836 research outputs found

    Using Cystine Knot Proteins as a Novel Approach to Retarget Oncolytic Measles Virus.

    Get PDF
    Modified measles virus (MV) has effective oncolytic activity preclinically and is currently being investigated in clinical trials for various types of cancer. We investigated the use of cystine knot proteins (CKPs) to direct MV activity. CKPs are short polypeptides that bind their targets with high affinity. We used a CKP that binds αvβ3, αvβ5, and α5β1 integrins with single-digit nanomolar affinity to retarget MV to the integrins (MV-CKPint). MV-CKPint infected, replicated in, and killed human glioblastoma, medulloblastoma, diffuse intrinsic pontine glioma (DIPG), and melanoma cancer cells in vitro, all of which express the target integrins. MV-CKPint activity was competitively blocked by echistatin, an integrin binding peptide. When the CKP was cleaved from the viral H protein at an included protease site, virus activity was abrogated. When delivered intravenously (i.v.), the retargeted virus reached a subcutaneous glioblastoma tumor bed and produced cytopathic effects similar to that shown by intratumoral injection of the virus. Because these target integrins are overexpressed by tumor vascular endothelium, MV-CKPint may allow for effective therapy with i.v. injection. These results indicate for the first time that CKPs can be used to retarget MV for a receptor of choice. In addition, MV-CKPint provides proof of principle for the use of a CKP of interest to retarget any enveloped virus for both oncolytic and gene therapy purposes

    REST upregulates gremlin to modulate diffuse intrinsic pontine glioma vasculature

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive glial tumor that occurs in children. The extremely poor median and 5-year survival in children afflicted with DIPG highlights the need for novel biology-driven therapeutics. Here, we have implicated the chromatin remodeler and regulator of brain development called RE1 Silencing Transcription Factor (REST), in DIPG pathology. We show that REST protein is aberrantly elevated in at least 21% of DIPG tumors compared to normal controls. Its knockdown in DIPG cell lines diminished cell growth and decreased their tumorigenicity in mouse intracranial models. DIPGs are vascularized tumors and interestingly, REST loss in DIPG cells also caused a substantial decline in tumor vasculature as measured by a decrease in CD31 and VEGFR2 staining. These observations were validated in vitro, where a significant decline in tube formation by human umbilical vein endothelial cells (HUVEC) was seen following REST-loss in DIPG cells. Mechanistically, REST controlled the secretion of a pro-angiogenic molecule and ligand for VEGFR2 called Gremlin-1 (GREM-1), and was associated with enhanced AKT activation. Importantly, the decline in tube formation caused by REST loss could be rescued by addition of recombinant GREM-1, which also caused AKT activation in HUVECs and human brain microvascular endothelial cells (HBMECs). In summary, our study is the first to demonstrate autocrine and paracrine functions for REST in DIPG development. It also provides the foundation for future investigations on anti-angiogenic therapies targeting GREM-1 in combination with drugs that target REST-associated chromatin remodeling activities

    Intersection of brain development and paediatric diffuse midline gliomas: potential role of microenvironment in tumour growth

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated similarly to adult gliomas, but due to the advancement in molecular and imaging technologies, our understanding of these tumours has increased dramatically. While extensive research is being undertaken to determine the function of the molecular aberrations in DIPG, there are significant gaps in understanding the biology and the influence of the tumour microenvironment on DIPG growth, specifically in regards to the developing pons. The precise orchestration and co-ordination of the development of the brain, the most complex organ in the body, is still not fully understood. Herein, we present a brief overview of brainstem development, discuss the developing microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on bridging pontine development and DIPG microenvironment. Conducting investigations in the context of a developing brain will lead to a better understanding of the role of the tumour microenvironment and will help lead to identification of drivers of tumour growth and therapeutic resistance

    H3 K27M-altered glioma and diffuse intrinsic pontine glioma:Semi-systematic review of treatment landscape and future directions

    Get PDF
    H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.</p

    Investigating the expression and role of chloride ion channels in diffuse intrinsic pontine glioma

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive type of glial brain tumour found in the pons region of the brainstem. DIPG accounts for about 10% of childhood central nervous system tumours and the prognosis for these children is poor. Resistance to radiation, the only current available therapy for DIPG, is one of the biggest challenges. This resistance could be due to the plasticity of DIPG cells, allowing them to rapidly adapt in response to different conditions. Preliminary RNA sequencing analyses of patient tumours identified the expression of ion channel genes including the GABA family. It is known that ion channels regulate tumour plasticity in other cancers and as such we aimed to investigate and characterise the role of ion channels in DIPG. This study aimed to validate the mRNA and protein expression of the GABA-A receptors associated with ligand-gated chloride channels, in DIPG patient-derived cell lines. The results of the study validated mRNA expression of the GABA-A receptor subunits using semi-quantitative and quantitative RT-PCR. Protein expression of three of the most highly expressed subunits (GABRA2, GABRA4, and GABRA5) was also demonstrated using western blotting and immunocytochemistry. Furthermore, a drug screen and titration showed that some GABA-A receptor modulators significantly inhibited proliferation of DIPG cells. This work confirmed that GABA-A subunits are expressed in DIPG cells and that blocking these ion channels inhibits DIPG cell proliferation. These findings form the foundation for future studies that will investigate GABA-A receptor drugs as potential treatments for DIPG using preclinical models

    The neurovascular unit in diffuse intrinsic pontine gliomas

    Get PDF
    Aims: Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a median overall survival of eleven months. Lack of chemotherapy efficacy may be related to an intact blood-brain barrier (BBB). In this study we aim to investigate the neurovascular unit (NVU) in DIPG patients. Methods: DIPG biopsy (n = 4) and autopsy samples (n = 6) and age-matched healthy pons samples (n = 20) were immunohistochemically investigated for plasma protein extravasation, and the expression of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1), basement membrane component laminin, pericyte marker PDGFR-β, and efflux transporters P-gp and BCRP. The mean vascular density and diameter were also assessed. Results: DIPGs show a heterogeneity in cell morphology and evidence of BBB leakage. Both in tumor biopsy and autopsy samples, expression of claudin-5, ZO-1, laminin, PDGFR-β and P-gp was reduced compared to healthy pontine tissues. In DIPG autopsy samples, vascular density was lower compared to healthy pons. The density of small vessels (&lt;10 µm) was significantly lower (P&lt;0.001), whereas the density of large vessels (≥10 µm) did not differ between groups (P = 0.404). The median vascular diameter was not significantly different: 6.21 µm in DIPG autopsy samples (range 2.25-94.85 µm), and 6.26 µm in controls (range 1.17-264.77 µm). Conclusion: Our study demonstrates evidence of structural changes in the NVU in DIPG patients, both in biopsy and autopsy samples, as well as a reduced vascular density in end-stage disease. Adding such a biological perspective may help to better direct future treatment choices for DIPG patients

    Cytotoxic Potential of MIthramycin against DIPG cell lines

    Get PDF
    https://openworks.mdanderson.org/sumexp22/1092/thumbnail.jp
    corecore