320 research outputs found

    High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser

    Get PDF
    An integrated laser source to a silicon photonics circuit is an important requirement for optical interconnects. We present direct modulation of a heterogeneously integrated distributed feedback laser on and coupled to a silicon waveguide. We demonstrate a 28 Gb/s pseudo-random bit sequence non-return-to-zero data transmission over 2 km non-zero dispersion shifted fiber with a 1-dB power penalty. Additionally, we show 40-Gb/s duobinary modulation generated using the bandwidth limitation of the laser for both back-to-back and fiber transmission configurations. Furthermore, we investigate the device performance for the pulse amplitude modulation (PAM-4) at 20 GBd for high-speed short-reach applications

    High speed directly modulated III-V-on-silicon DFB lasers

    Get PDF

    Novel optical transmitters for high speed optical networks

    Get PDF
    The objective of this thesis is to investigate the performance of novel optical transmitter lasers for use in high speed optical networks. The laser technology considered is the discrete mode laser diode (DMLD) which is designed to achieve single wavelength operation by etching features on the surface of the ridge waveguide. This leads to a simplified manufacturing process by eliminating the regrowth step used in conventional approaches, presenting an economic approach to high volume manufacture of semiconductor lasers. Two application areas are investigated in this work. The bit rate in next generation access networks is moving to 10 Gbit/s. This work characterises the performance of DMLDs designed for high speed operation with the objective of identifying the limitations and improving performance to meet the specifications for uncooled operation at 10 Gbit/s. With the deployment of advanced modulation formats the phase noise of the laser source has become an important parameter, particularly for higher order formats. DMLDs were developed for narrow linewidth operation. The linewidth of these devices was characterised and a value as low as 70 kHz was demonstrated. Transmission experiments were also carried out using a coherent transmission test bed and the performance achieve is compared with that of an external cavity laser

    Long Wavelength VCSELs and VCSEL-Based Processing of Microwave Signals

    Get PDF
    We address the challenge of decreasing the size, cost and power consumption for practical applications of next generation microwave photonics systems by using long-wavelength vertical cavity surface emitting lasers. Several demonstrations of new concepts of microwave photonics devices are presented and discussed

    Frequency comb metrology with an optical parametric oscillator

    Get PDF
    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-μm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-μm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser

    Development of high-performance, cost-effective quantum dot lasers for data-centre and Si photonics applications

    Get PDF
    Photonic technologies have been considered new methods to achieve high bandwidth data communication and transmission. Si-photonics was proposed to address the discrepancy between bulky photonic devices and advanced electronics and create high-density integrated photonics. One of the challenges is integrating all the components necessary for full-functionality photonic integrated circuits (PIC). Great efforts have been devoted to overcoming the inherent limitations of Group-IV materials to provide sufficient gain, efficient modulation and sensitive detections. Making Si the host material for efficient light emission poses the most stringent requirements and is the primary missing component in the Si-photonics platform. Incorporating III-V materials with the Si photonics platform and quantum dot (QD) structure is a promising solution to the problem of a fully-integrated and high-functioning PIC. High-performance QD lasers on III-V substrate or epitaxially on silicon have been developed in the last few decades with low threshold current density, low-temperature sensitivity, great reliability and large injection efficiency. Moreover, from the dynamic aspect, the intrinsic frequency of direct modulated laser and noise intensity is important for its applications in a data centre. QD is considered an alternative to quantum wells (QWs); however, the demonstrated QD laser has not fulfilled initial expectations, mainly due to its high gain compression and low differential gain. Another feature that needs to be noticed is feedback sensitivity, as the properties of semiconductor lasers are greatly degraded by reflection from external reflectors, such as the fibre connects and facets of integrated devices. QD devices are predicted to have stronger feedback resistance due to their large damping and small linewidth enhancement factor (LEF). These properties have attracted much research, and high-performance QD devices have been developed. In this thesis, we comprehensively investigated QD laser performance and applied our QD laser in the optical module instead of the commercial QW distributed feedback (DFB) laser. The background of Si photonics, the development of QD devices, and the fundamentals of QD lasers are presented in Chapter 1. The basic static and dynamic performances are demonstrated in Chapters 2 and 3. The GaAs-based QD laser provides a low threshold, high-temperature stability, and low noise operation with a limited small signal bandwidth. Chapter 4 provides a comprehensive study of the feedback resistance of the QD laser. The onset of coherence collapse is determined as -14 dB, verified by the static optical and electrical spectra and small signal response. Based on previous measurements, the QD laser is proven to be a high-performance, low-cost candidate for the Si-photonics module. In Chapter 5, the QD laser is used in practical applications, including a large signal transmission system with and without feedback and a commercial optical module. Although the intrinsic bandwidth of the QD laser is limited to around 5GHz due to the large damping and unoptimised capacitance, 30 Gbps data transmission has been demonstrated by a directly modulated QD laser. Large, high-speed signal modulation is achieved due to its high gain compression factor. Regarding the laser with intentional feedback, there is little degradation in the eye diagram under the whole feedback level up to -8dB. We also replaced the commercial QW DFB laser in 100G data-centre reach (DR)-1 optical module with our QD Fabry Perot (FP) laser without an isolator which gives a clear eye diagram under 53 Gbps 4-level pulse amplitude modulation (PAM4) with an extinction ratio (ER) of 4.7 dB. In conclusion, this thesis verifies the feasibility of adopting the QD laser as a light source for the Si-photonics module. The QD laser is selected over other lasers because of its low threshold, high-temperature stability and maximum operating temperature, and strong tolerance to unintentional feedback. This is the first project to measure critical feedback levels with different characteristics and to theoretically analyse the inconsistent value. More importantly, this thesis’ most original contribution is investigating the commercial applications of QD lasers in a Si-photonics module in an isolator-free state. In summary, the QD laser has been proven to be a feasible solution for the next-generation optical system

    Co-Package Technology Platform for Low-Power and Low-Cost Data Centers

    Get PDF
    We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges

    Temperature impairment characterization in radio-over-multimode fiber systems

    Get PDF
    Arbitrary operating conditions, such as the temperature dependence in the fiber link impose a challenge for the extension of radio-over-multimode fiber techniques. Temperature impairment characterization is analyzed over the broadband transmission bands that can be present in the frequency response of multimode fiber (MMF) supporting multiple-GHz carriers delivering schemes. Experimental results show that these transmission bands are dramatically influenced by the hysteresis of heating and cooling temperature cycles, respectively. The influence of the MMF graded index exponent tolerance on frequency response at higher bands is also analyzed. And this variation can be directly attributed to environmental temperature changes that could affect the MMF link. Additionally, selective mode-launching schemes combined with the use of narrow line-width optical sources are experimentally demonstrated to enable broadband transmission, not only at short but also at middle-reach distances over MMFs.This work was supported by Spanish CICyT project TEC2009-14718-C03-03 from the Spanish Ministry of Science, and by project FACTOTEM-II-CM: S2009/ESP-1781 of Comunidad Autónoma de Madrid.Publicad
    corecore