10 research outputs found

    Descoberta de serviços independentes do acesso para redes heterogéneas

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaA recente proliferação de nós móveis com múltiplas interfaces sem fios e a constituição de ambientes heterogéneos possibilitaram a criação de cenários complexos onde os operadores de rede necessitam de disponibilizar conectividade para diferentes tipos de redes de acesso. Assim, a norma IEEE 802.21 foi especificada de forma a facilitar e optimizar os procedimentos de handover entre diferentes tecnologias de acesso sem perda de conectividade. Para cumprir o seu propósito, a norma disponibiliza serviços chamados Media Independent Handover e que permitem o controlo e a obtenção de informação de diferentes ligações. A configuração estática destes serviços por parte do nó móvel torna-se ineficiente devido aos múltiplos cenários possíveis. Desta forma, o nó móvel deve descobrir nós da rede que providenciem serviços de mobilidade e as suas capacidade de uma forma dinâmica. Nesta dissertação, um conjunto de mecanismos para descoberta de serviços de handover independentes do acesso são analisados, implementados e avaliados em termos de duração e quantidade de informação trocada. Um novo mecanismo de descoberta de entidades locais é também proposto e avaliado, demonstrando que a sua utilização aumenta o desempenho e requer a troca de menos quantidade de informação.The recent proliferation of mobile nodes with multiple wireless interfaces, in addition to the creation of heterogeneous environments, created complex scenarios where network operators need to provide connectivity for di erent kinds of access networks. Therefore, the IEEE 802.21 standard has been speci ed to facilitate and optimize handover procedures between di erent access technologies in a seamless way. To ful l its purpose, it provides Media Independent Handover services which allow the control and gathering of information from di erent links. The static con guration of these services by the MN becomes ine cient due to the amount of possible scenarios. Thus, the MN must discover the network-supporting nodes and their capabilities in a dynamic way. In this work, a series of proposed Media Independent Handover discovery procedures are analyzed, implemented and evaluated in terms of duration and amount of exchanged information. In addition, a novel discovery procedure for local entities is proposed and evaluated, showing that its deployment increases the performance and requires less information exchanged

    EMICOM: Enhanced Media Independent COnnection Manager

    Get PDF
    With the increasing amount of mobile interfaces combining different kinds of access technologies, ranging from Wi-Fi to 3G and LTE, the integration of flexible and mediaindependent link control mechanisms becomes of paramount importance. By employing an abstract way of obtaining access link status information and exercising control over the network interface operations, these control mechanisms become able to optimize device connectivity and network attachment. This paper presents EMICOM, an Enhanced Media Independent COnnection Manager framework where a GNU/Linux Network Manager and Link Service Access Points for the IEEE 802.3 and 802.11 technologies were implemented and integrated through crosslayer Media Independent Handover (MIH) mechanisms from the IEEE 802.21 standard. Through an open-source implementation of the framework, the (MIH) command set capabilities are extended, allowing the support of network association and authentication, as well as Layer 3 services such as IP configuration, providing a generic solution for optimal network connectivity management

    Estudio de la movilidad en redes de siguiente generación

    Get PDF
    El continuo avance de las redes de telecomunicaciones nos proporciona cada vez más facilidades en todos los ámbitos de nuestra vida. En este caso, nos hemos centrado en el estudio de la movilidad en Redes de Siguiente Generación. Una parte del presente proyecto se ha realizado en colaboración con Deutsche Telekom AG, durante una estancia de seis meses trabajando como colaboradora en sus laboratorios con emplazamiento en Berlín. El principal objetivo de este proyecto ha sido realizar un estudio sobre los diferentes estándares y tecnologías que facilitan la movilidad en Redes de Siguiente Generación. Por ello, en la primera parte se han estudiado los diferentes grupos de trabajo centrados en este aspecto, así como se ha recabado información sobre productos y soluciones disponibles en el mercado, para obtener una visión global de la situación actual. Como se puede comprobar más adelante, esta primera parte es la más extensa de todo el documento. Esto se debe a que es, probablemente, la parte más importante del trabajo, ya que contiene el estudio de los mecanismos que más tarde nos servirán para dar una solución teórica a los distintos escenarios que se plantean. En la segunda parte del proyecto, nos hemos centrado en desarrollar varios escenarios de interés en sistemas de Redes de Siguiente Generación y aportar, de forma posterior, posibles soluciones teóricas. Para finalizar, se han expuesto las conclusiones extraídas como resultado del trabajo y los aspectos que se podrán tratar sobre el mismo en un futuro próximo.Ingeniería de Telecomunicació

    Partage d'infrastructures et convergence fixe/mobile dans les réseaux 3GPP de prochaine génération

    Get PDF
    RÉSUMÉ Le déploiement de la technologie cellulaire de quatrième génération a débuté par quelques projets pilotes, notamment en Suède et en Norvège, dans la première moitié de 2010. Ces réseaux offrent dans un premier temps l’accès à Internet uniquement et comptent sur les réseaux de deuxième et troisième génération existants pour le support de la téléphonie et de la messagerie texte. Ce ne sera donc qu’avec l’avènement du IP Multimedia Subsystem (IMS) que tous les services seront supportés par la nouvelle architecture basée entièrement sur IP. Les réseaux mobiles de quatrième génération promettent aux usagers des taux de transfert au-delà de 100 Mbits/s en amont, lorsque l’usager est immobile, et le support de la qualité de service permettant d’offrir des garanties de débit, délai maximum, gigue maximale et d’un taux de perte de paquets borné supérieurement. Ces réseaux supporteront efficacement les applications utilisant la géolocalisation afin d’améliorer l’expérience de l’usager. Les terminaux d’aujourd’hui offrent un éventail de technologies radio. En effet, en plus du modem cellulaire, les terminaux supportent souvent la technologie Bluetooth qui est utilisée pour connecter entre autres les dispositifs mains-libres et les écouteurs. De plus, la majorité des téléphones cellulaires sont dotés d’un accès WiFi permettant à l’usager de transférer de grands volumes de données sans engorger le réseau cellulaire. Toutefois, cet accès n’est souvent réservé qu’au réseau résidentiel de l’usager ou à celui de son lieu de travail. Enfin, une relève verticale est presque toujours manuelle et entraîne pour le mobile un changement d’adresse IP, ce qui ultimement a pour conséquence une déconnexion des sessions en cours. Depuis quelques années, une tendance se profile au sein de l’industrie qui est connue sous de nom de convergence des réseaux fixes et mobiles. Cette tendance vise à plus ou moins long terme d’offrir l’accès Internet et la téléphonie à partir d’un seul terminal pouvant se connecter à un réseau d’accès local ou au réseau cellulaire. à ce jour, très peu d’opérateurs (e.g., NTT Docomo) offrent des terminaux ayant la possibilité de changer de point d’accès. Toutefois, le point d’accès doit appartenir à l’usager ou se situe à son lieu de travail. Par ailleurs, on remarque un mouvement de convergence selon lequel différents réseaux utilisés pour les services d’urgence (tels que la police, les pompiers et ambulanciers) sont progressivement migrés (en raison de leurs coûts prohibitifs) vers un seul réseau offrant un très haut niveau de redondance et de fiabilité. Les services d’urgence démontrent des besoins en QoS similaires à ceux des particuliers sauf qu’ils nécessitent un accès prioritaire, ce qui peut entraîner la déconnexion d’un usager non-prioritaire lors d’une situation de congestion. En plus des services publics qui tentent de réduire leurs coûts d’exploitation en partageant l’accès aux réseaux commerciaux de communications, les opérateurs de ces réseaux sont aussi entrés dans une phase de réduction de coûts. Cette situation résulte du haut niveau de maturité maintenant atteint par l’industrie des communications mobiles. Par exemple, l’image de marque ou la couverture offerte par chacun d’eux ne constituent plus en soi un argument de vente suffisant pour attirer une nouvelle clientèle. Ceux-ci doivent donc se distinguer par une offre de services supérieure à celle de leur compétition. Les opérateurs ont donc entrepris de sous-traiter des opérations non-critiques de leur entreprise afin de se concentrer sur l’aspect le plus profitable de cette dernière. Parallèlement à cette tendance, les opérateurs ont commencé à partager une portion de plus en plus importante de leurs infrastructures physiques avec leurs compétiteurs. Dans un premier temps, le partage s’est limité aux sites des stations de base et aux mâts qui supportent les antennes. Puis vint le partage des abris pour réduire les coûts de climatisation et d’hébergement des équipements. Ensuite, les opérateurs se mirent à partager les équipements radio, chacun contrôlant toutefois ses propres bandes de fréquences. . . Le partage des infrastructures physiques au-delà du premier nœud du réseau cœur n’est pas actuellement supporté en standardisation. Les propositions existantes d’architectures de réseaux de prochaine génération ont toutes comme point en commun d’être basées sur un réseau cœur tout-IP, d’offrir une QoS aux applications et une performance de l’ordre de 100 Mbits/s. De plus, ces dernières proposent des mécanismes de gestion des politiques qui définissent l’utilisation des services offerts aux abonnés ainsi que la façon de comptabiliser l’usage des ressources du réseau. On dénombre trois grandes catégories de politiques : celles se rattachant à l’usager (e.g., les abonnements or/argent/bronze, accès facturé vs. prépayé), celles qui dépendent du service demandé (e.g., pour un service donné, la bande passante maximale, la classe de service et la priorité d’allocation et de rétention des ressources) et enfin les politiques relatives à l’état du réseau (e.g., niveau de congestion, répartition des agrégats de trafic, etc). Dans un premier article dont le titre est « A Potential Evolution of the Policy and Charging Control/QoS Architecture for the 3GPP IETF-based Evolved Packet Core », les aspects de FMC ainsi que du partage du réseau cœur sont traités conjointement puisqu’il faut que l’architecture PCC reflète les réalités des tendances de l’industrie décrites précédemment. Suite à la description des tendances de l’industrie furent présentés les requis d’une architecture PCC qui rendent possibles la convergence des services (capacité d’utiliser un service à partir de n’importe quel accès), le partage du réseau cœur par plusieurs opérateurs mobiles virtuels , la création de politiques propres à chaque réseau d’accès ainsi que la micro-mobilité efficace des usagers dans les scénarios d’itinérance. Dans un second temps, deux architectures de NGN furent évaluées en fonction des requis énumérés ci-dessus. Cette étude permit de déterminer qu’une solution hybride (avec les avantages de chacune mais sans leurs défauts respectifs) constituait une piste de solution prometteuse qui servit de base à notre proposition. La solution proposée atteint son but par une meilleure répartition des rôles d’affaires ainsi que par l’introduction d’une entité centrale de contrôle nommée Network Policy Function (NPF) au sein du réseau de transport IP. En effet, les rôles d’affaires définis (fournisseurs d’accès, de réseau cœur et de services) permettent la création de domaines de politiques et administratifs distincts. Ces rôles deviennent nécessaires dans les cas de partage d’infrastructures. Dans le cas contraire, ils sont compatibles avec le modèle vertical actuel d’opérateur ; ce dernier joue alors tous les rôles. Quant à l’introduction du NPF dans le réseau cœur, celui-ci permet de séparer la gestion des politiques régissant le réseau de transport IP des usagers, des services et des réseaux d’accès. De plus, il permet le partage du réseau cœur de façon à respecter les ententes de services liant ce dernier à chaque opérateur virtuel ainsi que les ententes de services liant le réseau cœur et le(s) réseau(x) d’accès. Par ailleurs, le NPF permet d’ajouter au réseau cœur des services avancés à partager entre plusieurs opérateurs. Parmi ces services, on retrouve des fonctions de transcodage audio/vidéo, des caches de fichiers (e.g., pouvant servir à la distribution de films), d’antivirus grâce à l’inspection approfondie des paquets, etc. L’avantage d’introduire ces services au niveau transport est de permettre autant aux applications IMS qu’aux autres d’en bénéficier. Le second article intitulé « A Network Policy Function Node for a Potential Evolution of the 3GPP Evolved Packet Core » constitue une extension du premier article qui décrit en détail les tendances de l’industrie, les architectures de gestion de politiques existantes et leurs caractéristiques, et enfin offrit un survol de la solution. En contre-partie, le second article aborde beaucoup plus en détail les impacts de la solution proposée sur l’architecture existante. En effet, une contribution significative de ce second article est de dresser la liste exhaustive de toutes les simplifications potentielles que permet la proposition d’architecture. La contribution majeure du second article est que la solution proposée peut être déployée immédiatement avec un minimum d’impacts. Effectivement, une petite modification à l’architecture proposée dans le premier article, au niveau des interfaces du NPF, permit cette avancée. En conséquence, cette modification réconcilie les deux variantes actuelles d’architecture basées sur les protocoles GPRS Tunneling Protocol (GTP) et Proxy Mobile IPv6 (PMIPv6). Le dernier apport important du second article est la démonstration du fonctionnement interne du NPF lorsque ce dernier contrôle un réseau de transport basé sur un mécanisme de tunnels tels que Multi-Protocol Label Switching (MPLS) ou encore Provider Backbone Bridge-Traffic Engineering (PBB-TE). Un processus d’ingénierie de trafic permet aux flux de trafic de contourner une zone de congestion, de mieux balancer la charge du réseau et d’assurer que les exigences en QoS sont toujours respectées. Le troisième article intitulé « A MultiAccess Resource ReSerVation Protocol (MARSVP) for the 3GPP Evolved Packet System » traite de QoS dans les scénarios de FMC, plus particulièrement des applications qui ne sont pas supportées par le réseau. Par exemple, toutes les applications pair-à-pair qui représentent une portion infime du volume de trafic total attribué à ce type d’application ou celles qui sont naissantes et encore méconnues. Les réseaux de deuxième et troisième générations ont été conçus de telle sorte que l’usager fournit au réseau les paramètres de QoS de l’application. Toutefois, le nombre de combinaisons des paramètres de QoS était très élevé et trop complexe à gérer. Il en résulta que pour la quatrième génération il fut décidé que dorénavant ce seraient les serveurs d’applications dans le réseau qui fourniraient ces paramètres de QoS. De même, un nombre restreint de classes de services fut défini, ce qui eut pour résultat de simplifier énormément la gestion de la QoS. Lorsque sont considérés les concepts de FMC, il devient évident que le mécanisme décrit ci-dessus ne s’applique qu’aux accès 3GPP. En effet, chaque type d’accès définit ses propres mécanismes qui doivent souvent être contrôlés par le réseau et non par l’usager. De plus, certains accès ne disposent d’aucun canal de contrôle sur lequel circule les requêtes de QoS. De même, les protocoles existants de QoS sont souvent lourds et définis de bout-en-bout ; ils ne sont donc pas appropriés à l’utilisation qui est envisagée. En conséquence, la solution proposée consiste en un nouveau protocole multiaccès de réservation de ressources. MARSVP utilise le canal de données que l’on retrouve sur tous les accès et confine les échanges de messages entre l’usager et le premier nœud IP. Les besoins en QoS sont définis en fonction des QoS Class Indicators (QCIs) ce qui rend MARSVP simple à utiliser. Suite à une requête de réservation de ressources acceptée par le réseau, ce dernier configure l’accès et retourne au terminal les informations requises à l’envoi paquets (aux couches 2 et 3).----------ABSTRACT Fourth generation cellular networks trials have begun in the first half of 2010, notably in Sweden and Norway. As a first step, these networks only offer Internet access and rely on existing second and third generation networks for providing telephony and text messaging. It’s only after the deployment of the IP Multimedia Subsystem (IMS) that all services shall be supported on the new all-IP architecture. Fourth generation mobile networks should enable end users to benefit from data throughputs of at least 100 Mbps on the downlink, when the user is stationary, and of Quality of Service (QoS) support that allows guarantees on throughput, maximum delay, maximum jitter and on the packet loss rate. These networks will efficiently support applications that rely on geolocation in order to improve the user’s Quality of Experience (QoE). Today’s terminals can communicate using several radio technologies. Indeed, in addition to the cellular modem, terminals often support the Bluetooth technology which is used for connecting handsfree devices and headsets. Moreover, most cell phones feature a Wi-Fi interface that enables users to transfer huge volumes of data without congesting the cellular network. However, Wi-Fi connectivity is often restricted to the user’s home network or his workplace. Finally, a vertical handover is nearly always done manually and forces the terminal to change its IP address, which ultimately disrupts all active data sessions. A trend has emerged a few years ago among the mobile communications industry known as Fixed-Mobile Convergence (FMC). FMC is a trend aiming to provide Internet access and telephony on a single device capable of switching between local- and wide-area networks. At this time, very few operators (e.g., NTT Docomo) offer terminals capable of switching to another access automatically. However, the access point must belong to the user or be installed in his workplace. At the same time, another kind of convergence has begun in which the dedicated networks for public safety (such as police, fire prevention and ambulances) are being progressively migrated (because of their high operational costs) toward a single highly reliable and redundant network. Indeed, these services exhibit QoS requirements that are similar to residential costumers’ except they need a prioritized access, and that can terminate a non-priority user’s session during congestion situations. In addition to the public services that seek to reduce their operational costs by sharing commercial communications networks, the network operators have also entered a cost reduction phase. This situation is a result of the high degree of maturity that the mobile communications industry has reached. As an example, the branding or the coverage offered by each of them isn’t a sufficient sales argument anymore to enroll new subscribers. Operators must now distinguish themselves from their competition with a superior service offering. Some operators have already started to outsource their less profitable business activities in order to concentrate on their key functions. As a complement to this trend, operators have begun to share an ever increasing portion of their physical infrastructures with their competitors. As a first step, infrastructure sharing was limited to the base station sites and antenna masts. Later, the shelters were shared to further reduce the cooling and hosting costs of the equipments. Then, operators started to share radio equipments but each of them operated on different frequency bands. . . Infrastructure sharing beyond the first core network node isn’t actually supported in standardization. There is an additional trend into the mobile communications industry which is the specialization of the operators (i.e., the identification of target customers by the operators). As a result, these operators experience disjoint traffic peaks because their customer bases have different behaviors. The former have a strong incentive to share infrastructures because network dimensioning mostly depends on the peak demand. Consequently, sharing infrastructures increases the average traffic load without significantly increasing the peak load because the peaks occur at different times. This allows operators to boost their return on investment. Every existing Next Generation Network (NGN) architecture proposal features an all-IP core network, offers QoS to applications and a bandwidth on the downlink in the order of 100 Mbps. Moreover, these NGNs propose a number of Policy and Charging Control (PCC) mechanisms that determine how services are delivered to the subscribers and what charging method to apply. There are three main categories of policies: those that are related to the subscriber (e.g., gold/silver/bronze subscription, prepaid vs. billed access), those that apply to services (e.g., for a given service, bandwidth limitation, QoS class assignment, allocation and retention priority of resources) and finally policies that depend on the current state of the network (e.g., congestion level, traffic engineering, etc). In a first paper entitled “A Potential Evolution of the Policy and Charging Control/QoS Architecture for the 3GPP IETF-based Evolved Packet Core ”, FMC and Core Network (CN) sharing aspects are treated simultaneously because it is important that the logical PCC architecture reflects the realities of the industry trends described above. Following the description of the trends in the communications industry were presented a list of four requirements that enable for a PCC architecture: service convergence (capacity to use a service from any type of access), CN sharing that allows several Mobile Virtual Network Operators (MVNOs) to coexist, the creation of local access network policies as well as efficient micro-mobility in roaming scenarios. As a second step, two NGN architectures were evaluated upon the requirements mentioned above. This evaluation concluded that a hybrid solution (based on the key features of each architecture but without their respective drawbacks) would offer a very promising foundation for a complete solution. The proposed solution achieved its goal with a clearer separation of the business roles (e.g., access and network providers) and the introduction of a Network Policy Function (NPF) for the management of the CN. Indeed, the business roles that were defined allow the creation of distinct policy/QoS and administrative domains. The roles become mandatory in infrastructure sharing scenarios. Otherwise, they maintain the compatibility with the actual vertically-integrated operator model; the latter then plays all of the business roles. Introducing the NPF into the CN enables the CN policy management to be separated from policy management related to subscribers, services and access networks. Additionally, the NPF allows the CN to be shared by multiple Network Service Providers (NSPs) and respect the Service Level Agreements (SLAs) that link the IP Aggregation Network (IPAN) to the NSPs, as well as those that tie the IPAN to the Access Network Providers (ANPs). Another benefit of the NPF is that it can share a number of advanced functions between several NSPs. Those functions include audio/video transcoding, file caches (e.g., that can be used for multimedia content delivery), Deep Packet Inspection (DPI) antivirus, etc. The main advantage to integrate those infrastructure services at the IP transport level is to allow both IMS and non-IMS applications to benefit from them. A second paper entitled “A Network Policy Function Node for a Potential Evolution of the 3GPP Evolved Packet Core ” constitutes an extension of the first paper that extensively described the industry trends, two existing PCC architectures and their characteristics, and finally offered an overview of the proposed solution. On the other hand, the second paper thoroughly describes all of the impacts that the proposal has on the existing 3GPP PCC architecture. Indeed, a significant contribution of this second paper is that it provides an extensive list of potential simplifications that the proposed solution allows. The main contribution of the second paper is that from now on the proposed solution can be deployed over an existing PCC architecture with a minimum of impacts. Indeed, a small modification to the NPF’s reference points enables this enhancement. As a consequence, this enhancement provided a solution that is compatible with both PCC architecture variants, based on either GPRS Tunneling Protocol (GTP) or Proxy Mobile IPv6 (PMIPv6). A last contribution of the second paper is to demonstrate the NPF’s internals when the former is controlling a an IPAN based on tunneling mechanisms such as Multi-Protocol Label Switching (MPLS) or Provider Backbone Bridge-Traffic Engineering (PBB-TE). A traffic engineering process allows traffic flow aggregates to pass around a congested node, to better balance the load between the network elements and make sure that the QoS requirements are respected at all times. The third paper entitled “A MultiAccess Resource ReSerVation Protocol (MARSVP) for the 3GPP Evolved Packet System” deals with QoS provisioning in FMC scenarios, especially for applications that are not directly supported by the network. As an example, all peer-to-peer applications (such as online gaming) that represent a small fraction of the total peer-to-peer traffic or those that are new and relatively unknown. Second and third generation networks were designed such that the User Equipment (UE) would provide the network with the application’s QoS parameters. However, the number of possible combinations of QoS parameters was very large and too complex to manage. As a result, for the fourth generation of networks, an application server would provide the PCC architecture with the right QoS parameters. In addition, a limited number of QoS classes were defined which in the end greatly simplified QoS management. When FMC aspects are taken into account, it becomes trivial that the above mechanism only applies to 3GPP accesses. Indeed, each access type uses its own mechanisms that must often be controlled by the network instead of the user. Moreover, some accesses don’t feature a control channel on which QoS reservation requests would be carried. Also, existing QoS protocols are often too heavy to support and apply

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    Middleware de comunicações para a internet móvel futura

    Get PDF
    Doutoramento em Informática (MAP-I)A evolução constante em novas tecnologias que providenciam suporte à forma como os nossos dispositivos se ligam, bem como a forma como utilizamos diferentes capacidades e serviços on-line, criou um conjunto sem precedentes de novos desafios que motivam o desenvolvimento de uma recente área de investigação, denominada de Internet Futura. Nesta nova área de investigação, novos aspectos arquiteturais estão ser desenvolvidos, os quais, através da re-estruturação de componentes nucleares subjacentesa que compõem a Internet, progride-a de uma forma capaz de não são fazer face a estes novos desafios, mas também de a preparar para os desafios de amanhã. Aspectos chave pertencendo a este conjunto de desafios são os ambientes de rede heterogéneos compostos por diferentes tipos de redes de acesso, a cada vez maior mudança do tráfego peer-to-peer (P2P) como o tipo de tráfego mais utilizado na Internet, a orquestração de cenários da Internet das Coisas (IoT) que exploram mecanismos de interação Maquinaa-Maquina (M2M), e a utilização de mechanismos centrados na informação (ICN). Esta tese apresenta uma nova arquitetura capaz de simultaneamente fazer face a estes desafios, evoluindo os procedimentos de conectividade e entidades envolvidas, através da adição de uma camada de middleware, que age como um mecanismo de gestão de controlo avançado. Este mecanismo de gestão de controlo aproxima as entidades de alto nível (tais como serviços, aplicações, entidades de gestão de mobilidade, operações de encaminhamento, etc.) com as componentes das camadas de baixo nível (por exemplo, camadas de ligação, sensores e atuadores), permitindo uma otimização conjunta dos procedimentos de ligação subjacentes. Os resultados obtidos não só sublinham a flexibilidade dos mecanismos que compoem a arquitetura, mas também a sua capacidade de providenciar aumentos de performance quando comparados com outras soluÇÕes de funcionamento especÍfico, enquanto permite um maior leque de cenáios e aplicações.The constant evolution in new technologies that support the way our devices are able to connect, as well the way we use available on-line services and capabilities, has created a set of unprecedented new challenges that motivated the development of a recent research trend known as the Future Internet. In this research trend, new architectural aspects are being developed which, through the restructure of underlying core aspects composing the Internet, reshapes it in a way capable of not only facing these new challenges, but also preparing it to tackle tomorrow’s new set of complex issues. Key aspects belonging to this set of challenges are heterogeneous networking environments composed by di↵erent kinds of wireless access networks, the evergrowing change from peer-to-peer (P2P) to video as the most used kind of traffic in the Internet, the orchestration of Internet of Things (IoT) scenarios exploiting Machine-to-Machine (M2M) interactions, and the usage of Information-Centric Networking (ICN). This thesis presents a novel framework able to simultaneous tackle these challenges, empowering connectivity procedures and entities with a middleware acting as an advanced control management mechanism. This control management mechanism brings together both high-level entities (such as application services, mobility management entities, routing operations, etc.) with the lower layer components (e.g., link layers, sensor devices, actuators), allowing for a joint optimization of the underlying connectivity and operational procedures. Results highlight not only the flexibility of the mechanisms composing the framework, but also their ability in providing performance increases when compared with other specific purpose solutions, while allowing a wider range of scenarios and deployment possibilities
    corecore