219 research outputs found

    Three-dimensional conceptual model for service-oriented simulation

    Full text link
    In this letter, we propose a novel three-dimensional conceptual model for an emerging service-oriented simulation paradigm. The model can be used as a guideline or an analytic means to find the potential and possible future directions of the current simulation frameworks. In particular, the model inspects the crossover between the disciplines of modeling and simulation, service-orientation, and software/systems engineering. Finally, two specific simulation frameworks are studied as examples.Comment: 7 pages, 1 figures, 3 table, Journal of Zhejiang University SCIENCE A, 2009, 10(8): 1075-108

    Adding Executable Context to Executable Architectures: Enabling an Executable Context Simulation Framework (ECSF)

    Get PDF
    A system that does not stand alone is represented by a complex entity of component combinations that interact with each other to execute a function. In today\u27s interconnected world, systems integrate with other systems - called a system-of-systems infrastructure: a network of interrelated systems that can often exhibit both predictable and unpredictable behavior. The current state-of-the-art evaluation process of these system-of-systems and their community of practitioners in the academic community are limited to static methods focused on defining who is doing what and where. However, to answer the questions of why and how a system operates within complex systems-of-systems interrelationships, a system\u27s architecture and context must be observed over time, its executable architecture, to discern effective predictable and unpredictable behavior. The objective of this research is to determine a method for evaluating a system\u27s executable architecture and assess the contribution and efficiency of the specified system before it is built. This research led to the development of concrete steps that synthesize the observance of the executable architecture, assessment recommendations provided by the North Atlantic Treaty Organization (NATO) Code of Best Practice for Command and Control (C2) Assessment, and the metrics for operational efficiency provided by the Military Missions and Means Framework. Based on the research herein, this synthesis is designed to evaluate and assess system-of-systems architectures in their operational context to provide quantitative results

    Composable M&S web services for net-centric applications

    Get PDF
    Service-oriented architectures promise easier integration of functionality in the form of web services into operational systems than is the case with interface-driven system-oriented approaches. Although the Extensible Markup Language (XML) enables a new level of interoperability among heterogeneous systems, XML alone does not solve all interoperability problems users contend with when integrating services into operational systems. To manage the basic challenges of service interoperation, we developed the Levels of Conceptual Interoperability Model (LCIM) to enable a layered approach and gradual solution improvements. Furthermore, we developed methods of model-based data engineering (MBDE) for semantically consistent service integration as a first step. These methods have been applied in the U.S. in collaboration with industry resulting in proofs of concepts. The results are directly applicable in a net-centric and net-enabled environment

    Testability of a swarm robot using a system of systems approach and discrete event simulation

    Get PDF
    A simulation framework using discrete event system specification (DEVS) and data encoded with Extensible Markup Language (XML) is presented to support agent-in-the-loop (AIL) simulations for large, complex, and distributed systems. A System of Systems (SoS) approach organizes the complex systems hierarchically. AIL simulations provide a necessary step in maintaining model continuity methods to achieve a greater degree of accuracy in systems analysis. The proposed SoS approach enables the simulation and analysis of these independent and cooperative systems by concentrating on the data transferred among systems to achieve interoperability instead of requiring the software modeling of global state spaces. The information exchanged is wrapped in XML to facilitate system integration and interoperability. A Groundscout is deployed as a real agent working cooperatively with virtual agents to form a robotic swarm in an example threat detection scenario. This scenario demonstrates the AIL framework\u27s ability to successfully test a swarm robot for individual performance and swarm behavior. Results of the testing process show an increase of robot team size increases the rate of successfully investigating a threat while critical violations of the algorithm remained low despite packet loss

    Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework

    Get PDF
    The objective of this dissertation study is to conduct a holistic investigation into the elements of executable architectures. Current research in the field of Executable Architectures has provided valuable solution-specific demonstrations and has also shown the value derived from such an endeavor. However, a common theory underlying their applications has been missing. This dissertation develops and explores a method for holistically developing an Executable Architecture Specification (EAS), i.e., a meta-model containing both semantic and syntactic information, using a conceptual framework for guiding data coding, analysis, and validation. Utilization of this method resulted in the description of the elements of executable architecture in terms of a set of nine information interrogatives: an executable architecture information ontology. Once the detail-rich EAS was constructed with this ontology, it became possible to define the potential elements of executable architecture through an intermediate level meta-model. The intermediate level meta-model was further refined into an interrogative level meta-model using only the nine information interrogatives, at a very high level of abstraction

    Simulation Software as a Service and Service-Oriented Simulation Experiment

    Get PDF
    Simulation software is being increasingly used in various domains for system analysis and/or behavior prediction. Traditionally, researchers and field experts need to have access to the computers that host the simulation software to do simulation experiments. With recent advances in cloud computing and Software as a Service (SaaS), a new paradigm is emerging where simulation software is used as services that are composed with others and dynamically influence each other for service-oriented simulation experiment on the Internet. The new service-oriented paradigm brings new research challenges in composing multiple simulation services in a meaningful and correct way for simulation experiments. To systematically support simulation software as a service (SimSaaS) and service-oriented simulation experiment, we propose a layered framework that includes five layers: an infrastructure layer, a simulation execution engine layer, a simulation service layer, a simulation experiment layer and finally a graphical user interface layer. Within this layered framework, we provide a specification for both simulation experiment and the involved individual simulation services. Such a formal specification is useful in order to support systematic compositions of simulation services as well as automatic deployment of composed services for carrying out simulation experiments. Built on this specification, we identify the issue of mismatch of time granularity and event granularity in composing simulation services at the pragmatic level, and develop four types of granularity handling agents to be associated with the couplings between services. The ultimate goal is to achieve standard and automated approaches for simulation service composition in the emerging service-oriented computing environment. Finally, to achieve more efficient service-oriented simulation, we develop a profile-based partitioning method that exploits a system’s dynamic behavior and uses it as a profile to guide the spatial partitioning for more efficient parallel simulation. We develop the work in this dissertation within the application context of wildfire spread simulation, and demonstrate the effectiveness of our work based on this application

    Model-based tool support for Tactical Data Links: an experience report from the defence domain

    Get PDF
    The Tactical Data Link (TDL) allows the exchange of information between cooperating platforms as part of an integrated command and control (C2) system. Information exchange is facilitated by adherence to a complex, message-based protocol defined by document-centric standards. In this paper, we report on a recent body of work investigating migration from a document-centric to a model-centric approach within the context of the TDL domain, motivated by a desire to achieve a positive return on investment. The model-centric approach makes use of the Epsilon technology stack and provides a significant improvement to both the level of abstraction and rigour of the network design. It is checkable by a machine and, by virtue of an MDA-like approach to the separation of domains and model transformation between domains, is open to integration with other models to support more complex workflows, such as by providing the results of interoperability analyses in human-readable domain-specific reports conforming to an accepted standard

    SCS: 60 years and counting! A time to reflect on the Society's scholarly contribution to M&S from the turn of the millennium.

    Get PDF
    The Society for Modeling and Simulation International (SCS) is celebrating its 60th anniversary this year. Since its inception, the Society has widely disseminated the advancements in the field of modeling and simulation (M&S) through its peer-reviewed journals. In this paper we profile research that has been published in the journal SIMULATION: Transactions of the Society for Modeling and Simulation International from the turn of the millennium to 2010; the objective is to acknowledge the contribution of the authors and their seminal research papers, their respective universities/departments and the geographical diversity of the authors' affiliations. Yet another objective is to contribute towards the understanding of the overall evolution of the discipline of M&S; this is achieved through the classification of M&S techniques and its frequency of use, analysis of the sectors that have seen the predomination application of M&S and the context of its application. It is expected that this paper will lead to further appreciation of the contribution of the Society in influencing the growth of M&S as a discipline and, indeed, in steering its future direction
    • …
    corecore