3,216 research outputs found

    DNA repair capacity as a possible biomarker of breast cancer risk in female BRCA1 mutation carriers

    Get PDF
    The BRCA1 gene product helps to maintain genomic integrity through its participation in the cellular response to DNA damage: specifically, the repair of double-stranded DNA breaks. An impaired cellular response to DNA damage is a plausible mechanism whereby BRCA1 mutation carriers are at increased risk of breast cancer. Hence, an individual's capacity to repair DNA may serve as a useful biomarker of breast cancer risk. The overall aim of the current study was to identify a biomarker of DNA repair capacity that could distinguish between BRCA1 mutation carriers and non-carriers. DNA repair capacity was assessed using three validated assays: the single-cell alkaline gel electrophoresis (comet) assay, the micronucleus test, and the enumeration of γ-H2AX nuclear foci. DNA repair capacity of peripheral blood lymphocytes from 25 cancer-free female heterozygous BRCA1 mutation carriers and 25 non-carrier controls was assessed at baseline and following cell exposure to γ – irradiation (2 Gy). We found no significant differences in the mean tail moment, in the number of micronuclei or in the number of γ-H2AX nuclear foci between the carriers and non-carriers at baseline, and following γ-irradiation. These data suggest that these assays are not likely to be useful in the identification of women at a high risk for breast cancer

    Role of estrogen and other sex hormones in brain aging: Neuroprotection and DNA repair

    Get PDF
    Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.Fil: Zarate, Sandra Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Stevnsner, Tinna. University of Aarhus; DinamarcaFil: Gredilla, Ricardo. Universidad Complutense de Madrid; Españ

    Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research

    Get PDF
    Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic

    Fragile DNA Repair Mechanism Reduces Ageing in Multicellular Model

    Get PDF
    DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity, followed by a rapid decline. Furthermore, the time of high functionality increases, and consequently slows down the ageing process, if the DNA repair mechanism itself is vulnerable to DNA damages. Although counterintuitive at first glance, a fragile repair mechanism allows for a faster removal of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders

    Regrowth resistance: low-level platinum resistance mediated by rapid recovery from platinum-induced cell-cycle arrest

    Get PDF
    The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum drug resistance developed from H69 human small cell lung cancer cells with eight 4-day treatments of 200 ng/ml cisplatin or 400 ng/ml oxaliplatin respectively. A recovery period was given between treatments to emulate the cycles of chemotherapy given in the clinic. The resistant cell lines were approximately 2-fold resistant to cisplatin and oxaliplatin and were cross resistant to both drugs. Platinum resistance was not associated with increased cellular glutathione, decreased accumulation of platinum or increased DNA repair capacity. The H69 platinum sensitive cells entered a lengthy 3 week growth arrest in response to low-level cisplatin or oxaliplatin treatment. This is an example of the coordinated response between the cell cycle and DNA repair. In contrast the H69CIS200 and H69OX400 cells have an alteration in the cell cycle allowing them to rapidly proliferate post drug treatment. The resistant cell lines also have many chromosomal rearrangements most of which are not associated with the resistant phenotype, suggesting an increase in genomic instability in the resistant cell lines. We hypothesised that there was a lack of coordination between the cell cycle and DNA repair in the resistant cell lines allowing proliferation in the presence of DNA damage which has created an increase in genomic instability. The H69 cells and resistant cell lines have mutant p53 and consequently decrease the expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed with the platinum induced cell cycle arrest and did not correlate with resistance or altered DNA repair capacity. These changes may in part be mediating and maintaining the cell cycle arrest in place of p21.The rapidly proliferating resistant cells have restored the levels of both these proteins to their levels in untreated cells. We use the term ‘regrowth resistance’ to describe this low-level platinum resistance where cells survive treatment through increased proliferation. Regrowth resistance may play a role in the onset of clinical resistance
    corecore