69 research outputs found

    IBM Cloud Services enhance automatic cognitive assessment via human-robot interaction

    Get PDF
    Thanks to recent developments in artificial intelligence and social robotics, Hu-man-Robot Interaction (HRI) can be used as a non-invasive screening tool for the assessment of cognitive decline. In this scenario, the robot manages the assess-ment by providing the instructions to the patient, registering his/her answers and objectively calculating the final score. This service can help to save time and reach a wider population. From the technical point of view, a challenge is to achieve a highly reliable speech and visual recognition as required for a valid scor-ing of performance. In this article, we evaluate a system for cognitive assessment that makes use of the IBM AI Cloud services embodied in one of the most popular platforms for social robotics: the SoftBank Pepper. Results of a pilot study with 16 human par-ticipants shows that IBM Cloud services for speech and visual recognition can improve the system performance in comparison with standard interfaces. Im-portantly, the improvement allows achieving a significant correlation with one of the most used paper-and-pencil tests and, therefore, the study demonstrates the validity of the robotic approach for cognitive assessmen

    Child Speech Recognition in Human-Robot Interaction: Evaluations and Recommendations

    Get PDF
    An increasing number of human-robot interaction (HRI) studies are now taking place in applied settings with children. These interactions often hinge on verbal interaction to effectively achieve their goals. Great advances have been made in adult speech recognition and it is often assumed that these advances will carry over to the HRI domain and to interactions with children. In this paper, we evaluate a number of automatic speech recognition (ASR) engines under a variety of conditions, inspired by real-world social HRI conditions. Using the data collected we demonstrate that there is still much work to be done in ASR for child speech, with interactions relying solely on this modality still out of reach. However, we also make recommendations for child-robot interaction design in order to maximise the capability that does currently exist

    Jointly optimizing sensing pipelines for multimodal mixed reality interaction

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiative; Ministry of Education, Singapore under its Academic Research Funding Tier

    Facial Emotion Expressions in Human-Robot Interaction: A Survey

    Get PDF
    Facial expressions are an ideal means of communicating one's emotions or intentions to others. This overview will focus on human facial expression recognition as well as robotic facial expression generation. In the case of human facial expression recognition, both facial expression recognition on predefined datasets as well as in real-time will be covered. For robotic facial expression generation, hand-coded and automated methods i.e., facial expressions of a robot are generated by moving the features (eyes, mouth) of the robot by hand-coding or automatically using machine learning techniques, will also be covered. There are already plenty of studies that achieve high accuracy for emotion expression recognition on predefined datasets, but the accuracy for facial expression recognition in real-time is comparatively lower. In the case of expression generation in robots, while most of the robots are capable of making basic facial expressions, there are not many studies that enable robots to do so automatically. In this overview, state-of-the-art research in facial emotion expressions during human-robot interaction has been discussed leading to several possible directions for future research

    Facial emotion expressions in human-robot interaction: A survey

    Get PDF
    Facial expressions are an ideal means of communicating one's emotions or intentions to others. This overview will focus on human facial expression recognition as well as robotic facial expression generation. In case of human facial expression recognition, both facial expression recognition on predefined datasets as well as in real time will be covered. For robotic facial expression generation, hand coded and automated methods i.e., facial expressions of a robot are generated by moving the features (eyes, mouth) of the robot by hand coding or automatically using machine learning techniques, will also be covered. There are already plenty of studies that achieve high accuracy for emotion expression recognition on predefined datasets, but the accuracy for facial expression recognition in real time is comparatively lower. In case of expression generation in robots, while most of the robots are capable of making basic facial expressions, there are not many studies that enable robots to do so automatically.Comment: Pre-print version. Accepted in International Journal of Social Robotic

    A multimodal human-robot sign language interaction framework applied in social robots

    Get PDF
    Deaf-mutes face many difficulties in daily interactions with hearing people through spoken language. Sign language is an important way of expression and communication for deaf-mutes. Therefore, breaking the communication barrier between the deaf-mute and hearing communities is significant for facilitating their integration into society. To help them integrate into social life better, we propose a multimodal Chinese sign language (CSL) gesture interaction framework based on social robots. The CSL gesture information including both static and dynamic gestures is captured from two different modal sensors. A wearable Myo armband and a Leap Motion sensor are used to collect human arm surface electromyography (sEMG) signals and hand 3D vectors, respectively. Two modalities of gesture datasets are preprocessed and fused to improve the recognition accuracy and to reduce the processing time cost of the network before sending it to the classifier. Since the input datasets of the proposed framework are temporal sequence gestures, the long-short term memory recurrent neural network is used to classify these input sequences. Comparative experiments are performed on an NAO robot to test our method. Moreover, our method can effectively improve CSL gesture recognition accuracy, which has potential applications in a variety of gesture interaction scenarios not only in social robots

    Confirmation Report: Modelling Interlocutor Confusion in Situated Human Robot Interaction

    Get PDF
    Human-Robot Interaction (HRI) is an important but challenging field focused on improving the interaction between humans and robots such to make the interaction more intelligent and effective. However, building a natural conversational HRI is an interdisciplinary challenge for scholars, engineers, and designers. It is generally assumed that the pinnacle of human- robot interaction will be having fluid naturalistic conversational interaction that in important ways mimics that of how humans interact with each other. This of course is challenging at a number of levels, and in particular there are considerable difficulties when it comes to naturally monitoring and responding to the user’s mental state. On the topic of mental states, one field that has received little attention to date is moni- toring the user for possible confusion states. Confusion is a non-trivial mental state which can be seen as having at least two substates. There two confusion states can be thought of as being associated with either negative or positive emotions. In the former, when people are productively confused, they have a passion to solve any current difficulties. Meanwhile, people who are in unproductive confusion may lose their engagement and motivation to overcome those difficulties, which in turn may even lead them to drop the current conversation. While there has been some research on confusion monitoring and detection, it has been limited with the most focused on evaluating confusion states in online learning tasks. The central hypothesis of this research is that the monitoring and detection of confusion states in users is essential to fluid task-centric HRI and that it should be possible to detect such confusion and adjust policies to mitigate the confusion in users. In this report, I expand on this hypothesis and set out several research questions. I also provide a comprehensive literature review before outlining work done to date towards my research hypothesis, I also set out plans for future experimental work
    • …
    corecore