76 research outputs found

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Access control models: Authorization mechanisms for database management systems

    Get PDF
    None provided

    ‘Enhanced Encryption and Fine-Grained Authorization for Database Systems

    Get PDF
    The aim of this research is to enhance fine-grained authorization and encryption so that database systems are equipped with the controls necessary to help enterprises adhere to zero-trust security more effectively. For fine-grained authorization, this thesis has extended database systems with three new concepts: Row permissions, column masks and trusted contexts. Row permissions and column masks provide data-centric security so the security policy cannot be bypassed as with database views, for example. They also coexist in harmony with the rest of the database core tenets so that enterprises are not forced to compromise neither security nor database functionality. Trusted contexts provide applications in multitiered environments with a secure and controlled manner to propagate user identities to the database and therefore enable such applications to delegate the security policy to the database system where it is enforced more effectively. Trusted contexts also protect against application bypass so the application credentials cannot be abused to make database changes outside the scope of the application’s business logic. For encryption, this thesis has introduced a holistic database encryption solution to address the limitations of traditional database encryption methods. It too coexists in harmony with the rest of the database core tenets so that enterprises are not forced to choose between security and performance as with column encryption, for example. Lastly, row permissions, column masks, trusted contexts and holistic database encryption have all been implemented IBM DB2, where they are relied upon by thousands of organizations from around the world to protect critical data and adhere to zero-trust security more effectively

    Auditing database systems through forensic analysis

    Get PDF
    The majority of sensitive and personal data is stored in a number of different Database Management Systems (DBMS). For example, Oracle is frequently used to store corporate data, MySQL serves as the back-end storage for many webstores, and SQLite stores personal data such as SMS messages or browser bookmarks. Consequently, the pervasive use of DBMSes has led to an increase in the rate at which they are exploited in cybercrimes. After a cybercrime occurs, investigators need forensic tools and methods to recreate a timeline of events and determine the extent of the security breach. When a breach involves a compromised system, these tools must make few assumptions about the system (e.g., corrupt storage, poorly configured logging, data tampering). Since DBMSes manage storage independent of the operating system, they require their own set of forensic tools. This dissertation presents 1) our database-agnostic forensic methods to examine DBMS contents from any evidence source (e.g., disk images or RAM snapshots) without using a live system and 2) applications of our forensic analysis methods to secure data. The foundation of this analysis is page carving, our novel database forensic method that we implemented as the tool DBCarver. We demonstrate that DBCarver is capable of reconstructing DBMS contents, including metadata and deleted data, from various types of digital evidence. Since DBMS storage is managed independently of the operating system, DBCarver can be used for new methods to securely delete data (i.e., data sanitization). In the event of suspected log tampering or direct modification to DBMS storage, DBCarver can be used to verify log integrity and discover storage inconsistencies

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author
    • …
    corecore