211,340 research outputs found

    Quantitative mechanisms of DNA damage sensing and signaling

    No full text
    DNA damage occurs abundantly during normal cellular proliferation. This necessitates that cellular DNA damage response and checkpoint pathways monitor the cellular DNA damage load and that DNA damage signaling is quantitative. Yet, how DNA lesions are counted and converted into a quantitative response remains poorly understood. We have recently obtained insights into this question investigating DNA damage signaling elicited by single-stranded DNA (ssDNA). Intriguingly, our findings suggest that local and global DNA damage signaling react differentially to increasing amounts of DNA damage. In this mini-review, we will discuss these findings and put them into perspective of current knowledge on the DNA damage response

    DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks.

    Get PDF
    Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA D

    Role of Schizosaccharomyces pombe RecQ homolog recombination and checkpoint genes in UV Damage tolerance

    Get PDF
    The cellular responses to DNA damage are complex and include direct DNA repair pathways that remove the damage and indirect damage responses which allow cells to survive DNA damage that has not been, or cannot be, removed. We have identified the gene mutated in the rad12.502 strain as a Schizosaccharomyces pombe recQ homolog. The same gene (designated rqh1) is also mutated in the hus2.22 mutant. We show that Rqh1 is involved in a DNA damage survival mechanism which prevents cell death when UV-induced DNA damage cannot be removed. This pathway also requires the correct functioning of the recombination machinery and the six checkpoint tad gene products plus the Cds1 kinase. Our data suggest that Rqh1 operates during S phase as part of a mechanism which prevents DNA damage causing cell lethality. This process may involve the bypass of DNA damage sites by the replication fork. Finally, in contrast with the reported literature, we do not find that rqh1 (rad12) mutant cells are defective in UV dimer endonuclease activity

    Replication stress and chromatin context link ATM activation to a role in DNA replication

    Get PDF
    ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis

    Induction of Stress Granule Assembly is Essential for the Orchestration of DNA Damage Response

    Get PDF
    DNA damage provokes several responses including DNA repair, cell cycle regulation and apoptosis that collectively represent the DNA damage response (DDR). Here, we demonstrate that the DDR incorporates the activation of stress granule (SG) formation pathway as a mechanism to process destabilized RNAs. UV irradiation induced the assembly of SGs during the G2 phase and newly formed SGs appeared exclusively in the early G1 phase. SG assembly pathway was activated within the first hours after DNA damage, suggesting that the processing of destabilized RNAs is activated at an early stage. The induction of SGs and RNAi effector protein Argonaute 2 recruitment after UV exposure was independent of ATM and ATR signaling cascades. Apoptosis occurred only in SG-negative cells indicating that SGs promote cell survival after genotoxic stress. Analysis of several DNA damage/repair deficient MEFs revealed that the SG accumulation remained unaltered after UV exposure. Our results show that SGs are an essential component of DDR that is activated in parallel to the DNA damage kinase response networks

    Interplay of space radiation and microgravity in DNA damage and DNA damage response

    Get PDF
    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.publishe

    Radiation induced DNA damage responses

    Get PDF
    The amazing feature of ionising radiation (IR) as a DNA damaging agent is the range of lesions it induces. Such lesions include base damage, single strand breaks (SSBs), double strand breaks (DSBs) of varying complexity and DNA cross links. A range of DNA damage response mechanisms operate to help maintain genomic stability in the face of such damage. Such mechanisms include pathways of DNA repair and signal transduction mechanisms. Increasing evidence suggests that these pathways operate co-operatively. In addition, the relative impact of one mechanism over another most probably depends upon the cell cycle phase and tissue type. Here, the distinct damage response pathways are reviewed and the current understanding of the interplay between them is considered. Since DNA DSBs are the major lethal lesion induced by IR, the focus lies in the mechanisms responding to direct or indirectly induced DSBs

    Autophagy in DNA Damage Response

    Get PDF
    DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11–Rad50–Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy
    corecore