (step 5 in §3.2.1), we

turn to feature selection methods (detailed in §2.2.9). Recall that we use feature selection

in a novel manner, not to reduce the computation complexity of classification, but rather to

minimize communication cost for neighbor selection in the network. Figure 3-6 summarizes

the most meaningful results from our feature selection and SVM experiments (step 6 in

§3.2.1). The experiment is run five times for each configuration and the average numbers are

presented in the graph along with the standard deviation error range. We include random

feature selection as a baseline measure. The primary observations from these graphs are:

• We are able to make accurate predictions with as few as 5 features. This is a surpris-

ingly good result. Recall that we are handicapped from the fact that a) we consider

only the file features not the query features, even though the queries are what gen-

erated the results; and b) there are 37,000 single-word features and thus a massive

number of multi-word combinations.

• Forward-fitting performs better than mutual information. In particular, we see that

even with one feature, FF has a lower test error than MI.

• The random feature selector performs poorly. While we expect randomly chosen fea-

tures to perform the worst, it provides validation of our results and methodology and

proved to be a surprisingly useful benchmark in building our system.

3.3 Discussion

Here we examine the larger conclusions that can be drawn from our findings:

• While our input space is of high dimension, it can be effectively summarized with very

few parameters. The summarization aspect of our problem inspired us to consider an

52

SVM approach. Forward fitting reveals that a small number of features effectively

correlates to accurate predictions. Our findings are in stark contrast to the standard

motivation for SVMs in text classification problems where the inputs are indepen-

dent and the primary motivation for feature selection is to reduce the computational

complexity.

• SVMs allow us to accurately model the problem with little or no underlying under-

standing of the inputs. While we have a general understanding of the data, we face

the challenge that we do not totally understand the relationship between the features

and moreover the nature of these relationships vary from node to node. Nodes in

a real system face this same challenge. Therefore SVMs, which make no underlying

assumptions regarding the data, are particularly well-suited for our problem.

• For our problem, forward fitting outperforms mutual information. The literature is

mixed on the relative merit of mutual information and forward fitting. In our problem,

we were interested in seeing if, as enough features were added via MI, the combination

of features could outperform FF, where features are selected in a greedy fashion.

Empirically this was not the case.

One reason FF performs well is the high degree of correlation between features in the

dataset. For example, if a user has songs by “Britney Spears” both “Britney” and

“Spears” may be descriptive features. However, simple MI will not take into account

that once it adds “Britney”, adding “Spears” will not improve prediction performance.

In future work, we plan to investigate the ability to remove correlated features found

via MI by computing feature-to-feature MI. Conversely, forward fitting will likely only

add one of these terms, moving on to a more descriptive second term. The danger of

forward fitting of course is over-fitting but we do not observe over-fitting in practice.

• For our problem, SVMs do not suffer significantly from over-fitting. As witnessed by

varying the number of training points, SVMs are robust against over-fitting. While

some over-fitting is present in our empirical results with forward fitting, in the context

of our particular problem it has little impact. In particular, we are attempting to

minimize the number of features with as little impact on prediction performance as

possible. Therefore, the fact that too many features leads to worse classification

performance is not as problematic as it may be for other problems.

• Our neighbor selection algorithm is computationally practical. Nodes can use the SVM

prediction we describe in a completely decentralized fashion. While forward fitting

gives the highest accuracy, it requires training many SVMs. Nodes with limited

computational power can use MI to achieve comparable accuracy. In future work, we

may consider FF over multiple features at once. While this method of forward fitting

may be more expensive computationally, it could run as a background process on a

53

user’s desktop (say overnight) and thus not be prohibitively expensive in practice.

• Our neighbor selection algorithm is practical in real networks. While we simulate and

model the operation of nodes using machine learning algorithms to predict suitable

neighbors, our scheme is viable in practice. P2P systems, and Gnutella in particular,

utilize a system of caches which store IP addresses of nodes in the overlay thereby

allowing new clients to locate potential peers. Our experiments show that randomly

selecting ≃ 100 peers on which to train suffices to build an effective classifier. Because

we randomly permute the set of training nodes in each experiment, the density of

“good neighbors” in 100 peers is sufficiently high for accurate future predictions.

• Efficient neighbor selection is a general problem. While we focus only on P2P overlays,

minimizing the communication overhead via feature selection methods such as those

in our algorithm may generalize to tasks in other networks or applications.

3.4 Conclusions

Overlay and content delivery networks (CDNs) are architecturally provocative as they

demonstrate the power of distributed intelligence. By operating in the face of a contin-

ually changing environment, overlays must adapt and act intelligently, often assuming roles

traditionally held by the routing infrastructure. We examine pushing this intelligence both

out individual end-nodes in this Chapter and down into the network later in the thesis.

Our investigation in feature selection methods suggests several addition avenues. We

plan to investigate the ability to remove correlated features found via MI by computing

feature-to-feature MI. Additionally, we wish to observe the efficacy of running FF over

multiple features at once in the neighbor selection task.

In this Chapter, we examine efficient neighbor selection in self-reorganizing P2P net-

works. While self-reorganizing overlays offer the potential for improved performance, scal-

ability and resilience, their practicality has thus far been limited by a node’s ability to

efficiently determine neighbor suitability. We address this problem by formulating neighbor

selection into a machine learning classification problem. Using a large dataset collected from

the live Gnutella network, we examine the efficacy of SVM classifiers to predict good peers.

A key insight of our work was that nodes can use feature selection methods in conjunction

with these classifiers into order to reduce the communication cost inherent in neighbor se-

lection. Using forward fitting feature selection, we successfully predicted suitable neighbor

nodes with over 90% accuracy using only 2% of features.

By addressing the efficiency of neighbor selection in the formation of self-reorganizing

networks, we hope our work serves as a step forward in bringing self-reorganizing architec-

tures to real-world fruition.

54

It is easier to introduce new complications than to resolve the old ones.

- Neal Stephenson

Chapter 4

End-Node Intelligence

4.1 Introduction

At the highest level, the purpose of any network is to service user needs and demands as

expressed by hosts. We abstract the interaction between users, hosts and the Internet in

Figure 4-1. End-nodes have available resources, but issue queries to resolve instances of

incomplete information. This abstraction is quite general; a specific example of a query in

response to user demand is the Domain Name System (DNS) [120]. A user accessing the

web.mit.edu web page implicitly induces a DNS query to resolve the name to a machine

readable address. The host meets this demand by using multiple DNS query resolvers in

the network, selecting from among the responses and forming decisions on behalf of the

user. Thus, DNS represents a network resource with complete and valid information.

Other functionality, however, is not in the network or not exposed to end-nodes. For

instance, an end-host does not know the route or latency to a destination, what other hosts

the destination is interacting with or any measures of reputation. In the absence of network

support for such functionality, hosts must make inferences based on their available data.

This Chapter explores end-node intelligence and learning. Specifically we examine ways

to effect more intelligent decisions; adapting the user’s queries and decision function. To

Applications Demands

Demand
Request

Available
Resources

DNS

CDN

Web

P2P

Other

Users

Query
Responses

Users Network

Queries

Decision

Figure 4-1: Intelligence in the Internet architecture in the context of user demands

55

ground our thinking, we consider two real-world problems in detail and apply agent-centric

machine learning as a solution:

1. Network Latency Prediction (§4.2): We consider determining the latency to unknown

IP addresses based on previous interaction with the network. While the Internet

address space is fragmented and discontinuous, we use kernel methods (§2.2.7) to find

structure upon which to learn. We transform the IP feature space into a feature space

and perform support vector regression. We obtain an estimation accuracy within 30%

of the true value for approximately three-quarters of the latency predictions on a large,

live Internet data set. We obtain this performance without any prior interaction with

the target, using only 20% of our data samples for training.

2. Transport-Layer Spam Detection (§4.4): We investigate the discriminatory power of

email transport-layer characteristics, i.e. the TCP/IP packet stream. With a corpus of

messages and corresponding packets, we extract TCP features such as latency, retrans-

missions, congestion window, etc. While legitimate (ham) mail flows are well-behaved,

spam traffic exhibits TCP behavior indicative of congestion, resource contention and

large geographic distance. We build “SpamFlow” to exploit these transport char-

acteristics and effect greater than 90% classification accuracy. SpamFlow correctly

identifies 78% of the false negatives from a popular content filter – demonstrating the

power in combining techniques. By exploiting fundamental weaknesses in sourcing

spam, SpamFlow is adaptable and not easily subvertible.

4.2 Problem 1: Network Latency Prediction

With oracle knowledge of all nodes on the network, learning is unnecessary and predictions

over, e.g. path performance, traffic or bot-net membership, become perfect. Unfortunately,

the size of the Internet precludes complete information. Yet, the Internet’s physical, logical

and administrative boundaries [60, 71] provide useful structure.

A natural source of Internet structure is Border Gateway Protocol (BGP) routing data

[128, 102]. Krishnamurthy and Wang [89] suggest using BGP to form clusters of topologi-

cally close hosts thereby allowing a web server to intelligently replicate content for heavy-

hitting clusters. Unfortunately, BGP data is often unavailable, incomplete or at the wrong

granularity to represent appropriate structure along a particular problem dimension. For

instance, many service providers advertise a single large routing aggregate, yet internally

demultiplex addresses to geographically disparate locations. Rather than using BGP, we

focus on an agent’s ability to infer network structure from its available data.

Thus, while Internet addressing is hierarchical, it is discontinuous and fragmented, sug-

gesting that learning can discover additional structure beyond what is available in routing

tables or registries. In this Section, we exploit IP address structure in order to endow net-

56

Figure 4-2: Global allocation of /8 IP address prefixes by IANA: distinct colors represent
different geographical regions. Even at a low-granularity, allocations are discontinuous and
fragmented.

work agents with predictive abilities. Based on prior network interaction, we examine the

ability to predict latency to random hosts an agent has not previously interacted with.

4.2.1 Internet Structure

IP addresses must be globally unique and are therefore assigned by regional registries which

are in turn governed by a central body, the Internet Assigned Numbers Authority (IANA).

Wherever possible, addresses are delegated in a semi-organized and hierarchical fashion with

the intention that networks, organizations and geographic regions receive contiguous blocks

of IP address space. Contiguous allocations permit aggregation of routing announcements,

preserve router memory and reduce BGP convergence time.

Figure 4-2 is a graphical representation of the global IP address allocation at the /8

granularity, i.e. how large, size 224, pieces of address space are delegated. The Figure is a

16x16 grid representing the geographical allocation of all 256 /8 prefixes. Generally, these

large prefixes are allocated by IANA to regional registries. Color in the figure indicates the

region: red is North America, blue is Europe, green is Asia, purple is South America and

white is Africa.

While Internet IP address space maintains hierarchy and structure, it has evolved or-

ganically over time. As a result the address space is discontinuous, variable and fragmented

[30, 102] as shown in our graphical representation and as evidenced by the approximately

250,000 BGP entries in the global routing table [72].

57

The semi-structured IP address space is sufficiently complex to motivate a learning

approach. While an agent’s latency to machines on a particular subnetwork may be within

a tight bound, there exist other subnetworks with an identical bound that are numerically

distant in the IP space. Analysis of geographic locality in BGP prefixes [59] finds that

autonomous systems commonly advertise multiple noncontiguous prefixes corresponding to

a single location. Because of this address discontinuity, our research investigates the use of

kernel functions to transform the Internet address space into a feature space amenable to

support vector [146] learning methods.

4.2.2 Applications

The ability to learn and predict network latencies to random destinations is potentially

useful in a variety of practical applications. For example, our results provide an estimation

accuracy granularity suitable for:

1. Service Selection: To balance load and optimize performance, a resource may be

distributed over a set of geographically distributed servers. These servers may coor-

dinate to form service selection decisions on the basis of current network performance

and the origin of a request as well as the object requested [127]. Service selection

is also an important problem in peer-to-peer (P2P) networks where popular data is

replicated among many nodes. A search in a P2P file sharing network may result in

many potential peers offering the file. Latency prediction enables an alternate archi-

tecture where intelligence is shifted to the end-nodes. For instance, consider a web

service existing in multiple, distributed locations advertised via a set of DNS address

records. An intelligent resolver agent’s first choice for the given resource can be guided

by our learning algorithm. The client predicts which server is closest from among the

set of all potential addresses for the given resource. Note that an incorrect prediction

is not fatal; nothing precludes the agent from selecting a different server if the first

proves to be a poor choice. Both clients and servers benefit in such an architecture

without explicit coordination.

2. User-directed Routing: Currently network end-nodes have no control over the

route their data takes through the network to a destination. However, the continued

adoption of IPv6, with multiple per-provider logical interfaces, and research efforts

such as NIRA [154], RON [7] and deflections [155], are poised to give nodes coarse

routing control. In an IPv6 world with its provider-assigned addressing model, hosts

will have a combinatorial number of interfaces. When forming decisions on how to best

send traffic to a particular destination, learning algorithms can significantly narrow

the host’s search space. Similarly, a mobile device choosing from many different

possible wireless networks could form decisions based on prior interactions with each

[93]. In fact, any agent can build a “routing table” without formal participation in a

58

routing protocol or receiving routing announcements. Latency prediction potentially

benefits any overlay system, providing efficient construction of distributed hash tables

or multicast trees.

3. Resource Scheduling: Web-servers endowed with predictive abilities might tailor

content depending on the anticipated latency of the remote end-point or perform

opportunistic scheduling [8]. Additionally, the grid computing community would like

to predict transfer times in order to perform distributed scheduling efficiently [122].

4. Network Inference: Researchers frequently use structural models of the Internet

including routing tables. However, publicly available routing tables [105] provide only

a highly aggregated view and from limited vantage points. In many cases, it would

be useful to understand the internal structure and address assignments of individual

networks. A classification algorithm such as we propose could be used to infer detailed

topological properties of networks.

4.2.3 Related Work

Because of the broad range of potential applications, Internet latency prediction has a long

history of prior research. We present relevant efforts here.

Using recursive DNS queries, King [67] estimates latencies between arbitrary pairs of

Internet hosts. King’s method assumes DNS servers are in close proximity to the hosts they

are authoritative for and requires an active probe. Vivaldi [52] is a scheme which defines a

synthetic coordinate system in order to predict latencies. Vivaldi is a distributed algorithm

that requires nodes to query each other to establish their relative position in the coordinate

space. Meridian [149] is a distributed network location system using concentric ring queries

rather than a virtual coordinate system.

The iPlane project [98] similarly embraces our notion of finding and utilizing network

structure. However, iPlane is intended as a service for many agents rather than a single-

agent system. iPlane continually measures the Internet using traceroutes, bandwidth mea-

surements, etc. and performs clustering operations to infer structure.

These existing approaches utilize active queries, landmarks and synthetic coordinate

systems. The key difference between this prior work and our research is that our effort

is designed for individual, intelligent network agents and does not presume any additional

network infrastructure, overlays or network-layer assistance. An agent in the network can be

any device that is attempting to make decisions based upon previous interactions with the

network. Our intent is that every autonomous agent in the network build an independent

view of the network in order to form predictions that maximize individual utility. Our

technique is predictive on the basis of prior learning: an agent forms a latency estimate for

a random, remote end-node with which it has never previously interacted.

59

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 100 200 300 400 500

P
ro

ba
bi

lit
y

Latency (ms)

Figure 4-3: Probability mass function of 30,000 node latencies in data set

4.2.4 Secondary Network Structure

For Internet-scale networks, an agent cannot maintain complete information on all nodes.

However, we hypothesize that agents can exploit the inherent IP address locality to their

advantage. An agent in the network can be any device that is attempting to make decisions

based upon previous interactions with the network1.

Many properties of interest may be reasonably approximated by a distribution shared

among members of the node’s subnetwork. For example, latency, congestion, throughput,

etc. are more likely to be correlated between two nodes within the same subnetwork as

compared to two random nodes from the entire network. Given a general expectation of

consistency that is inversely proportional to the numerical difference between node ad-

dresses, it is not necessary to maintain per-host information2. Rather an agent may form

reasonable predictions from available, observed data that is sparse in relation to the entire

network.

To collect data for our experiments, we use a simple active measurement procedure.

IPv4 addresses are 32-bit integers, typically represented using “dotted-quad” notation as

four octets: A.B.C.D. We select unsigned 32-bit integers at random until one is found as a

valid IP address in a public global routing table. Based on the approximately 1.8B publicly

advertised addresses, filtering with the BGP table reduces our search space by approximately

half. If the randomly selected destination responds to ICMP echo requests, i.e. “ping,” we

record the average of five ping times from our measurement host as the round-trip latency.

Our data set consists of approximately 30,000 randomly selected (IP,Latency) pairs.

Figure 4-3 displays the probability mass function of latencies as observed in our data

set. The distribution is non-trivial, with multiple modes likely corresponding to geographic

1Our intent is that every autonomous agent in the network build an independent view of the network in
order to form predictions that maximize individual utility.

2Intra-network consistency is naturally not absolute, but our work is concerned with providing a most

likely prediction for applications that can compensate for occasional errors.

60

Agent

IPIP1 2

ping = RTT1 ping = RTT2

Figure 4-4: Assessing the correlation between address distance and RTT

regions. Is it reasonable to believe that latency, congestion and throughput are much more

likely to be consistent amongst destinations all within the same subnetwork as compared

to random nodes drawn from the entire network?

Before attempting to learn, we examine our initial hypothesis: sufficient secondary

network structure exists upon which to learn. Without this secondary structure, we cannot

expect to partition and cluster portions of the Internet. We focus on network latency in

this discussion, however other network properties may provide sufficient structural basis.

Let the distance between two addresses be d = |IP1 − IP2|, i.e. simply the absolute

numeric difference between the two unsigned 32-bit integers. To understand the correlation

between round-trip latency and distance, we perform active measurement and gather real

data from Internet address pairs as shown in Figure 4-4.

Algorithm 4.1 provides our measurement procedure which finds pairs of active hosts

separated by d. For a given distance, find a random address addr which exists in the global

BGP routing table. If addr responds to an ICMP echo request (ping), we attempt to find

a responsive neighboring address at a distance of d apart by using a sliding window (swin)

with different initial offsets. Once two suitable nodes are found, we measure and record

the average round-trip latency over five trials. The procedure repeats until it finds count

unique pairs. We use this procedure to asses the correlation between address distance and

RTT. Specifically, we are interested in Pr (RTT1 = (1− ǫ)RTT2|d).

Figure 4-5 shows the probability that the round-trip time (RTT) latency for two random

d-distant IP addresses disagrees within ǫ percent error. In addition to several d values, we

include rand, the probability that two randomly selected addresses, irrespective of their

distance apart, share the same latency. Two random addresses have less than a 10% chance

of agreeing within 10% of each other. In contrast, adjacent addresses (d = 20) have a greater

than 80% probability of latencies within 20%. While the latency of virtually all pairs of

addresses separated by a class C (d = 28) agree within 50%, fewer than half of the random

addresses agree in this bound.

61

Algorithm 4.1 gather(count, d): Gather latencies to count random d-distant address pairs

R, a longest-match IP routing table
D, set of (ip1, rtt1, ip2, rtt2) tuples
swin← 5, pair search window
while count > 0 do

5: repeat
addr ← [0, 232]

until addr ∈ R
if (ping(A) == true) then

for i← −swin to swin do
10: d1 ← addr + i

d2 ← d1 + d
if (ping(d1) && ping(d2)) then

D ← (d1, avgrtt(d1), d2, avgrtt(d2))
count← count− 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 S

am
pl

e
P

ai
rs

ε = RTT disagreement(%)

Pair Distance
20

21

28

216

219

rand

Figure 4-5: Cumulative probability that the RTT of a pair of d-distant IP addresses agrees
within ǫ percent. Two random addresses have less than a 10% chance of having RTTs that
agree by 10%.

62

4.2.5 Learning Approach

We use SVM regression to produce a latency prediction. SVMs are attractive for this

problem as they allow us to experiment with various kernel functions to accommodate the

unknown and discontinuous IP address structure seen even at low-granularities (Figure 4-

2). Further, SVMs are known to perform well on many practical learning problems because

of their regularization parameters as detailed in §2. Later in this Chapter we devise an

alternate prediction algorithm (§4.3).
Learning algorithms require optimization along several dimensions. We begin by ana-

lyzing the training complexion: which features of the IP address provide the most discrim-

inatory power and what size training set generalizes well. Given a suitable training set, we

examine prediction error and error distribution.

IP addresses are simply unsigned 32-bit integers. We transform the IP addresses into a

32 dimension input space where each bit of the address corresponds to a dimension. Thus,

the input to the SVM machine is an IP address bit vector x while the labels y are floating

point round-trip latency numbers.

To reduce possible dependence on the choice of training set, all results we present are

the average of five independent experiments. We randomly permute the order of the data

set so that, after splitting, the training and test samples are different between experiments.

In this way, we ensure the generality, a critical measure of the effectiveness of learning

algorithms.

Performance is measured in terms of deviation from the true latency in the data set. The

most näıve approach is to simply always predict the mean latency of the training samples:

f(x) = ȳ =
P

yi

|y| . The mean latency of our data set is ȳ = 122ms. A mean prediction

strategy with an absolute loss function, V (f(x), y) = |ȳ− y|, yields a mean prediction error

of approximately 70ms. Thus, results lower than 70ms metric indicate effective learning.

4.2.6 Results

Training Complexion

The selection of training points is crucial to any learning algorithm. 30,000 addresses out

of the approximately 1.8B advertised in the global routing table is quite sparse. If our test

points are close to points in the training set, we expect the learning to over-perform. We

wish to ensure that our training set is suitably well-distributed in order to generalize to

random predictions. One metric of distribution is address dispersion. To compute address

dispersion, we find the numeric difference between each address and the next closest address.

For the set of 30,000 addresses A, the minimum dispersion of address i is:

mini = argmin
j

(|i− j|) ∀j ∈ {A− i} (4.1)

63

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25
P

ro
ba

bi
lit

y

Minimal IP Distance (log 2)

Figure 4-6: Probability mass function of IP address dispersion in data set

Figure 4-6 shows the probability mass function of IP address dispersion in our data set,

i.e. Pr(⌊log2mini⌋ = x) ∀i ∈ {A}. Approximately 82% of the addresses have a minimal

separation of 210 or greater.

Kernel Selection

Next, we consider the problem of selecting an appropriate kernel. For a training set size of

2000 points, we evaluate the prediction loss, or mean prediction error, for the test samples

as a function of kernel parameters. Figure 4-7(a) plots both training and test error for a

polynomial kernel as a function of polynomial degree. Included in the plot are error bars

that indicate the performance standard deviation over 10 independent trials; the deviation

is tight up to the sixth degree polynomial, after which the model performs poorly. For

polynomial kernels, the test error closely approximates the training error across the range

of polynomial degrees. Both the minimum training and test error is achieved with a fourth

degree polynomial.

Next, we examine a radial basis kernel, e−γ||x−x̂||2 and vary the γ parameter which con-

trols the width of the Gaussian. Figure 4-7(b) shows that the SVR training error continues

to decrease, while the test error decreases until γ = 0.3. After this point, the test error

begins increasing, a symptom of over-fitting where the test error is no longer reflective of the

training error. As the model becomes more complex, both training and test error improve

up to a point, then diverge.

Because the polynomial and radial basis kernels achieve similar best performance, ap-

proximately 30ms test error, we elect to use the more efficient polynomial kernel. The

remainder of the experiments use a fourth degree polynomial.

Problem Dimension

The selection of training complexion is crucial to creating a machine that generalizes well

and operates efficiently. We examine the informational content of each bit, or “feature,” in

64

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

Polynomial Kernel Degree

Train
Test

(a) Polynomial Kernel

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

RBF Kernel γ

Train
Test

(b) Radial Basis Kernel

Figure 4-7: Kernel selection, training and test performance as a function of kernel type and
parameters

 0

 30

 60

 90

 120

 150

 180

 4 8 12 16 20 24 28 32

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

Input Dimension, MSB of IP Address

Train
Test

Figure 4-8: Latency prediction mean error vs. input dimension, i.e. number of most
significant bits of input IP address.

the IP address. Let θ be a feature vector where θi ∈ x. Intuitively, the most significant

bits correspond to large networks and should provide the most discriminatory power. Here

“most-significant features” correspond directly to BGP prefix masks, i.e. 192.160.0.0/12.

We run the regression SVM algorithm against our data set using 4000 points for training

while varying the number of input features. For example, the first 12 features of IP address

192.168.1.1 is the bit vector θ =110000001010.

We plot the SVM training and test mean error as a function of input space dimensionality

in Figure 4-8. We see that four or fewer bits yields virtually no information; the mean error

is no better than in the mean prediction strategy. However, with only four more bits of

input address, the regression achieves a mean error around 32ms. The optimal number of

most significant features is between 12 and 14, after which test error begins to increase.

65

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

2 1 4 3 7 6 5 10 8 11

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

IP Address Bit

Train
Test

Figure 4-9: Feature selection: mean error vs. sequential bit chosen via greedy strategy.

Notice that training error decreases monotonically as more input bit features are added

and training error no longer generalizes to the achieved validation error. This divergence

between training and test error is symptomatic of over-fitting. Unsurprisingly, the least

significant bits of the IP address add no discretionary strength.

Next, we use greedy forward fitting feature selection (§2.2.9) to determine which bits

of the IP address are most valuable to the regression algorithm. The feature selection

criterion is training error. Figure 4-9 depicts the prediction error as a function of features

found in greedy feature selection. Again, we plot both training and test error, but now

as a function of the set of features chosen. The i’th x-axis data point indicates which bit

feature is chosen in the i’th round of feature selection. For example, the best three features

are, in order, 2 1 4, while the best five features are 2 1 4 3 7. Note that the training error

closely approximates the test error, with only a small deviation on the ninth and tenth best

features where training error decreases but test error does not. The fact that there is little

over-fitting among the top ten features agrees closely with Figure 4-8 since the best features

also have high bit-order significance.

Interestingly, feature selection reveals that the single most powerful bit in an IP address

is the second bit. Intuitively we might expect the power of a bit to correspond to its

bit-level significance. To see why the second bit has more discriminatory power than, for

instance, the first, we reexamine our geographic illustration of the IP address allocation

from Figure 4-2. The first IP address bit essentially horizontally divides the figure in half,

resulting into two groups. Using the second bit divides the figure into two discontiguous

groups as depicted in Figure 4-10. Here, we use yellow lines to show the division imposed

by the second bit and have illustrated the one induced group by shading it.

By using the second bit, the algorithm is in actually better grouping North American

and European allocations. Table 4.1 shows the grouping induced by selection on the first

and second bits respectively. Whereas the division on the first IP address bit almost evenly

divide /8’s allocated to North America, dividing on the second bit better groups not only

66

Figure 4-10: Global allocation of /8 IP address prefixes, yellow lines represent a division of
the IP space by second most significant bit, resulting in a shaded and non-shaded region.
These regions have more geographic commonality than if the space were divided by the first
most significant IP bit.

America, but also European addresses. Quite clearly, by selecting the second IP address

bit, feature selection is identifying the correct address structure, illustrating the power of

the statistical technique in uncovering structure that may not be intuitively evident.

Training Size

Given the best features found via feature selection, we next attempt to optimize the balance

between training and test size. Figure 4-11 shows the mean absolute error in milliseconds

as a function of training size along with a 70ms line indicating the learning bound. Using

4000 of the data points as training, we obtain an average error of 26.6ms across all latency

Table 4.1: Induced geographical groupings by selecting first or second IP address bit
Address Bit First Octet Range US /8s Europe /8s

1 0- 56 21
127

128- 51 10
255

2 0-63 77 7
128-191

64-127 30 24
192-255

67

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000 12000

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

Training Size (# samples)

Train
Test

Figure 4-11: Latency prediction mean error vs. training size. The 70ms line represents a
näıve mean prediction strategy.

predictions in the test set. 6000 training points yields 25ms average error. Given the

inherent noise in the network, the ability to predict latencies within 25ms of their actual

value is readily acceptable for applications such as resource scheduling, service selection and

user-directed routing.

Regression Performance

Using the first 12 features, i.e. bits, from 6000 of our samples for training yields a good

balance between performance and exploitation. Given this training set, we examine the

distribution of latency prediction errors. While the previous Section demonstrates a mean

error of 25ms, it is important to understand the character of the errors.

11% of the predictions are within 2ms of the correct value, while more than 80% are

within 40ms of our measured latency. The distribution has a long tail however, indicating

that while the majority of predictions are quite close, there is a relatively even distribution

of infrequent errors greater than 60ms. Figure 4-12 presents the cumulative distribution of

ratios between predicted and measured latencies. Ratios less than one indicate an under-

estimate of latency while those larger than one indicate an overestimate. With our SVM

prediction method, approximately 61% of the estimates are within a 20% error, i.e. with

ratios between 0.8 and 1.2, while approximately three-quarters of the predictions are within

30% of the actual value.

4.2.7 Ranking Performance

Many practical problems do not require an absolute prediction, but rather a preference or

rank. In the case of network latency prediction, for example, a prediction of preference

is sufficient for an agent seeking a low-latency neighbor. The agent’s prediction accuracy

is less important than selecting the destination with the lowest latency. For example, an

68

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

P
re

di
ct

ed
 L

at
en

cy
 (

m
s)

Measured Latency (ms)

75% within 30%

Figure 4-12: Latency estimation performance: scatter plot of predictions versus true laten-
cies. Our regression works well across the range of values.

agent may only use regression predictions in order to discern a degree of preference, e.g.

finding “nearby” server. This relative preference is often as useful as an exact floating point

prediction.

Consider an application layer overlay that is forming connections guided by a latency

heuristic, for example a P2P overlay that is attempting to minimize the difference between

the overlay path’s latency and the latency of the true end-to-end path. Alternatively,

a service might be provided by multiple, geographically diverse servers all of which are

advertised through DNS. An intelligent agent might select the server with the lowest latency.

Sequential Rank Prediction

Sequential rank prediction assigns one of k ranks to each new instance. Formally, the

ranking agent is given data points x1 . . .xn ∈ Rd. After assigning an estimated rank r̂i to

the i’th data instance, the agent receives the true rank ri. The rank loss is then the absolute

difference between the true and predicted rank: V (f(xi), ri)) = |r̂i − ri| and the average

rank loss is:

1

n

n
∑

i=0

V (f(xi), ri)) (4.2)

We employ the PRank algorithm [51] to perform sequential prediction. PRank is a

perceptron-based on-line ranking algorithm that maintains a vector w ∈ Rd and a vector

bk of k thresholds. The value of each threshold is monotonically increasing. Each data

point is mapped to a rank by computing the product w · x and finding the first threshold

br such that the product is less than br. If the predicted rank is correct, there is no change

to the vectors. However, if the prediction is incorrect, PRank updates both the thresholds

and the vector w to “move” the inner-product closer to its true rank threshold.

Using the PRank algorithm, we rank each IP, latency instance in our data set. We

69

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000 100000

A
ve

ra
ge

 R
an

k
Lo

ss

Latency Sample

5-rank
10-rank
20-rank
50-rank

Figure 4-13: Latency ranking performance: average loss for different group sizes using
PRank algorithm.

determine the true rank of each IP by dividing one second into k equally-sized latency

regions. The rank of an IP is then rank(xi) = ⌊ latency(xi)k
1sec

⌋+ 1.

Figure 4-13 displays the average rank loss, Eq. 4.2, as a function of the sample number

for rank sizes k = 5, 10, 20, 50. Clearly, the average loss decreases throughout the duration

of the experiment, indicating that the algorithm’s predicted rankings become closer on

average the true ranks.

To understand how well the PRank algorithm performs in practice, we compare our

results to a näıve baseline. The most trivial ranking algorithm assigns a rank at random

from the k available ranks to each data instance.

Lemma 4.2.1. The expected rank loss for random rankings among k ranks is 1
3(k − 1

k
).

Proof. Without any knowledge, each data instance is given rank r̂ at random. Assume that

the true rank of the data point is r. There is a 1/k chance that r̂ = r. There is also a

1/k chance that the object’s true rank is one of 1 . . . r − 1 (a higher rank) or r + 1 . . . n.

Therefore, an object with rank r given a random predicted rank r̂ has an expected loss of:

E[loss|rank(x) = r] =
1

k

(

k−r
∑

i=0

i +
r−1
∑

i=0

i

)

(4.3)

For a single object, and no a priori knowledge of the true rank r, the expected loss is

then simply:

E[loss] =
1

k

k
∑

r=1

(E[loss|rank(x) = r]) =
1

k2

k
∑

r=1

(

k−r
∑

i=0

i +
r−1
∑

i=0

i

)

(4.4)

By the arithmetic series relationships, these summations reduce to:

70

E[loss] =
1

k2

k
∑

r=1

(

1

2
(k − r)(n− r + 1) +

1

2
(r − 1)(r)

)

(4.5)

=
1

2k2

[

k
∑

r=1

k2 −
k
∑

r=1

2kr +
k
∑

r=1

k +
k
∑

r=1

2r2 −
k
∑

r=1

2r

]

(4.6)

=
1

2k2

[

k3 − k2(k + 1) + k2 + 2

(

k(k + 1)(2k + 1)

6

)

− k(k + 1)

]

(4.7)

=
1

3
(k − 1

k
) (4.8)

Thus, for k = 50, we expect an average rank loss of ∼ 16.7, a value much higher than

the PRank loss of less than ten after only 100 samples and less than five after processing

all samples.

Relative Rank Prediction

The most common instance of latency prediction is one where the agent is given a set of

potential end points and must pick from among them. We cast this problem as relative

ranking. This problem is subtly different from the sequential ranking problem. In contrast

to sequential rank prediction, where each individual instance is assigned a rank, relative

ranking assigns a strict total order over a group of instances.

Formally, the relative ranking task maps each of k data points x1, · · · ,xk to labels

r̂1, · · · , r̂k where r̂i is an integer rank (ri ∈ {1, 2, · · · , k}) that describes preferences over

Xn,k. Each predicted rank for a set of k data points is unique, i.e. r̂i 6= r̂j∀i, j.
As an example, consider three servers that are 200, 205 and 210ms distant from a agent.

Sequential rank prediction might assign each a rank of 9,9 and 10 on a one to ten scale

indicating low desirability. Relative ranking of the three servers, however, considers them

as a group and might rank them as 1, 2 and 3. Thus, among the possible alternatives,

a rank of 1 indicates not a high preference, but a prediction of the best choice given the

options available to the agent.

Again, we consider the näıve guesser to determine the baseline performance of the

relative ranking. Without loss of generality, say that the näıve learner picks an object for

rank=1, 2, . . . k in order. Therefore, for a single experiment to determine the relative rank

across a group of k objects, we have an expected error of:

E[loss] =
1

3
(k2 − 1) (4.9)

We first turn to adapting the previously described SVR method to the relative ranking

task. We simply use the predicted latency to provide an ordering over |k| sets of inputs.

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

A
cc

ur
ac

y

Training Size

2-class
3-class
4-class
6-class

10-class

Figure 4-14: k-ranking performance versus log(training size), standard deviation indicated
by error bars

Again we train the machine using various size training sets. Let a predicted rank of r̂i = 1

for data point ri indicate that the i’th data has the lowest predicted latency. Let the data

point with the true lowest latency be rj = 1. If i = j, then r̂i = rj = 1 and the prediction

is correct. Otherwise, the prediction is incorrect.

Figure 4-14 shows the ranking accuracy measured as the ratio of correct first rank

predictions to all predictions with standard deviation error bars. The most näıve ranking

algorithm with perform with accuracy 1/k for k-ranking in this scenario. Thus, with 2-

ranking, accuracy over 50% indicates learning. We see that at 6000 training points on the

2-ranking problem, the SVR achieves slightly greater than 85% accuracy.

We are also interested in how badly a ranking mis-prediction affects the agent. Let ε be

the difference between the true latency to the 1st ranked data point (j) and the true latency

to the predicted data point (i). In other words, if the prediction selects an incorrect server,

what is the latency difference between the best and predicted servers. In Figure 4-15, we

plot this mis-prediction error versus training size for various k-rankings. At 6000 training

points, the mis-prediction error is always less than 30ms and is less than 20ms for k=10.

Thus, this small amount of error incurred for mis-predictions is not significant.

Finally, we adapt the PRanking algorithm to the relative ranking problem. In each

experiment, k points are taken at random from the data set. The PRank algorithm predicts

a rank for each r̂i, i = {1, . . . , k}. We then sort the r̂i by increasing rank value. The predicted

relative rank r̂′i is determined by its position in the order. For example, for k = 3, assume

that r̂1 = 5, r̂2 = 9, r̂3 = 2, then r̂′1 = 2, r̂′2 = 3, r̂′3 = 1.

Figure 4-16 shows the performance of the adapted PRank algorithm on the relative

ranking task for various group k sizes. In this Figure, we again plot the fraction of correct

first predictions, i.e. how often the agent is able to select the lowest latency host from among

72

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000

P
re

di
ct

io
n

E
rr

or

Training Size

2-class
3-class
4-class
6-class

10-class

Figure 4-15: k-ranking mis-prediction error versus training size

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

A
cc

ur
ac

y

Training Size

2-class
3-class
4-class
6-class

10-class

Figure 4-16: k-relative ranking performance using adapted PRank algorithm

those available to it. Thus, in the case of 3-class ranking, we determine not whether one of

the three servers has a low latency, or a preferred latency, but rather whether it is the best

choice among the three available servers.

Compared to Figure 4-14, we see that the adapted PRank algorithm outperforms using

the SVR result to form relative rankings. Even among ten servers, our results show that

the agent is able to select the best server with more than 70% accuracy and approximately

1000 training examples. Again, these results demonstrate the potential practical utility in

applying prediction to the service selection task.

73

4.2.8 Discussion

• A significant cost is collecting the training points, however several points bear notice.

First, the host may continually collect training data through its normal interaction

with the network, for instance using latency from the TCP three-way handshake. In

this mode of operation, the data are no longer random and hence the model may

be overly specific to IP addresses within networks the host typically interacts with.

Yet, this specificity is a desirable feature for most hosts and servers. Because SVMs

are amenable to online learning, the model adapts to provide the best generality and

performance given the workload the host expects to encounter.

• The majority of the discriminatory power is comprised of the first eight bits of address.

This is a powerful result, but perhaps unsurprising given the traditional assignment of

classful “net A” address blocks to large organizations and networks. Error continues

to decrease to a minimum around 12 bits after which the additional features begin to

over-fit the training data and hinder the regression performance.

As future work, we plan to explore alternate feature geometries in order to use linear

kernels and better represent the IP address structure. We wish to explore other network

applications of SVMs and construction of autonomous agents on network test beds. These

agents will model our vision of how a web server, peer-to-peer node or IPv6 host might act

intelligently.

4.2.9 Model Degradation

The preceding discussion abstracts the Internet into a set of static latency measurements.

Yet, networks are intrinsically dynamic. For instance, Internet routing and physical topol-

ogy events change the underlying environment on large-time scales while congestion induces

short-term variance. In addition to a single snapshot of latencies, we gather approximately

three months of latencies to the same IP addresses. Every hour, from December, 2006 to

March, 2007, our collection engine determines the round trip latency to each IP in the

original dataset.

We are interested in understanding the model stability and model degradation over time.

We train an SVM using the initial latency samples from the first hour in December and use

the resulting model to predict latencies for the same IP addresses at subsequent points in

time 3.

Figure 4-17(a) displays the mean latency prediction error, averaged over all predictions

on each IP address. The set of IP addresses for which we form predictions does not change

over time. Further, the SVM model does not change over time; we use the model produced

by training on the initial training points. Therefore, this experiment attempts to isolate

temporal performance differences.

3We exclude addresses which no longer responded during the duration of our data collection.

74

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

12/09/06 12/23/06 01/06/07 01/20/07 02/03/07 02/17/07 03/03/07 03/17/07 03/31/07

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(m

s)

Test Date

(a) Mean prediction error over collection pe-
riod

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

00 00 00 00 00 00 00 00

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(m

s)

Test Date

(b) Week zoom of prediction error showing di-
urnal effects

Figure 4-17: SVM model performance and stability over time

Clearly, the performance differs over the three month duration, with a significant change

visible from the beginning to end of January, 2007. Zooming in on a single week, we see

pronounced diurnal effects. In Figure 4-17(b), the minimum error occurs around 02:00 in

the morning Eastern Daylight Time4

In the next subsection, we consider the task of identifying changes and then how to react

once a change is detected in §4.3. Our primary focus is on detecting changes at longer time

scales rather than accommodating the diurnal effects. In future work, we plan to explore the

use of HMMs to optimize predictive error over these short, predictable day-long behaviors.

4.2.10 Coping with Network Dynamics

When considering structural changes, we are concerned with a change in the mean error re-

sulting from the prediction process. Assume that the process produces data points (x) from

a Gaussian probability distribution parameterized by a mean and variance, θ = N(µ, σ).

The probability density is:

pθ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.10)

We first detect a change in a continuous process parameterized by θ0 = N(µ0, σ) to a

new state θ1 = N(µ1, σ). Here, the variance (σ) remains constant while the mean changes

to a known value µ1. Change detection algorithms rely on the notion of the log-likelihood

ratio as a sufficient statistic:

si = ln
pθ1(xi)

pθ0(xi)
(4.11)

4The time is relative to our collection point which is on EDT.

75

CUMSUM Change Point

 0
 50

 100
 150
 200
 250
 300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

or
 (

m
s)

Time-Ordered Latency Predictions

-16000
-14000
-12000
-10000

-8000
-6000
-4000
-2000

 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
U

S
U

M

CUSUM with Synthetic Change at Prediction 1000

-30000
-25000
-20000
-15000
-10000

-5000
 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
U

S
U

M

CUSUM with no change

Figure 4-18: CUSUM algorithm: synthetic change of mean injected in real data at the
1000th prediction causes change in prediction error (top), value of Sk over all predictions
(middle), value of Sk with no change (bottom).

which is simply the log of the ratio between the probability of a data point xi in world

θ1 (after a change) to θ0 (before change). If the probability that xi is greater in θ0, i.e. it is

more probable that xi came from the process before the change, the sign of si is negative.

It can be shown in the Gaussian case that:

si =
µ1 − µ0

σ2

(

xi −
µ0 + µ1

2

)

(4.12)

Let Sk be the cumulative sum of the si values up to point k:

Sk =

k
∑

i=1

si (4.13)

The cumulative sum algorithm notes that before a change, the value of Sk will drift

negative. After the change, Sk increases from its minimum. To illustrate this behavior, we

take the latency prediction machinery from the previous section. Figure 4-18 plots the error

for each of the time ordered latency predictions. At point 1000 we introduce an additional

50ms of latency to each point to represent a structural change. The second pane in Figure 4-

18 shows the value of the cumulative sum Sk and clearly illustrates the change, whereas the

third pane is the same value without introducing the synthetic change.

To perform the actual change detection, we use the CUSUM decision rule gk which must

be above a threshold h for a change to have occurred at point k:

76

gk = Sk −mk ≥ h (4.14)

where mk is simply defines the minimum value of S seen thus far:

mk = min
1≤j≤k

Sj (4.15)

From Figure 4-18, we see that the CUSUM algorithm detects the change at point k =

1096, 96 steps after the actual change.

Naturally, we cannot assume, a priori, knowledge of how the processes’ parameters will

change. Thus, we use the well-known generalized likelihood ratio (GLR) algorithm which

assumes the parameter θ1 after change is unknown. As before, the log-likelihood ratio is as

in Eq 4.13. Since θ1 is unknown, gk is a function of two independent unknown values:

gk = max
1≤j≤k

sup
|θ1−θ0|>0

Sj (4.16)

We perform the double maximization by taking the derivative of Eq 4.16 with respect

to µ1. It can be shown that:

gk =
1

2σ2
max
1≤j≤k

1

k − j + 1

k
∑

i=j

(xi − µ0)

2

(4.17)

Figure 4-19 shows the GLR algorithm applied to the prediction error process in two

instances, first when there is a synthetic change introduced into the data at point 1000 and

second when there is no change.

Next, we consider the question of a change in the variance where the mean remains

fixed. We use the Inclan algorithm [75]. Define the cumulative sum of squares:

Ck =

k
∑

i=1

x2
i (4.18)

For a window of N data points, let:

Dk =
Ck

CN
− k

N
(4.19)

Dk will oscillate around 0 when there is no change in variance. If the variance does

change, Dk will fluctuate over a threshold with high probability. Inclan [75] derive empirical

boundary conditions on
√

(N/2)|Dk| as a decision function. Specifically, the asymptotic

critical value of D∗0.05 = 1.358 for N large. Figure 4-20 applies the Inclan algorithm to our

data set. The first pane shows the error from predictions, with synthetic variance disruption

introduced at point 1000 by multiplying the true latency by 1.5. The second pane shows

the value of Dk over the time-ordered latency predictions. The Inclan algorithm detects the

77

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or
 (

m
s)

Time-Ordered Latency Predictions

Error
GLR

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600 1800

E
rr

or
 (

m
s)

Time-Ordered Latency Predictions

Change @ 1000

Error
GLR

Figure 4-19: GLR algorithm: scatter plot of prediction errors with gk value (top), same
data with synthetic mean error injected at the 1000th prediction and the resulting spike in
gk (bottom).

change in variance at point 1110, 110 points in time after the actual change. In contrast,

the third pane shows the Inclan algorithm over the original data. Without an artificial

change, the Inclan algorithm does not detect a change in variance over the time window.

4.3 An IP Clustering Algorithm

Thus far, we have demonstrated network locality for latencies (§4.2.4). The presence of

address locality leads to a natural question: is it possible to cluster the entire 32-bit IP

address space into blocks where the members of any cluster share a common distribution?

Such a division is useful in a variety of applications including service selection, user-directed

routing, resource scheduling and network inference.

We have shown that learning network structure is effective in forming predictions in

the presence of incomplete or partial information. However, our analysis has been overly

simple, assuming a stationary environment. The Internet, in contrast, experiences frequent

structural and dynamic changes. Many learning algorithms are not naturally amenable

to on-line learning and adapting to Internet dynamics. Further, despite the wide array

of learning algorithms, none are network or Internet centric, i.e. they do not incorporate

domain-specific knowledge.

In this Section, we explicitly accommodate an Internet environment with a supervised

IP clustering algorithm that imposes a partitioning over a k-bit IP address space. Given

78

Inclan Variance Change Point

 0
 50

 100
 150
 200
 250
 300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

or

Time-Ordered Latency Predictions

Predictions

-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
k

Time-Ordered Latency Predictions

Inclan

-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
k

Time-Ordered Latency Predictions

Inclan

Figure 4-20: Inclan algorithm: synthetic variance change injected in real data at 1000th
prediction and the resulting error scatter plot (top), value of Dk as a function of sample
order with change detected at 1110th prediction (middle with vertical line). Value of Dk on
data without artificial change (bottom). The bottom value of Dk correctly infers no change.

a data set that is sparse relative to the size of the 2k space, we form clusters such that,

with high probability, addresses within a partition share a common property. The resulting

clusters provide the basis for accurate predictions on addresses for which the agent has no

direct knowledge. Figure 4-21 provides a graphical intuition of an example clustering. For

example, in the case of latency prediction, our algorithm uses training data to form clusters

where the latencies within a cluster have a statistical guarantee of coming from a Gaussian

distribution with a common mean.

Our primary contributions in this section include:

1. An on-line IP clustering algorithm that incorporates Internet-specific knowledge.

2. Validation of the algorithm’s ability to detect both structural and dynamic network

changes.

3. Application of clustering for latency prediction on synthetic and real data demon-

strating superior performance compared to prior approaches.

Network Boundaries

First, we examine the network’s notion of providing aggregation and administrative bound-

aries on power of two multiples. IP routing and address assignment uses the notion of a

79

2
32

0

Figure 4-21: Example clustering: arrow location represents training sample IP addresses,
length reflects latency. Dashed lines impose a partitioning on the address space that allows
for accurate predictions.

prefix. The bit-wise AND (&) between a prefix p and a netmask m denotes the network

portion of the address (m effectively masks the “don’t care” bits of an address). We employ

the common notation p/m as containing the set of IPv4 addresses inclusive of:

p/m := [p, p + 232−m − 1] (4.20)

Thus, p/m contains 232−m addresses5. For example, the prefix 2190476544/24, corre-

sponding to 130.144.5.0/24, includes 28 address from 130.144.5.0 to 130.144.5.255. The

number of addresses within any prefix (p/m) is always a power of two. Our algorithm

incorporates this invariant as described in §4.3.1.
But a prefix also implies a contiguous group of addresses under common administrative

control. A näıve approach might assume that two numerically contiguous 32-bit IP addresses

a1 = 318767103 and a2 = 318767104 are likely to be under the same control. However,

by understanding the way in which networks are allocated, an educated observer might

come to a different conclusion given that the dotted-quads are: a1 = 18.255.255.255 and

a2 = 19.0.0.0. Both a1 and a2 may in fact belong to a larger aggregate, 18.0.0.0/7. However

it is more likely that an address that differs from a1 by -100, e.g. a3 = 18.255.255.155, is

part of the same network than a2 which differs by only one.

Network Dynamics

Despite demonstrable benefit, the non-stationary nature of network problems presents a

challenging environment for machine learning. In the context of latency prediction, the

model may produce poor predictions due to either structural changes or dynamic conditions.

A structural change might include a new link in the network which adds additional latency

to a set of destinations, while congestion might temporarily influence predictions.

In the trivial case, an algorithm can remodel the world by purging old information and

explicitly retraining. Completely re-learning the problem can be beneficial in some cases,

but is typically expensive and unnecessary when only a portion of the network has changed.

Further, even if a portion of the learned model is stale and providing inaccurate results,

forgetting stale training data may lead to even worse performance. We desire an algorithm

5We use ’a
b
’ to denote numerical division.

80

where the underlying model is easy to update on a continual basis and maintains acceptable

performance during updates.

4.3.1 Clustering Algorithm

Given evidence of secondary structure, network boundaries and network dynamics, we con-

sider an algorithm specific to clustering IP addresses.

Overview

Our algorithm takes as input a network prefix (p/m) and some number of training points

(X) distributed within the prefix. The initial input is typically the entire IP address space

(0.0.0.0/0) and all training points. Each training point X = {x1, . . . , xn} consists of an (IP,

value) pair xi := (IPi, vali).

Define split si as inducing 2i partitions, pj, on p/m. Then for j = 0, . . . , 2i − 1:

pj = p + j232−(m+i)/m + i (4.21)

Let xi ∈ pj iff the address of xi falls within prefix pj (Eq. 4.20). The general form of

the algorithm is:

1. Compute mean of data point values: µ =
∑ X(vali)

n

2. Add the input prefix and associated mean to a radix trie (§4.3.1): R← R + (p/m,µ)

3. Splits the input prefix to create potential partitions (Eq. 4.21): Let pi,j be the j’th

partition of split si.

4. Let N be xi ∈ pi,j, let M be xi /∈ pi,j.

5. Over each split granularity (i), compute the t-statistic for each potential partition j

(§4.3.1): ti,j = ttest(N(val),M(val)).

6. Find the partitioning that minimizes the t-test:

(̂i, ĵ) = argmin
i,j

ti,j

7. Recurse on the maximal partition(s) induced by (̂i, ĵ) while the t-statistic is less than

thresh (§4.3.1).

We refine the algorithm and present details in this Section, but first draw attention to

several useful features of our learning technique:

• Complexity: A natural means to penalize complexity. Intuitively, clusters containing

very specific prefixes, e.g. /30’s, are likely over-fitting. Rather than attempting to

tune traditional machine learning algorithms indirectly, limiting the minimum size of

inferred prefixes corresponds directly to network generality.

81

• Memory: A natural means to bound memory consumption. Because the trie structure

provides longest-match lookups, the algorithm can sacrifice accuracy for lower memory

utilization by bounding tree depth or width.

• Change Detection: Allows for direct analysis on trie nodes. In a dynamic environ-

ment, change point analysis on these individual portions can determine if part of the

underlying network has changed.

• On-Line Learning: When re-learning stale information, the longest match nature of

the trie implies that once the information is discarded, in-progress predictions will use

the next available longest match which is likely to be more accurate than an unguided

prediction.

• Active Learning: For any given training data, the tree is likely unbalanced, providing

a natural strategy to perform active learning. While guiding the learning this way

decouples the training from testing, sparse portions or poorly performing portions of

the trie are easily identified.

The last three points are especially important in providing an algorithm that represents

a step forward in making on-line learning algorithms practical in dynamic networks.

Cluster Data Structure

A radix tree, or Patricia trie [110], is a form of compressed trie that stores strings. In

contrast to normal tries, the edges may be labeled with multiple characters. Radix trees

are an efficient data structure for storing small sets of long strings that share common

prefixes. An example of a radix tree on an English alphabet is given in Figure 4-22. The

tree stores the following (string, value) pairs: radix = 2, radii = 9, rob = 1, robert

= 6, robber = 7.

Radix trees support lookup, insert, delete and find predecessor operations in O(k) time

where k is the maximum length of all strings in the set. By using a binary alphabet, strings

of k = 32 bits and nexthops as values, radix trees support IP routing table longest match

lookup, an approach suggested by Sklower [136] and others. We adopt radix trees to store

our algorithm’s inferred structure and provide predictions.

Evaluating Potential Partitions

Student’s t-test [64] is a popular test to determine the statistical significance in the differ-

ence between two sample means. We use the t-test in our algorithm to evaluate potential

partitions of the address space at different split granularity. The t-test is useful in many

practical situations where the population variance is unknown and the sample size too small

to estimate the population variance.

82

2 6 79

 r

adi

1

 ob

x i ber ert

(a) Radix tree encoding strings radix

= 2, radii = 9, rob = 1, robert

= 6, robber = 7

40ms

20ms

32/3

50ms

64/2

86ms

0/1

100ms

128/1

90ms

192/2

(b) Radix tree encoding IP prefixes and
their associated mean latencies

Figure 4-22: Example radix trees, illustrating how prefixes with common mean latencies
might be stored.

The t-test is founded on the t-distribution. The t-distribution depends on the degrees

of freedom (df) where df = n − 1 for sample size n. As df grows large, the t-distribution

tends toward the normal distribution. Figure 4-23 shows the normal distribution and t-

distribution for varying degrees of freedom.

The t-test is a statistical hypothesis test. The null hypothesis is that two normally

distributed populations have the same mean. Thus, the test statistic has a t-distribution if

the null hypothesis is true. Given two sample means, X̄1 and X̄2, the t-test is the ratio of

the difference between means and the standard error of the difference between means:

t =
X̄1 − X̄2

sX̄1−X̄2

(4.22)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -2 0 2 4

P
(x

)

x

normal
df=1
df=3

df=10

Figure 4-23: t-distribution probability densities for various degrees of freedom (df). As df
grows large, the t-distribution approximates the normal distribution.

83

76.105.0.0 76.105.255.255

AS33651 AS7725 AS33490

Figure 4-24: True allocation of 76.105.0.0/16. For an inferred difference between shaded
and non-shaded regions, we ensure a maximal prefix split.

where the standard error is an estimate of the standard deviation of the error in a

measured process. As the means grow apart, the t statistic increases, while t decreases as

the sample variances become smaller. For unequal sample sizes:

sX̄1−X̄2
=

√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

(

1

n1
+

1

n2

)

(4.23)

where X̄1 − X̄2 is the difference between the sample means, n1 and n2 are the size of

the two samples, and s2 is the unbiased sample variance estimator. The t-test gives the

probability that under the null hypothesis, i.e. that the two samples come from populations

with equal means, a given t value or larger would arise by chance. Because the t-distribution

is symmetrical, a two-sided test gives the probability that the absolute value of t or larger

might arise by chance.

Maximal Prefix Splits

Assume the t-test procedure identifies a “good” partition of an IP address space. The

partition defines two chunks (not necessarily contiguous), each of which contains data points

with statistically different characteristics. We ensure that each chunk is valid (Appendix,

definition 1) within the constraints in which networks are allocated. If a chunk of address

space is not valid for a particular partition, it must be split further. Therefore, our algorithm

creates maximal valid prefixes to ensure generality.

Consider the prefix 76.105.0.0/16 in Figure 4-24. Say the algorithm determines that

the first quarter of this address space (shaded) has a statistically different mean latency

from the rest. How can we use the domain-specific knowledge to partition the remaining

three-quarters of addresses?

The first point of note is that the partition from 76.105.64.0 to 76.105.255.255 is not

valid. One might divide the space into three equally sized 214 valid prefixes. However, we

wish to create maximally sized prefixes to capture the true hierarchy as well as possible

given sparse data. In actuality, a current BGP table reveals that the prefix is split into at

least three pieces, each advertised by a different autonomous system (AS). The IP address

registries list 76.105.0.0/18 as being in Sacramento, CA, 76.105.64.0/18 as Atlanta, GA and

76.105.128.0/17 in Oregon.

Algorithm 4.2 describes our method for ensuring maximal valid prefixes. We provide a

84

Table 4.2: Examples of maximal IP prefix division
128.61.0.0 → 128.61.255.255 128.61.0.0 → 128.61.4.1 16.0.0.0 → 40.127.255.255

128.61.0.0/16 128.61.0.0/22 16.0.0.0/4
128.61.4.0/31 32.0.0.0/5

40.0.0.0/9

proof of correctness in the Appendix. The basic intuition is to determine the largest power

of two chunk that could potentially fit into the address space. If a valid starting position for

that chunk exists, the algorithm recurses on the remaining sections. Otherwise, it divides

the maximum chunk into two valid pieces. Table 4.2 gives three example divisions.

Algorithm 4.2 divide(start, end): return maximal-sized (prefix,mask) list that divides
start to end IPs

R, an IP prefix table
max = ⌊log2(end− start + 1)⌋
maxsize = 2max

mask = 232 −maxsize
5: first = start & mask

if (first 6= start) then
first← first + maxsize

if (first + maxsize− 1 > end) then
maxsize← maxsize/2

10: mask = 232 −maxsize
first = (start&mask) + maxsize
R← R+ divide(start, f irst− 1, results)
R← R+ divide(first, f irst + maxsize− 1, results)
R← R+ divide(first + maxsize, end, results)

15: else
if (first 6= start) then

R← R+ divide(start, f irst− 1, results)
R← (first, 32−max)
if (first + maxsize− 1 6= end) then

20: R← R+ divide(first + maxsize, end, results)
return(R)

Full Algorithm

Given the basic outline of the algorithm, the data structures, a method to create and

evaluate partitions, and notion of maximal prefixes, we present the complete algorithm. Our

formulation is based on a divisive approach; agglomerative techniques that build partitions

up are a potential subject for further work. Algorithm 4.3 takes a prefix p/m along with

the data samples for that prefix: xi ∈ X∀xip ∈ p/m.

The algorithm first computes the mean µ of the X values and adds an entry to radix

table R containing p/m pointing to µ (lines 1-4). In lines 5-12, we create partitions pj

85

at a granularity of si as described in Eq. 4.21. For each pi,j, line 13 evaluates the t-test

between points within and without the partition. Thus, for s3, we divide p/m into eighths

and evaluate each partition against the remaining seven. We determine the lowest t-test

value tbest corresponding to split ibest and partition jbest.

If no partition produces a split with t-test less than a threshold, the algorithm terminates

that branch of splitting. Otherwise, lines 16-25 use algorithm 4.2 to divide the best partition

into maximal valid prefixes, each of which is placed into the set P . Finally, the algorithm

recurses on each prefix in P .

Algorithm 4.3 split(p/m,X):

R, an IP prefix table
b← 32−m
µ← mean(X(val))
R← R + (p/m,µ)

5: for i← 1 to 3 do
for j ← 0 to 2i − 1 do

pj ← p + j2b+i/(m− i)
for x ∈ X do

if xip ∈ pj then
10: N ← N + xval

else
M ←M + xval

ti,j ← ttest(N,M)
tbest, ibest, jbest ← argmin

i,j

ti,j

15: if tbest < thresh then
last← p + 2b − 1
start← p + (jbest)2

b+ibest

end← start + 2b+ibest − 1
P ← start/(m− ibest)

20: if start = p then
P ← P+ divide(end + 1, last)

else if end = last then
P ← P+ divide(p, start− 1)

else
25: P ← P+ divide(end + 1, last)

P ← P+ divide(p, start− 1)
for pd/md ∈ P do

Xd ← xip,val ∈ X∀ip ∈ pd/md

R← R+ split(pd/md,Xd)
30: return R

The output after training is a radix trie which defines clusters. Subsequent predictions

are made by performing longest prefix matching on the trie.

86

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

g k

Time-Ordered Samples (Change 4000)

GLR
wma(GLR)

(a) gk and WMA(gk) of prediction errors

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
g k

Time-Ordered Samples (Change 4000)

d/dx GLR
normalized d’/dx GLR

WMA(normalized d’/dx GLR)

(b) d
dt

gk(t) and d2

dt2
gk(t)

-10

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

g k

Time-Ordered Samples (Change 4000)

GLR(GLR)
Change Point

(c) Impulse triggered change detection

Figure 4-25: Modified GLR to accommodate learning drift; synthetic change injected be-
ginning at point 4000.

87

4.3.2 Handling Network Dynamics

An important feature of the algorithm is its ability to accommodate network dynamics.

However, first the system must detect changes in a principled manner. Each node of the

radix trie naturally represents a part of the network structure. Therefore, we may run

traditional change point detection [11] methods on the prediction error of data points clas-

sified by a particular node. If the portion of the network associated with a node exhibits

structural or dynamic changes, evidenced as a change in prediction error mean or variance

respectively, we may associate a cost with retraining. For instance, pruning a node close to

the root of the trie represents a large cost which must be balanced by the magnitude of the

current errors on predictions under that node6.

When considering structural changes, we are concerned with a change in the mean error

resulting from the prediction process. Assume that predictions produces errors (e) from a

Gaussian probability distribution parameterized by a mean and variance, θ0 = N(µ0, σ0).

As we cannot assume, a priori, knowledge of how the processes’ parameters will change,

we turn to the GLR test statistic (Eq. 4.17) which detects a statistical change from µ0

(mean before change). Unfortunately, GLR is typically used in a context where µ0 is well-

known, e.g. manufacturing processes. Figure 4-25(a) shows gk as a function of ordered

prediction errors produced from our algorithm on real Internet data. Beginning at the

4000th prediction, we create a synthetic change by adding 50ms to the mean of every data

point (thereby ensuring a 50ms error for a normally perfect prediction). We use a weighted

moving average (WMA) to smooth effects of noise in the data. The change is clearly evident.

Yet gk drifts even under no change since µ0 is estimated from training data error which is

necessarily less than the error mean produced by forming test predictions.

This GLR drift effect is problematic because we cannot easily determine a threshold

for detecting a change. Any arbitrary threshold will eventually be reached even without

a change as the gk statistic drifts over time. While one threshold value might work in

one particular situation, it could be falsely triggered or never triggered in other situations.

Ideally, we would like a non-parametric means to set the GLR change point threshold.

To combat GLR drift, we take the derivative of the weighted moving average of gk

with respect to sample time. Doing so produces the step function in Figure 4-25(b). The

intuition behind taking the first derivative lies in the fact that while gk drifts, it drifts at

a constant rate with no change. Thus, the first derivative of a line with constant slope is

a constant. We use the weighted moving average to remove noise from the signal. After

a change, the value of d
dt

gk(t) changes to a new, higher-valued constant. Again, we run

into the dilemma of setting an appropriate threshold to detect change. Instead, we impulse

trigger on the change point by taking the second derivative as depicted in Figure 4-25(c).

As the derivative of a constant is zero, we expect d2

dt2
gk(t) to be zero except at the point of

6We do not attempt to tackle the problem of defining this cost, but rather point out that our algorithm
naturally supports such cost balancing operations.

88

a change where there is an impulse (corresponding to the step in the first derivative).

This simple change to the standard GLR algorithm thus provides a principled means to

perform change point analysis in our learning environment without having to set arbitrary

thresholds.

Dynamic Internet changes, for instance congestion events, often occur on short time

scales and present as a change in the variability of our prediction error. Experiments

modeling variance detection with the Inclan [75] algorithm show promise, but we defer a

complete exposition to later work.

4.3.3 Results

A distinct disadvantage of inference in the domain of Internet measurement is that it is

difficult if not impossible to know ground truth. In order to better quantify the performance

of our algorithm in a controlled environment, we first build a synthetic data set.

A Representative Synthetic Model

While several network simulators and topology generators exist [101, 29], none maps ad-

dresses to networks or nodes in a way characteristic of the Internet. Algorithm 4.4 presents

our method to generate Internet-like address structure and associate latencies with prefixes.

The algorithm is invoked with the argument basenets to create a particular number of

initial base networks corresponding to service provider independent space top-tier network

blocks. Because the Internet is biased toward classful netblocks, we choose the base network

to have a netmask of 8 with probability 0.01, 16 with probability 0.2 and 24 with probability

0.79 (lines 1-9). These values are empirically chosen to match distributions observed in real

BGP data; we examine the prefix distribution next. Each base network is chosen at random

to be a valid prefix p/m (lines 10-11). Next, each base prefix is evenly split into 2i subnets

s/m + i for i taken from a normal distribution with mean m + 2 and variance 1. Each

subnet is assigned a random latency between [0, 200]ms and added to a prefix tree (lines

12-18). Finally, a quarter of the resulting prefixes are picked for an uneven divide in order

to model the noise and randomness typical in real network structure. We pick a random

point at which to “split” the prefix and then again invoke Algorithm 4.2 to create maximal

sized prefixes (lines 19-29).

We do not make any quantitative claims as to how accurately our method reproduces

the true Internet address structure. However, Figure 4-26 compares the prefix distributions

observed in a routeviews [105] real Internet BGP table with prefixes generated by our

algorithm. Our algorithm captures the predominance of prefixes with /24 netmasks as well

as the modes at /16 and /8.

To simulate provider assigned space, for example providers that allocate portions of their

own address space to customers, we choose half of the prefixes at random (lines 13-16). For

each randomly chosen prefix, we pick a random “split” point. We use algorithm 4.2 again

89

Algorithm 4.4 build(basenets): Build a synthetic “Internet-like” routing table with ran-
dom round-trip latencies

R, an IP prefix table
for i← 0 to basenets do

z ← [0, 1]
if z ≤ 0.01 then

5: mask ← 8
else if z ≤ 0.2 then

mask ← 16
else

mask ← 24
10: prefix← [0, 232 − 24]

prefix← prefix & (232 − 232−mask−2)
subnet← N(mask, 1)
subnets← 2subnet−mask−2

subnetsize← 232−subnet

15: for j ← 0 to subnets do
subprefix← prefix + j ∗ subnetsize
rtt← [0, 200]
R← R + (subprefix/subnet, rtt)

repeat
20: r ← R, r /∈ S

S ← S + r
until |S| < |R|/2
for r in S do

netsize← 232−rmask

25: split← [1, netsize − 1]
P ← divide(rprefix, rprefix + split)

for r in P do
rtt← [0, 200]
R← R + (rprefix/rmask, rtt)

30: return(R)

90

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30

F
ra

ct
io

n
of

 R
ou

te
s

Netmask

Routeviews
Synthetic

Figure 4-26: Real vs. synthetic prefix distribution: note peaks at classful prefix sizes in
both models.

to form valid, maximally sized prefixes given this random split point (lines 17-20). Each

resulting prefix is again added to the prefix tree with a random latency between zero and

200ms (lines 21-23).

To generate the synthetic data set, we use Algorithm 4.5 to randomly sample from the

network address model of Algorithm 4.4. For each random address with longest prefix match

p in the model, we assign a latency drawn from a Gaussian centered around p’s latency:

N(prtt, 5ms).

Algorithm 4.5 synthesize(R,num): Randomly sample addresses within a routing table.
Assign each address an RTT according to a Gaussian distribution on its prefix’s latency.

R, a synthesized IP prefix table
D, synthesized random data points
for i← 0 to num do

repeat
5: a← [0, 232]

p← longestmatch(R, a)
until p 6= ∅
l ← gaussian(prtt, 5)
D ← D + (a, l)

10: return(D)

We use Algorithm 4.5 create 20,000 (ip, latency) data point pairs and run our IP clus-

tering algorithm. To ensure generality, we randomly permute the data set so that the test

and training sets are different between experiments. The training set defines the inferred

network structure; based on the resulting radix trie, the algorithm performs longest prefix

matching to form predictions. Figure 4-27 depicts the prediction performance on our syn-

thetic data set averaged over five experiments as a function of training size. Encouragingly,

the test error decreases monotonically across the extent of our data without any signs of

91

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

Training Size

Figure 4-27: Latency prediction performance on synthetically generated data.

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

m
s)

Training Size (k)

SVR
IP-clust

Figure 4-28: Prediction performance of IP clustering algorithm vs. support vector regression.

over fitting. With 18,000 training samples, the mean prediction test error decreases to un-

der 20ms. With 8,000 or more training points, the prediction error is under 30ms, a range

suitable for a broad range of network application tasks.

Performance on Internet Data

Given the performance on synthetic data, we study the performance of the algorithm on

our real data set. Figure 4-28 depicts the mean prediction error as a function of training

size for both the previous support vector regression (SVR) methodology [25] and our IP

clustering algorithm. The clustering algorithm outperforms SVR across much of the range,

particularly with few or many training examples. While the performance is comparable, it is

achieved with faster, deterministic 0(k), k = 32 performance and the ability to accommodate

network dynamics.

92

2
32

Inferred Change

TN TP FP TN

0

Real Change

FN

Figure 4-29: Change point game: overlap between the real and inferred change provide true
negatives (TN), false negatives (FN), true positives (TP) and false positives (FP).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

P
er

ce
nt

Size of Network Change /x

Accuracy
Sensitivity
Precision

Figure 4-30: Change detection performance as a function of changed network size.

Performance under Dynamics

Finally, we consider performance under dynamic network conditions. To evaluate our algo-

rithm’s ability to handle a changing environment, we formulate the induced change point

game of Figure 4-29. Within our real data set, we artificially create a mean change that

simulates a routing event or change in the physical topology. We create this change only for

data points that lie within a randomly selected prefix. Note that this prefix is picked purely

randomly and is not a function of the learned tree model. The game is then to determine

the algorithm’s ability to detect the change for which we know the ground truth.

Let the shaded portion of the figure indicate the true change we create within the entire

IPv4 address space. The non-shaded portion represents the algorithm’s best prediction of

where a change occurred. We take the fraction of overlap to indicate the false negatives,

false positives and true positives. The remainder of the IP address space comprises the true

negatives.

Figure 4-30 shows the performance of our change detection technique in relation to the

size of the artificial change. For example, a network change of /2 represents one-quarter of

the entire 32-bit IP address space. Again, for each network size we randomly permute our

data set, artificially induce the change and measure the resulting error rates. We see that

across the range of network changes our algorithm performs well, with greater than 80%

accuracy, sensitivity and precision.

93

4.3.4 Conclusions and Future Work

This work describes an IP-specific clustering algorithm amenable to network dynamics ex-

perienced in an Internet environment. While this work represents a step forward in allowing

for feasible learning within the network, it presents many topics for further study.

Our algorithm attempts to find appropriate partitions by using a sequential t-test. We

have informally analyzed the stability of the algorithm with respect to the choice of optimal

partition, but wish to apply a principled approach similar to random forests. In this way,

we plan to form multiple radix tries using the training data sampled with replacement.

We then may obtain predictions using a weighted combination of trie lookups for greater

generality.

While we demonstrate the algorithm’s ability to detect changed portions of the network,

further work is needed in determining the tradeoff between pruning stale data and the cost

of retraining. Properly balancing this tradeoff requires a better notion of utility and further

understanding the time-scale of Internet changes. Our initial work on modeling network

dynamics by inducing increased variability shows promise in detecting short-term congestion

events. Additional work is needed to analyze the time-scale over which such variance change

detection methods are viable.

Thus far, we examine synthetic dynamics on real data such that we are able to verify

our algorithm’s performance against a ground truth. In the future, we wish to also infer

real Internet changes and dynamics on a continuously sampled data set.

Finally, our algorithm suggests at many interesting methods of performing active learn-

ing, for instance by examining poorly performing or sparse portions of the trie, which we

plan to investigate going forward.

4.3.5 Proofs

Definition 4.3.1. For b-bit IP routing prefixes p/m; p ∈ {0, 1}b m ∈ [0, b], b = 32 is valid

iff p = p &
(

2b − 2b−m
)

.

Lemma 4.3.2. The largest valid prefix of [s, e] has n = 2m addresses, m = ⌊log2(e−s−1)⌋,
iff ∃z, (0 ≤ z < e− s) such that prefix (s + z) : b−m is valid and s + z + n ≤ e− 1.

Proof. Suppose ∃z, (0 ≤ z < e − s) such that prefix (s + z) : b − m is valid for m =

⌊log2(e − s − 1)⌋ + 1. Then s + z + n ≤ e, so s + 2m ≤ e − 1 or 2m ≤ e − s − 1. By

the definition of floor, m > log2(e − s − 1), therefore: e − s − 1 < 2m ≤ e − s − 1 which

contradicts the supposition.

Lemma 4.3.3. If there exists no prefix of size n = 2m addresses, m = ⌊log2(e − s − 1)⌋,
which is both valid and within [s, e], then two prefixes of size n = 2m−1 are the largest valid

prefixes.

94

Proof. Suppose ∄z, (0 ≤ z < e − s) such that prefix (s + z) : b − (m − 1) is valid and

s + z + n ≤ e− 1. Then, there is no address in the range with m− 1 least significant bits

zero: ∄a ∈ [s, e], a ∈ {0, 1}∗{0}m−1. Therefore, there are at most 2m−1 − 1 addresses in

the range [s, e]. This contradicts the fact that there must be at least 2m − 1 addresses.

Further, suppose ∄z′, (z ≤ z′ < e − s) such that prefix (s + z′) : b − (m − 1) is valid and

s + z′ + n ≤ e − 1. Then by the same reasoning, there must be fewer than 2(2m−1 − 1)

addresses in [s, e]. Thus, 2m ≤ 2m − 2, which is a contradiction.

4.4 Problem 2: Transport-Level Characteristics of Spam

By all estimates, unsolicited email (spam) is a pressing and continuing problem on the

Internet. A consortium of service providers reports that across more than 500M monitored

mailboxes, 75% of all received mail is spam, amounting to more than 390B spam messages

over a single quarter [103]. Spam clogs mailboxes, slows servers and lowers productivity.

Not only is spam annoying, it adversely affects the reliability and stability of the global

email system [2].

Popular methods for mitigating spam include content analysis [100, 130], collaborative

filtering [139, 121], reputation analysis [140, 138], and authentication schemes [6, 150].

While effective, none of these methods offer a panacea;spam is an arms race where spammers

quickly adapt to the latest prevention techniques.

We propose a fundamentally different approach to identifying spam that is based on

two observations. First, spam’s low penetration rate requires spammers to send extremely

large volumes of mail to remain commercially viable. Second, spammers increasingly rely

on zombie “botnets,” [49] large collections of compromised machines under common con-

trol, as unwitting participants in sourcing spam [77]. Botnet hosts are typically widely

distributed with low, asymmetric bandwidth connections to the Internet. Combining these

observations we make the following hypothesis: the network links and hosts which source

spam are constrained. We ask whether the transport level characteristics of email flows

provide sufficient statistical power to differentiate spam from legitimate mail (ham).

In investigating this hypothesis, we gather a live data set of email messages and their

corresponding TCP [119] packets. We extract and examine per-email flow characteristics

in detail. Based on the statistical power of these flow features, we develop “SpamFlow,”

a spam classifier. In contrast to existing approaches, SpamFlow relies on neither content

nor reputation analysis; Figure 4-31 shows this relation. Using machine learning feature

selection, SpamFlow identifies the most selective flow properties, thereby allowing it to

adapt to different users and network environments.

By examining email at the transport layer, we hope to exploit a fundamental weakness

in sourcing spam, the requirement to send large quantities of mail on resource constrained

links. As the volume of spam is unlikely to abate, SpamFlow represents a new defense

95

IP

TCP

SMTP
 data

}
}

}

SpamFlow

Analysis

Filtering
Content

Reputation

Figure 4-31: The relation of SpamFlow to existing spam mitigation schemes. SpamFlow
analyzes only transport-layer packet headers and does not rely on the IP header or data
payload.

against a significant source of unwanted mail. This section’s primary contributions are:

1. Identification of flow features that exhibit significant probability differences between

spam and ham. E.g. 99% of ham flows, compared to only 24% of spam flows, have an

RTT ≤ 100ms.

2. SpamFlow, a classifier to learn and leverage these statistical differences for > 90%

accuracy, precision and recall without content or reputation analysis.

3. Correct identification of 78% of the false negatives generated by SpamAssassin [100].

Thus, SpamFlow may usefully be combined with existing techniques as a weighted

vote.

Consequently, we hope this work serves to identify a new area of spam research and

presents a working system which sources of spam cannot easily evade.

4.4.1 Insight from Mail Transport

The intuition behind our scheme is simple. Because spammers must send large volumes

of mail, they transmit mail continuously, asynchronously and in parallel. In addition, the

sources of spam are frequently large compromised “botnets,” which are resource constrained

and typically connected to the Internet by links with asymmetric bandwidths, e.g. aDSL

and cable modems.

Therefore the flows that comprise spam TCP traffic exhibit behavior consistent with

traffic competing for link access. Thus, there is reason to believe that a spammer’s traffic is

96

(a) Received: from vms044pub.verizon.net

From: "Dr. Beverly, MD" <b@ex.com>

Subject: thoughts

Dear Robert, I hope you have had

a great week!

(b) Received: from unknown (59.9.86.75)

From: Erich Shoemaker <ried@ex.com>

Subject: Repl1ca for you

A T4g Heuer w4tch is a luxury statement on

its own. In Prest1ge Repl1cas, any T4g

Heuer...

54

52

50

49.300049.200049.1000 09:51:49 48.9000

rtt (ms)

time

Ham Flow (rtt samples)

..

.

.

.

.

rtt

.

1400

1200

1000

800

600

 23:16:40 23:16:20 23:16:00 23:15:40 23:15:20 23:15:00

rtt (ms)

time

Spam Flow (rtt samples)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rtt

.

Figure 4-32: Comparison of (a) ham and (b) spam flow RTT estimation. Note that the
RTT variance differs by an order of magnitude - an indication of flow congestion effects.

more likely to exhibit TCP timeouts, retransmissions, resets and highly variable round trip

time (RTT) estimates. Figure 4-33 illustrates a compromised host sending mail to many

remote mail servers simultaneously. The resulting contention on the host’s connection to

the Internet manifests as TCP congestion, loss and reordering effects.

Our initial impetus to investigate this hypothesis came from observing seemingly anoma-

lous TCP socket behavior on an MTA. We discuss this real-world socket behavior next.

Socket Behavior

For intuition on the real-world behavior of SMTP [88] flows, we manually investigate con-

nections on a busy mail server. A large fraction of sockets remain in particular TCP states

for an unexpectedly long time. While [24] presents a detailed analysis, a brief summary is

revealing:

SYN SENT: Many sockets remain in the SYN SENT state for an extended period of

time, where the remote server sends a SYN, but fails to acknowledge our MTA’s response.

These connections may be indicative of mail server scans or congestion near the source.

LAST ACK: Many sockets are stuck in the LAST ACK state. Manual investigation

shows senders successfully opening a TCP connection and sending SMTP commands. How-

ever, the senders do not reliably receive our MTA’s acknowledgments, leading to many

retransmissions. Often the remote server eventually closes its connection by sending a FIN.

97

MX

BOT

MX

MX

MX

MX

MX

MX

aDSL

Congestion/Loss/Reordering

Figure 4-33: Compromised hosts unwittingly source spam as part of zombie “botnets.”
These bots are typically connected via low, asymmetric uplinks such as aDSL and are
widely distributed across the Internet. The large volume of traffic combined with home
connectivity can manifest as TCP packet stream congestion, loss and reordering.

Our MTA acknowledges the FIN and closes its connection, but the remote server never

acknowledges this FIN. The appendix in §4.4.7(I), at the end of this section, contains a

detailed example trace of the LACK ACK situation.

FIN WAIT1: Similarly, many sockets are stuck in state FIN WAIT1. Inspecting these,

we find remote servers that establish a connection but never send any data. Our MTA

eventually times out, closing the TCP connection. However, the remote host seemingly

disappears. Since the remote server does not acknowledge the FIN our MTA sends on the

connection, the socket stays in FIN WAIT. §4.4.7(II) provides a detailed trace of traffic that

leads to this situation.

An Example

We manually examine two emails (one spam, one ham) from our data to provide further

intuition. Figure 4-32 shows our MTA’s round trip time (RTT) estimation for each. Fig-

ure 4-32(a) is a valid message; the RTT estimate is low and more importantly shows little

variation across the flow’s duration. In contrast, Figure 4-32(b) depicts a spam mail where

not only is the RTT high, it varies significantly with a minimum less than 500ms and a

maximum nearly 1.5s. Such wildly varying RTT estimates are often indicative of persistent

congestion and may be one indirect sign that a flow belongs to a spammer.

4.4.2 Experimental Methodology

Is it reasonable to believe that a spammer’s TCP/IP traffic characteristics are sufficiently

different than traffic from Mail Transport Agents (MTAs) sending legitimate mail? Clearly,

98

TCP/IP MTA

Match Spam/Ham?

ServerMail

Mail

Mail

LabelsFlowsSMTP Packet
Capture

Dataset (X,Y)

Figure 4-34: Data collection: incoming SMTP packets are captured and coalesced into
flows. Each flow is matched with a binary spam or ham ground-truth label.

traffic for the connections we manually investigate is suggestive of abnormal behavior or

resource exhaustion. To systematically understand large-scale behavior, we instrument an

MTA to collect passive flow data for the email messages it receives.

Data Collection

Figure 4-34 depicts our collection methodology. Our server is connected to the local network

via a non-congested 100Mbps Ethernet which is in turn connected to the wide area Internet

via multiple diverse Gigabit-speed links. The server processes SMTP [88] sessions and

writes emails to disk. In the header of each email, the server adds the remote IP and TCP

port number of the remote MTA that sent the mail. Simultaneously the server passively

captures and timestamps all SMTP packets. Each email is then manually labeled as spam

or ham to establish ground truth.

We coalesce the captured email packets into flows. Let our server’s IP address be S.

Define a flow fIP :port as all TCP packets (IP :port) → (S:25) and (S:25) → (IP :port)7.

Each email message is matched with its corresponding SMTP flow. However, MTAs often

receive many connections from the same remote host. To avoid the ambiguity in synchro-

nizing messages in time, particularly when aggressive MTAs initiate multiple simultaneous

connections, we modify our MTA (S) to include the incoming connection’s source port

number in each mail header. The port number is vital when receiving many, potentially

simultaneous, emails from the same source.

Over the course of one week in January, 2008, we collect a total of 18,421 messages

for a single mail account, 220 of which were legitimate while the remaining 18,201 were

spam (98.8%). Of the ham messages, 39 were from unique mail domains. While our data

set includes only one account, it reveals surprising and evocative characteristics of spam in

contrast to ham.

7Since our server’s IP and SMTP port are fixed (S:25), these fields are not included in the flow tuple.

99

Table 4.3: Flow properties used as classification features

Feature Description

Pkts Packets

Rxmits Retransmissions

RSTs Packets with RST bit set

FINs Packets with FIN bit set

Cwnd0 Times zero window advertised

CwndMin Minimum window advertised

MaxIdle Maximum idle time between packets

RTT Initial round trip time estimate

JitterVar Variance of interpacket delay

Formulating the Learning Task

We use the collected live data set to formalize a machine learning problem. Properties

of each flow (fi) provide the learning features (xi). Currently we extract the features in

Table 4.3. While our flows are undirected, particular features are directional, for instance

received and sent packet counts, RSTs, FINs and retransmissions. Including directional

features, we consider 13 features in total for each flow.

Each fi corresponds to an email that is given a binary yi ∈ {±1} label. Our data thus

includes the input vector xi ∈ Rd, d = 13 for flow fi and label yi. From these features, we

wish to determine which provide the most discriminative power in picking out spam and

how the number of training examples affects performance.

Transport Characteristics

Figure 4-35 compares the RTT, maximum idle time and FIN packet count between ham and

spam in the entire data set. Here we define the RTT as the initial RTT estimate inferred by

the three-way TCP handshake. Figure 4-35(a) shows the cumulative distribution of RTT

times in our data. The difference between spam and ham is evident. While more than 20%

of ham flows have an RTT less than or equal to 10ms, almost no spam flows have such a

small initial RTT. The RTT of nearly all ham flows is 100ms or less. In contrast, 76% of

spam flows have an RTT greater than 100ms.

A feature such as RTT can be used to provide a classifying discriminator by taking the

posterior probability of a message being a spam, given that the RTT of the message (rtt)

is greater than x. Bayes’ rule provides a convenient way to take the causal information and

form a diagnosis:

P (spam|rtt > x) =
P (rtt > x|spam)P (spam)

P (rtt > x)
(4.24)

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

RTT (sec)

Spam
Ham

(a) RTT Cumulative Probability Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10

P
()

RTT (sec)

P(spam|rtt<x)
P(ham|rtt<x)

(b) RTT Conditional Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Maximum Idle (sec)

Spam
Ham

(c) Maximum Idle Time Cumulative Probability Distri-
bution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

P
()

Maximum Idle (sec)

P(spam|maxidle<x)
P(ham|maxidle<x)

(d) Maximum Idle Time Conditional Probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Received FINs (pkt count)

Spam
Ham

(e) Received FIN Count Cumulative Probability Distri-
bution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2

P
()

Received FINs (pkt count)

P(spam|recv_fin>x)
P(ham|recv_fin>x)

(f) Received FIN Count Conditional Probability

Figure 4-35: Comparing spam and ham probability distributions for RTT, idle time and
received FIN count (left column). The resulting conditional probability distributions (right
column) serve as a discriminator.

101

Figure 4-35(b) shows the conditional probability of a spam message across a continuous

range of RTTs. We include the probability of a ham message in the figure as well; these

probabilities sum to one, hence providing mirror images of each other. With an RTT less

than 10ms, the probability is strongly biased toward being a ham message. In the range

[0.02, 0.1]s, the probability estimate is relatively neutral without a strong bias toward either

category. However, after 100ms, there is a strong tendency toward the message being spam.

This conditional probability distribution corresponds exactly to the data in Figure 4-35(a).

The differences in RTT raise several interesting points. For some classes of users, it is

not unexpected that legitimate email originates from geographically nearby sources. Thus,

it is prudent in many cases to take advantage of locality of interest. RTT may be less of a

distinguishing characteristic though for users with frequent trans-continental conversations.

However, approximately 50% of the spam messages have an RTT greater than 200ms,

suggesting that the remote machines are quite remote, overloaded or reside on constrained

links. Further, the ∼ 10% of flows with an RTT greater than one second cannot easily be

explained by geographic distance and are more likely evidence of persistent congestion or

end host behavior. We emphasize that RTT is just one potential feature. In instances where

users receive legitimate email with large RTTs, the system may use a threshold strategy

or simply lower the relative importance of RTT in favor of other flow features. Just as

content filters are frequently customized per-user, the distinguishing flow characteristics

can be unique to each user based on his or her receiving patterns.

As a second feature, consider maximum idle, the maximum time interval between two

successive packets from the remote MTA. In some instances the maximum idle time directly

reflects the initial RTT, but is often different. Figure 4-35(c) depicts the cumulative distri-

bution of maximum idle times. Again, we see marked differences between the character of

spam and ham flows. For instance, nearly 40% of spam flows have a maximum idle time

greater than one second, events unlikely due to geographical locale. Figure 4-35(d) shows

the conditional probability that the message is spam. After a maximum idle of 250ms, the

probability tends strongly toward spam, as there are few legitimate messages with such a

long idle time.

Finally, to emphasize that there are many potential features available in a flow, we

examine TCP FIN segments. In a normal TCP session termination, each endpoint issues a

finish (FIN) packet to reliably end the connection. Figure 4-35(e) shows that almost 45%

of the spam email flows do not send a FIN compared to only 5% for ham. Finally, a small

fraction of ham flows result in two FINs whereas only 0.7% of spam flows send more than

one FIN. The resulting conditional probabilities are given in Figure 4-35(f). Section 4.4.2

details all of the features we consider.

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Received RSTs (pkt count)

Spam
Ham

Figure 4-36: Non-features: distribution of received TCP RST count is similar for spam and
ham. Surprisingly, this feature provides little discrimination.

Non-features

A strength of a statistical approach is in systematically identifying not only good features,

but also poor features. Several flow properties we initially expected to be a strong indication

of spam provide little differentiation. For example, one might expect ill-behaved flows to

tear down the TCP connection using TCP resets (RSTs) rather than a graceful shutdown

with FIN packets. However, as Figure 4-36 demonstrates, the distribution of received RSTs

is very similar between spam and ham. Surprisingly, only 53% of ham flows contain no

reset packets while 28% contain two RSTs.

Manual investigation of the data reveals that many MTAs, including those of popular

web mail services such as Google and Yahoo, send RST packets after sending the SMTP

quit command. Detailed traces of this phenomenon are provided in §4.4.7(III-IV). Frequent

RSTs are not limited to a few select large servers. In addition, the source code of the

popular Postfix MTA software contains the SO LINGER socket option that causes it to

perform an abortive close and generate TCP reset packets.

In all, the preceding analysis provides evidence that spam and ham flows are sufficiently

different to reliably distinguish between them. The important point of note is that we

examine neither the content nor origins of incoming emails. Instead our determination of

an email’s legitimacy is based entirely upon the incoming flow’s transport characteristics.

4.4.3 Results

Given our data set and problem formulation as described in §4.4.2, we turn to exploiting

the differences in transport characteristics. In this Section we build and train a supervised

classifier and study its performance.

103

Building a Classifier

In this study, we use only the 39 unique ham mails so that our learning algorithm does not

hone in on domain specific effects. For instance, if a majority of email arrives from Yahoo

and Google MTAs, the primary features may reflect specific properties of flows from these

servers. While nothing precludes learning on the basis of multiple mail flows from a single

domain, we seek to understand the generality of SMTP flow characteristics. Our results

will likely improve given additional training data from the same domain and MTAs.

As a result, our data set contains many more spam messages than legitimate messages.

To prevent a large discrepancy in the complexion of training samples, we limit our data set

to include only five times as many spam messages as valid messages. In each experiment,

we select a random set of spam messages that is no more than five times larger than our

ham corpus. Thus, the experiments include 39 valid emails and 195 randomly selected spam

emails (234 total labeled messages and corresponding SMTP packets).

In each experiment, we separate the (Xi, Yi) pairs from the feature extraction of §4.4.2
into a training and test set. We perform a horizontal concatenation of the Y labels and n

x f feature matrix X to form D = [YT : X]. To ensure generality, we randomly permute

rows of D for each experiment and run each experiment ten times. For a permuted D, the

training data consists of the first i rows of D while the test set is formed from the remaining

n− i. In this way the training and test samples are different between experiments.

We use Support Vector Machines (SVMs) for classification (§2) as maximum margin ker-

nel methods with regularization perform well in practice on many tasks. However, we note

that the general insight behind SpamFlow is independent of the exact learning algorithm.

In future work, we plan to explore the use of decision trees to exploit potential correlation

between feature values.

Kernel Selection

Next, we experiment with the SVM kernel parameters. Figure 4-37 shows the training and

test performance using a polynomial kernel across different degrees. For a fixed training

size, we examine accuracy, precision and recall (§2.3). While no overfitting is evident, the

performance drops off quickly for polynomial kernels with degree six or higher.

Similar results for a radial basis kernel with varying γ are given in Figure 4-38. Here we

observe training error improving with finer granularity Gaussians, but this improvement is

not clearly reflected in the test error. Because the radial basis kernel provides more stable

performance, and outperforms polynomial kernels in terms of recall, we elect to use an RBF

kernel with γ = 0.2.

104

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Polynomial Kernel Degree

Train
Test

(a) Accuracy

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14

C
la

s
s
if
ic

a
ti
o
n
 P

re
c
is

io
n

Polynomial Kernel Degree

Train
Test

(b) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14

C
la

s
s
if
ic

a
ti
o
n
 R

e
c
a
ll

Polynomial Kernel Degree

Train
Test

(c) Recall

Figure 4-37: Polynomial kernel selection in SpamFlow

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

RBF Kernel γ

Train
Test

(a) Accuracy

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

s
s
if
ic

a
ti
o
n
 P

re
c
is

io
n

RBF Kernel γ

Train
Test

(b) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

s
s
if
ic

a
ti
o
n
 R

e
c
a
ll

RBF Kernel γ

Train
Test

(c) Recall

Figure 4-38: Radial basis function kernel selection in SpamFlow

105

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

T
es

t C
la

ss
ifi

ca
tio

n
P

er
ce

nt
ag

e

Training Size (Emails)

Accuracy
Precision

Recall

Figure 4-39: SpamFlow classification accuracy, precision and recall vs. training size

Performance

Figure 4-39 shows the classification performance, measured in terms of accuracy, precision

and recall as a function of the training size. We achieve approximately 90% accuracy using

60 training emails and more than 80% accuracy with only 20. This accuracy is relatively

insensitive to the size of the data set, for instance if we include only twice as many spam as

valid messages. However, the standard deviation is tighter as the number of training emails

increases.

Note that accuracy may be misleadingly high as the true composition of our test set

includes three times as many spam messages as ham. A näıve classifier need only guess

“spam” to achieve high accuracy. Thus, we also include recall, or the true positive rate and

precision measures. Recall is the ratio of true positives to the number of actual positives,

recall = TP/(TP+FN) and is therefore a proxy for the number of false negatives. Precision

is most important in this application where the majority of messages are spam. Precision is

the ratio of true positives to all predicted positives, precision = TP/(TP +FP), providing

a metric of false positives. We see that at 40 training mails, the precision is more than 90%,

corresponding to an average of two false positives per iteration.

To better understand the performance characteristics of SpamFlow, we examine the

receiver operating characteristic (ROC) which plots true positive rate (recall) against false

positive rate. Figure 4-40 is a ROC plot that compares the performance of 10 independent

experiments for each of five different training sizes. The ideal point on the ROC plot is the

upper left hand corner which corresponds to perfect true positive rate (recall) and perfect

false positive rate (1-sensitivity). Thus, the more tightly clustered the points are to this

upper left corner, the better.

With smaller training sizes, the ROC curve shows either an unacceptably high false

positive rate, or two low of a true positive rate. The performance with larger training sizes

is much better, with all experiments achieving greater than 80% true positive rate and less

than 40% false positive rate.

106

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Training Size
5

10
20
40
60

Figure 4-40: SpamFlow receiver operating characteristic

Still, the current false positive rate is higher than is ideal for our application. With

further effort and a larger training set, we expect to achieve higher performance. However,

we envision SpamFlow as an additional metric in an overall decision tree in just the same

way modern filters use multiple tests to form an overall spam decision.

Feature Selection

In order to optimize its performance to different users and network environments, Spam-

Flow determines which features from Table 4.3 provide the most discrimination power. To

find these, we turn to feature selection methods as discussed in §2.2.9. Forward fitting (FF)

feature selection simply finds, in succession, the next single feature j that minimizes an error

function V (·). Therefore, training error decreases monotonically with the number of fea-

tures. Forward fitting effectively eliminates features that themselves are closely dependent.

Often two features individually provide significant power, but the second feature provides

little additional classification power. For example, the RTT and maximum idle time may

be highly correlated. Forward fitting will continually seek the next best performing feature

without this potential dependence.

Figure 4-41 shows the probability distribution functions of the selection order for each

feature. We split the results into two plots only to improve readability. Figure 4-41(a)

illustrates that both RTT and CwndMin are the most likely features to be selected first,

each with approximately 40% probability. Maxidle has around a 10% chance of being the

first selected feature and the other features comprise the remaining 10%. In other words,

if the learner were given the choice of one and only one feature with which to classify, the

learner would choose RTT or CwndMin. RecvRxmit and SentRxmit are typically not the

first or second feature, but frequently serve as the third and fourth best features.

Figure 4-41(b) gives the secondary features, those that are more likely to be chosen fifth

or later in the order. These features include the RecvFIN, SentFIN, Cwnd0 and JitterVar.

To leverage the results of feature selection, we measure the prediction dependence on the

107

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10 11 12 13

P
D

F

Selection Order

Feature
CwndMin

RecvRxmit
RTT

(a) Primary features: minimum congestion window and
initial RTT are frequently the best feature; received re-
transmits are a strong second feature.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10 11 12 13

P
D

F

Selection Order

Feature
RecvFIN
SentFIN

SentRxmit
SentRST

Cwnd0

(b) Secondary features: have probability centered in the
middle of the selection order indicating flow properties
that distinguish ham and spam well.

Figure 4-41: Feature selection order probability distributions demonstrate the relative dis-
criminatory strength of different flow properties.

number of best features. Figure 4-42 gives the results of performing forward fitting, mutual

information and random features in each round to select a given number of best features.

We include random features to provide a useful baseline. As expected, the random features

perform the worst, yet still yield 60-70% accuracy. Forward fitting achieves high accuracy,

precision and recall.

4.4.4 Related Work

Current best practices for defending against spam are multi-pronged with four main tech-

niques: content filters, collaborative filtering, reputation systems and authentication schemes.

The most successful attempts thus far to combat spam have relied on fundamental weak-

nesses in spam messages or their senders. We review these systems as well as previous

network and traffic characterization studies.

Content Filtering: A wealth of content analysis systems are used to great effect today

in filtering spam. Learning methods have been effectively applied to building classifiers that

determine discriminatory word features [130]. Such content analyzers exploit the fact that

a spam message contains statistically different words from a user’s normal mail. Even

innocuous looking commercial spam, intended to subvert content filters, typically includes

a link to an advertised service – thereby providing a basis for differentiation. A popular

open source solution is SpamAssassin [100], although there are many competing commercial

alternatives. An interesting approach from Marsono, et al. [99] also analyzes individual

SMTP packets. To alleviate the burden of packet and message reassembly, their scheme

proposes per-packet content analysis and filtering.

108

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

T
es

t C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Number of Features

FF
MI

RND

(a) Prediction Accuracy

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

T
es

t P
re

ci
si

on

Number of Features

FF
MI

RND

(b) Prediction Precision

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

T
es

t R
ec

al
l

Number of Features

FF
MI

RND

(c) Prediction Recall

Figure 4-42: Prediction performance relative to the number of features for Forward Fitting
(FF), Mutual Information (MI) and Random (RND) feature selection with an SVM model.
The points represent average performance across nodes in our data set, while the error bars
show the standard deviation.

109

Our system, SpamFlow, does not perform any content analysis on the messages them-

selves. By providing an alternative classification mechanism, SpamFlow helps address block-

ing innocuous junk mail, for instance nonsense emails that are likely used to “detrain”

Bayesian filters [147].

Collaborative Filtering: Spam is typically sent to many users thereby providing a

signature. By aggregating the collective spam of a distributed set of users, collaborative

filtering [121, 139] aims to prevent previously marked spam messages from being accepted.

For example, popular web mail clients can easily provide collaborative filtering as their

servers are under common administrative control and can leverage spam marked by one

user to block spam to other users. Unfortunately, not all mail installations are large enough

to take advantage of collaborative filtering and are unwilling to rely on vulnerable centralized

repositories. Further, spammers can trivially make each spam unique in an effort to avoid

collaborative techniques.

Reputation Systems: Reputation systems attempt to aggregate historical knowledge

over specific MTA [88] IP addresses or mail domains. For instance, a large number of

messages to unknown recipients might be recognized as a dictionary attack. MTAs that

continually send undeliverable mail are given a low reputation. Often, spam honeypots

are used in conjunction with reputation systems to gather additional data on spam origina-

tion. MTAs which have previously sent spam are likely to continue sending spam. Real-time

databases [140, 138, 134] of these offending MTAs and IP addresses provide blacklists which

MTAs can query before accepting mail. However, Ramachandran’s analysis of DNS black-

lists [124] shows that as much as 35% of spam is sent from IP addresses not listed in common

blacklists. Their work brings to light an important point about the dynamism of IP ad-

dresses in relation to spam. Not only are the IP addresses of botnets changing as hosts

acquire new addresses, spammers are rapidly changing addresses in order to evade blacklist

reputation schemes. Our SpamFlow, however, has no dependence on IP addresses making

it particularly attractive in defending against botnet spam.

Authentication Schemes: Authentication schemes attempt to verify the sender or

sender’s domain to prevent spoofing-based attacks. Sender Policy Framework [150] limits

IP addresses to sourcing mail only for authorized domains. Domain keys [6] uses public

keys to associate each email with an entity.

Characterization Studies: Casado et al. perform passive flow analysis on approxi-

mately 25,000 spam messages to determine bottleneck bandwidths [33]. Their study finds

significant modes at modem, Ethernet and OC-12 speeds, suggesting that spammers employ

both farms of low-speed as well as high speed servers. In contrast, we perform a detailed

passive flow analysis in order to find relevant features for forming classification decisions.

Brodsky’s trinity system identifies botnets by counting email volumes, thereby identi-

fying spam without content analysis. Similarly, the spamHINTS project [46] leverages the

sending patterns of spammers to identify the sources of spam. In addition to analyzing

110

server logs, spamHINTS proposes to examine sampled flow data from a network exchange

point to obtain a large cross section of email traffic patterns and volumes. For instance,

hosts that source email continually or have particular patterns can be identified through a

set of heuristics. In contrast, our work analyzes the individual packets of SMTP transac-

tions to obtain much more detailed flow information, e.g. congestion windows and round

trip times. Further, SpamFlow relies on machine learning techniques rather than heuristics

to build a classification system.

Our work is in a similar spirit to [123] which attempts to characterize the network

properties of spammers, for instance the IP blocks to which they belong. Instead, by taking

a step down the protocol stack and examining the transport level properties of spam, we

hope to take advantage of previously unexploited information.

4.4.5 Conclusions and Future Work

Our results are promising, demonstrating that even rough metrics of a flow’s character

can aid in differentiating incoming emails. By providing a method that does not rely on

either content or reputation analysis, SpamFlow is a potentially useful tool in mitigating

spam. Whereas reputation systems are vulnerable to IP address dynamics, SpamFlow has

no reliance on addresses. While content analysis is easy to game, SpamFlow attempts to

exploit the fundamental character of spam traffic. We plan to gather a significantly larger

data set that includes more valid messages and additional features.

Can spammers adapt and avoid a transport-based classification scheme? By utilizing

one of the fundamental weaknesses of spammers, their need to send large volumes of spam

on bandwidth constrained links, we believe SpamFlow is difficult for spammers to evade.

A spammer might send spam at a lower rate or upgrade their infrastructure in order to

remove any congestion effects from appearing in their flows. However, either strategy is

likely to impose monetary and time costs on the spammer.

The initial RTT is the strongest indication of spam for our data set. A spammer might

attempt to artificially lower the inferred RTT by optimistically acknowledging packets that

have not yet been received. However, an adversary cannot reliably know the remote host’s

initial sequence number for the TCP connection and therefore cannot easily fake the initial

RTT. Such attempts to hack TCP to disguise the effects we observe are likely to expose

other features, for instance retransmits and duplicate packets.

While RTT is the strongest discriminator on our data, other mail users may have dif-

ferent email interactions with geographically dispersed MTAs. Further, the observed spam

RTT may vary for MTAs in countries other than ours. However, such differences demon-

strate the strength of a statistical approach. Just as content based filtering is personalized

for individual users, the particular features for transport based filtering can be tailored to

the end recipients.

Because SpamFlow performs neither content nor reputation analysis, its functionality

111

could be pushed deeper into the core of the network without compromising privacy concerns.

SpamFlow is unique in this regard. In addition, with a wider cross-sectional view the

performance of SpamFlow would likely improve.

Utilizing available flow information may aid not only in preventing spam, but also other

types of attacks that originate from botnets and compromised machines. For instance, denial

of service attacks similarly rely on sending large quantities of data over constrained links.

We wish to gather data to better understand the broader applicability of our approach.

4.4.6 Frequently Asked Questions

In presenting SpamFlow and related research, many of the same questions are commonly

raised. To allay some of these concerns, we provide this frequently asked questions subsec-

tion.

• Q: You’re disenfranchising distant servers! In our dataset, RTT is indeed one of the

strongest indicators of a remote spam source. In many cases however, this may be

desirable; we envision SpamFlow being customized on a per-user, per-network basis in

the same way current content filters are tailored. A North American user who rarely

receives email from China may in fact wish to bias against that email, particularly

if e.g. content analysis flags the message as spam. Thus, SpamFlow need not be the

sole determinant of mail validity.

Further, RTT is but one feature. In our dataset, the minimum congestion window also

figures strongly into the discriminant function. A user who typically receives valid

email from remote sources will leverage properties of the TCP flow other than RTT

for differentiation.

• Q: Can SpamFlow be more conservative in using RTT? Note that approximately 5%

of the spam flows we examine have an initial RTT greater than a full second – longer

than even the expected latency from a satellite link or trans-oceanic crossing. Even

a highly conservative filter can still leverage RTT to eliminate these extremely large

RTT spam flows.

• Q: Doesn’t SpamFlow privilege well-connected senders? Insofar as SpamFlow will

detect poorly connected servers attempting to send large volumes of mail. Personal,

home or small business servers do not have the same volume requirement as spammers

and thus are unlikely to induce the same TCP congestion effects we observe.

In reality, there is a value judgment that makes SpamFlow practical and reasonable.

Specifically, users who wish to ensure that their emails are delivered typically invest in

suitable infrastructure, contract with an outside provider or use their service provider’s

email systems. Companies are not sourcing large amounts of crucial email from hosts

attached by consumer-grade connections. The vast majority of home users utilize

112

their provider’s email infrastructure or employ popular web-based services. Thus,

SpamFlow only discriminates against sources that are both poorly connected and

injecting large volumes of mail.

• Q: What about email lists? In contrast to spam, which must be sent continually, email

list traffic can be scheduled in order to not cause local congestion. For instance, even

a 64kbps link (very slow in current terms) can support hundreds of serial recipients

every five minutes for 10KB sized messages.

• Q: Isn’t your false positive rate too high? Our current results exhibit a higher than

desired false positive rate, largely due to the disproportionate number of spam mails

in our training set. In future research, we plan to obtain a much larger quantity

of legitimate mails in order to even the training complexion and better train the

machinery. However, the existing system is still highly usable as a component, or

vote, in an overall system that also utilizes other mail evaluation techniques such as

content filters.

• Q: How do you anticipate spammers will react to SpamFlow? We believe SpamFlow

addresses spam at a different layer of abstraction than existing solutions, one where the

spammers cannot easily defend. To reduce congestion or other tell-tale signs within

their traffic stream, spammers either must reduce their sending rate, distribute their

sources more widely or obtain better-connected hosts. All three potential solutions

are expensive in real economic terms that matter to spammers. Even if spammers

perform scheduling to ensure that their flows do not self-interfere and cause resource

contention, the reduction in spam volume is beneficial. Therefore, our hope is that

SpamFlow proves to be difficult to subvert.

4.4.7 Supporting tcpdump traces

In this subsection, we provide several tcpdump traces which are both illuminating and

substantiate earlier discussions.

I.) We observe many instances where our server’s TCP socket remains stuck in the

LAST ACK TCP state. After establishing a connection, the remote MTA sends the SMTP

HELO and MAIL FROM commands (lines 1 and 4). Our server’s TCP acknowledges these

packets and responds with SMTP 250 status codes indicating that the command is accepted.

Over the next four retransmissions (6-9), our server’s response is never acknowledged. Fi-

nally, 43 seconds later, the remote MTA sends a FIN (10). Our server sends an ACK (11)

but does not shut down the connection because it still has data to transmit. After 20

seconds, the remote MTA sends another FIN (12) and then stops responding.

09:51:52.883259 IP spammer1 > srv: P 1:11(10) ack 31 win 65505

09:51:52.883894 IP srv > spammer1: P 31:55(24) ack 11 win 321202

113

09:51:53.278033 IP spammer1 > srv: . ack 55 win 65481

09:52:14.499220 IP spammer1 > srv: P 11:42(31) ack 55 win 654814

09:52:14.499429 IP srv > spammer1: P 55:63(8) ack 42 win 32120

09:52:16.555063 IP srv > spammer1: P 55:63(8) ack 42 win 321206

09:52:20.675041 IP srv > spammer1: P 55:63(8) ack 42 win 32120

09:52:28.915089 IP srv > spammer1: P 55:63(8) ack 42 win 321208

09:52:45.395040 IP srv > spammer1: P 55:63(8) ack 42 win 32120

09:52:57.468021 IP spammer1 > srv: F 42:42(0) ack 55 win 6548110

09:52:57.468118 IP srv > spammer1: . ack 43 win 32120

09:53:16.969113 IP spammer1 > srv: FP 11:42(31) ack 55 win 6548112

09:53:18.355043 IP srv > spammer1: P 55:63(8) ack 43 win 32120

09:54:24.275059 IP srv > spammer1: P 55:63(8) ack 43 win 3212014

...

II.) Often we see a remote MTA connect, acknowledge our server’s response but never send

any data. After establishing the TCP connection (lines 1-4), our server’s MTA identifies

itself (5). Without a response, our server retransmits three seconds later (6). The remote

MTA then acknowledges the packet (7), but sends no data of its own. Nearly 20 minutes

later, our MTA times out and sends a status code 451 SMTP timeout (8) and then a TCP

FIN (9). Our server remains in TCP state FIN WAIT1 as the remote MTA never sends an

acknowledgment and has seemingly disappeared.

13:40:20.257512 IP spammer2 > srv: S 776725085:776725085(0) win 24000

13:40:20.257755 IP srv > spammer2: S 4032400311:4032400311(0) ack 776725086 win 326962

13:40:23.585053 IP srv > spammer2: S 4032400311:4032400311(0) ack 776725086 win 32696

13:40:25.077725 IP spammer2 > srv: . ack 1 win 240004

13:40:25.099313 IP srv > spammer2: P 1:31(30) ack 1 win 32696

13:40:28.095065 IP srv > spammer2: P 1:31(30) ack 1 win 326966

13:40:29.633161 IP spammer2 > srv: . ack 31 win 24000

14:00:25.095141 IP srv > spammer2: P 31:53(22) ack 1 win 326968

14:00:25.095421 IP srv > spammer2: F 53:53(0) ack 1 win 32696

14:00:31.095079 IP srv > spammer2: FP 31:53(22) ack 1 win 3269610

14:00:43.095043 IP srv > spammer2: FP 31:53(22) ack 1 win 32696

14:01:07.095062 IP srv > spammer2: FP 31:53(22) ack 1 win 3269612

...

III.) Google MTAs consistently send TCP RST packets. In this example, the Google MTA

sends an SMTP quit command (line 1) and then initiates an active close. The active close

induces the FIN packet (2) from Google which our server acknowledges (3). Our server

passively closes the connection in the other direction by sending a FIN (5). The Google

MTA does not acknowledge this FIN and instead sends a RST (6).

11:55:57.807504 googl > srv: P 187089:187095(6) ack 143 win 5720

11:55:57.807510 googl > srv: F 187095:187095(0) ack 143 win 57202

11:55:57.807628 srv > googl: . ack 187096 win 32614

114

11:55:57.807863 srv > googl: P 143:167(24) ack 187096 win 326144

11:55:57.808181 srv > googl: F 167:167(0) ack 187096 win 32614

11:55:57.834759 googl > srv: R 46149836:46149836(0) win 06

IV.) Similarly, flows from Yahoo MTAs exhibit TCP resets. This example shows our server

responding to an SMTP quit command and then performing an active close on the socket

(2). The Yahoo server simultaneously performs a close (3). Our server acknowledges Yahoo’s

FIN (4). Instead of sending an acknowledgment, the Yahoo MTA sends three resets (5-7).

11:20:35.023406 srv > yahoo: P 113:137(24) ack 1426 win 32120

11:20:35.023782 srv > yahoo: F 137:137(0) ack 1426 win 321202

11:20:35.023983 yahoo > srv: F 1426:1426(0) ack 113 win 33304

11:20:35.024073 srv > yahoo: . ack 1427 win 321204

11:20:35.076591 yahoo > srv: R 776208340:776208340(0) win 0

11:20:35.076969 yahoo > srv: R 776208340:776208340(0) win 06

11:20:35.077381 yahoo > srv: R 776208341:776208341(0) win 0

4.5 Summary

While a complete view of the network may be best harnessed by a distributed learning

network plane, we find significant value to end-nodes acting as autonomous learning agents.

Although end-nodes already contain a variety of intelligent functionality, we show that

there is ample room for these nodes to gather and use available data in non-traditional

ways to their advantage. End-nodes can improve their performance by becoming intelligent

participants in the network through learning, prediction and classification. Because end-

node intelligence is compatible with the current Internet architecture, such schemes have

the added advantage of immediate deployment without implementation hurdles.

In this Chapter, we create and test two operational end-host systems that make use

of ignored data. We observe that Internet addressing is hierarchical, but discontinuous

and fragmented, suggesting that learning can discover additional structure beyond what is

available in routing tables or registries. We develop a network-specific clustering algorithm

to find common partitions across the entire Internet address space. Using this clustering

method, we endow agents with the ability to predict round-trip latencies to random Internet

destinations without any network or coordinated support (§4.2). Further, we adapt our

algorithm to accommodate structural and temporal dynamics.

In §4.4, we create a packet flow classification technique which detects traffic originating

from remote, resource constrained hosts. This method provides the basis for “SpamFlow,” a

novel spam detection tool that relies on neither content nor reputation analysis. In addition

to providing high spam classification accuracy, we detect the majority of false negatives

missed by traditional content filters. By using learning to exploit a fundamental weaknesses

in sourcing spam, we show that SpamFlow is adaptable and not easily subvertible. Our

115

hope is that SpamFlow serves as a step forward in providing a means to combat spam and

impose a greater cost on parties sourcing spam.

A central point of debate is whether security architecture requires coordination and

cooperation to succeed, or if individual nodes can operate in an intelligent, autonomous way

to protect themselves. Can agents achieve high predictive performance without explicit help

from the network? Autonomy enables incremental deployment, protection where deployed

and ability to compose in the form of chaining. In the next Chapter, we more carefully

examine these issues by including learning and intelligence within the network core.

116

No one else could make electronic sounds so lusciously melodic, by sheer contrast with all

the rattling and plicking that had gone on before.

- Economist Obituary on Karlheinz Stockhausen

Chapter 5

Learning within the Network Core

5.1 Introduction

Thus far, we have considered the application of learning to enable a variety of functionality in

end-hosts and end-applications. As such, our approach has followed a traditional end-to-end

notion of where in the network to place learning and intelligence. The end-to-end arguments

espouse placing functionality at the correct layer so as not to burden all applications with

functionality that is needed only by a few. However, as we point out throughout this thesis,

the assumptions surrounding the Internet are changing. For example, in an Internet where

all applications require security, different design choices may still remain consistent with

the end-to-end argument.

In this Chapter, we examining adding intelligence into the core of the network. Pushing

learning into the core affords a more complete view of the network, permits cooperation

against adversaries and promises mediation within the system. To this end, we consider

two distinct problems that require a distributed learning solution within the core:

1. IP Source Address Validation (§5.2): IP source address forgery, i.e. “spoofing” contin-

ues to afford attackers a fertile vector for varied exploits despite historical precedent.

Best common filtering practices suffer from an incentive problem; networks ensure

they source no spoofed traffic, but cannot prevent its reception. Thus, a central im-

pediment to existing mitigation techniques is their reliance on global participation. In

contrast, we consider the task of identifying spoofed source packets at points topolog-

ically distant from the true source. We employ learning to leverage the predominance

of legitimate traffic1 in order to identify spoofed traffic. Internet-scale simulations

reveal that as few as three central autonomous systems suffice to block more than

two-thirds of spoofed traffic while interfering with less than 1% of legitimate traffic.

To demonstrate real-world applicability, we implement our learning approach as a

1We define “legitimate” in this context as non-spoofed traffic. In contrast to email where the majority
of messages are spam, the majority of Internet IP packets are legitimate.

117

Linux firewall module capable of processing >50,000pps.

2. Intelligent Routing Plane (§5.3): Routing decisions on the modern, commercial In-

ternet are a function of not only path length but also policy and economics. Present

interdomain routing protocols afford only blunt mechanisms to effect policy and cause

the network to be complex, error prone and inefficient. As the Internet increasingly

becomes critical infrastructure, providers struggle to guarantee reliability while op-

timizing along economic dimensions. Anticipated and unanticipated events such as

faults, attacks, peering and pricing changes all currently necessitate manual inter-

vention. We argue for learning in routing, where the network can react rationally to

unknown situations. In contrast to overlays, we advocate additional intelligence within

the routing system to optimize the multi-dimensional problem and mediate potentially

conflicting needs of both providers and end users. We propose a notion of quality-of-

service (QoS) where a network uses best effort traffic to explore its available routing

paths and exploits this knowledge to increase the performance of high priority users

and applications. Using live packet traces to drive simulations on Internet-like topolo-

gies, we demonstrate how learning allows an autonomous system (AS) to optimize its

available inter-AS capacity.

5.2 Problem 1: Distributed Learning for IP Source Valida-

tion

The classic design tenets of the Internet architecture produced a network capable of re-

markable scalability and interoperability, but relegated security to the end hosts [41]. One

result of this design is that the network includes no explicit notion of IP source authenticity

and will forward packets with forged headers. Malicious users and compromised hosts cap-

italize on the ability to “spoof” source IP addresses for a wide variety of attacks including

anonymity, indirection and reflection.

As good Internet citizens, many operational networks implement source address filtering

best common practices [58]. These ingress filters allow only packets with source addresses

that the networks owns or advertises. Unicast reverse path forwarding (uRPF) [10] simi-

larly checks whether the route toward the source of an incoming packet corresponds to the

interface on which that packet arrived in order to prevent spoofing. These filtering tech-

niques are quite effective, but may be limited by multi-homing, route asymmetry, ad hoc

filter list maintenance and router design. For instance, uRPF is implemented as a check

against a router’s forwarding table (FIB) rather than its routing table (RIB). As the FIB is

populated by the best route as calculated on the RIB, the FIB does not contain all feasible

paths. Thus, networks may opt to deploy uRPF in loose mode where source addresses are

not checked against a particular interface, but instead are verified to exist anywhere within

the FIB. Loose uRPF therefore still permits many attacks and is for instance useless against

118

reflector attacks.

More importantly however, current anti-spoofing filtering techniques are hindered by an

incentive problem. Networks that perform source address filtering ensure they source no

spoofed traffic, but cannot prevent its reception.

A second fundamental problem with existing anti-spoofing methods is their dependence

on global participation. Providers that follow all anti-spoofing best common practices still

receive anonymous, malicious traffic via other networks that do not properly filter. As a

result, both previous research [108, 116] and recent attacks [113] demonstrate that source

address spoofing remains a viable attack vector. Arbor network’s survey of 55 large network

operators in 2007 [114] reveals that only 53% of the respondents employ uRPF filtering at

the customer edge and only 45% use uRPF at peering edges. Despite two-decade old exploits

[14], new source spoofing based attacks continue to emerge; we review three in §5.2.2.
Our own measurements as part of the ANA Spoofer Project [21, 22] include more than

three years worth of data on the extent, nature, evolution and geographic variation of

Internet source address validation and filtering. We find 20% of autonomous systems and

17% of netblocks permit spoofing while 17% of filtering policies may be circumvented with

careful source selection [20]. Further, using our “tracefilter” tool, we determine that

80% of existing filters are employed within two hops of the source hosts [23]. Thus, a

single unfiltered ingress point provides a means to circumvent global spoofing protection

mechanisms. Once a packet with spoofed source information makes it to the core of the

network, it is virtually guaranteed to be delivered to the victim.

The Internet’s architectural inability to prevent spoofing implies we cannot reliably

anticipate or defend against the next exploit or shift in attack patterns that leverage source

address spoofing. Hence, network operators are forced to rely upon defensive point solutions

to mitigate known spoofing attacks. Any practical solution to the aforementioned problems

must protect parties who implement the solution from receiving spoofed traffic without

relying on large-scale distributed coordination or cooperation.

5.2.1 A Learning-Based Solution

This work considers the task of identifying spoofed source packets at points topologically

distant from the true source. We present Robust IP Source Address Verification with

Kernel Oriented Learning (Raskol). Raskol is a machine learning agent that may be placed

anywhere in the network, e.g. in a router or end host. We employ learning to leverage

the predominance of legitimate traffic in order to identify spoofed traffic. After an initial

supervised training phase, Raskol classifies incoming packets as either spoofed or valid

source. To perform this classification Raskol relies on a simple, basic property of the current

Internet: attackers have no control over the path their packets take through the network. By

examining the source address in conjunction with the received time-to-live (TTL), a rough

indicator of the path length the packet traversed, Raskol can identify spoofed packets with

119

surprisingly high accuracy.

Our research analyzes Raskol in two modes: i) deployed at victim end-nodes, i.e. the

eventual recipients of the spoofed traffic; and ii) deployed sparsely throughout the Internet

routing substrate. Raskol at end-nodes provides immediate benefit and does not require the

participation of that network’s provider(s). While end-host filtering is quite effective, our

research shows that end-hosts lack enough network observability to prevent false negatives.

Hence, end-host or end-network filtering is best suited to situations where the host is under

current attack and blocking some legitimate traffic is acceptable in return for relieving the

duress.

In contrast, routers within the core afford a broader view of the network and offer in-

creased filtering potential by being on the critical path of more traffic. We thus examine a

distributed version of Raskol. We show how learning within the Internet core provides much

higher accuracy while blocking traffic closer to its true source. False negatives, instances

where non-spoofed packets are marked or filtered, carry a large burden. To minimize incor-

rect blocking of legitimate traffic, we show how one may use an ensemble of weak classifiers

within the routing substrate. Finally, we provide a realistic method to perform distributed

classification. By propagating prior decisions within the packet’s TTL, upstream routers

can weigh into the classification of the remaining routers along the path without changing

the existing Internet semantics. Our method thus provides high-levels of protection without

relying on large-scale distributed coordination or cooperation.

The primary contributions of this research are:

1. A machine learning-based IP source spoofing prevention that operates on the eventual

victim recipient. Our mechanism discriminates real versus spoofed traffic with over

87% accuracy.

2. Internet-scale simulations showing that as few as three central autonomous systems

suffice to block more than two-thirds of spoofed traffic while interfering with less than

1% of legitimate traffic.

3. A Linux firewall module implementation capable of processing more than 50,000 pack-

ets per second, demonstrating real-world applicability.

5.2.2 Understanding the Threat

Despite being first exploited over two-decades ago [14, 109], IP source spoofing is a per-

sistent problem and a continued threat as demonstrated by the Spoofer project [20] and

analysis of backscatter [108, 116]. Both distributed and centralized attacks use spoofing for

anonymization or reflection [118]. The anonymity afforded by spoofing greatly complicates

the job of network operators defending their networks.

Spoofing is no longer limited to simple Denial of Service (DoS) attacks, but is being used

in a multitude of ways. Arguably, the rise of large-scale zombie farms and NAT deployment

120

Mallory

BobAlice
In−progress TCP session

TCP RST, SRC: Alice DST: Bob

Figure 5-1: In-Window TCP Reset Attack: 1) Alice and Bob have a TCP session in progress
with a large congestion window. 2) Mallory sends TCP reset packets that spoof Alice’s
source address to Bob. 3) If the reset sequence number is received in-window, the third
party successfully terminates Alice and Bob’s connection.

may negate the need for spoofing in certain classes of attack. However, in this Section

we illuminate three recent attacks with very different purposes that rely on the ability to

spoof source addresses. The diversity of new exploits attest to both the continued threat of

spoofing-based attacks as well as the ability to spoof on the Internet.

In-Window TCP Reset Attack

A recent, non-bandwidth attack uses spoofed source TCP reset packets [145]. A TCP stack

that receives a reset with a sequence number within its current window terminates the con-

nection. Typically sessions are protected from third-party resets through port obfuscation,

short duration and small window size. However, high-speed links with large bandwidth-

delay products yield a situation where an attacker can find an in-window sequence number

for sufficiently well-known and long-lived connections. Figure 5-1 illustrates a TCP reset

attack. Such attacks can disrupt persistent tunnels and even IP routing.

For example, Border Gateway Protocol (BGP) sessions [128] are established over TCP

and are long-lived with a well-known port. An attacker able to spoof the source of a core

router can break a BGP session causing route withdrawals and inflicting instability in the

global routing system, an effect unforeseen by the original protocol designers. While the

operational community protects against third-party BGP resets with MD5 authentication

[69], countless other TCP reset exploits of a similar character exist.

121

Attacker(s)
Attacker(s)

Attacker(s)

DNS Server DNS Server

DNS Server

hack.com DNS Root

TLD DNS
1. Spoofed DNS Request

2. Fetch and Cache ANY record

3. Amplified Attack Packets

Victim

Figure 5-2: DNS Amplifier Attack: 1) Attacker spoofs DNS request with victim’s source
for large TXT record 2) Third-party DNS servers fetch and cache record. 3) Server sends
victim large query result. Attacker’s small DNS query packets are amplified and victim
cannot identify true attack source.

DNS Amplifier Bandwidth Attack

Figure 5-2 illustrates a bandwidth-based DoS attack that relies on spoofing for reflection

[118], amplification and anonymity. We assume the attacker finds or places a large TXT

record in the Domain Name Service (DNS) system. The attacker sends spoofed DNS queries

with the victim’s source address to many public DNS servers. Each request queries for the

large TXT record. The public DNS servers retrieve the record and send it to the victim.

Thus, the attacker’s small DNS query packets are amplified and the victim cannot identify

the true source. Because the results are cached, the attacker can continually query the

servers and generate a DoS attack from innocent third parties.

This attack is difficult to defend against since the third-party DNS servers cannot dis-

tinguish legitimate requests from spoofed ones and traffic filtering is impractical against

DNS traffic. Further, the attacker can find or create many different domains dynamically

to evade detection or circumvent any policy that might be placed on DNS servers. Such

DNS attacks have been seen in the wild by the operational community [112].

Spam Filter Circumvention Attack

Due to the widespread prevalence of worms, viruses and bot-farms used to send unsolicited

commercial email, providers often prevent hosts on their network from establishing random

SMTP (TCP port 25) connections [88] and force user authentication with their own Mail

Transfer Agent (MTA). The final new attack we mention does not disrupt the network but

is instead a clever means to circumvent provider-based spam filtering. Known as “fantasy

mail,” this attack has been repeatedly observed on production networks [111].

In Figure 5-3, we assume the spammer controls a zombie. Because the zombie’s provider

122

3. SYN/ACK Proxied back to Spammer

Zombie
IP: 6.1.2.3

Dialup RAS
Spammer

Victim MTA

Outbound Port
25 Block

1. Spoof TCP/25 SYN, Src: 6.1.2.3

2. SYN/ACK Sent to Zombie

Figure 5-3: Circumventing Provider Filters: spammer controls zombie on a network that
filters outbound TCP port 25 SYNs. 1) Spammer connects via dialup and spoofs a TCP
port 25 SYN to an MTA with the zombie’s source. 2) MTA replies to zombie with a
SYN/ACK. 3) Zombie forwards the MTA’s packets back to the spammer. Spam appears
to originate from the zombie, making it untraceable.

filters outbound SMTP SYN traffic, control of the zombie provides no additional advantage

to the spammer. Instead, the spammer finds a second network that permits spoofing; recent

attacks use dialup. Using the dialup account, the spammer sends a TCP SYN to port 25 of

a public MTA with the zombie’s source address2. The zombie forwards the SYN-ACK from

the MTA to the spammer over a direct TCP connection or IRC. The spammer can then

send the correct spoofed packet to complete the TCP three-way handshake. By repeating

for all packets, the spammer circumvents the provider’s filter and spam appears to originate

from the zombie. In this case the filters confuse network operators who cannot determine

how the zombie sent the spam. This example highlights the fact that seemingly straight

forward filtering rules are exploitable and require even more complex rules. Such a cycle

is creating an environment that is operationally difficult to maintain and debug – a factor

that undermines well-meaning attempts at security. We cannot reliably anticipate or defend

against the next exploit or shift in attack patterns that leverage spoofing.

5.2.3 Measurements

In support of our research, we perform an Internet-wide active measurement study to de-

termine the extent, nature and evolution of provider source address validation and filtering.

Known as the the “Spoofer Project,” we collect more than three years of data to test filtering

policy, locality and specificity.

Our “spoofer tester” allows willing users to test their Internet provider. An invocation

of the application runs several tests including sending packets from three source addresses

2Because the TCP socket API does not provide mechanisms for falsifying source addresses or modifying
normal TCP behavior, spammers implement such attacks using raw sockets.

123

Table 5.1: Observed, relative and extrapolated IP source address spoofing coverage

Metric Observed Believed Extrapolated
Spoofable Unspoofable to Internet

Netblocks 467 (16.5±1.8%) 2369 41.3k

IPs 34.3M (11.2±1.1%) 272.1M 256.5M

ASs 225 (19.5±3.0%) 928 3796

intended to infer common filtering policies. The first source is as yet unallocated by IANA

[73]. This address should not appear in routing tables since it is not delegated. The second

source is within a private [129] netblock. Private IPs allow for site-local addressing, but are

not routeable on the Internet. Some networks employ filters that block traffic from these

“martian” regions of unallocated and private address space. Next, the tester spoofs a valid,

allocated source that is globally routeable. This address tests a common filtering policy of

permitting only packets with source IP addresses present in the routing table. Such filters

[10] are simple to implement and do not require periodic maintenance.

Our testing includes inferences on the location and specificity of provider filtering in the

network. See [20] for a complete exposition of the methodology.

We advertised availability of the spoofer application in multiple forums and received

coverage in Slashdot [21]. Over the 26 month period between February 2005 and April 2007,

we received 5,870 client reports, 4,659 of which are unique3. With routing information from

RouteViews [105], we map each client to a netblock and AS. From the size of the netblock,

we approximate the number of IP addresses the report represents. Without direct evidence

of the ability to spoof we classify netblocks as “believed unspoofable.” Table 5.1 gives the

number of netblocks, addresses and ASs that are spoofable as observed in our data set along

with 99% confidence intervals.

In aggregate, 2172 unique clients can spoof none of our three primary classes of spoofing

(unallocated, private and valid), while 433 (17%) can spoof at least one of the three. Many

hosts experience inconsistent filtering where a subset of the spoofed packets arrive at our

measurement station. Approximately 16% of the observed netblocks, corresponding to 21%

of the observed autonomous systems, allow some form of spoofing. At the time of writing our

view of the BGP table includes 2.3B IP address, 18,700 autonomous systems and 215,000

netblocks. Assuming a uniform distribution of testing, projecting these numbers to the

entire Internet yields over 381M spoofable addresses and 4,400 spoofable ASs.

Filtering presents a conundrum for network operators. Conventional wisdom dictates

that ingress filtering is performed near the edges of the network rather than the core.

However the edge of the network contains the largest number of devices and interfaces. Thus

3Notably, we received no reports of alarms or abuse, illustrating both the difficulty and apathy of pre-
venting spoofing.

124

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
lie

nt
s

Filter Depth

Figure 5-4: Tracefilter Localization: Cumulative distribution of inferred source validation
filter depth (hops from sender)

appropriately deploying, managing and maintaining these filters is operationally challenging,

particularly when preventing valid address spoofing.

Figure 5-4 shows the cumulative distribution of provider filter depth, measured in IP

hops from the client, as inferred by the tracefilter mechanism described in [23]. 80% of the

clients are filtered at either the first or second hop router. Thus, networks today generally

rely upon the edges to properly validate source information. If spoofed packets make it

through the first few hops into the network, a spoofed packet is likely to travel unimpeded

to the destination.

Our findings suggest that concerted spoofing attacks remain a serious concern. Given

the ample evidence of attacks and measurements of network vulnerability, we map this data

to a notion of different attack models.

5.2.4 Attack Models

To better understand the efficacy of our filtering technique, we evaluate it against various

real-world attack models in addition to the recent attacks previous detailed. Table 5.2 lists

the attack models we consider. Many of the attacks are similar but differ in subtle yet

important ways.

For instance, some attacks are effective with only a single attacking host, while others

employ many, possibly coordinated, attackers. Our first dimension of distinction among

attacks is whether the attackers are distributed. Next, we divide among attacks that target

a single fixed victim or a distributed set of victims. Thus, the most basic attack is a single

attacker sending spoofed packets to a single victim, for example in an in-window TCP reset

attack. In contrast, attacks with many attackers against one or more victims are generally

classified as Distributed Denial of Service (DDoS) attacks. Typically these attacks originate

from large clusters of compromised machines or zombie “botnets” [49] that are under the

125

Table 5.2: Attack models based on source-IP address spoofing
Attack Mode Distributed

Attackers
Source Ad-
dresses

Victims Example

Basic No Fixed Single Fixed Rogue TCP Reset, MS-
SQL Ping Storm[107]

Basic Random No Random Single Fixed DoS SYN Flood,
Blaster[36]

Basic Smart No Random
Valid

Single Fixed Smart DoS SYN Flood

Reflector No Fixed Distributed DNS reflector attack[118]
Worm Yes Random Distributed MS-SQL

Slammer/Sapphire[35, 16]
DDoS Yes Random Single Fixed DDoS attack[34]
DDoS Fixed Yes Fixed Distributed Stacheldraht[54]
DDoS Smart Yes Random

Valid
Single Fixed Smart DDoS attack

common control of an attacker.

Many worms are distributed among both attackers and victims. For instance, the MS-

SQL slammer [35, 16] and blaster [36] worms exploit vulnerabilities on victim hosts and

then attempt to propagate. These worms use spoofed source IP addresses and randomly

scan the IP address space to find new machines to infect.

Spoofing affords attackers a third dimension along which to tailor an attack. The source

addresses attackers insert into their packets may be fixed, random or intelligently chosen.

For example, the Stacheldraht[54] worm uses a fixed 3.3.3.3 spoofed source IP address. As

[22] demonstrates, many of the deployed filters at service providers are circumventable with

careful source selection. For example, by using only valid addresses, i.e. those appearing in

the global routing tables, an attacker improves their chances of sourcing the spoofed packets

and remaining unidentifiable. Valid source selection also prevents many of the backscatter

effects described in [108].

In our analysis and simulations, we evaluate Raskol’s filtering performance against a

variety of the attack models described here in Table 5.2; we will refer to each by the mode

name in the remainder of this discussion.

5.2.5 Spoofing Prediction

Our spoofing prediction methodology relies on a simple, basic property of the current In-

ternet architecture: attackers have no control over the path their packets take through the

network. Packets with source address a from a node s toward destination t will follow a

path p determined by the network, irrespective of a:

s
p
 t ∀a (5.1)

In normal operation, a host sends packets with its true source address, whereas an

126

attacker uses a 6= s. The adversary is assumed to have full control over a, but cannot

influence the choice of p. Given a complete map M of all Internet paths, t can verify

whether a packet with address a that traversed a path precv is valid: M(a) = precv. M need

not be a router-level or AS-level map. While the path itself is not encoded into packets,

packet carry a TTL value. Intended to prevent infinite routing loops, the TTL field of a

packet is decremented by each router along the path, providing an implicit path length

signal.

Our intent is that every autonomous agent in the network build an independent view of

the network. How individual agents, either network elements or end nodes, determine the

map M(·) is the central learning problem we tackle. Because the space of possible addresses

is roughly 232, an exhaustive search is impossible. In addition, even if the agent had access

to a routing table, the information is too coarse-grained due to aggregation and will not

reflect the internal structure of remote networks.

Path Length

Routers decrement the TTL field of each packet. In order to determine the forward path

length, a receiver must infer the packet’s originating TTL value. Fortunately, operating

systems set the TTL of outgoing packets in powers of two. We use use the well-known

heuristic of selecting the next highest power of two as the originating TTL. If the observed

TTL is greater than 128 we infer an original TTL of 255 and if less than 32 we infer 32.

Thus, for a packet with an observed TTL of ttlo, the path length |p| is:

|p| =
(

2⌈log2(ttlo)⌉
)

− ttlo (5.2)

Training

Raskol must first train its classifier. One possible training set is simply traffic normally

received by the agent. Because TCP connections are more difficult to spoof since the remote

end must actively participate in the three-way handshake, TCP traffic could be used for

training. For instance, a web server continually receives and processes TCP connections as

part of its normal operation, providing an ample training set.

A key premise of the training phase is that the number of legitimate users is much larger

than the number of malicious users. Therefore it is possible to leverage legitimate nodes

and users to drive out misbehaving traffic.

Dataset

To collect a data corpus for our experiments, we use a simple active measurement procedure.

We select unsigned 32-bit integers at random until one is found as a valid IP address in a

public global routing table. If the randomly selected destination responds to ICMP echo

127

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Inferred Path Length

Figure 5-5: Probability mass function of 30,000 node path lengths in data set.

requests, i.e. “ping,” we record the received TTL. Because our measurement agent issued

the ping request, the responses are valid with high probability. Our data set consists of

approximately 30,000 randomly selected (ip, ttl) pairs. The data is publicly available from:

http://ana.csail.mit.edu/ttl. Figure 5-5 displays the probability mass function of path

lengths in the dataset.

A critical concern is the ability of the adversary to mimic this distribution and evade

any hop-based TTL or counting mechanism. We consider such attacks on our classification

scheme in §5.2.11.
Let the set of legitimate IPs and their corresponding TTLs from the aforementioned

data set be {L} = (ip, ttl). We generate an identically sized set of spoofed pairs {S} by

assigning a random IP address to each TTL. i.e. Si = ({0, 1}32 , Li(ttl)). Next, we take l

training points from each of {L} and {S} at random. Let TL ∈ L be the subset of l randomly

selected legitimate training points and TS be l randomly selected spoofed training points.

The remaining non-training points L − TL are used as test points. Let T be the set of

training points and R test samples. Formally:

TL
l← L;TS

l← S (5.3)

T = TL + TS ;R = (L− TL) + (S − TS) (5.4)

5.2.6 End-Host Packet Classification

We employ Support Vector Machines (SVM) to allow agents to classify incoming packets as

either spoofed or non-spoofed. SVMs [146] work well in many learning situations because

they generalize to unseen data: the machine is defined by only a subset of the training

points, or support vectors. For classification, SVMs find a hyperplane that provides a

maximal separation between classes. This optimal hyperplane is orthogonal to the shortest

line connecting the convex hulls of the two classes in some dimensional space. The support

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

F
ra

ct
io

n
of

 T
es

t S
am

pl
es

Number of Training Points

Accuracy
Precision

Recall

Figure 5-6: Raskol classification accuracy, precision and recall vs. training size

vectors are exactly those data points which define this shortest line. Additional data points

do not affect the final solution unless they redefine the margin. For this reason, SVMs

are amenable to continuous, adaptive on-line learning, a desirable property in network

environments.

Source Address Spoofing Prediction

We use SVM classification to identify IP packets with spoofed source addresses. IP addresses

are simply unsigned 32-bit integers. We transform the IP addresses into a 32 dimension

input space where each bit of the address corresponds to a dimension. The input to the

SVM is an IP address bit vector x[0..31] ∈ {0, 1} and integer feature x[32] ∈ N with labels

y ∈ ±1 where y indicates spoofed or non-spoofed traffic.

To reduce possible dependence on the choice of training set, all results we present are

the average of five independent experiments. We randomly permute the order of the data

set so that, after splitting, the training and test samples are different between experiments.

In this way, we ensure generality in the learning algorithm.

Learning algorithms require optimization along several dimensions. We begin by ana-

lyzing the tradeoff between training size and model generality. Our objective is to find the

number training points required to perform well when predicting future points without over

fitting. Figure 5-6 plots the classification accuracy, precision and recall of predictions in the

test set versus training set size.

Tunability

An important property of Raskol is the ability to tune its performance to meet the require-

ments of the network or application it is protecting. In situations where spoofed packets

are never allowed, Raskol can be tuned to reject spoofed packets with high probability at

the expense of marking many legitimate packets incorrectly. Conversely, the filter can be

129

tuned to always pass legitimate packets, but will often pass spoofed packets. Thus, Raskol

will always have a percentage of false positives and false negatives.

In our simulations, we select a middle ground where legitimate packets pass the filter

with around 90% probability, but permit as much as 20% of spoofed packets through.

Marking approximately 10% of the legitimate packets as spoofed will cause normal traffic

to be affected even when not in the presence of attack traffic. Therefore, we envision

Raskol being used in a defensive mode: once a node or network is under attack, Raskol’s

protection is switched on. Although Raskol impacts some small percentage of legitimate

traffic, doing so is preferable to providing no service while under duress. In addition, some

client applications are robust to losses from a server amongst a set, for instance DNS. If

the client receives no response from the first DNS server, it tries alternate servers. For this

reason, one might consider employing Raskol’s protection on some subset of the root or

gTLD name servers continually.

Problem Dimension

The selection of training complexion is crucial to creating a machine that generalizes well

and operates efficiently. We examine the informational content of each bit, or “feature,” in

the IP address. Let θ be a feature vector where θi ∈ x. Intuitively, the most significant

bits correspond to large networks and should provide the most discriminatory power. Here

“most-significant features” correspond directly to BGP prefix masks, i.e. 192.160.0.0/12.

We run Raskol against our data set using 4000 points for training while varying the number

of input IP features and maintaining the TTL feature. For example, the first 12 features of

IP address 192.168.1.1 is the bit vector θ =110000001010.

We plot Raskol’s prediction accuracy as a function of the dimensionality of the input

space in Figure 5-7. The optimal number of most significant features is between 8 and 12,

after which test error begins to increase. This increase in test error is symptomatic of the

noise introduced by the least significant bits of the IP address which add no discretionary

strength.

5.2.7 Internet-Wide Simulation

In this Section, we turn our attention to performing distributed classification within the

core of the network. While we are able to experiment with sourcing and filtering spoofed

traffic in a few limited network ingress points, we have no control over the core Internet

infrastructure. We therefore turn to simulation. We develop a custom simulator to under-

stand the performance of our spoofed traffic filtering algorithm when deployed within the

core of the Internet.

130

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32

A
cc

ur
ac

y

Input Dimension, MSB of IP Address

Figure 5-7: Prediction accuracy vs. number of IP address most significant bits.

Including Internet Structure

Because of the nature of commercial AS relationships in the Internet, the route between

arbitrary hosts is not necessarily the shortest hop path. Modeling the customer, provider

and peering structure of the Internet has been a subject of frequent study. Gao first proposed

a “valley-free” algorithm [61] that assigns each AS a degree corresponding to the number

of links to other ASes. The route follows the path from the source up to successively

higher degree ASes until it reaches a “top-tier” AS. The remainder of the route is defined

by following successively lower degree ASes. Roughly speaking, this procedure follows the

intuition customer (low degree AS) traffic moving up to providers until the traffic reaches

the top-level provider. Traffic then flows down along provider to customer links to reach

the destination.

Naturally, there are many more subtleties, particularly surrounding settlement-free peer-

ing relationships. He, et al. [68] recently proposed an ensemble of techniques to find and

model many of these missing peering links. In our simulator, we use the AS relationships

as inferred by their “Lord of Links” algorithm.

Our simulator must also reasonably model not just the AS graph and routing between

ASes, but also the IP-level structure of the network. To model IP routing, we use the

routeviews [105] service which collects full routing tables, i.e. IP prefix information, from

multiple providers. Each prefix in the routeviews table is assigned to its announcing AS.

In instances of multi-homing, where the same prefix is announced by two or more ASes, we

deterministically select one of the ASes as the owner.

Running Simulations

The simulator allows us to model a representative approximation of the Internet at the

granularity of autonomous systems (ASes) and IP routing. The model thus gives insight

into how our filtering scheme would perform if we had the ability to deploy it on network

131

Table 5.3: Formalisms for spoofed source attacks and simulations

Autonomous Systems

Let x be the number of autonomous systems.
Let asi be the i’th autonomous system.
Let AS be the set of all autonomous systems, AS = as1 . . . asx.
Let deg(asi) be the degree of asi.

Prefixes

Let pj
i be the i’th prefix belonging to autonomous system j.

Let pj be all prefixes belonging to autonomous system j, pj =
⋃

i p
j
i

Let P be the set of all network prefixes, P =
⋃

j pj.

Filters
Let fi be the i’th filtering autonomous system.
Let F be the set of filtering autonomous systems, F =

⋃

i fi.

Attackers

Let n be the number of hosts sending spoofed packets.
Let ai be the true IP address of the i’th attacker sending spoofed
packets.
Let sj

i be the source address host i selects in the j’th round of an
experiment.
Let A be the set attacking hosts, A = a1 . . . an.

Victims

Let m be the number of unique destinations that receive spoofed
packets from members of S.
Let vi be the IP address of the i’th victim receiving spoofed packets.
Let V be the set of victims, V = v1 . . . vm.
Let send(ai, sj , vk) send a packet from attacker ai with source sj to
victim vk using valley-free routing.

Statistics

Let αj
i be the number of spoofed packets received at autonomous

system i in round j.
Let βj

i be the number of non-spoofed packets received at autonomous
system i in round j.

core routers today.

As there are many variables among the attack models described in §5.2.4, we introduce

some formal notation in Table 5.3 to describe experiments on the simulator.

The simulator provides a send function which allows any AS to source traffic to any

other AS with an arbitrary source address. If the AS is sending legitimate traffic, the

source is selected randomly from within the set of prefixes owned by that AS. Similarly,

the destination address is taken at random from prefixes announced by the destination AS.

However, the simulator allows us to also send packets with any source address to mimic an

array of spoofing behaviors.

To include background traffic, an AS will send legitimate traffic to other ASes. This

is an essential feature of the simulation, otherwise the learning task is much easier. By

including random traffic to random destinations, the learned model must be more complex.

The simulator finds a random prefix within the topology among prefixes that do not belong

132

to the originating AS. It then selects a random address within that prefix. The packet is

sent through the topology using a valid source address chosen among the AS’s advertised

prefixes.

Following the attack models we wish to investigate, the spoofed source addresses may

be fixed, e.g. 192.168.1.100, chosen randomly from {0, 1}32, or taken intelligently from

the set of all valid addresses. By this, we mean the set of addresses that are announced in

the global routing tables and excluding bogons, reserved [129] and martians [73]. By using

these “valid” or legitimate addresses, the attacker increases their chances of evading existing

filters while remaining anonymous or assuming the identity of a third-party. To generate

packets with valid source addresses, we assume the attacker has complete knowledge of all

valid addresses and select the source at random from this set.

Algorithm 5.1 gives the basic form of the basic attack simulations; minor variations

enable us to model all of the basic attacks given in §5.2.4.

Algorithm 5.1 Basic Attack Simulation Experiment
n = m = 1
for i = 1 to 10 do

ASsorted =sort(AS, deg(AS))
fi = ASsorted[i]

5: F = F + fi

for r = 1 to R do
as1 ← AS∀ask ∈ AS, deg(ask) = 1
as2 ← AS∀ask ∈ AS, deg(ask) = 1, ask 6= as1

p1 ← P as1

10: p2 ← P as1

for j = 1 to S do
a1 ← p1

v1 ← p2

send(a1, a1, v1)
15: for j = 1 to S do

a1 ← p1

v1 ← p2

sr
1 ← 232

send(a1, s
r
1, v1)

Our DDoS simulations follow a similar procedure, but assign a single edge victim at

random and use increasing numbers of attackers distributed at random from the network.

Algorithm 5.2 gives the pseudo-code for simulating DDoS attacks.

Ensembles of Weak Classifiers

In addition to providing a realistic IP routing substrate to experiment upon, the simulator

provides an implementation of Raskol, our anti-spoofing filtering mechanism, that may be

applied to one or more ASes. During a simulation, statistics are maintained at each AS for

133

Algorithm 5.2 DDoS Attack Simulation Experiment
m = 1
for i = 1 to 10 do

ASsorted =sort(AS, deg(AS))
fi = ASsorted[i]

5: F = F + fi

for r = 1 to R do
asvictim ← AS∀ask ∈ AS, deg(ask) = 1
for n = 1 to N do

asn ← AS∀ask ∈ AS, deg(ask) = 1, ask 6= asvictim

10: pvictim ← P asvictim

pn ← P asn

for j = 1 to S do
an ← pn

vvictim ← pvictim

15: send(an, an, vvictim)
for j = 1 to S do

an ← pn

vvictim ← pvictim

sr
1 ← 232

20: send(an, sr
1, vvictim)

analysis.

When multiple ASes serve as classifiers, we use several methods to aggregate the deci-

sions of each into a final filtering decision. In the most basic mode, the classifier for each

AS acts autonomously. If any AS along the path a packet traverses determines that the

packet contains a spoofed source address, the packet is dropped. We show in our results

that while this approach is very effective in preventing spoofed packets, the false positive

rate may be unacceptably high.

We make several important observations. First, the placement of our filtering algorithm

is critical to the achieved performance. Without any filtering AS on the path, none of

the spoofed traffic can be filtered. Second, the total number of filters a packet encounters

contributes to the overall performance. Each AS has a different observable view of the

network and thus can contribute in different ways. Given the ability to “tag” packets with

classification decisions made by each AS on the path, the overall performance increases.

Therefore, the second mode of filtering is to make each AS a weak classifier and form

a final decision based on the ensemble of all classifiers along the packet’s path. Before

considering how ASes can communicate decisions amongst themselves, we use an oracle

view to “mark” each packet with the number of positive or negative classification votes it

receives. The recipient of the packet then drops the packet if and only if the packet received

at least one vote and the number of positive votes exceeds the number of negative votes.

We term this oracle mode of operation as the “composite vote.”

134

Naturally, the network cannot operate in the oracle mode. To propagate classification

decisions within the packet to the next classifying AS along the packet’s path, we again turn

to the TTL field. Since the TTL field is one of the primary features each classifier uses to

determine whether the packet is spoofed, one classifier can influence the next by artificially

decrementing or incrementing the TTL field. Further, by only changing the TTL field, as is

naturally done by each router to begin with, we do not change the normal semantics of the

Internet in any way. We term this distributed mode of operation as the “weak ensemble.”

5.2.8 Core Filtering Results

Given our filtering schemes and simulator, we turn now to modeling spoofed-source attacks.

Figure 5-8 presents the results from the worm attack experiment. In each iteration, a single

source AS is taken as the attacker. The attacker uses random source addresses and sends

packets to edge destination ASes. The simulator maintains, at each AS, the number of

legitimate and spoofed packets received and filtered. In each graph, we vary the number

of core ASes that implement our algorithm and perform filtering. We order the core ASes

by degree and add each successive filtering AS by decreasing degree. In this fashion, we

consider the effect of deploying our algorithm across a small number of the very largest

ASes. Deploying among these core, high-profile ASes represents a much smaller hurdle

than universal deployment or global cooperation.

Figure 5-8(a) shows the fraction of spoofed and legitimate traffic received across all

ASes in the Internet versus the number of core ASes that are performing filtering. In this

first case, we do not include any background traffic, but simply consider the case where the

attacking AS sends both legitimate and spoofed traffic. From the figure, we see that with

only one filtering AS, approximately 25% of the spoofed packets are filtered while nearly

all of the legitimate packets pass unimpeded. As we increase the number of core filters, the

amount of spoofed traffic decreases significantly to around 35% with five filtering points.

Next, Figure 5-8(b) depicts the same experiment, but includes background traffic at a

factor of one. By this we mean that the simulator chooses random source and destination

AS pairs exclusive of the attacker and victim and sends traffic between them. The simulator

chooses (bgfactor)(numtraining) of these random sources and sinks. Thus, a background

traffic factor of 10 induces 10 times the amount of background traffic as training traffic in

the experiment. In Figure 5-8(b), we see that the additional background traffic decreases

the efficacy of the filtering, both by increasing the amount of spoofed traffic received and

decreasing the amount of legitimate traffic received. The situation is even worse in Figure 5-

8(c) where the background traffic factor is ten. Here, greater than 50% of the spoofed traffic

passes the filters, even with ten core filtering ASes.

Figure 5-9 performs a similar experiment, observing the fraction of each traffic class

received versus the number of core filters, for an attack where the source address is spoofed,

but fixed. We see that there are nearly no false positives in this scenario, and more than

135

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Background Traffic Factor=0

Spoofed
Non-Spoofed

(a) No Background Traffic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Background Traffic Factor=1

Spoofed
Non-Spoofed

(b) Background Traffic Fac-
tor = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Background Traffic Factor=10

Spoofed
Non-Spoofed

(c) Background Traffic Fac-
tor = 10

Figure 5-8: Simulation of worm attack, single source, random source addresses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff
ic

 A
rr

iv
in

g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Fixed Source, Background Traffic Factor=0

Spoofed
Non-Spoofed

(a) No Background Traffic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff
ic

 A
rr

iv
in

g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Fixed Source, Background Traffic Factor=1

Spoofed
Non-Spoofed

(b) Background Traffic Fac-
tor = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff
ic

 A
rr

iv
in

g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Fixed Source, Background Traffic Factor=10

Spoofed
Non-Spoofed

(c) Background Traffic Fac-
tor = 10

Figure 5-9: Simulation of worm attack, single source, fixed source address

136

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Valid Sources, Background Traffic Factor=0

Spoofed
Non-Spoofed

(a) No Background Traffic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Valid Sources, Background Traffic Factor=1

Spoofed
Non-Spoofed

(b) Background Traffic Fac-
tor = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Valid Sources, Background Traffic Factor=10

Spoofed
Non-Spoofed

(c) Background Traffic Fac-
tor = 10

Figure 5-10: Simulation of worm attack, single source, valid source address

70% of the spoofed traffic is blocked, even in the presence of significant background traffic.

This result meets our intuitive notion of the complexity the classifier must deal with; the

spoofed traffic that is received is almost all a function of packets that traverse paths where

no filters are in place. Thus, this experiment demonstrates the upper bound performance

of the algorithm when considering a fixed number of core ASes.

Next, we consider a “smart” attacker, that selects source addresses from the set of all

globally routed, and thus valid, addresses rather than at random. Figure 5-10 shows that

such an attacker gains an advantage over a random attacker as compared to Figure 5-8. In

all instances, more spoofed attack traffic received with less legitimate traffic received. With

a background traffic factor of ten, more than 70% of the spoofed traffic passes the filters.

Our primary concern is in providing a defense with minimal impact on legitimate traf-

fic, i.e. minimize false positives. Figure 5-11 considers the various means of performing

distributed classification in our system and their relative performance against attack. In

the composite vote instance, less than 0.01% of the legitimate traffic is falsely dropped at

the cost of including a much larger fraction of the attack traffic. However, by implementing

our method of a distributed weak ensemble of classifiers, we achieve comparable performance

to individual filters while maintaining near zero false positives. Figures 5-11(b) and 5-11(c)

show that our scheme is capable of maintaining this low false positive rate even in the

presence of large amounts of background traffic.

Finally, we examine the DDoS attack case. While DDoS is one of the most important

cases to consider, it is a subcase of the worm experiments given above since the victim is

a single host. Figure 5-12 shows the performance across experiments that vary the number

of attackers from 1 to 100 and include different amounts of background traffic. In Figure 5-

12(a), we see the effect of different background loads in the experiment. Here, the effect

is less pronounced as the large number of attacking hosts mimics the effect of background

traffic seen in the worm experiments. With a background traffic factor of ten, we block at

137

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Background Traffic Factor=0, Comparison Voting Methods

Spoofed (individual vote)
Spoofed (composite vote)
Spoofed (weak ensemble)

Non-Spoofed (individual vote)
Non-Spoofed (composite vote)
Non-Spoofed (weak ensemble)

(a) No Background Traffic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Background Traffic Factor=1, Comparison Voting Methods

Spoofed (individual vote)
Spoofed (composite vote)
Spoofed (weak ensemble)

Non-Spoofed (individual vote)
Non-Spoofed (composite vote)
Non-Spoofed (weak ensemble)

(b) Background Traffic Fac-
tor = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff

ic
 A

rr
iv

in
g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

Worm Attack, Background Traffic Factor=10, Comparison Voting Methods

Spoofed (individual vote)
Spoofed (composite vote)
Spoofed (weak ensemble)

Non-Spoofed (individual vote)
Non-Spoofed (composite vote)
Non-Spoofed (weak ensemble)

(c) Background Traffic Fac-
tor = 10

Figure 5-11: Simulation of worm attack, various voting methods

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff
ic

 A
rr

iv
in

g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

DDoS Attack, Various Background Traffic Levels

Spoofed (bgfact=0)
Spoofed (bgfact=1)

Spoofed (bgfact=10)
Non-Spoofed (bgfact=0)
Non-Spoofed (bgfact=1)

Non-Spoofed (bgfact=10)

(a) Various Background
Loads

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff
ic

 A
rr

iv
in

g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

DDoS Attack, Various Voting Methods

Spoofed (individual vote)
Spoofed (composite vote)
Spoofed (weak ensemble)

Non-Spoofed (individual vote)
Non-Spoofed (composite vote)
Non-Spoofed (weak ensemble)

(b) Various Voting Methods

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o
n
 T

ra
ff
ic

 A
rr

iv
in

g
 a

t
D

e
s
ti
n
a
ti
o
n

Filtering ASN Count (decreasing degree order)

DDoS Attack, Various Spoofed Sources

Spoofed (random)
Spoofed (valid)
Spoofed (fixed)

Non-Spoofed (random)
Non-Spoofed (valid)
Non-Spoofed (fixed)

(c) Various Spoofed Sources

Figure 5-12: Simulation of DDoS attack

most 20% of the spoofed traffic and unintentionally drop approximately 4% of legitimate

traffic.

In Figure 5-12(b) we see the effect of the different aggregate voting, or classification,

schemes. The primary take away from this graph is that our distributed classification scheme

with an ensemble of weak votes performs identically to the individual filtering situation,

but without the corresponding increase in false-positives. This result holds even in the

DDoS situation. Lastly, Figure 5-12(c) compares the filtering efficacy for DDoS attacks

that employ different methods of source selection.

5.2.9 Implementation

We implement Raskol as a Linux kernel module to illustrate its speed and efficacy in a real

system.

138

Linux IP tables

Θ

P(discard | mark=spoofed)=β

Userspace Service

DNS

Incoming
Packet

rule read
SVM Classifier

mark

match
f(,x)

Figure 5-13: A Linux IP tables implementation. Packets matching a filter rule are sent to
our classifier. Raskol classifies each packet and either discards or passes them to userspace.

IP Tables Module

The Linux IP Tables mechanism provides a powerful way for us to place Raskol’s function-

ality not within any particular application, but in Kernel space such that it may protect any

arbitrary application. An IP tables rule consists of a match criteria and a corresponding

action criteria. The match criteria allows a great deal of flexibility; an example of a simple

rule would be to match all UDP packets to port 53 originating from a particular network

prefix.

The match action may be simple, for instance to simply drop the packet, or may be

more complex, by dropping the packet with some probability. We implement Raskol as an

IP tables module as shown in Figure 5-13. Incoming packets which match a filter rule are

sent to the Raskol kernel module. Using our SVM classification methodology, Raskol makes

a prediction of the validity of the source address. Based on that decision, the packet is

either dropped or accepted and sent up to the userspace application.

Predictions must be fast. If Raskol cannot keep up with a high packet per second and bit

per second rate, Raskol itself becomes the attack target. Since we apply known SVM meth-

ods in a novel arena, we present empirical performance results rather than computational

complexity measures. Note that Joachims [80] contains an analysis of several techniques to

reduce the time and space complexity of the quadratic programming required in SVMs.

On a 2.4GHz 32-bit Intel x86 architecture running Raskol, we measured the ratio of

packets sent from a test host to packets processed by Raskol. Figure 5-14 shows the speed

of Raskol as a function of Kpps since the classification is packet per second rather than

bandwidth limited. Raskol handles more than 20Kpps and gracefully degrades until ap-

proximately 80Kpps at which point it processes approximately 80% of the packets. We

note that these results are meant to demonstrate the feasibility of Raskol and better perfor-

mance numbers are possible with additional programming and tuning. For example, Raskol

engines can be chained. A higher performance architecture could accept all incoming pack-

ets. If the classification engine is busy, the packet is simply accepted and sent along to

the next classifier in the chain. Thus, with multiple processors and dedicate hardware and

139

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

F
ra

ct
io

n
of

 P
ro

ce
ss

ed
 P

ac
ke

ts
Kpps

Figure 5-14: Raskol Linux implementation classification speed

1000Mbps
R

askol C
lassifier

Legitimate Traffic
Source

Traffic
Sink

Spoofed Traffic
Source

α L + Sβ
L

S

100Mbps

Figure 5-15: Attack Simulation Setup

tuning, Raskol can defend against high traffic attacks.

Simulating the Attack

We build the simple test bed as shown in Figure 5-15 to simulate an attack. Two hosts

compete for bandwidth on a 100Mbps link to a machine running Raskol. The classifier

machine then has a 1000Mbps link to a traffic sink. The legitimate traffic source sends traffic

at rate L while the spoofed traffic source sends traffic with random source IP addresses at

rate S. We add an identifier into the payload of the spoofed traffic so that it may be

differentiated from the legitimate traffic when we count the received packets at the sink.

The sink receives a fraction α of L and β of S. Our goal is to ensure effective protection,

i.e. α > β.

Using this simulation setup, we vary the ratio S
L

and measure α and β with and without

Raskol’s classification engine active. Figure 5-16(a) plots αL with and without Raskol. We

see that even with six times more spoofed than legitimate traffic, 90% of the legitimate

traffic is received by the sink whereas less than 50% is received without Raskol active. Past

an order of magnitude greater spoofed traffic than legitimate traffic, the link is saturating

and hence Raskol’s performance gracefully reaches the same level as without Raskol.

Figure 5-16(b) shows the fraction of spoofed traffic received as a function of the traffic

composition ratio (βS vs. S
L
). With Raskol turned on, we see the fraction of spoofed packets

received is less than 30%.

140

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

R
at

io
 R

ec
ei

ve
d/

S
en

t T
ra

ffi
c

Ratio Attack/Good Traffic

Good Normal
Good Normal w/Raskol

(a) Fraction legitimate traffic received as
a function of traffic composition ratio
(αL vs. S

L
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

R
at

io
 R

ec
ei

ve
d/

S
en

t T
ra

ffi
c

Ratio Attack/Good Traffic

Bad Normal
Bad Normal w/Raskol

(b) Fraction spoofed traffic received as a
function of traffic composition ratio (βS

vs. S
L

)

Figure 5-16: Raskol protection performance against a random attack model

5.2.10 Related Work

Several proposed packet marking [15] and traceback [31, 137] mechanisms provide a means

to trace spoofed packets to their origin, removing the advantage of anonymity. Yaar gives a

substantially improved traceback scheme in [152]. Unfortunately, network support for such

schemes is minimal and network administrators bombarded by attacks prefer proactive

rather than reactive measures.

Previous research investigates various means of victim-centered DoS attack mitiga-

tion methods. These methods generally fall into either address or path-based approaches.

Address-based techniques [89, 81], profile traffic received during normal periods to create a

model against which to judge incoming addresses while under attack.

In contrast, Jin et al. give a path-based scheme to block spoofed packets based on

implicit hop count [78] while the Pi path identification scheme [151] explicitly encodes path

information into each packet. In a similar vein, Duan et al. detail a filtering mechanism

based on feasible path construction [55]. An extensive simulation of these victim-centered

schemes [47] reveals surprisingly high false positive rates and require a substantial learning

period. Our scheme, given its tunability and high accuracy is a step toward addressing

many of the short comings of previous approaches.

Despite these research efforts, finding and preventing spoofed traffic remains a difficult

problem for network operators [65].

5.2.11 Next Steps

A natural question is what probability the adversary has of guessing a TTL that will allow

a packet with a spoofed address a to pass the classifier, particularly if the adversary can

test all possible TTL values in order to determine the path length from s to t.

141

S

T

S’

TTL(S’) = 251

TTL(S) = 254

Figure 5-17: An adversary S′ is unable to spoof S for any initial TTL value given the
imposed topology assuming S sends all traffic with a TTL=255.

In order to defeat such scanning attacks, the agent may react by blocking all traffic

originating from a that has an incorrect TTL for some period of time. In addition, if all

operating systems default to setting the initial 8-bit TTL value to 255, a malicious node s

which is a distance of |p(s t)| > |p(a t)| will not be able to find any acceptable path

length to spoof. For example, assume the topology given in Figure 5-17. Legitimate traffic

from node s to t arrives with a TTL of 254. An adversary s′ will not be able to spoof s for

any initial TTL due to the imposed topology. Such a change requires unifying operating

system behavior with respect to the initial TTL value, but has no functional impact on

either existing applications or infrastructure. An equivalent formulation is to change the

semantics of the TTL field such that hosts always source the packet with an initial value

of zero while routers increment the TTL. While an adversary can then make themselves

appears arbitrarily distant from the source, it is impossible for them to fake fewer hops than

their actual hop distance to the destination.

5.3 Problem 2: An Intelligent Routing Plane

The “optimal” route in today’s Internet is rarely as simple as the shortest path length.

Rather, optimal paths may be a complex combination of hops, latency, available bandwidth,

economic cost and other factors. Further, the Internet is comprised of interconnected au-

tonomous systems that both cooperate and compete. Therefore, nodes and routers may

have different notions of the value and importance placed on these variables.

Existing Internet routing protocols do not directly accommodate high-level objectives

and policy primitives, e.g. maximizing revenue or minimizing loss, and have no means to

evaluate their performance in achieving such objectives. The result is a routing system

which is brittle and often inefficient, particularly when reacting to non-standard situations

such as attacks and faults.

In this section, we propose adding additional sophistication to the routing plane in the

142

form of learning. An intelligent routing plane is a step toward designing a system that

naturally accommodates various “tussles” [45] between actors and allows mediation within

the system as part of its natural design. In examining learning within the routing system,

we make the following contributions:

1. Separation of traffic into classes in order to tackle the exploration versus exploitation

tradeoff and prevent convergence to local minima in this distributed learning envi-

ronment. Best effort traffic, for instance peer-to-peer “bulk” traffic is used to explore

available paths, while interactive, or “high” priority, traffic receives the benefit of

optimization.

2. Use of the IP clustering method given in §4.3 to address issues of memory consumption.

There is no fixed memory requirement, rather routers learn to optimize their available

memory.

3. Simulations that model current Internet inefficiencies and demonstrate the power of

an intelligent routing plane to overcome certain types of sub-optimality.

4. Identification of learning as a general framework for additional classes of routing

problems.

Our hope is to make different design choices better suited to a modern Internet while

remaining consistent with end-to-end design arguments. The approaches we consider aim

to provide many of the design criteria first brought forth in [44] including increased trans-

parency, accommodation of change and mediation along tussle boundaries.

5.3.1 Internet Routing Background

Routing protocols address a core problem in networks: implementing a distributed compu-

tation whereby nodes examine available edges and determine best paths between sources

and destinations; see [50] for an algorithmic overview. Conventional routing protocols op-

timize over variables that are relatively static over short time-scales such as path length or

edge weights. However, the Internet’s transition from an academic to commercial Internet

has challenged notions of “optimal” routing. For instance, an optimal Internet path may

be a complex combination of path length, latency, loss, available bandwidth and economic

cost. In addition, each network along an end-to-end path may have different or conflicting

notions of optimality.

To implement policy and effect commercial relationships, operators rely on the blunt

mechanisms available to them from the Internet’s distributed routing system, Border Gate-

way Protocol (BGP) [128]. BGP organizes entities under common administrative control

into autonomous systems (ASs). BGP is well-studied, yet several persistent core problems

in Internet routing, which we detail in §5.3.3, continue to drive active research. For example,

recent work examines the extent which BGP plays in affecting performance [148].

143

This research adds additional intelligence to the routing plane. Because of the dynamic,

complex and multi-party nature of the Internet, routing is naturally a learning task. This

intelligence must thus include a strong notion of learning. Indeed, the Internet is char-

acterized by many entities with conflicting interests and strategies and hence incomplete

knowledge that requires exploring various state spaces. Learning enables the network to

react rationally to unknown situations and environments. For instance, anticipated and

unanticipated events such as faults, attacks, peering and pricing changes all currently ne-

cessitate manual intervention. We therefore contrast our approach with pure algorithmic

optimization problems with complete knowledge.

Providers optimize their internal network given historic load, expected failure scenarios,

contracts, etc. Recent work shows a means to perform dynamic on-line intradomain traffic

engineering [84]. However, Hu et al. find that the primary source of bottleneck links is

between ASs [70]. Because the Internet is a system of interconnected commercial entities,

end-to-end paths often travel through multiple providers. Thus, nodes may experience

connection failures and congestion even though their own provider has a fully optimized

internal network. Therefore, to tackle a concrete learning problem with tangible benefit, we

examine the following hypothesis: end-nodes suffer communication failures due to provider’s

inability to optimize their available inter-AS capacity subject to real-world constraints.

5.3.2 The Role of Overlays

As critical infrastructure, Internet end-to-end connectivity failures and congestion are in-

creasingly problematic. For example, applications such as voice and video are especially

sensitive to network disruptions.

Commercial overlay [5] and routing indirection services [76] attempt to compensate for

some of the Internet’s shortcomings. By providing indirection points, these overlays can

often achieve superior performance on select paths, but at the cost of significant measure-

ment burden. Yet, even with buffering and overlays, applications cannot mask persistent

soft and hard internetwork failures.

Further, giving end-nodes routing choice via an exogenous overlay system addresses the

same problem as placing such functionality within the network. Optimization within the

network is appealing from a learning perspective because more information is available.

Routers aggregate the data, information and policies of many networks and nodes. In

contrast, end-nodes have a limited view and only perform local optimization or optimization

among collaborating nodes.

In contrast to overlays, we advocate additional intelligence within the routing system as

part of its natural design (§5.3.5). As the Internet increasingly becomes critical infrastruc-

ture, the network must be capable of providing the same benefits as overlays realize for a few

without limitations of view, scope or scale. The network should be capable of optimizing

the multi-dimensional problem of potentially conflicting provider and user needs.

144

5.3.3 The Problem

Internet routing is a classic example of cooperative competition and a current “tussle” space

[45]. Service providers are commercial entities that compete, yet must cooperate to facili-

tate global connectivity. Border Gateway Protocol (BGP) [128], the Internet’s interdomain

routing protocol, logically groups networks with a common administrative policy into au-

tonomous systems (ASes). The natural marketplace that has emerged from BGP’s design

is one where ASes negotiate connections to other ASes on the basis of their relative sizes,

traffic volumes and traffic balances, etc. Depending on these variables, an AS may pay a

provider AS for connectivity or arrange a “settlement-free” peering arrangement where no

money is exchanged. Peering relationships are established when two ASes realize that a

fraction of traffic they exchange via an upstream provider can instead be off-loaded in a

mutually beneficial connection.

Thus, ASes must implement routing policy based on business relationships. Configur-

ing routers today is a highly manual, technical, error-prone and detailed process akin to

programming in assembly language. Simultaneously, users connected to the network are

players in the tussle that seek service, contribute load and may even send malicious traffic.

The Internet was designed to provide transparent, best-effort core transport. In fact,

making minimal assumptions about the functionality the network provides has been iden-

tified as one of the enablers of the Internet’s success [41].

Along many metrics the Internet is a phenomenal success. What then are the problems

with the current routing architecture? A large body of research is devoted to exposing both

theoretical and empirical routing failures on the Internet. Recently, Wang et al. demonstrate

the adverse impact of certain BGP routing events on end-to-end traffic behavior [148].

Rather than incremental solutions to specific shortcomings in the routing system, we

posit that several fundamental problems exist which are insurmountable without an archi-

tectural shift. These interrelated issues include:

• Coupling between reachability and policy: ASes will route traffic to prefer

customers over peers and peers over providers [61]. To enforce policy constraints

which are driven by economic goals, operational networks typically attempt to drive

behavior with the blunt mechanisms available in BGP. For instance, operators will

artificially modify reachability information or employ BGP path-prepending and local

preference values to influence routing. These BGP mechanisms are often utilized

simply as a means to lower transit cost. For example, a network wishing to selectively

carry traffic might not announce an available, reachable prefix to a peer. The coupling

between policy and reachability both complicates the job of network operators and

leads to non-obvious faults and failure modes [57].

• Security: Not only do users not necessarily trust one another, they may have different

or adverse interests [44]. Users may wish to be protected from particular classes of

145

A B

P

(a) Network A has no route to P from
peer B, yet can still send traffic to P .

A B

P
P

(b) Network A has a route to P , but B

silently discards A’s traffic to P .

Figure 5-18: Failures of policy enforcement in BGP.

traffic as defined by the network, remote entity or application. The lack of security

and attack prevention mechanisms in the architecture are responsible in large part for

continual denial of service (DoS) attacks and other exploits.

• Policy Enforcement: Even if network A has no route to a prefix P from a peer B,

nothing prevents A from forwarding a packet destined for P to B (Figure 5-18(a)).

Conversely, network B might advertise prefix P to peer A and yet silently discard all

packets destined to P (Figure 5-18(b)). Thus, not only is reachability information a

coarse and ill-suited tool for traffic engineering, it alone does not suffice in enforcing

policy [133].

• User Control: Users have no control over the path their packets take in the current

routing system. As a result, overlay and content distribution networks have emerged

as an indirect means to influence path selection.

• Inefficiency: Optimizing the complex multivariate nature of policy-compliant rout-

ing is difficult [141]. In addition to routing loop pathologies, path inflation, hot-potato

routing and path asymmetry all arise from policy requirements. Previous research has

shown that the widespread manual tuning by service providers makes the entire net-

work less efficient.

• Incentives: Current routing has no way to directly accommodate the incentives of

various players in a highly commercialized Internet. There is a large divide between

today’s routing protocols and the major objectives of service providers, e.g. maximiz-

ing profit, providing differentiated services, enabling reliability, etc [3].

We propose learning as a natural solution to many of these problems in the current

routing architecture. Rather than point solutions, we advocate a fundamental design shift

which elevates learning to a first-class component of future architectures.

146

S T
AS1

AS2

AS3

congestion

Figure 5-19: Sub-optimality: A feasible non-congested path exists from AS1 to AS3 but
communication between s and t still experiences congestion.

5.3.4 Sub-optimality Example

The detour measurement study is one of earliest results demonstrating that the Internet’s

path selection can be suboptimal in terms of packet loss, availability and latency [132].

The resilient overlay network (RON) work from Andersen et al. [7] recognizes the potential

inefficiencies of interdomain routing and demonstrates a more efficient, albeit less scalable,

path selection methodology. In particular, RON shows that a single level of indirection, as

opined by the detour project, suffices to improve the loss probability. Yang and Wetherall

show how hosts could potentially use deflections to influence route selection [155]. Commer-

cial CDN and overlay services [5, 76] employ similar techniques whereby they continually

measure potential paths and direct traffic over high-performing paths.

As an illustrative example, consider Figure 5-19 with three ASs. Source s and sink t

are customers of AS1 and AS3 respectively. With simple shortest AS path routing traffic

between s and t will be preferentially routed over the link between AS1 and AS3. Take the

case where the AS1 to AS3 link is congested. We realistically assume point-to-point links

where BGP messages receive priority; therefore while a link may be congested, the BGP

session remains up, often termed a “brownout.” AS1 has a feasible path through AS2, but

will not use it because AS1 has an existing available best path. If the path through AS2 has

sufficient capacity to support the s to t traffic flow, AS1 might elect to use this alternate

path. We call this situation Pareto suboptimal: an alternate allocation of traffic between

members of the system can make at least one AS better off without adversely affecting any

other AS.

Of course, ASes have complex business relationships with their customers and other

ASes. The example in Figure 5-19 holds if we assume that AS1 and AS3 have a peering

relationship, while AS1 and AS3 are customers of AS2. In this case, AS1 may prefer to

send traffic via AS2 given the AS1 to AS3 link is congested, even though this alternate path

is potentially more economically expensive to both AS1 and AS3. But AS1 has no way to

enact such a policy. In other words, the economics may dictate sending traffic over a more

expensive path when it benefits the customer of the AS.

147

5.3.5 Learning in the Routing Plane

To accommodate the aforementioned tussles, a new routing architecture needs a high-level

notion of how well it is performing. This performance can modeled as a multi-dimensional

optimization problem in the sense of a utility function or reward. Reward is both immediate,

based on local knowledge, and delayed in the form of feedback from prior decisions. Routing

then becomes a distributed optimization to maximizes an individual AS’s notion of utility.

Routers have both fixed information and dynamic information. Fixed information in-

cludes the set of links, routers, negotiated contracts, users, etc. Dynamic information

includes e.g. traffic levels, congestion, and internal and external packet loss. Because of

the non-deterministic, non-stationary nature of Internet routing, the optimization problem

necessarily involves learning: exploring routing paths and predicting forwarding decisions

expected to maximize long-term utility. We refines these notions of utility and horizon in

subsequent sections.

Rather than complicated error-prone router configuration, consider a highly expressive

language stating policy as a higher level abstraction [66]. Such a global policy could be

distilled into a configuration for the routing plane to implement. With different policies,

the network could easily accommodate many objectives, including automatically routing

around faults or minimizing packet loss. In this way, the network is automatically adaptable,

efficient, reconfigurable and resilient in a way that is not currently possible.

For many network architects, the core of the network must remain “dumb.” Including

intelligence anywhere other than at the very edge of the network is an anathema. In

reality, however, the core of the network already contains a large amount of intelligence.

Routers maintain hundreds of thousands of routes and often many thousands of tunnel

circuits. Indirectly, networks are highly traffic engineered in order to maximize resilience

and efficiency.

A useful analogy is with the prevailing opinion a decade ago that routers could never

forward variable length IP packets, with variable length network masks, at line rate. Subse-

quent research proved this common wisdom false [117] and commercial routers now forward

at line rate.

To demonstrate one potential advantage of such learning, we propose a different notion

of quality-of-service (QoS) as an example of our larger framework. We divide a network’s

customers into classes and use traffic from best effort customers and services to explore

available routing paths. By probing alternate paths with low priority traffic, the network

can substantiate decisions that optimize performance for high priority customers (§5.3.11).
We explore only the ability of an AS to learn a policy that improves the performance

of high-priority flows. This problem provides a concrete example to explore learning within

the routing plane. However, we believe that the utility of learning within a routing context

is much more general; learning provides one framework for separating desired goals and

constraints from their implementation.

148

Alice Bob

Charlie Denise

R1

R2

R3

R4 R5

Congestion

p

p

Figure 5-20: R1 has no visibility into the persistent congestion between R2 and R3. Cus-
tomers of R1 are best suited to evaluate their performance, yet are unable to influence their
route and avoid poor paths. Learning provides a means to optimize routing and mediate
between users and providers.

5.3.6 Designing for User Control

As a basis by which to reason about learning within the routing plane, consider the simple

example in Figure 5-20. Alice and Charlie are customers of a common provider and are

connected to router R1. Similarly, Bob and Denise are connected to R3. Let Bob and

Denise belong to a BGP prefix p advertised by R3 and received by R1. R1 thus has two

paths for p in its routing table and will select one deterministically based on policy. Say that

the shortest path via R2 is the preferred route for R1 to p. Further assume that congestion

and packet loss occurs on the R2 to R3 link. We make the following observations:

• With traditional routing algorithms as used today in the Internet, persistent conges-

tion or packet loss will not cause traffic to reroute. Traffic from Alice to Bob is affected

by the congestion, yet Alice and Bob have no way to influence the route their traffic

takes.

• Congestion may be outside the local autonomous system where it is difficult if not

impossible to detect in a scalable manner. For example, while explicit path probing

is viable for maintaining the integrity of intradomain performance, probing all end to

end paths is infeasible.

• R1 has no visibility into the performance of downstream paths. The entity best able

to assess the performance of an end-to-end path is an end-node.

Suppose the connection between Alice and Bob is poor due to the congestion on link

R2 to R3. The application which Alice is running may be insensitive to the congestion and

Alice is well served by the network. On the other hand, Alice may elect to signal her local

router that the connection is poor.

Overlays attempt to circumvent such path problems by routing traffic within the over-

lay. Rather than making this process exogenous to the routing plane, we examine the

149

fundamental problem within the routing layer through distributed knowledge.

For the sake of developing intuition, we consider how R1 might reason and learn in its

environment. If Alice signals negative reward to R1 for her traffic’s performance in reaching

Bob, R1 could make the following decision: “Alice is telling me that the connection to Bob

is poor. I know that Bob is part of a larger aggregate with a common policy, namely the

BGP advertisement p. I have an alternate path to p. To maximize my long term reward, I

will move Alice’s traffic to p to the alternate path. Further, for a new connection from one

of my customers to any other host in p, I will predict that the best path is the alternate

path.” In this way, Charlie’s traffic to Denise is similarly optimized, demonstrating how

the IP clustering methods (§4.3) can be utilized in a routing context.

Observation 1: Hosts signaling information to routers is a valuable design with end-to-end

design [131] merits. Protocols such as XCP and ECN [125] allow routers to signal congestion

information to end hosts. In contrast to explicit congestion notification proposals, hosts may

usefully signal information to routers. End hosts are best-suited to to signaling routers as

they are the only entity with a complete end-to-end view of the path.

Observation 2: The Internet was designed to be best effort. Implementing heavy weight

mechanisms to ensure packet delivery, latency, lack of congestion, etc. are counter to the

end-to-end arguments. Similarly, our architecture endows hosts with the ability to signal

the network as to how well it is performing relative to the expectations of applications.

For instance, in the case of packet loss, an application that can tolerate the loss may be

unwilling to pay extra for better packet delivery probability. Our design maintains end host

choice.

Observation 3: User directed routing provides demonstrable benefit, but ISPs are reluc-

tant to cede control. We mediate this tussle by adding learning into the routing substrate.

5.3.7 Designing for Efficiency

As a second motivating example, consider the classic example of “hot potato” routing in

Figure 5-21. AS1 and AS2 peer in two geographically distinct locations. When Alice sends

traffic to Bob, router R1 has two possible internal forwarding paths. However, R1 will

typically send traffic destined to AS2 via R3 rather than carrying the burden of transiting

the traffic across its own network and exchanging packets at the R2→ R4 interface. Since

AS2 has similar economic motivation, Bob’s return traffic to Alice is asymmetric.

Consider congestion in AS2 along the R3 → R4 path. This congestion is not visible

to AS1. If AS1 is attempting to provide a premium service to Alice, it might instead opt

to carry her traffic internally in order to route around problems in AS2, had AS1 had

complete knowledge. Note that we are not arguing that congestion in particular should be

made visible to the routing system – rather end-nodes can usefully send feedback to the

routing system to achieve policy objectives.

150

R1 R2

R3 R4

Alice

Bob

AS2

AS1

Congestion

Figure 5-21: Hot potato routing sub-optimality effects: because of AS1’s limited visibility
into the routing system, AS1 may make inefficient internal routing decisions. The result is
potentially provide poor, yet avoidable, service to its own customers.

Observation 4: Autonomous Systems are part of a global system. Hence, an AS can

provide a high-bandwidth, non-congested network and yet customers of that AS can still

experience avoidable suboptimal performance. This performance degradation is suboptimal

relative to an alternate path available to the AS.

Observation 5: ISPs are eager for ways to differentiate themselves amid rapid commodi-

tization of IP transport. Service differentiation gives ISPs a means to achieve value pricing

whereby they use performance as a means to separate business customers from the casual

web surfer.

Observation 6: Both explicit user feedback and service levels allow ISPs to provide

service differentiation. In this manner, ISPs can achieve value pricing whereby they use

performance as a means to separate business customers from the casual web surfer.

5.3.8 Designing for Incentives: Monetizing the Tussle

As Afergan notes [3, 1], service providers are primarily concerned with maximizing profit,

yet are forced to use the inexact and blunt mechanisms available in BGP to effect commer-

cial realities. An alternate view of routing in a highly commercialized Internet is that policy

alone suffices as the sole determinant of packet forwarding. Maximizing profit may involve

selecting the lowest-cost route among a set of feasible forwarding paths, or providing differ-

entiated services to select customers, thereby allowing the provider to accrue subsequently

higher monetary benefit.

A new routing architecture should make explicit recognition of incentives in the system.

Given that providers have a rich set of business goals, an intelligent routing substrate that

implements policy is appealing. A routing infrastructure based on a learned policy naturally

accommodates a language that providers really want to use.

For instance, a router’s policy might be as simple as minimizing cost while ensuring

151

R3

R2

Alice R1

R4

Bob

R5

Congestion

c

c’

q

AS1

AS2

AS4

AS3

Figure 5-22: Monetizing the routing tussle implies strategic games and suggests learning as
a means for providers to operate within the induced game.

successful delivery. This very simple policy, corresponding well to the business objectives

of many present day ISPs, is nearly impossible to implement with today’s technology. Con-

sider instead an intelligent routing plane. A router might understand the desired policy as

specified by the network operators, experiment with different forwarding paths and learn

from the results.

A router could forward a packet with destination t to a congested, but lowest-cost peer

P . Assume for the moment that the router has oracle knowledge and finds that the packet

is dropped. Because the packet is dropped, the router receives a negative reward. Upon

continued negative reinforcement, the router will instead switch to a higher-cost provider

that does not drop (any fraction of) packets destined to t. The router receives positive

reward, less than when using the lowest-cost provider, but yet better than the negative

reward. Periodically, the router will experiment with alternate paths. When the lower-cost

provider P is no longer congested and does not drop packets, the router will switch back to

using P for destinations t to further increase its cumulative reward.

Figure 5-22 re-examines the previous example (Figure 5-20) of avoidable congestion, but

in the context of monetary relationships. This simple, but concrete example, immediately

reveals many interesting problems in monetizing the routing tussle. Alice is in AS1 and

connected to R1. AS3 advertises a prefix p where Bob is a member of p. AS2 advertises p

to AS1 with cost of c while AS4 advertises p to AS1 with a cost of c′.

Let Alice and AS1 negotiate a variable rate contract where for every transaction4, Alice

agrees to pay some amount q. If on finding that her connection to Bob is poor due to the

congestion between AS2 and AS3, Alice could change her price to q′ < q. If q′ > c′ − c, R1

may choose a policy to move Alice’s traffic to R4. However, R1 might also reason that Alice

is willing to pay more for the better service if no competing service exists: q′ > q. Thus a

4A transaction is loosely defined here, it might be a packet, flow or other measureable metric.

152

monetized routing scheme implies a game, an observation that has been made previously [3].

Monetizing the tussle preserves the interests of the majority of stakeholders. Our insight

is that routers can learn in order to operate and intelligently make predictions within the

confines of such a game.

Observation 7: Learning allows routers to operate intelligently within an economic rout-

ing game.

An important point to note is that reachability need not be used to define policy in an

intelligent routing architecture: a provider can advertise all paths according to the economic

burden of carrying each traffic class.

Observation 8: Routers need not concern themselves with the details of policy enforce-

ment. If end hosts signal their degree of satisfaction with the current policy, the routers

indirectly learn of non-compliant domains.

5.3.9 Designing for Service Differentiation

ISPs are increasingly purveyors of a commodity service: transporting bits across their net-

work. While content providers benefit from continual innovation, ISPs are forced to become

more efficient in order to remain competitive. An alternate response that many ISPs have

pursued is offering bundled services such as security protection, Virtual Private Networks

(VPNs) and other premium services.

An innovation that other industries have made, that ISPs have yet to fully exploit, is

fine-grained price discrimination. For years the research community has proposed service

differentiation in the Internet through mechanisms such as IntServ [28] and DiffServ [26]

whereby different classes of traffic receive different treatment, e.g. priority, in the network.

While these quality-of-service mechanisms are present in many enterprise networks, they

are mostly non-existent within the Internet.

Consider an ISP that uses learning to route. As with all learning problems there is a

natural balance between exploration and exploitation. To find the best paths, the network

must explore different possible routes. For how long should the network explore alternate

paths before using (exploiting) a path? Because network conditions are continually chang-

ing, the learning must periodically probe secondary paths to determine if a secondary path

provides better performance that a current primary path.

Many strategies exist for probing alternate paths. For example, RON overlays [7] con-

tinually send probe packets to assess the state of paths within the overlay. In contrast, our

insight is that ISPs can separate users into two (or more) classes, for instance a “gold” and

“bronze” class. Traffic from gold customers is always sent over the best path. Traffic from

bronze customers, however, may be sent over alternate secondary paths in order to provide

probing and feedback for the learning algorithm. Customers that always want to receive

premium service will be willing to pay more, whereas bronze customers pay less but may

153

have their traffic sent over sub-optimal paths.

The distinction between bronze and gold may also be made on the basis of application.

For instance, providers may discriminate between bulk and interactive traffic. Bulk traffic

may be in the form of peer-to-peer file sharing where providers may wish to shift the burden

of such applications to their benefit. In such bulk traffic applications, there often exists a

level of degraded performance that users are willing accept, or alternatively, are unwilling

to pay to improve. In contrast, gold traffic might include interactive applications such as

web traffic which has a high-impact on user satisfaction. We do not attempt to provide any

classification scheme for users or applications, but note the flexibility of traffic classes to

accommodate various useful policies.

Observation 9: A routing plane can provide service differentiation using low priority

traffic to learn path performance. The learning thus provides a natural means for price

discrimination within the network.

5.3.10 The Learning Problem

The notions of non-deterministic reward and delayed feedback for learning policy and mak-

ing predictions corresponds directly to ideas from the reinforcement learning community

[82]. Routing becomes a learning problem, where the agent begins learning by probabilis-

tically choosing an egress interface for an incoming packet. The agent maintains state and

receives feedback about the success of each routing decision, in the form of reward, in order

to substantiate better future decisions. To better formalize the learning task, we add the

following notions:

1. Action Space: Routers are agents with a set of links to other routers. Routers service

incoming packets fi with destination addresses di and must forward the packet out

an available interface.

2. High-level Configuration: Routers are configured with high-level objectives, e.g.

maximize profit subject to constraints C.

3. Reward: The notion of reward becomes a primary objective function. Reward is the

sum of immediate and delayed reward for taking an action a on a packet fi: r(a, fi).

4. Signaling Feedback: Routers receive feedback on the success of prior decisions to

substantiate future policy. This feedback may be in the form of user control with

end-nodes signaling local routers with performance feedback as presented previously.

Alternatively, the system might infer a TCP flow’s performance based on the SYN

and ACK stream. Such flow monitoring is possible with e.g. netflow [40].

5. Predictions: Reward is dynamic, therefore some actions will be a prediction of the

optimal action with delayed or incomplete feedback.

154

6. Learning: Routers learn an on-line policy Π which maximizes the expected long-

term reward, i.e. Π is an estimation of the optimal means to achieve the high-level

configuration. A policy Π defines the optimal action to take given the agent’s learned

history, operating horizon and current forwarding task. One determinant is a policy

which maximizes the infinite horizon reward: argmaxΠ

∑∞
i=0 r().

Learning Problem: Given non-deterministic, delayed feedback from multiple sources, how

can a router learn a policy that best estimates the high-level configuration objectives.

Reinforcement learning to determine an optimal policy has many potential benefits such

as a natural multi-path routing, the ability to automatically load balance links and route

around multiple failures. We further postulate that such a routing infrastructure would

facilitate tenable solutions for handling attacks on the network. For example, DoS attacks,

when recognized, could be squelched at their source given a policy that provides a recursive

negative reward.

Moving the routing infrastructure to a model of learning is also a move toward a prob-

abilistic world. The computational complexity of machine learning problems have limited

their applicability in other problem domains. The sheer volume of traffic in even a single

provider’s network provides a large and ample amount of data on which to make informed

decisions. The limiting research problems then are memory, communication cost, conver-

gence, stability and incremental deployment.

Thus, an important component of this research is in decomposing problems of learning

in a distributed environment in ways that make a statistical approach is tractable. Earlier

work presented in this thesis provides some of the building blocks for achieving these goals,

for instance the IP clustering algorithm and feature selection techniques.

To investigate learning within the routing plane, we begin by augmenting current inter

and intra-domain routing protocols. While future work may relax this assumption, we

note that leveraging available routing information in the current network provides a stable

basis on which to improve and guides the search space in learning. Such model-specific

information can substantially improve convergence time. Specifically we wish to understand

how additional intelligence can aid the routing task without sacrificing existing structural

information.

5.3.11 Experimental Results

To better understand the potential benefit of our proposed learning, we implement rein-

forcement learning using multiple traffic classes and clustering in a custom simulator. Our

simulator models a set of ASes connected by a topology and tasked with a traffic load.

The objective of the learning AS in this experiment is to minimize the number of its high

priority flows that experience congestion. The AS explores potential alternate paths with

lower priority traffic flows.

155

E

E

E

1

2

3

En

Cust

Peer

Cust

n

n 2

2
Peer

Figure 5-23: Experimental transit network model

Our simulations make two main simplifying assumptions which we justify here. First,

the AS must be able to gauge the effectiveness of prior decisions. We assume that the AS

has the ability to detect congested flows, for instance by observing TCP retransmissions or

timeouts. Detecting and maintaining such information is well within the technically feasible

bounds and implemented in commercial routers [39] as part of netflow version 9 [40].

Second, while an AS is comprised of many individual routers, we model it as a single

entity and assume perfect communication between all routers within the AS. Because all

routers within the AS are under a common administrative control, this second assumption

is well founded.

Figure 5-23 provides a depiction of the transit network model we evaluate. We consider

a single AS with an internal core as well as n external customer and peer facing routers

E1 . . . En. For traffic entering Ei with destination IP address d, the network chooses an

egress Ej and the best Ei Ej tunnel. We say that a network is Pareto inefficient if a

path p exists between any two users which is better than the current path p′ 6= p subject

to some set of constraints C.

We use live traffic traces [115] to drive simulation on Internet-like topologies generated by

BRITE [101]. The topology uses a Waxman connection strategy with uniformly distributed

link bandwidths. We emphasize that our simulation is designed to demonstrate the potential

for learning rather than exactly modeling the Internet. As earlier work shows, routing on

alternate paths can yield performance gains [7]. Therefore we use the simulator to verify

the ability to learn a policy which can achieve our goal. In the future, we plan to employ

the simulator to implement more complex goals with additional constraints. The simulator

also allows us to compare the performance and efficiency of policy learning against other

schemes such as overlay routing.

In the simulation, one AS implements our learning algorithm and attempts to optimize

its customer’s traffic within the constraints of the topology. We deterministically assign

each destination in the trace to a random AS in the topology. Similarly, we assign one-third

156

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

C
on

ge
st

ed
 F

lo
w

s

Time

SPF Gold
SPF Bronze
Smart Gold

Smart Bronze

Figure 5-24: Simulation of live trace data on Internet-like topologies for shortest path and
learning routing strategies.

of the sources as “gold” customers of the designated learning AS and the remaining as best

effort traffic. We discretize the traffic trace into 0.1sec time slices.

Figure 5-24 shows our initial simulator results by comparing the number of congested

flows where the designated AS uses shortest AS path routing versus learning routing.

After an initial period of exploration while the learner finds a policy, the learning AS

consistently outperforms the static policy as anticipated. In addition, the overall number

of congested flows is lower even when placing bronze flows on potentially poor paths.

Observation 10: Even using bronze flows for exploration, the number of congested bronze

flows is lower in the intelligent architecture.

5.3.12 Open Questions

Our research suggests several potential benefits in including learning within the routing

plane, however many open questions remain. For example, we assume that the behaviors

of bronze customers will be sufficiently similar to those of gold customers in order for the

bronze traffic to benefit decisions made on gold traffic. Additional measurement studies

and empirical evaluate are necessary in order to validate this assumption.

In contrast to path probing techniques used in overlays, our system explores potential

paths with real traffic; this is a distinct difference in approach. A useful experiment we plan

to implement is to correlate various properties such as path latencies with the performance of

a file transfer. The correlation between e.g. latency and path performance is very interesting

in understanding how to operate with limited information. By making the choice of optimal

path based upon collaborative learning, we believe that real traffic is the only way to obtain

statistically significant data for formulating decisions.

Finally, we are very interested in the ability and effectiveness of clustering within the

157

routing and learning domain. There is a widely held belief that there exists substantial

temporal and spatial locality within network traffic. Whereas other domains exploit this lo-

cality, for instance caching on microprocessors, the networking world has dismissed caching.

However, given the explosion of routing table sizes, increasing complexity and limited router

memory, particularly fast memory on the forwarding path, caching and clustering may be

very useful. Using our IP clustering algorithm, we believe that a router can optimize its

available memory toward achieving high reward. Thus, regardless of the amount of in-

stalled memory, routers could use learning to determine how to cluster rewards. Memory

then becomes just another parameter of the constrained optimization problem.

5.3.13 Relation to Prior Work

QoS remains an elusive target, without widespread deployment on the Internet after many

years. Recent work examines the potential for interprovider QoS [48]. However, measuring

and optimizing network performance will continue to require learning.

Routing is a well-explored research topic with many deterministic and randomized al-

gorithms. Some of the first efforts to apply machine learning to routing are from Littman

and Boyan’s Q-routing algorithm [95] based on the Q-learning approach from reinforcement

learning (RL).

Reinforcement learning is deceptively appealing: with only a reward function, an agent

can learn to act optimally in any environment. However, RL’s major drawback is the ten-

sion between exploration and exploitation. The algorithm must determine when to stop

searching alternatives before using the knowledge it has learned thus far to its advantage.

Random exploration can prove intractable given too large a state space without any prior

domain-specific guidance. How long should the algorithm search alternatives before using

the knowledge it has learned thus far to its advantage? Random exploration can prove

intractable given too large a state space without any prior domain-specific guidance. Inter-

net routing tables are very large; can a learning algorithm bootstrap using existing routing

tables and optimize for some small set of routes?

Boyan’s Q-routing scheme is a distributed distance vector routing protocol which uses

packet delivery latency as the reward metric. While Q-routing is demonstrably superior on

small, simulated networks, it suffers from several drawbacks. First, the per-packet feedback

requires a large amount of communication overhead. Q-routing requires per-interface, per-

destination state O(n) with a large constant factor. A significant difficulty in the full

distributed, autonomously acting agents in Q-routing is lack of convergence and stability.

Without specific coordination, the network can exhibit oscillatory behavior, particularly in

a dynamic network as witnessed in the early ARPAnet [87].

Further, networks are intrinsically non-stationary and Q-routing cannot find a better

alternate path unless the current best path becomes congested. Can a learner do better

by periodically exploring random alternatives if the environment is changing? Boltzman

158

simulated annealing techniques can be used to settle values over time, but learning must

be continual in a dynamic network. Choi and Yeung present predictive Q-routing to allow

for such policy exploration [38]. By retaining information on prior best paths, the network

can return to a previous best path after a congestion event passes while standard Q-routing

would settle into a new local minimum.

In contrast to Q-routing which uses delay as the utility metric, we take an economic view

of reward that more closely models the true business goals of networks. Monetary reward

changes on time scales an order of magnitude larger than network congestion events, yielding

stability to our routing approach. Rather than a pure exploratory approach, we propose a

layer of indirection. By starting with a set of existing nexthops, we can obtain feedback on

the particular performance of routing different prefixes on these nexthops. Using clustering

algorithms, we can optimize for a small set of routes that can provide a majority of the

realizable benefit.

The feedback based routing scheme of Zhu et al. [158] focuses on interdomain availabil-

ity and first proposed separating structural and dynamic information. Feedback routing

constructs dynamic information by observing round trip TCP times at access routers and

performing explicit path probing. From the structural information, each access router builds

two maximally disjoint paths to each network destination prefix. Based on current dynamic

information, the access routers specify the best path. In contrast to our approach, feedback

routing only attempts to improve availability without considering incentives. By giving the

access routers the ability to choose a complete source-based path, feedback routing does

not accommodate the tussle between users and providers.

While other proposals contain a large disconnect between the need for line rate (at the

speed of the router’s interfaces) and probabilistic routing, our scheme remains fast. Our

algorithm runs over the routing information database (RIB) and the forwarding information

database (FIB) remains unchanged until a better route is computed.

The recent 4D architecture [153] proposes a clean-slate approach to network control. 4D

centrally discovers network devices and combines objectives into decisions. These decisions

are pushed via a dissemination layer which implements the data forwarding layer on indi-

vidual network routers. The high-level motivation and goals of 4D are similar to our own,

however our approach advocates using learning to resolve the inherent decision complexity

and conflicts to achieve objectives.

5.4 Conclusions

Some classes of problem are best solved by adding intelligence to the network core. The

core of the network affords a broader and more complete view; intelligence can be placed

on collections of users, traffic, etc. to better optimize global and local performance or main-

tain security. Core intelligence is contentious; this Chapter intends to be provocative by

159

motivating when such designs are sound. Many of the security and optimization problems

the Internet faces require this sort of collaboration and global scope, thus motivating our

exploration into core intelligence.

As the Internet continues to grow in scale and scope, it penetrates more deeply and

broadly, across users and societies. The problems the Internet faces are global problems and

are therefore not well-solved by humans with only local perspective. Automated intelligence

can be especially useful in situations where it is not possible to wait for human intervention,

for example attacks, faults, worm propagation, etc.

In this Chapter, we examine distributed learning within the network. To ground our

discussion in a practical and current threat, we apply learning to the IP source address

validation problem. Current mitigation techniques are hampered by incentive issues; new

attacks based on IP source forgery appear continually. Our work exploits learning to al-

low the eventual recipient to form a classification decision on incoming packets, thereby

removing the incentive problem. Whereas existing techniques require global participation,

we demonstrate that the network core has a sufficiently broad view to filter the majority of

forged traffic with minimal collateral impact.

Section 5.3 takes routing as a final example of intelligence in the core. Because of the

lack of separation between reachability and policy in Internet routing, operational networks

are forced to drive behavior with low-level configuration. The resulting network is complex,

fragile and prone to pathologies and non-obvious failures. Given that providers have a rich

set of business goals, we propose an intelligent routing substrate that implements policy.

Our approach separates information collection from use. We show that end-nodes are

well-suited to understanding path properties and providing information for the core of

the network. The core of the network can then use this information to aggregate across

many sources and destinations. Through simulation, we examine the role of learning in

realizing such future routing plane architectures. While other routing protocols, techniques

and architectures exist for accomplishing many of the same tasks, we posit that learning

naturally accommodates an inherently complex and multivariate problem.

A routing infrastructure based on a learned policy naturally accommodates a language

that providers really want to use. For instance, a router’s policy might be as simple as

minimizing cost while ensuring successful delivery. This very simple policy, corresponding

well to the business objectives of many present day ISPs, is nearly impossible to implement

with today’s technology. Monetary reward changes on time scales an order of magnitude

larger than network congestion events, yielding additional stability to our routing approach.

Learning provides one framework for separating desired goals and constraints from their

implementation. Many of the root problems we outline in §5.3.3, but do not consider here,

may also be addressed through learning. Given that providers have a rich set of business

goals, an intelligent routing substrate that implements policy is appealing. For instance, new

routing architectures may include explicit recognition of economics. By adopting learning

160

as a component of the routing infrastructure, our hope is to provide a an architecture that

optimizes an inherently multi-dimensional problem and mediates the potentially conflicting

requirements of both providers and end users.

161

162

The major differences were that it was thrillingly more expensive, and involved a huge

amount of sophisticated measuring and regulating equipment which was far better at

knowing, moment by moment, what people wanted than mere people did.

- Douglas AdamsChapter 6

Discussion and Future Work

The Internet has become a ubiquitous substrate for communication in all parts of society.

However, many assumptions underlying the original network architecture are changing or

have already changed. Amid problems of scale, trust, complexity and security, the modern

Internet accommodates increasingly critical services. The network’s ability to configure

itself, recover from and defend against attacks, and provide new services all may require

intelligence in the architecture. We argue that both end-nodes and core infrastructure

must become more intelligent in an evolving Internet. In motivating alternate designs, we

appeal to the end-to-end arguments to guide our decision of where in the network, if at all,

intelligent functionality should be placed.

While learning is often viewed as an ad-hoc method of tackling problems that are poorly

understood, we show that learning affords the system designer the ability to solve highly

complex problems when the basic problem structure is well understood. As the Internet

continues to evolve, we believe learning will take on larger and more important roles.

6.1 Key Contributions

The key contribution of this thesis is presenting learning as a fundamental component at

different levels within network architecture. Not only is learning useful at the application

level, it is a valuable tool in the system designer’s toolbox. In demonstrating this utility,

we take a bottom-up approach and examine the practical application of learning to several

real-world Internet problems.

Chapter 3 shows how learning enables peer-to-peer nodes to locate and attach to peers

likely to answer future queries, while Chapter 4 argues for increased intelligence in end-

nodes. We develop an on-line, non-stationary IP clustering algorithm to accommodate

natural structural and temporal Internet dynamics in §4.3. Using our clustering method,

we endow agents with predictive capability.

Learning provides a principled method to capitalize on the wealth of available, but

under-utilized information at different levels in the network. For example, in §4.4 we create

163

a packet flow classification technique which detects traffic originating from remote, resource

constrained hosts. This method provides the basis for “SpamFlow,” a novel spam detection

tool. By using learning to exploit a fundamental weaknesses in sourcing spam, SpamFlow

is both adaptable and not easily subvertible. Finally, in Chapter 5, we examine distributed

learning within the core of the network. Not only do we illuminate many benefits to learning

within the network, we take steps toward the practical application of such learning.

This thesis serves first to validate the potential for using learning methods to address

several distinct problems on the Internet and second to illuminate design principles in build-

ing such intelligent systems in network architecture. Beyond addressing current stressors

and enabling new functionality, our hope is that this work advances the role of learning

within networks.

6.2 Lessons for Practitioners

While machine learning is a valuable tool for systems architects, it is most valuably applied

when the problem is well-understood but complex. Our research therefore strives to give

system designers guidelines as to when to apply learning. Several design principles emerge

throughout the thesis which we highlight here:

• Tractability: finding means to limit and decompose network problems is crucial to

the success of a statistical approach. If the problem space is not well-understood, or

contains no structure, no amount of learning will be useful.

• Exploit structure: our research demonstrates that the Internet’s IP address space

allocation gives structure upon which agents can learn. While we use this structure

for tasks such as latency prediction, other networking problems are likely to benefit.

• Kernel functions: we frequently turn to kernel functions to transform the input

spaces, e.g. IP addresses, into a feature space amenable to support vector learning.

Kernel functions are well-suited to dealing with the non-linearity common in complex

problems found on the Internet.

• Tunability: predictive mechanisms must be tunable for different applications and

environments. This implies understanding parametric learning models. For instance,

designers may balance speed versus accuracy or false positives versus false negatives.

• Feature Selection: feature selection can be used as a means of not only reducing

the computational complexity of a problem, but also reducing the communication

complexity in a distributed environment.

• Probability: machine learning affords agents a powerful metric in the form of prob-

ability. In the face of uncertainty, the expert system designer may wish to provide

164

bounds or thresholds based on reasonable beliefs. Learning is thus useful in providing

agents a most likely prediction with a degree of belief.

• Dual-mode operation: while under duress, networks may operate in an emergency

mode where dropping legitimate traffic, users, etc. is acceptable. Human indirection

and the ability to turn a defense mechanism on for survivability is important.

• Exploit weaknesses: the predominance of legitimate users can be leveraged. Learn-

ing may be used to harness the power of many to exploit attack weaknesses while

preventing evasion.

• Ensembles of weak agents: in distributed environments, using ensembles of weak

classifiers is a powerful construct. By combining and synthesizing multiple weak votes,

agents can form more accurate validity assertions.

6.3 The Future of Learning and Networks

Our use of learning in applications and end-nodes is often a powerful construct simply

because there is no easy way to re-architect the network. It is the network’s basic properties,

for instance incomplete information, that necessitate learning and allow learning agents

an advantage. However, we must not be short-sighted and understand when learning is

fundamental and when learning is simply a by-product of circumstance. For instance, a

clean-slate network architecture could redefine the way addresses are delegated, removing

the need for learning as a means to understand the underlying address structure. Our

research suggests that future architectures should be much more well-instrumented, not only

to facilitate better learning for the problems we consider, but also for new and unanticipated

services. Instrumentation and measurement must be central considerations of any redesign.

While learning is often viewed as a contentious solution by network architects, on closer

inspection it is apparent that services such as search engines are already using machine

learning to provide an essential and extensively used element of the current Internet. While

machine learning is used for Internet services and at the network application layer, a key

question this thesis explores is the benefit of pushing increased intelligence down into the

network architecture itself. How deep and how prevalent learning becomes remains to be

seen.

As learning becomes a more widely accepted tool in the system designer’s arsenal, there

is potential for dueling algorithms. For instance, learning agents may be locked in a battle to

obtain a relative advantage. In non-malicious instances, such learning is likely to converge

to more efficient policies. However, to mitigate the learning power of attackers, effective

defense will certainly require not only individual nodes learning, but also learning facilitated

by the network among cooperative legitimate nodes. Concepts such as trusted beacon

165

traffic among infrastructure nodes may facilitate truthful learning in the face of adversaries

attempting to influence the learning system.

6.4 Open Questions and Future Research

Our research advocates learning as an attractive approach to address a variety of architec-

tural strains on the Internet. Learning has significant potential in the realm of incentive

compatibility. Many of the game theoretic protocols from Afergan [1] accommodate incen-

tives, but require complete information. Learning thus provides important glue between

theoretical algorithms and their practical application. We take this position a step fur-

ther by postulating that the way to best accommodate incentives in future architectures is

by adding intelligence to the network. We plan to explore future research that examines

incorporating learning into the architecture to aid incentive mechanisms.

Concepts from Chapter 4 suggest more general ways to combat a variety of attacks.

While we focus on the ability to recognize traffic originating from resource constrained

portions of the network to single out botnets and thus identify potential spam, the same

methods could likely be used to combat worms and other malicious attacks.

Chapter 5 advocates learning within the core of the network. We recognize that such

distributed learning presents many practical difficulties, including communication cost and

convergence amid network dynamics. However, we believe that the problems we consider

are best solved via learning. Current computation difficulties therefore do not necessarily

invalidate the approach. While we attempt to mitigate the practical challenges of core

learning, we hope that our work serves to illuminate interesting issues within learning

theory.

166

Bibliography

[1] Mike Afergan. Using repeated games to design incentive-based routing systems. In
Proceedings of IEEE INFOCOM, April 2006.

[2] Mike Afergan and Robert Beverly. The state of the email address. ACM SIG-
COMM Computer Communications Review, Measuring the Internet’s Vital Statistics,
35(1):29–36, January 2005.

[3] Mike Afergan and John Wroclawski. On the Benefits and Feasibility of Incentive
Based Routing Infrastructure. In Proceedings of the ACM SIGCOMM Workshop on
Practice and Theory of Incentives in Networked Systems, pages 197–204. ACM Press,
2004.

[4] Tarem Ahmed, Boris Oreshkin, and Mark Coates. Machine learning approaches to
network anomaly detection. In Proceedings of the 2nd Tackling Computer Systems
Problems with Machine Learning Techniques Workshop, April 2007.

[5] Akamai. Akamai content distribution network, 2007. http://www.akamai.com.

[6] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas. DomainKeys
Identified Mail (DKIM) Signatures. RFC 4871 (Proposed Standard), May 2007.

[7] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Resilient overlay net-
works. In Symposium on Operating System Principles, October 2001.

[8] Martin Arlitt, Balachander Krishnamurthy, and Jeffrey C. Mogul. Predicting short-
transfer latency from TCP arcana: A trace-based validation. In Proceedings of Inter-
net Measurement Conference, 2005.

[9] A. Asvanund, S. Bagla, M. Kapadia, R. Krishnan, M. D. Smith, and R. Telang. Intel-
ligent club management in peer-to-peer networks. In Proceedings of First Workshop
on Economics of P2P, 2003.

[10] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. RFC 3704 (Best
Current Practice), March 2004.

[11] M. Basseville and I. Nikiforov. Detection of abrupt changes: theory and application.
Prentice Hall, 1993.

[12] Steven Bauer, Peyman Faratin, and Robert Beverly. Assessing the assumptions un-
derlying mechanism design for the internet. In Economics of Networked Systems, June
2006.

167

[13] S. Bellovin. The Security Flag in the IPv4 Header. RFC 3514 (Informational), April
2003.

[14] S. M. Bellovin. Security problems in the TCP/IP protocol suite. Computer Commu-
nications Review, 19:2:32–48, 1989.

[15] S. M. Bellovin. ICMP traceback messages. IETF Internet Draft, September 2000.
http://www.cs.columbia.edu/~smb/papers/draft-bellovin-itrace-00.txt.

[16] Robert Beverly. MS-SQL slammer/sapphire traffic analysis, 2003. http://ana.

csail.mit.edu/slammer/.

[17] Robert Beverly. A Robust Classifier for Passive TCP/IP Fingerprinting. In Proceed-
ings of the 5th Passive and Active Measurement (PAM) Workshop, pages 158–167,
April 2004.

[18] Robert Beverly. Reorganization in Network Regions for Optimality and Fairness.
Master’s thesis, MIT, August 2004.

[19] Robert Beverly and Mike Afergan. Machine learning for efficient neighbor selection
in unstructured P2P networks. In Proceedings of the 2nd Tackling Computer Systems
Problems with Machine Learning Techniques Workshop, April 2007.

[20] Robert Beverly and Steven Bauer. The Spoofer Project: Inferring the extent of
source address filtering on the Internet. In Proceedings of USENIX Steps to Reducing
Unwanted Traffic on the Internet (SRUTI) Workshop, pages 53–59, July 2005.

[21] Robert Beverly and Steven Bauer. Can you spoof IP addresses? Slashdot, May 2006.
http://it.slashdot.org/article.pl?sid=06/05/02/1729257.

[22] Robert Beverly and Steven Bauer. The ANA Spoofer Project, 2006. http://spoofer.
csail.mit.edu/.

[23] Robert Beverly and Steven Bauer. Tracefilter: A tool for locating network source
address validation filters. In USENIX Security (Poster), August 2007.

[24] Robert Beverly and Karen Sollins. Exploiting transport-level characteristics of spam.
Technical Report MIT-CSAIL-TR-2008-008, MIT, 2008.

[25] Robert Beverly, Karen Sollins, and Arthur Berger. SVM learning of IP address struc-
ture for latency prediction. In SIGCOMM Workshop on Mining Network Data, pages
299 – 304, September 2006.

[26] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Service. RFC 2475 (Informational), December 1998. Updated by
RFC 3260.

[27] Marjory S. Blumenthal and David D. Clark. Rethinking the design of the Internet:
the end-to-end arguments vs. the brave new world. ACM Transactions on Internet
Technology, 1(1), August 2001.

[28] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview. RFC 1633 (Informational), June 1994.

168

[29] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed
Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu.
Advances in network simulation. IEEE Computer, 33(5):59–67, May 2000.

[30] T. Bu, L. Gao, and D. Towsley. On characterizing BGP routing table growth. Com-
puter Networks, 45(1):45–54, 2004.

[31] Hal Burch and Bill Cheswick. Tracing anonymous packets to their approximate source.
In Proceedings of the 14th Systems Administration Conference (LISA), pages 319–327,
2000.

[32] B. Carpenter. Architectural Principles of the Internet. RFC 1958 (Informational),
June 1996. Updated by RFC 3439.

[33] Martin Casado, Tal Garfinkel, Weidong Cui, Vern Paxson, and Stefan Savage. Op-
portunistic measurement: Extracting insight from spurious traffic. In Proceedings of
the ACM HotNets Workshop, November 2005.

[34] CERT. TCP SYN Flooding and IP Spoofing Attacks CA-1996-21, 1996. http:

//www.cert.org/advisories/CA-1996-21.html.

[35] CERT. MS-SQL Server Worm Advisory CA-2003-04, 2003. http://www.cert.org/

advisories/CA-2003-04.html.

[36] CERT. W32/Blaster Worm Advisory CA-2003-20, 2003. http://www.cert.org/

advisories/CA-2003-20.html.

[37] Y. Chawathe, N. Lanham, S. Ratnasamy, S. Shenker, and L. Breslau. Making gnutella-
like P2P systems scalable. In Proceedings of ACM SIGCOMM, 2003.

[38] Samuel P. M. Choi and Dit-Yan Yeung. Predictive Q-routing: A memory-based
reinforcement learning approach to adaptive traffic control. In Advances in Neural
Information Processing Systems, volume 8, pages 945–951. The MIT Press, 1996.

[39] Cisco. Optimized edge routing, 2007. http://www.cisco.com/go/oer.

[40] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informa-
tional), October 2004.

[41] David D. Clark. The design philosophy of the DARPA internet protocols. In Proceed-
ings of ACM SIGCOMM, pages 102–111, 1988.

[42] David D. Clark, Craig Partridge, Robert T. Braden, Bruce Davie, Sally Floyd, Van
Jacobson, Dina Katabi, Greg Minshall, K. K. Ramakrishnan, Timothy Roscoe, Ion
Stoica, John Wroclawski, and Lixia Zhang. Making the world (of communications) a
different place. SIGCOMM Comput. Commun. Rev., 35(3):91–96, 2005.

[43] David D. Clark, Craig Partridge, Chris Ramming, and John Wroclawski. A knowledge
plane for the internet. In Proceedings of ACM SIGCOMM, August 2003.

[44] David D. Clark, Karen R. Sollins, John Wroclawski, and Theodore Faber. Addressing
reality: an architectural response to real-world demands on the evolving internet.
Computer Communications Review, 33(4):247–257, 2003.

169

[45] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle in
cyberspace: defining tomorrow’s internet. IEEE/ACM Transactions on Networking,
13(3):462–475, 2005.

[46] Richard Clayton. Using early results from the spamHINTS project to estimate an
ISP abuse team’s task. In Third Conference on Email and Anti-Spam, July 2006.

[47] M. Collins and M. Reiter. An empirical analysis of target-resident DoS filters. In
IEEE Symposium on Security and Privacy, pages 103–114, May 2004.

[48] Communications Futures Program. QoS for inter-provider VPNs, September 2006.
http://cfp.mit.edu/groups/internet/qos.html.

[49] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding,
detecting, and disrupting botnets. In Proceedings of USENIX Steps to Reducing Un-
wanted Traffic on the Internet (SRUTI) Workshop, July 2005.

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2001.

[51] Koby Crammer and Yoram Singer. Pranking with ranking. In Proceedings of Neural
Information Processing Systems (NIPS), 2001.

[52] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network
coordinate system. In Proceedings of SIGCOMM, August 2004.

[53] Tom Dietterich and Pat Langley. Machine learning for cognitive networks: Technology
assessment and research challenges. John Wiley, 2007.

[54] D. Dittrich. The stacheldraht distributed denial of service attack tool, 2000. http:

//staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt.

[55] Zhenhai Duan, Xin Yuan, and Jaideep Chandrashekar. Constructing inter-domain
packet filters to control IP spoofing based on BGP updates. In Proceedings of IEEE
INFOCOM, 2006.

[56] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic classification using clus-
tering algorithms. In MineNet ’06: Proceedings of the 2006 SIGCOMM workshop on
Mining network data, pages 281–286, New York, NY, USA, 2006. ACM Press.

[57] Nick Feamster. Practical verification techniques for wide-area routing. In ACM SIG-
COMM Workshop on Hot Topics in Networks (HotNets-II), November 2003.

[58] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing. RFC 2827 (Best Current Practice),
May 2000. Updated by RFC 3704.

[59] Michael Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan. Ge-
ographic locality of IP prefixes. In Proc. ACM Internet Measurement Conference,
October 2005.

[60] V. Fuller and T. Li. Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan. RFC 4632 (Best Current Practice), August 2006.

170

[61] Lixin Gao. On inferring autonomous system relationships in the internet. IEEE/ACM
Transactions on Networking, 9(6):733–745, 2001.

[62] Gnutella. Gnutella: Distributed information sharing, 2000. http://wiki.limewire.
org/index.php?title=GDF.

[63] Shen Tat Goh, Panos Kalnis, Spiridon Bakiras, and Kian-Lee Tan. Real datasets for
file-sharing peer-to-peer systems. In Proceedings of 10th International Conference of
Database Systems for Advanced Applications, 2005.

[64] William Sealy Gosset. The probable error of a mean. Biometrika, 6(1), 1908.

[65] B. R. Greene, C. Morrow, and B. W. Gemberling. ISP security: Real world techniques.
NANOG 23, October 2001. http://www.nanog.org/mtg-0110/greene.html.

[66] Timothy G. Griffin and Joao L. Sobrinho. Metarouting. In Proceedings of ACM
SIGCOMM, 2005.

[67] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating latency between arbitrary
internet end hosts. In Internet Measurement Workshop, November 2002.

[68] Yihua He, Georgos Siganos, Michalis Faloutsos, and Srikanth Krishnamurthy. A
systematic framework for unearthing the missing links: Measurements and impact.
In Proceedings of USENIX NSDI, April 2007.

[69] A. Heffernan. Protection of BGP Sessions via the TCP MD5 Signature Option. RFC
2385 (Proposed Standard), August 1998.

[70] Ningning Hu, Li (Erran) Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang.
Locating internet bottlenecks: algorithms, measurements, and implications. In Pro-
ceedings of ACM SIGCOMM, pages 41–54, New York, NY, USA, 2004. ACM Press.

[71] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, and J. Postel. Internet Registry
IP Allocation Guidelines. RFC 2050 (Best Current Practice), November 1996.

[72] Geoff Huston. BGP reports. http://bgp.potaroo.net.

[73] IANA. Special-Use IPv4 Addresses. RFC 3330 (Informational), September 2002.

[74] IANA. Well-known port numbers, 2006. http://www.iana.org/assignments/

port-numbers.

[75] Carla Inclan and George C. Tiao. Use of cumulative sums of squares for retrospective
detection of changes of variance. Journal of the American Statistical Association,
89(427):913–923, September 1994.

[76] Internap, 2007. http://www.internap.com.

[77] IronPort. Spammers continue innovation: Ironport study shows image-based spam,
hit & run, and increased volumes latest threat to your inbox, June 2006. http:

//www.ironport.com/company/ironport_pr_2006-06-28.html.

[78] C. Jin, H. Wang, and K. Shin. Hop-count filtering: An effective defense against
spoofed DoS traffic. In Proceedings of the 10th ACM International Conference on
Computer and Communications Security (CCS), pages 30–41, October 2003.

171

[79] Yu Jin, Gyrgy Simon, Kuai Xu, Zhi-Li Zhang, and Vipin Kumar. Gray’s anatomy:
Dissecting scanning activities using IP gray space analysis. In Proceedings of the 2nd
Tackling Computer Systems Problems with Machine Learning Techniques Workshop,
April 2007.

[80] Thorsten Joachims. Making large-scale SVM learning practical. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

[81] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich. Flash Crowds
and Denial of Service Attacks: Characterization and Implications for CDNs and Web
Sites. In 11th International WWW Conference, May 2002.

[82] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[83] B. Kahin. Commercialization of the Internet summary report. RFC 1192 (Informa-
tional), November 1990.

[84] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the
tightrope: responsive yet stable traffic engineering. In ACM SIGCOMM, pages 253–
264, New York, NY, USA, 2005. ACM Press.

[85] Thomas Karagiannis, Andre Broido, Nevil Brownlee, K claffy, and Michalis Faloutsos.
Is P2P dying or just hiding? In Globecom, November 2004.

[86] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and K claffy. Transport layer
identification of P2P traffic. In Proceedings of ACM SIGCOMM Internet Measurement
Conference, October 2004.

[87] A. Khanna and J. Zinky. The revised ARPANET routing metric. SIGCOMM Comput.
Commun. Rev., 19(4):45–56, 1989.

[88] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), April
2001.

[89] Balachandar Krishnamurthy and Jia Wang. On network-aware clustering of web
clients. In ACM SIGCOMM, pages 97–110, 2000.

[90] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic
feature distributions. In Proceedings of ACM SIGCOMM, 2005.

[91] Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In National Conference on Artificial Intelligence, pages 223–228, 1992.

[92] George Lee. CAPRI: A common architecture for autonomous, distributed diagnosis
of internet faults using probabilistic relational models. In Proceedings of the First
Workshop on Hot Topics in Autonomic Computing, 2006.

[93] George Lee, Peyman Faratin, Steven Bauer, and John Wroclawski. A user-guided
cognitive agent for network service selection in pervasive computing environments. In
IEEE International Conference on Pervasive Computing and Communications, 2004.

172

[94] George Lee and Lindsey Poole. Diagnosis of TCP overlay connection failures using
bayesian networks. In Proceedings of the SIGCOMM Workshop on Mining Network
Data, 2006.

[95] Michael Littman and Justin Boyan. A distributed reinforcement learning scheme for
network routing. Technical Report CS-93-165, Carnegie Mellon University, 1993.

[96] Michael Littman, Nishkam Ravi, Eitan Fenson, and Rich Howard. Reinforcement
learning for autonomic network repair. In International Conference on Autonomic
Computing, pages 284–285, 2004.

[97] Jun Liu, Ibrahim Matta, and Mark Crovella. End-to-end inference of loss nature
in a hybrid wired/wireless environment. In Proceedings of WiOpt: Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2003.

[98] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An information plane for
distributed services. In Proceedings of USENIX OSDI, November 2006.

[99] Muhammad N. Marsono, M. Watheq El-Kharashi, Fayez Gebali, and Sudhakar Ganti.
Distributed layer-3 e-mail classification for spam control. In Canadian Conference on
Electrical and Computer Engineering, May 2006.

[100] Justin Mason. Filtering spam with spamassassin. In Proceedings of SAGE-IE, October
2002.

[101] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An ap-
proach to universal topology generation. In Proceedings of the International Workshop
on Modeling, Analysis and Simulation of Computer and Telecommunications Systems,
August 2001.

[102] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. IPv4 address allocation
and the BGP routing table evolution. ACM SIGCOMM CCR, 35(1):71–80, 2005.

[103] Messaging Anti-Abuse Working Group. Email metrics report, 2007. http://www.

maawg.org/about/EMR.

[104] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. Spam filtering with
naive bayes - which naive bayes? In Third Conference on Email and Anti-Spam
(CEAS), pages 27–28, July 2006.

[105] David Meyer. University of Oregon RouteViews, 2007. http://www.routeviews.org.

[106] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. A machine learning
approach to tcp throughput prediction. In International Conference on Measurement
and Modeling of Computer Systems (ACM SIGMETRICS), 2007.

[107] MITRE. MS-SQL Ping DoS Storm CVE-2002-0650, 2002. http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2002-0650.

[108] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Stefan
Savage. Inferring internet denial-of-service activity. ACM Trans. Comput. Syst.,
24(2):115–139, 2006.

173

[109] Robert Morris. A Weakness in the 4.2BSD Unix TCP/IP Software. Technical Report
117, AT&T Bell Laboratories, 1985.

[110] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Coded
in Alphanumeric. J. ACM, 15(4):514–534, 1968.

[111] Christopher Morrow. BLS FastAccess internal tech needed, 2006. http://www.merit.
edu/mail.archives/nanog/2006-01/msg00220.html.

[112] NANOG. DoS attack against DNS?, 2006. http://www.merit.edu/mail.archives/
nanog/2006-01/msg00279.html.

[113] NANOG. BCP38 business case document, 2007. http://www.merit.edu/mail.

archives/nanog/2007-04/msg00692.html.

[114] Arbor Networks. Worldwide infrastructure security report, 2008. http://www.

arbornetworks.com/report.

[115] NLANR. Passive measurement and analysis traces, 2006. http://pma.nlanr.net/.

[116] R. Pang, V. Yegneswaran, P. Barford, and V. Paxson. Characteristics of Internet
Background Radiation. In Proceedings of ACM Internet Measurement Conference,
October 2004.

[117] Craig Partridge, Philip P. Carvey, Ed Burgess, Isidro Castineyra, Tom Clarke, Lise
Graham, Michael Hathaway, Phil Herman, Allen King, Steve Kohalmi, Tracy Ma,
John Mcallen, Trevor Mendez, Walter C. Milliken, Ronald Pettyjohn, John Rokosz,
Joshua Seeger, Michael Sollins, Steve Storch, Benjamin Tober, and Gregory D. Troxel.
A 50-gb/s ip router. IEEE/ACM Trans. Netw., 6(3):237–248, 1998.

[118] Vern Paxson. An analysis of using reflectors for distributed denial-of-service attacks.
Computer Communications Review, 31(3), July 2001.

[119] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.
Updated by RFC 3168.

[120] J. Postel. Domain Name System Structure and Delegation. RFC 1591 (Informational),
March 1994.

[121] Vipul Ved Prakash. Vipul’s razor, August 2007. http://razor.sourceforge.net/.

[122] Y. Qiao, J. Skicewicz, and P. Dinda. An empirical study of the multiscale predictabil-
ity of network traffic. In Proceedings of IEEE HPDC, 2003.

[123] Anirudh Ramachandran and Nick Feamster. Understanding the network-level behav-
ior of spammers. In Proceedings of ACM SIGCOMM, September 2006.

[124] Anirudh Ramachandran, Nick Feamster, and Santosh Vempala. Filtering spam with
behavioral blacklisting. In Proceedings of ACM Conference on Computer and Com-
munications Security, October 2007.

[125] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard), September 2001.

174

[126] Amir H. Rasti, Daniel Stutzbach, and Reza Rejaie. On the long-term evolution of the
two-tier gnutella overlay. In IEEE Global Internet, 2006.

[127] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Topologically-
aware overlay construction and server selection. In Proceedings of IEEE INFOCOM,
June 2002.

[128] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271
(Draft Standard), January 2006.

[129] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address
Allocation for Private Internets. RFC 1918 (Best Current Practice), February 1996.

[130] M. Sahami, S. Dumais, D. Heckerman, and E Horvitz. A bayesian approach to filtering
junk e-mail. In AAAI Workshop on Learning for Text Categorization, July 1998.

[131] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–288, November
1984.

[132] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and Thomas Anderson. The
end-to-end effects of internet path selection. In Proceedings of ACM SIGCOMM,
pages 289–299, 1999.

[133] Tom Scholl, Aman Shaikh, Nathan Patrick, and Richard Steenbergen. Peering
dragnet: Examining BGP routes received from peers. NANOG 38, 2006. http:

//www.nanog.org/mtg-0610/scholl-shaikh.html.

[134] Secure Computing. Ironmail, 2007. http://www.securecomputing.com.

[135] Richard Segal. Combining global and personal anti-spam filtering. In Fourth Confer-
ence on Email and Anti-Spam (CEAS), 2007.

[136] Keith Sklower. A tree-based routing table for berkeley UNIX. In Proceedings of the
USENIX Technical Conference, pages 93–104, 1991.

[137] Alex C. Snoeren, Craig Partridge, Luis A. Sancheq, Christine E. Jones, Fabrice Tchak-
ountio, Stephen T. Kent, and W. Timothy Strayer. Hash-based IP traceback. In
Proceedings of ACM SIGCOMM, 2001.

[138] SORBS. Spam and open-relay blocking system (SORBS), 2007. http://www.sorbs.
net.

[139] SpamCop. Spamcop, 2007. http://www.spamcop.net.

[140] Spamhaus, 2007. http://www.spamhaus.org/sbl/.

[141] N. Spring, R Mahajan, and T Anderson. Quantifying the causes of path inflation. In
Proceedings of ACM SIGCOMM, 2003.

[142] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using interest-
based locality in peer-to-peer systems. In Proceedings of INFOCOM, 2003.

175

[143] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing unstructured
overlay topologies in modern P2P file-sharing systems. In Proceedings of ACM SIG-
COMM Internet Measurement Conference, October 2005.

[144] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks. In Proceedings of ACM
SIGCOMM, 2003.

[145] J. Touch. Defending TCP Against Spoofing Attacks. RFC 4953 (Informational), July
2007.

[146] V. N. Vapnik. The nature of statistical learning theory. Springer Verlag, 1995.

[147] Jessica Vascellaro. Empty spam feasts on in-boxes, August 2006. http://online.

wsj.com/article_email/SB115448102123224125-lMyQjAxMDE2NTA0MjQwODIxWj.

html.

[148] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A mea-
surement study on the impact of routing events on end-to-end internet path perfor-
mance. In Proceedings of ACM SIGCOMM, pages 375–386, 2006.

[149] Bernard Wong, Aleksandrs Slivkins, and Emin Gn Sirer. Meridian: A lightweight
network location service without virtual coordinates. In Proceedings of SIGCOMM,
August 2005.

[150] M. Wong and W. Schlitt. Sender Policy Framework (SPF) for Authorizing Use of
Domains in E-Mail, Version 1. RFC 4408 (Experimental), April 2006.

[151] Avi Yaar, Adrian Perrig, and Dawn Song. Pi: A path identification mechanism to
defend against DDoS attacks. In IEEE Symposium on Security and Privacy, May
2003.

[152] Avi Yaar, Adrian Perrig, and Dawn Song. FIT: Fast Internet traceback. In Proceedings
of IEEE Infocom, March 2005.

[153] Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hui Zhang, and
Zheng Cai. Tesseract: A 4D network control plane. In Proceedings of USENIX NSDI,
April 2007.

[154] Xiaowei Yang. NIRA: A new internet routing architecture. In Proceedings of ACM
SIGCOMM Workshop on Future Directions in Network Architecture, 2003.

[155] Xiaowei Yang and David Wetherall. Source selectable path diversity via routing
deflections. In Proceedings of ACM SIGCOMM, September 2006.

[156] Yiming Yang and Xin Liu. A re-examination of text categorization methods. In
Proceedings of SIGIR-99, 22nd ACM International Conference on Research and De-
velopment in Information Retrieval, pages 42–49, 1999.

[157] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning, pages 412–420, 1997.

[158] Dapeng Zhu, Mark Gritter, and David R. Cheriton. Feedback based routing. In ACM
HotNets, October 2002.

