Manchester
Metropolitan
University

Rjaibi, Walid (2020)‘Enhanced Encryption and Fine-GrainedAuthorization for
Database Systems. Doctoral thesis (PhD), Manchester Metropolitan Univer-

sity.

Downloaded from: http://e-space.mmu.ac.uk/626253/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Rjaibi=3AWalid=3A=3A.html
http://e-space.mmu.ac.uk/626253/
https://e-space.mmu.ac.uk

Enhanced Encryption and Fine-Grained
Authorization for Database Systems

Walid Rjaibi

PhD 2020

Enhanced Encryption and Fine-Grained
Authorization for Database Systems

Walid Rjaibi

A thesis submitted to Manchester Metropolitan University in
partial fulfilment for the degree of

Doctor of Philosophy

Faculty of Science and Engineering

Department of Computing and Mathematics

MANCHESTER METROPOLITAN UNIVERSITY

2020

Abstract

The aim of this research is to enhance fine-grained authorization and encryption

so that database systems are equipped with the controls necessary to help
enterprises adhere to zero-trust security more effectively. For fine-grained
authorization, this thesis has extended database systems with three new
concepts: Row permissions, column masks and trusted contexts. Row
permissions and column masks provide data-centric security so the security
policy cannot be bypassed as with database views, for example. They also
coexist in harmony with the rest of the database core tenets so that enterprises
are not forced to compromise neither security nor database functionality. Trusted
contexts provide applications in multitiered environments with a secure and
controlled manner to propagate user identities to the database and therefore
enable such applications to delegate the security policy to the database system
where it is enforced more effectively. Trusted contexts also protect against
application bypass so the application credentials cannot be abused to make
database changes outside the scope of the application’s business logic. For
encryption, this thesis has introduced a holistic database encryption solution to
address the limitations of traditional database encryption methods. It too coexists
in harmony with the rest of the database core tenets so that enterprises are not
forced to choose between security and performance as with column encryption,
for example. Lastly, row permissions, column masks, trusted contexts and holistic
database encryption have all been implemented IBM DB2, where they are relied
upon by thousands of organizations from around the world to protect critical data
and adhere to zero-trust security more effectively.

Acknowledgements

This thesis would not have been possible without the help, guidance and support
from many people. First, | would like to thank my Director of Studies, Dr
Mohammad Hammoudeh, for all his help, guidance and support throughout this
thesis.

| also want to express my deepest gratitude to my friend and colleague Paul
Bird, IBM Senior Technical Staff Member, for the opportunity to drive the
database security research in his team as well as for all the guidance, help and
support he kindly provided to me throughout this research and during the
preparation of this thesis.

| am also grateful to my friends and IBM colleagues Calisto Zuzarte and
Mokhtar Kandil for all the time they have spent reviewing and validating design
documents, research papers, patent applications and for their kind and valuable
feedback throughout the research and during the preparation of this thesis.

My most sincere thanks also go to my IBM colleagues Irene Liu, Greg Stager,
Mihai lacob, Mihai Nicolai, Alex Zhang, Hamdi Roumani, Eric Alton, Harley
Boughton, Jerry Kiernan, Tyrone Grandison, Scott Logan and Quentin Presley
for all their help and input during the implementation of the concepts introduced
by this research.

Last but not least, | want to thank my family for their love, support and for
having brought so much joy to my life. And a very special thanks to my children
Saif, Safa and Haytham who have filled my life with so much happiness and have
given me all the energy | needed to write this thesis.

Table of contents

ADSEIACK.......ciiiiiet e i
Acknowledgements............ciiiiiiiiiiiiiii e ii
Table of contents...........oiiiiiiiiii iii
List Of fIQUIreSccivieiiieicttttt e vii
List of tables........ccooiiiiiiiiiiii viii
List of abbreviations ... ix
Chapter 1: INtroducCtion...........cccceiiiiiiiiiiiiiirrieere e ansees 1
1.1 BACKGrOUNG ...ttt 2
1.1.1 Fine-Grained Authorizationcccoieiiniiiiininceceee e 3
1.1.2 Data ENCryplion ..o 3
1.1.3 Mandatory Access COoNntrol..........cccooeriiiininieninieeeeceee e 4

1.2 MOTIVALION ... 4
1.3 Aims and ODJECHIVESccooiiiiiie e 6
1.4 CONIDULIONS ... 6
1.5 Thesis Organization ... 7
Chapter 2: Research Portfolio OVerviewccccocvvveiiiiiiiiieeniiiniinieenninnscnnenn, 8
2.1 INIrOAUCTION ... 9
2.2 Fine-Grained AuthOrizationcccoeeiiiirieiinceeeeee e 11
2.3 Data ENCryplioncc.ooieiiiiiiiiiicice e 14
2.4 Mandatory AcCess CONtrol........ccccoevieiiiiiniiiinineeeee e 15
2.5 CONCIUSION ...ttt 17
Chapter 3: Enhanced Fine-Grained Authorizationcccooverrreeeeeeeennn. 18
3.1 INIrOAUCHION ... 19
3.2 Related WOrK........cooiiiieeceee e 21
3.3 Fine-Grained Database Authorization Modelccccoccoviniinininicnene. 24

3.3.1 Row Permissions Enforcementooooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeea 27

3.3.2 Column Masks Enforcement............ccooeieiininiinincnineccneseec 28
3.4 User Identity Propagation in Multitiered Environments...........cccccceceeneee. 29
3.4.1 Trusted CONEXISccoviiiiiiiee e 30
3.4.2 Trusted Context-Based Authorizationccccceveeveninicnineencnnene. 32
3.5 Safe Coexistence with Fundamental Database Tenets.......................... 33
3.5.1 User Defined FUNCHONS.......ccceoviiiiiiriiceeceeeeeee e 33
3.5.2 Materialized Query Tables...........ccocoiiriiiiniie, 34
3.5.3 Database Triggers........ccccuiriiriniiiinieieeeeee e 36
3.6 Performance Evaluation ... 37

3.6.1 Delegating Fine-Grained Authorization to the Database System... 38

3.6.2 Scalability of Column Masks..........cccoerieiininiininccec 41
3.6.3 Independence of Column Maskscccooeevienienienienienienie e 42
3.6.4 Row Permissions IMpact..........ccccoceeiieiiinienienienesceseeseesee e 44
3.7 USE CaSE SCENAMOcooviruiiiiiieiiciesieeee et 45
3.8 CONCIUSION ...ttt 49
Chapter 4: Enhanced Data Encryption..........cccccvviiveriiiiiiiieeniiininnneneninsssnnns 51
4.1 INIFOAUCTION ...t 52
4.2 Related WOrK........cooviiiiieireeeeee e 52
4.3 Holistic Database ENCryption...........coceeceviriiiininicneneeeeeceeee 55
4.3.1 Encryption Run-Time Placementccccooirvininiiienincnececeens 55
4.3.2 Encryption Run-Time Processingccccccevervienenieneneeieneseenieneees 56
4.3.3 Encryption Key Managementccccoovevininienenicneneeieneeecieees 57
4.4 ImpPlementation ... 58
4.41 Enabling Encryption for a Database...........ccccccveniiiniininincncn. 58
4.4.2 Rotating the Database Master Key..........ccccoivveniniiiininicninicicens 58
4.4.3 Taking an Encrypted Database Backup.........ccccovcenieniinnniencinnnnnn. 59

444 Performance ConsSiderationsScoeeeeuueeeeeeeeeeeee e ee e 60

4.5 CONCIUSION ...ttt 60
Chapter 5: Enhanced Mandatory Access Control.............ccccceiviveeriiieenninnes 61
5.1 INIrOAUCHION ...t 62
5.2 Related WOrK........oooiiiieiiee e 62
5.3 A Multi-Purpose MAC Implementation for Database Systems.............. 63
5.3.17 SQL EXIENSIONS......coiviriiiiiiiiieieeetee e 64
5.3.2 Access Enforcement.........ccooveviiiiiiiiniciineeee e 65
5.3.3 Enterprise integration...........ccccoeviiininiii 66

5.4 Applying Multi-Purpose MAC for XML Fine-Grained Authorization 67
5.4.1 MethOdOIOgYcoeeiiriiriiiiiriieeee e 69
5.4.2 Access ENforcement.........cccooveveiiiiininiciineceee e 70

5.5 CONCIUSION ...ttt 71
Chapter 6: Towards Zero-Trust Database Security..........cccocceerviveiriinnenncnns 72
6.1 INTrOUCHION ... e 73
6.2 Database Threat Model ..o 74
6.3 Addressing Direct Data Access Challenges..........cccooveveniniencnennicnnene. 76
6.3.1 Privilege ADUSE........ccooiiiiiieee e 76
6.3.2 Application BYPassS......ccoceviiiiiiiieiieeeeeeeeee e 77
6.3.3 Loss of User Identity ..o 78

6.4 Addressing Indirect Data Access Challengescccoccvenienininicnnenne. 78
6.5 Separation Of DULIES........ccoceiviiiiiiiee e 80
6.6 EXamMPIE SCENAIIOceeeeiiiieiieieceee et 81
6.7 CONCIUSION ...ttt 84
Chapter 7: Conclusion and Future Workccccocvvveriiiiiiinseniiiiiiiseneniisssnnnnes 86
7.1 INErOAUCHIONoviiiee e 87
7.2 Key ContribULIONSc.oooiiiiiiiiiiic e 87

7.3 FULUIE DiIrECHONS ..ot e e e e e e e e e e e e e e e e eeeeeeeeeeeeaeaaens 88

7.3.1 Data ClassifiCationccccoerieviiiiiinieiceeceeeeee e 88
7.3.2 Machine Learning.......c..cccceoeeierinieienieieieneeeeeseee e 89
7.3.3 Homomorphic ENCryption.........ccccoeveeiiiiienieieeeeseesee e 90

T4 CONCIUSION ...ttt ettt st 90
ReferenCeS......ueiieiiett 92
Appendix A: Fine-Grained Authorization Portfolio..........eeeeeeeeeeieiiiccccnnnneee 98
Appendix B: Data Encryption Portfolio.........ccccccviiiiiiieriiiiiiiiseniiiniiinnennnee, 100
Appendix C: Mandatory Access Control Portfolio..........cccccecueviiiiiinnennnnnnne. 101

Vi

List of figures

Figure 1.1— Typical database system deployment and usage.............ccecveeuerueeee. 2
Figure 2.1— Database security pillars and focus of the thesis.............c.coceeennee. 11
Figure 3.1— Classical 3-tier application architecturec.cccocevvviiiiiieienienee. 19

Figure 3.2— Fine-grained authorization as an extension of the SQL Compiler.. 25

Figure 3.3— Ratio of database vs application enforcement for TPC-H queries.. 39

Figure 3.4— Scalability of Column Masksccccoeeiiiininiininiceeeee, 42
Figure 3.5— Independence of Column Maskscccccceveeieninieiinenicneecee, 44
Figure 3.6— Row Permissions Impact (1,000,000 rows).........cccceeererveneneeneennene 45
Figure 3.7— Row Permissions Impact (10,000,000 rows)ccccevereeneneeseennene 45
Figure 4.1— Holistic Database Encryption Architecture..........c.cccccorienininnennene. 57
Figure 5.1— Example XML DOCUMENtcoiviriiiniiieiereceeecee e 68
Figure 6.1— Database threat model.............cccooovriiniiiiiiniee, 75
Figure 6.2— Fine-grained database authorization.ccccococivininiinininenene. 77
Figure 6.3— Database encryplion.ccoceveiiriininicieneeeeee e 80

Vii

List of tables

Table 2.1 — Fine-grained authorization publicationsccceccovveviinieniininnenn, 13
Table 2.2 — Data encryption publicationsccoceevieiieiieneneeeee e 14
Table 2.3 — Mandatory access control publications............ccceceeveviniencninncnenne. 16
Table 3.1 — Application vs Database Enforcement for TPC-H Queries............... 39
Table 3.2 — Time Elapsed (in SECONAS)coceeieiiriiiiininieeeeeeee e 41
Table 3.3 — Time Elapsed (in SECONAS)coceeieiiriiiiiiinieeeeeeee e 43
Table 3.4 — Difference with the Baseline.............cccoveinineiniiee 43
Table 3.5 — Time Elapsed (in SECONAS)coceeieiiriiiiininieeeeeeeee e 44
Table 3.6 — CUSTOMER Tableccooeiiiiiceereeeee e 46
Table 3.7 — EMPLOYEE_INFO Table.......ccccocoieiieieeeeeeeeeee e, 46
Table 3.8 — Outputs for Users Amy, Haytham and Pat.............cccocooiiinininne. 49
Table 5.1 — Access-Decision Cache ... 67
Table 6.1 — Zero-trust database security challenges..........c.ccoceoevininininicnenne. 75
Table 6.2 — Zero-trust database security challenges and solutions.ccccccveeeiinnnnee. 80
Table 6.3 — Banking application security pPoliCY. ...cccovcuuviiiiiniiiiieeeeee e 82
Table A.1 — ReSEAICH PaPerS......uuiiiiiiiiiiiie ettt e e e e e e e e s e e 98
Table A.2 — Granted Patentsc.uiiiiiiiiiiiieeee e 99
Table B.1 — RESEAICH PAPEISuuiiiiiiiiiiitiee ettt ettt e e s sbare e e s s iaaeeeeeeaes 100
Table C.1 — RESEAICN PAPeISuuiiiiiiiiiiiiiee ettt ettt e e e s e e s s itaeeeeseaes 101
Table C.2 — Granted Patentsceiiiiieiiiiieieieeeeee e 102

viii

List of abbreviations

DBA Database Administrator

SA System Administrator

DBMS Database Management System
RDBMS Relational Database Management System
SQL Structured Query Language
UDF User Defined Function

MQT Materialized Query Table
MAC Mandatory Access Control
LBAC Label-Based Access Control
MLS Multilevel Security

VPD Virtual Private Database
FGAC Fine-Grained Access Control
AES Advanced Encryption Standard
CBC Cipher Block Chaining

IV Initialization Vector

RSA Rivest-Shamir-Adleman

DES Data Encryption Standard
3DES Triple DES

SHA Secure Hash Algorithms

EFS Encrypted File System

SED Self-Encrypting Disk

SSL Secure Socket Layer

TLS Transport Layer Security

HSM Hardware Security Module

LDAP Lightweight Directory Access Protocol

SIEM Security Information and Event Management

KDC Key Distribution Center

XML eXtensible Markup Language

PCIDSS Payment Card Industry Data Security Standard
HIPAA Health Insurance Portability and Accountability Act

GDPR General Data Protection Regulation

Chapter 1: Introduction

This thesis is a PhD by publication. It represents a research journey in database
security that has resulted in a portfolio of 8 research papers in peer reviewed
journals and conferences, and 7 peer reviewed patents. The thesis highlights the
contributions made during the last three years (including the PhD registration

period), but also builds upon the author’s previous research.

This first chapter briefly introduces database systems, their typical deployment
and usage. Next, the key challenges in fine-grained authorization and encryption
for database systems are discussed. Then, the chapter presents the motivation,
aim and objectives of the research. Lastly, the chapter summarizes the key
contributions made in this thesis and gives the outline for the next chapters.
Chapter 2 reviews the key tenets of database security, positions the research
portfolio in that field and summarizes the key contributions for each. Chapter 3
gives the details of this thesis’s contributions to the fine-grained database
authorization area. Chapter 4 describes the details of this thesis’s contributions
to the database encryption area. Chapter 5 describes the details of this thesis’s
contributions to the mandatory access control area. Chapter 6 shows how the
contributions made in this thesis come together to help organizations effectively
adhere to zero-trust database security. Chapter 7 summarizes the thesis and

explores future directions for database security research.

1.1 Background

Database systems are at the core of an organization’s information system. They
store critical data such as employee personal data, client transaction data, patient
medical records and intellectual property information. Organizations rely upon
database systems to ensure the integrity, availability and security of their critical
data. They also trust database systems to meet the stringent performance
expectations of mission critical applications such as financial transactions and
retail sales. Database systems are also relied upon for their compression

capabilities to optimize storage costs.

Database systems are usually accessed by two types of personas: A Database
Administrator (DBA) and an application user. DBAs are responsible for the
installation and ongoing maintenance of the database system software as well as
the daily operations such as database backups, restores, configurations and
security. Application users access the database through an application, resulting
in a multitiered environment where the user's browser is the first tier, the
application server is the middle tier and the database server is the third tier.
Typically, users log on to the application and the application issues queries to the
database to serve the needs of those users. Figure 1.1 depicts a typical database

system deployment and usage.

> Application Application access

System

DBA Interactive access

A

File System

Storage
Media

Figure 1.1— Typical database system deployment and usage

A set of fine-grained authorization and data encryption techniques have been
proposed to equip database systems with the controls necessary to protect the

critical data entrusted with them. In the next sub-sections, we briefly review these
techniques and highlight key challenges.

1.1.1 Fine-Grained Authorization
Fine-grained authorization has originally been tackled through the concept of

database views (Elmasri et al., 2010). A DBA would create the desired views over
the tables containing the sensitive data and grant access to those views based
on “need-to-know”. This approach has two major drawbacks. First, it is not data-
centric as the security policy is only enforced when the data is accessed through
the views. Users with the right privileges can bypass the security policy by
accessing the base tables directly. Secondly, views can very quickly become
complex to manage as their number grows in order to satisfy the needs of
different user groups. Subsequent work around fine-grained database
authorization has addressed these two shortcomings to some degree. However,
there are still two major issues. First, the loss of user identity in multitiered
environments which renders the fine- grained authorization policies defined in the
database almost of no value since the identity of the end user is not known. The
application server is then forced to compensate by implementing the fine-grained
authorization logic in the application itself. This in turn renders the application
more complex, error prone, and prevents it from benefiting from delegating the
security policy to the database system where it can be enforced more efficiently.
The second major issue is the coexistence of fine-grained authorization with
important database tenets such as integrity and performance. How do we balance
integrity and security when both a trigger and fine-grained authorization policy
are defined on the same table? Similarly, how do we balance performance and
security when a Materialized Query Table (MQT) is defined on one or more tables
protected with a fine-grained authorization policy? In both cases, enforcing the
fine-grained authorization policy blindly can compromise database integrity

and/or disrupt the accuracy of a query results set.

1.1.2 Data Encryption
For database encryption, the solutions available in this space can be grouped

into four categories: Column encryption, tablespace encryption, file system
encryption, and self-encrypting disks. Column encryption negatively affects
database performance as queries with range predicates cannot benefit from
index-based access plans to limit the data to read from the table. Instead, the

database system is forced to read the entire table to evaluate the query.
Tablespace encryption may leave certain data vulnerable to attacks when, for
example, a DBA inadvertently takes an action that moves data from an encrypted
tablespace to an unencrypted one. File system encryption and self-encrypted
disks provide no protection against privileged users on the operating system. As
long as the file permissions allow access, such users can easily view the content

of the database by browsing the underlying files on the operating system.

1.1.3 Mandatory Access Control
Within the intelligence and defense communities, Mandatory Access Control

(MAC) (Rjaibi et al., 2004) is actually the mechanism relied upon for database
fine-grained authorization. Under this model, each row in a table is assigned a
classification. Similarly, each database user is assigned a clearance. The
combination of the MAC rules, the row’s classification and the user’s clearance
determine whether or not a given user can access a given row. MAC solutions
for database systems have solely focused on Multilevel Security (MLS) (Rjaibi,
2004). MLS is a very specific MAC model which came out of the US defense
community and has rigid classification, clearance and MAC rules. This meant that
MLS database systems could not be used to meet the needs of the defense and
intelligence communities from other countries where the classification, clearance,
and MAC rules may not necessarily match those of the US government.
Additionally, the issues around the loss of end user identity in multitiered
environments discussed earlier still apply when MAC models are enforced by the

database systems.

1.2 Motivation

The rise of data breaches has driven many organizations nowadays to implement
zero-trust security in order to reduce the risk of incurring a data breach. Like
identity systems and networks (Gilman et al., 2017), database systems also need
to evolve to help organizations effectively adhere to zero-trust security for at least

three main reasons.

First, database systems store the organization’s most critical data (e.g.,
employee personal data, client transaction data, patient medical records,
intellectual property information) and are often the primary target of attacks by
malicious entities such as disgruntled employees or external hackers. Second,

database systems are the subject of numerous regulations and standards such

4

as the European General Data Protection Regulation (GDPR) (Voigt et al., 2017)
and the Payment Card Industry Data Security Standard (PCI DSS) (Chuvakin et
al., 2009) which impose severe financial penalties on any organization that fails
to adequately protect critical data. Last but not least, traditional encryption and
fine-grained authorization solutions for database systems are not adequate to
address the challenges posed by security threats and compliance requirements.
As pointed out in Section 1.1, traditional database encryption methods either
negatively affect performance (column encryption) or create attack opportunities
for malicious users (tablespace encryption, file system encryption, disk
encryption). Similarly, traditional fine-grained database authorization methods
can be bypassed (e.g. views) and do not address the loss of user identity
problem, rendering them unusable in multitiered environments. They additionally
do not coexist in harmony with fundamental database tenets such as triggers and
MQT, thus creating potential for data leakage. Also, the loss of user identity in
multitiered environments diminishes user accountability as auditing at the

database level will not be able to show who actually performed which action.

Clearly, traditional database encryption and fine-grained authorization
methods are creating a dilemma for enterprises when it comes to meeting their
security needs. Some traditional encryption methods provide good security, but
that security comes at the expense of database performance. Other encryption
methods do not affect database performance, but that advantage comes at the
expense of database security. Additionally, traditional fine-grained authorization
methods do not apply in multitiered environments, forcing enterprises to build that
security in the application. But this renders applications more complex and
prevents them from delegating fine-grained authorization to the database where
it can be enforced more effectively. The three key research questions are
therefore the following:

1. How can database systems be extended to build an encryption solution
that meets the security needs but does not come at the expense of core
database tenets such as performance and compression?

2. What extensions can be made to database systems to develop a fine-
grained authorization solution that enables applications in multitiered
environments to delegate the security policy to the database and improves
overall database security?

3. How can database systems be extended to build a mandatory access
control solution that addresses the limitations of traditional Multilevel
Security (MLS) which imposes a rigid security label structure and access

rules?

1.3 Aims and Objectives

The aim of this research is to enhance encryption and fine-grained authorization
for database systems to help organizations meet their security and compliance
needs, without having to compromise any core database tenets such as
performance, integrity, compression and without requiring any changes to
database applications.

In order to achieve this aim, this research will:

1. Develop a holistic database encryption solution that meets the security
needs while coexisting in harmony with core database tenets such as

performance and compression.

2. Build a fine-grained authorization solution that enables applications in
multitiered environments to delegate the security policy to the database
while coexisting in harmony with performance, triggers, User-Defined
Functions (UDF) and Materialized Query Tables.

3. Enhance Mandatory Access Control (MAC) in database systems to
broaden its applicability to additional use cases such as fine-grained
authorization for XML documents stored database tables.

4. Measure the impact of the enhancements introduced on database

performance.

1.4 Contributions
This thesis has advanced the areas of database encryption, fine-grained
database authorization and mandatory access control. The key contributions can

be summarized as follows:

1. A holistic database encryption solution which allows organizations to meet
their security and compliance requirements without having to make

compromises either on the security side or on the database side

2. Afine-grained database authorization solution which allows organizations
to reduce the complexity of their applications and improve overall
database security

3. A solution which extends database systems to automatically and
transparently enforce privacy policies

4. A multi-purpose mandatory access control solution which addresses the
limitations of traditional Multilevel Security (MLS)

5. A fine-grained authorization solution for XML which improves over
traditional node-based XML access control approaches, by considering
inter-node relationships as the control granularity, and by using the multi-
purpose mandatory access control above for controlling access to such
inter-node relationships

6. The implementation of the enhancements above in several commercial
database systems including IBM DB2 and Informix, where they are relied
upon by thousands of clients around the world to protect their critical data

and meet their compliance mandates.

1.5 Thesis Organization

The rest of the thesis is organised as follows. Chapter 2 reviews the key tenets
of database security, positions the research portfolio in that field and summarizes
the key contributions for each. Chapter 3 gives the details of this thesis’s
contributions to the fine-grained database authorization area. Chapter 4
describes the details of this thesis’s contributions to the database encryption
area. Chapter 5 describes the details of this thesis’s contributions to the
mandatory access control area as well as to XML fine-grained authorization.
Chapter 6 shows how the contributions above come together to help
organizations effectively adhere to zero-trust database security. Chapter 7
summarizes the thesis and explores future directions for database security
research. Appendix A, Appendix B and Appendix C list the research portfolio for
fine-grained authorization, data encryption and mandatory access control

respectively.

Chapter 2: Research Portfolio Overview

This chapter briefly summarizes database security and positions the research
portfolio within this field. It then gives a high-level overview of the publications in
the portfolio and shows where each fit with respect to the fine-grained
authorization, data encryption and mandatory access control areas. Each of
these portfolio areas are then discussed in full details in Chapter 3, Chapter 4
and Chapter 5 respectively. The primary focus of this thesis is the portfolio
developed during the last 3 years (including the PhD registration period), namely
chapters 3, 4 and 6.

2.1 Introduction
Database security is the set of capabilities organizations depend upon to ensure
the security of the data they store in databases. It can be broadly divided into five

main pillars:

1. Authentication: This is the first protection measure where the database
system challenges the user to prove who they claim they are. Database
systems typically support various options for doing this validation such as
verifying the credentials submitted within the database system itself or
integrating with an external system to do so. Typical options for an external
system include the host operating system, an LDAP server or a Kerberos
KDC (MIT, 2019).

2. Coarse-grained authorization: This is the next level of protection where
the database system verifies that the authenticated user has the privilege
to execute a particular action. For example, when a user issues an SQL
SELECT statement on given table, the database system must first verify
that the user has been granted SELECT privilege on that table. DBAs use
the GRANT and REVOKE SQL statements to grant or revoke a particular
privilege to/from a user (Elmasri et al., 2010). These privilege assignments
are stored in the database system catalog tables and are consulted during
authorization checking. Users can acquire a privilege directly or indirectly
through membership in a role or group. Memberships in roles and groups
are also stored in the database system catalog tables and are consulted
during authorization checking.

3. Fine-grained authorization: While coarse-grained authorization dictates
whether or not a user has the privilege to access a table, fine-grained
authorization goes a level deeper. It controls what specific rows, columns
or cells of that table the user is allowed to access. Traditionally, database
views have been used to enforce fine-grained authorization (Elmasri et al.,
2010). A database view represents a dynamically computed set of rows
from one or more tables. Typically, the DBA creates the desired views and
grants access on those views to the appropriate users. Mandatory Access
Control (MAC) is another option some database systems offer for
enforcing fine-grained authorization (Rjaibi et al., 2004). It is an option that
is typically used by the defense and intelligence communities. In MAC,
each data row in a table is assigned a classification representing the

9

sensitivity of that row (e.g., SECRET). Similarly, users are assigned
clearances, defining their access level (e.g., TOP SECRET). The
combination of row classification and user clearance determines whether
or not the user can access the given row.

4. Data encryption: Data encryption can be divided into two categories:
Encryption for data in transit and encryption for data at rest. Encryption for
data in transit protects the confidentiality of the data exchange between
the database system and an application. Most database systems
implement Transport Layer Security (TLS) to provide this protection. The
goal of encryption for data at rest is to safeguard the data when it is in
storage. Different implementations exist ranging from column encryption,
to tablespace encryption, to file system encryption, to self-encryption
disks.

5. Auditing: This is the mechanism database systems provide so
enterprises can hold users accountable for their actions. It is also a
requirement for complying with various mandates such as the European
General Data Protection Regulation (GDPR) or the Payment Card Industry
Data Security Standard (PCI DSS). Most database systems provide the
flexibility to decide what type of activity to audit such as auditing a specific
user, a specific role, a specific table, all users, all tables, and so on.
Similarly, most database systems offer several options as to where the
audit records are sent. Options include storing them locally on the host
operating system or sending them to a Security Information and Event
Management (SIEM) system where they are aggregated and correlated
with audit data from other applications.

Figure 2.1 highlights the specific database security pillars that are the subject
of the research portfolio upon which this thesis is based. The portfolio specifically
focuses on fine-grained authorization and data encryption. The rest of this
chapter is organized as follows. Section 2.2 summarizes the portfolio of
publications related to fine-grained authorization. Section 2.3 highlights the
portfolio of publications in the data encryption area. Section 2.4 gives an overview
of the portfolio of publications in the area of mandatory access control. Lastly,
Section 2.5 concludes this chapter.

10

Authentication

Coarse-grained authorization

Fine-grained authorization (Thesis focus)

Data encryption (Thesis focus)

Auditing

Figure 2.1— Database security pillars and focus of the thesis

2.2 Fine-Grained Authorization

The core element of the research portfolio in this area is the publication
“Enhancing and Simplifying Data Security and Privacy for Multitiered
Applications”. This publication was fully developed during the course of this thesis
and is given in Chapter 3. It builds upon the ideas expressed in the following

patents’:

e US Patent US8,234.299B2: “Method and System for Using Fine-Grained
Access Control (FGAC) to Control Access to Data in a Database”. This
patent is the foundation for the row permission and column mask
concepts discussed in the core publication above.

e US Patent US 7,647,626B2: “Method for Establishing a Trusted
Relationship Between a Data Server and a Middleware Server’. This
patent is the foundation for the trusted context concept discussed in the

core publication above.

The research portfolio includes additional contributions to fine-grained

authorization. Publication “Extending Relational Database Systems to

! Walid was directly involved in the naming of all 7 patents referred to in this thesis.

11

Automatically Enforce Privacy Policies” describes a model where privacy policies
such as P3P (Agrawal et al., 2005) can be automatically enforced by the
database system. This publication builds upon the ideas expressed in the
following patents:

e US Patent US7,865,521B2: “Access Control for Elements in a Database
Object’. This patent is the foundation for the table restriction concept
discussed in the publication above.

e US Patent US 7,243,097 B1: “Extending Relational Database Systems to
Automatically Enforce Privacy Policies”. This patent is the foundation for
the method to translate privacy policies into table restrictions discussed in
the publication above.

Table 2.1 summarizes the fine-grained authorization publications and their key

contributions.

12

Table 2.1 — Fine-grained authorization publications

ID Publication Key Contributions

1 Rjaibi, W., Hammoudeh, M. (2020). | - Design of a holistic fine-grained database authorization solution
‘Enhancing and Simplifying Data | which allows organizations to reduce the complexity of their
Security and Privacy for Multitiered | applications and improve overall database security.
Applications’. Journal of Parallel and

- Enabl izati to adhere t -trust ity.
Distributed Computing, Spedial Issue on nable organizations to adhere to zero-trust security
Enabling Technologies for Energy Cloud. | - |mplementation of the solution in IBM DB2 for Linux, Unix and
Windows, IBM DB2 for z/OS and IBM for DB2 for iSeries.
(Also, Chapter 3 of this thesis) ndow z ' ren
Walid’s % contribution: 75.

2 Method and System for Using This patent is the foundation for the row permission and column
Fine-Grained Access Control (FGAC) to | mask concepts discussed in the core publication #1 above.
Control Access to Data in a Database
US Patent US8,234.299B2
Walid’s % contribution: 50.

3 Method for Establishing a Trusted | This patent is the foundation for the trusted context concept
Relationship Between a Data Server and | discussed in the core publication #1 above.

a Middleware Server
US Patent US 7,647,626B2
Walid’s % contribution: 50.
4 Agrawal, R., Bird, P., Grandison, T., | - Design of a solution which extends database systems to be able
Kiernan, J., Logan S., Rjaibi, W. (2005). | to automatically enforce privacy policies.
‘Extending relational database systems to
) . L - Enable organizations to meet privacy requirements for data
automatically enforce privacy policies’. In
tored in datab it .
Proceedings of the International stored In database systems
Conference on Data Engineering (ICDE).
Walid’s % contribution: 50.
5 Access Control for Elements in a | This patent is the foundation for the table restriction concept
Database Object discussed in publication #4 above.
US Patent US7,865,521B2
Walid’s % contribution: 50.
6 Extending Relational Database Systems | This patent is the foundation for the method to translate privacy

to Automatically Enforce

Privacy Policies

US Patent US 7,243,097 B1

Walid’s % contribution: 50.

policies into table restrictions discussed in publication #4 above.

13

2.3 Data Encryption

The core element of the research portfolio in this area is the publication “Holistic
Database Encryption”. A summary of this publication is given in Chapter 4 and
the publication itself is given in Appendix B.

Publications “Towards Zero-Trust Database Security — Part 1” and “Towards
Zero-Trust Database Security — Part 2° show how the solution discussed in
publication “Holistic Database Encryption” contributes to implementing zero-trust
security for database systems. These two additional publications have been fully
developed during the course of this thesis and are the foundation for Chapter 6
(Towards Zero-Trust Database Security). The publications themselves are given
in Appendix B.

Table 2.2 summarizes the data encryption publications and their key

contributions.

Table 2.2 — Data encryption publications

ID Publication Key Contributions

1 Rjaibi, W. (2018). ‘Holistic Database | - Design of a holistic database encryption solution which allows
Encryption’. In Proceedings of the | organizations to meet their security and compliance
International Conference on Security and | requirements without having to make compromises either on the
Cryptography (SECRYPT). security side or on the database side.

- Enable organizations to adhere to zero-trust security.
Walid’s % contribution: 100. - Implementation of the solution in IBM DB2 for Linux, Unix and
Windows.

2 Rjaibi, W., Hammoudeh, M. (2019). | - Introduces a database threat model and raises awareness of
‘Towards Zero-Trust Database Security | the direct and indirect means through which the same data in a
Part 1'. IEEE Future Directions Newsletter: | database can be accessed.
Technology Policy & Ethics, Issue
(September 2019).
Walid’s % contribution: 80.

3 Rjaibi, W., Hammoudeh, M. (2019). | - Outlines solutions (including encryption) to address the direct
‘Towards Zero-Trust Database Security | and indirect access challenges and to enable zero-trust database
Part 2'. [EEE Future Directions Newsletter: | security.
Technology Policy & Ethics, Issue
(December 2019).
Walid’s % contribution: 80.

14

2.4 Mandatory Access Control

The core element of the research portfolio in this area is the publication “A Multi-
Purpose Implementation of Mandatory Access Control in Relational Database
Management Systems”. A summary of this publication is given in Chapter 5 and
the publication itself is given in Appendix C. It builds upon the ideas expressed

in the following patents:

e US Patent US7,568,235B2: “Controlling Data Access Using Security Label
Components”. This patent is the foundation for the security label concept
discussed in the core publication above.

e US Patent US7,860,875B2: “Method for Modifying a Query by Use of an
External System for Managing Assignments of User and Data
Classifications”. This patent is the foundation for the enterprise integration

methodology discussed in the core publication above.

Publication “Inter-Node Relationship Labelling: A Fine-Grained XML Access
Control Implementation Using Generic Security Labels” shows an application of
the multi-purpose MAC solution discussed in the core publication. The fine-
grained XML access control solution devised improves over traditional node-
based XML access control approaches, by considering inter-node relationships
as the control granularity, and by using security labels to control access to such
inter-node relationships. A summary of this publication is given in Chapter 5 and
the publication itself is given in Appendix C. This publication builds upon the ideas

expressed in the following patents:

e US Patent US2009/0063951A1: “Fine-Grained, Label-Based, XML
Access Control Modefl. This patent is the foundation for the inter-node

relationship labelling concept discussed in the publication above.

Lastly, publication “An Introduction to Multilevel Secure Relational Database
Management Systems” surveys and critiques traditional implementation of
mandatory access control in database systems (i.e., MLS). This publication is

also given in Appendix C.

Table 2.3 summarizes the mandatory access control publications and their key

contributions.

15

Table 2.3 — Mandatory access control publications

ID Publication Key Contributions

1 Rjaibi, W., Bird, P. (2004). ‘A Multi- | - Design of a mandatory access control solution for database
Purpose Implementation of Mandatory | systems which addresses the limitations of traditional Multilevel
Access Control in Relational Database | Security (MLS).

Management Systems'. In Proceedings of o _

the International Conference on Very - Enable organizations to adhere to zero-trust security.

Large Data Bases (VLDB). - Implementation of the solution in IBM DB2 for Linux, Unix and
Wind d Informix.

Walid's % contribution: 75. ndows, and fnformbx

2 Controlling Data Access Using Security | This patent is the foundation for the security label concepts
Label Components discussed in the core publication #1 above.

US Patent US7,568,235B2
Walid’s % contribution: 75.

3 Method for Modifying a Query by Use of | This patent is the foundation for the enterprise integration
an External System for Managing | methodology discussed in the core publication #1 above.
Assignments of User and Data
Classifications
US Patent US7,860,875B2
Walid’s % contribution: 50.

4 Zhang, Z., Rjaibi, W. (2006). ‘Inter-node | - Design of a solution which improves over traditional node-based
Relationship Labelling: A Fine-Grained | XML access control approaches, by considering inter-node
XML Access Control Implementation | relationships as the control granularity.

Using Generic Security Labels’. In

. . - Enable databases to extend fine-grained authorizations to XML
Proceedings of the International

’ columns in database tables.
Conference on Security and Cryptography
(SECRYPT). - Enable organizations to meet privacy requirements and adhere
to zero-trust security.

Walid’s % contribution: 50.

5 Fine-Grained, Label-Based, XML | This patent is the foundation for the inter-node relationship

Access Control Model labelling concept discussed in the publication #4 above.
US Patent US2009/0063951A1
Walid’s % contribution: 50.
6 Rjaibi, W. (2004). ‘An introduction to | Survey and critique of traditional implementations of mandatory

multilevel secure relational database
management systems’. In Proceedings of
the conference of the Centre for Advanced
research

Studies on Collaborative

(CASCON).

Walid’s % contribution: 100.

access control in database systems (i.e., MLS).

16

2.5 Conclusion

This chapter has positioned the research portfolio within the database security
field. It has also given a high-level overview of the publications in this portfolio
and shows where each fit with respect to the fine-grained authorization, data
encryption and mandatory access control areas. The next three chapters will
discuss this research portfolio in full details. The publications themselves are

given in Appendixes A, B and C.

17

Chapter 3: Enhanced Fine-Grained Authorization

This chapter highlights the shortcomings of traditional fine-grained authorization
approaches in database systems, in particular the loss of user identity in
multitiered application environments which prevents such applications from
delegating the security policy to the database where it can be enforced more
effectively. Next, the chapter introduces the row permission, column mask and
trusted context concepts to extend database systems so that applications can
safely delegate the security policy to the database as opposed to building such
policy in the application logic itself. The implementation of such concepts in IBM
DB2 is then discussed and a performance evaluation is presented. The
evaluation shows that enforcing the fine-grained database authorization policy by
the database has not resulted in any significant performance drawbacks for the
application. This means that the gains in security and the reduction in application
complexity do not come at the expense of database performance. This chapter
appears in the research portfolio as publication “Enhancing and Simplifying Data
Security and Privacy for Multitiered Applications”, which was fully developed
during the course of the PhD registration. It is a synthesis of the entire research
portfolio in fine-grained authorization for database systems.

18

3.1 Introduction

Classical 3-tier applications have become quite complex partly due to the cost of
implementing data security and privacy rules within the application logic itself.
Figure 3.1 shows the architecture of a classical 3-tier application, where the end
user browsers, the application server and the database server represent the first,

second and third tier respectively.

s

&

Application bypass

User 1

\ Application Database
User 2 =
System
Application Server

User devices

Database Server

Figure 3.1- Classical 3-tier application architecture

Under this model, end users access the application to perform tasks related to
their job. The application authenticates such users to ensure they are authorized
to use the application. To meet the needs of the end users, the application makes
a connection to the database using a generic user ID identifying that application
to the database. To ensure that the right content of the database is returned to
the right users, the application logic typically includes a fine-grained authorization
layer to do the appropriate level of data filtering. This layer is usually implemented

in one or a combination of these two options:

e The application builds the SQL queries in such a way that they include the
appropriate predicates and functions to filter out and mask the table data
as appropriate.

e The application builds a set of database views which perform the
appropriate level of data filtering and routes the SQL queries to the
appropriate views based on user identities.

Besides burdening the application with the task of implementing fine-grained

authorization, this model also suffers from other security drawbacks including:

19

e The approach is not data-centric. This means that the intended security
policy is not enforced when the application is bypassed. An example of
such bypass is when the application administrator chooses to abuse the
application’s database user ID to access the database directly. This is
particularly important in today's world where internal threats are as
concerning as external threats (Zaytsev et al., 2017), (Ghafir et al., 2018).

e Over granting of database privileges. The application’s database user ID
is typically granted the privileges of a database administrator so that it can
be used to do all things on behalf of all users. This means that when such
user ID is abused, the consequences to the organization can be severe.

e Loss of end user identity at the database level. This is a consequence of
the application doing all database accesses on behalf of all users using a
single user ID. This makes it impossible to leverage database auditing to
hold end users accountable for their actions. It also prevents the
application from delegating the fine-grained authorization policy to the
database as the user ID is lost at that level.

e Unnecessary exposure of the security policy to application developers.

We contend that applications complexity can be reduced by delegating the
fine-grained authorization task to the database system. We also contend that this
delegation will additionally address the security concerns raised above and
enable applications to better adhere to compliance mandates such as the
European General Data Protection Regulation (GDPR) (Voigt et al., 2017) and
the Payment Card Industry Data Security Standard (PCl DSS) (Chuvakin et al.,
20009).

The crux of our contribution is the design of a holistic fine-grained database
authorization approach which allows organizations to reduce the complexity of
their applications and improve overall database security. We have also
implemented the solution in a commercial database system (IBM DB2 for Linux,
Unix, and Windows). Our approach improves over the state of the art as follows:

e Fine-grained authorization coexists in harmony with fundamental
database tenets such as performance and integrity so that organizations
are not forced to make compromises either on the security side or on the
database side.

20

e Applications can safely delegate the security policy to the database
system by leveraging the trusted context concept to propagate user
identities to the database system, thus extending the value of fine-grained
database authorization to multitiered applications.

e Organizations can leverage the trusted context concept to ensure that the
application’s database user ID cannot be abused by malicious entities who
may want to leverage that user ID for accessing the database outside the

scope of the application (i.e., application bypass).

The rest of this chapter is organized as follows. Section 3.2 reviews the related
work. Section 3.3 describes our fine-grained database authorization model.
Section 3.4 introduces our trusted context concept which addresses the loss of
user identity problem in multitiered environments. In section 3.5, we discuss how
the new concepts introduced safely coexist with core database tenets. Section
3.6 describes the performance evaluation of our fine-grained database
authorization model. In Section 3.7, we discuss a banking use case and show
how our solution meets its requirements. Lastly, Section 3.8 summarizes this

chapter.

3.2 Related Work

Traditionally, fine-grained authorization in database systems has been
implemented using the concept of database views (Elmasri et al., 2010). Like
database views, our approach is an extension to SQL and is declarative in nature.
Administrators are not expected to write any code to implement the fine-grained
authorization rules. However, our solution improves over database views in two
main ways. First, our approach defines the row and column controls directly on
the database tables themselves. This means that the row and column
authorization is always enforced regardless of whether the table is accessed
directly or indirectly through a database view. In contrast, when implementing
fine-grained authorization using views, the row and column authorization is
enforced only when the access is made through those views. In other words,
views do not provide any protection when the underlying tables are accessed
directly. Additionally, our approach introduced the notion of trusted context to
enable user identity propagation in multitiered environments so that applications
can safely delegate fine-grained authorization to the database system.

21

Oracle Virtual Private Database (VPD) was, to the best of our knowledge, the
first database system to introduce a fine-grained authorization model that
improves over traditional database views (Gaetjen et al., 2015) and is the closest
to our work. There are however some important differences between Oracle VPD
and our approach. First, the Oracle VPD approach is not declarative. It requires
the administrator to code a PL/SQL program which computes a predicate string
that is appended to any SQL statement accessing the table with which the
PL/SQL program was associated. This also limits the benefits of SQL statements
caching only to situations where the PL/SQL program is guaranteed to return the
same results for all users. Our approach does not limit the benefits of SQL
statements caching because it does not change the SQL statement text itself.
Oracle VPD also includes the notion of an Application Context which can be used
by applications to pass information to the database system such as a user ID in
a multitiered environment. An Application Context is a set of nhame-value pairs
the Oracle database systems stores in memory. Our trusted context concept
provides a more robust framework for propagating user identities in multitiered
environments as it first requires the establishment of a trusted relationship
between the database system and the application before propagating a user ID
is allowed. It also provides more control on which specific user IDs are allowed
for propagation as well as the ability to associate the application’s privileges with
the trusted context only so they cannot be abused elsewhere.

The Row Level Security (RLS) and Dynamic Data Masking (DDM) capabilities
in Microsoft SQL Server are conceptually similar to our row permission and
column mask concepts (Carter, 2018). But there are some important differences
between the two approaches. First, the SQL Server DDM is static in the sense
that the user either has access to the actual value in the column or a masked
value thereof. The column mask concept in our approach is dynamic in the sense
that the decision of whether the user sees the actual value, or a masked value is
determined dynamically based on the conditions expressed in the column mask
definition. Additionally, the SQL Server RLS requires the administrator to go
through a two-step process: They first need to create a function which returns a
filtering predicate, and then create a policy on the table to apply that predicate. In
our approach, this is all done in a single step using the row permission concept.
The user identity propagation in multitiered environments is supported through
an application context concept similar to the Oracle VPD one discussed above.

22

The Vertica Row Access Policy and Column Access Policy concepts enable
administrators to enforce access to table data at the row and column level
respectively (Vertica, 2019). The Vertica SQL syntax is very similar to ours.
However, and to the best of our knowledge, the Vertica solution does not discuss
how it enables user identity propagation in multitiered environments. Additionally,
the Vertica solution does not show any performance evaluation to contrast
implementing the fine-grained authorization rules within the database versus
within the application.

The Sybase Row Level Access Control (RLAC) enables administrators to
restrict access to data rows in a table by defining an access rule and binding it to
a specific column of the table (Garbus, 2015). When a table is accessed, the
access rules in place are automatically enforced by incorporating them into the
query at compilation time. Our approach differs from the Sybase RLAC capability
in several ways. First, RLAC is limited to row level access control only while our
approach covers both the row and column level. Also, to the best our knowledge,
the Sybase RLAC does not discuss how it enables user identity propagation in

multitiered environments.

The fine-grained authorization model presented in (Chaudhuri et al., 2007) is
also a declarative SQL model like ours. But there are some differences between
the two approaches. The first difference is fairly minor. They have extended the
GRANT SQL statement to give administrators the tools to define row and column
authorization rules while our approach introduced these constructs independently
of the GRANT statement. However, the work presented in (Chaudhuri et al.,
2007) did not cover user identity propagation in multitiered environments. It
assumed it was taken care of through a method similar to the application context
concept in Oracle VPD. Lastly, their work did not include any performance
evaluation to contrast implementing the fine-grained authorization rules within the

database versus within the application.

The fine-grained authorization approach discussed in (Agrawal et al., 2005) is
also a declarative SQL model but there are some key differences with our
approach. First, the focus of the work in (Agrawal et al., 2005) is on privacy
policies. They introduced row and column restriction concepts for the purpose of
being able to map privacy policies to them so the database system can
automatically enforce privacy policies. It did not cover user identity propagation

23

in multitiered environment. Also, the model described in (Agrawal et al., 2005) did
not include any performance evaluation to contrast enforcing the privacy policy

within the database versus within the application.

The model described in (Rjaibi et al., 2004) can be regarded as a special form
of fine-grained authorization. The focus of this work is more around introducing a
flexible mandatory access control model which addresses some of the
shortcoming of classical Multilevel Security (Rjaibi, 2004). It is a declarative SQL
model and also ensures the security predicates are executed before any
potentially unsafe predicates to prevent data leakage. However, it did not
introduce the concept of secure functions as we did in this chapter, so security
predicates are always executed first even if that does not make sense from a
performance perspective. Lastly, the approach discussed in (Rjaibi et al., 2004)

did not cover user identity propagation in multitiered environments.

Besides security built into database systems themselves, the importance of
protecting databases has also led to the emergence of external database security
tools. The leading tools in this context are Guardium (Chen et al., 2014) and
Imperva (Imperva, 2019). These tools can be thought of as complementary to our
solution as they focus more on database auditing, compliance reporting and
analytics on auditing data as opposed to fine-grained database authorization.

3.3 Fine-Grained Database Authorization Model

We extend the SQL table privileges model with two new concepts: Row
permissions and column masks. Row permissions and column masks implement
a second layer of security on top of table privileges. When a table is accessed,
the privileges layer determines whether or not the table can be accessed. Next,
row permissions are applied to decide what specific set of the table rows the user
is authorized to access. Lastly, column masks are applied to figure out whether
the user is allowed to see the actual value in a column or a masked value thereof.
For example, row permissions ensure that when a doctor queries the patients
table, they only see rows that represent patients under their care. On the other
hand, a column mask on the phone number column ensures that the doctor sees
only phone numbers for patients who consented to share their phone numbers
with them. Figure 3.2 shows our model as an extension to the SQL compiler.

24

SQL Query

i

Parser
System Catalogs i

Row - Query
permissions > .
Column Rewrite
masks
Integrity l
constraints

Query

Optimizer

i

Query Execution Plan

(Security rules embedded)

Figure 3.2— Fine-grained authorization as an extension of the SQL Compiler

An SQL statement first goes through the parser component where it is
analyzed for syntactic correctness and a query graph is generated. Next, it goes
into the query rewrite component where the graph is modified to inject additional
objects such as integrity constraints and triggers. We have modified this
component to inject the new row permission and column mask concepts we have
introduced. The modified graph then goes into the query optimizer component
where several execution options are examined, and the optimal plan is selected
based on a cost function. We have also modified this component to protect
against potential data leakage should an unsafe predicate be evaluated before
the security rules expressed by the row permissions are evaluated.

Unlike database views (Elmasri et al., 2010) where the security policy is
enforced only when the views themselves are accessed, row permissions and
column masks are table centric. This ensures that the security policy is enforced
consistently regardless of how the table is accessed. Row permissions and
column masks are also applied uniformly across all users, including DBAs, which
helps organizations better adhere to zero-trust security (Gilman et al., 2017),
(Walker-Roberts et al., 2018), (Hammoudeh et al., 2018) and in particular
ensuring that access control is based on “need-to-know”. Additionally, row

25

permissions and column masks are application transparent. Database
applications can immediately benefit from these concepts without having to incur
any code changes. The SQL syntax for row permissions and column masks is

given below.

create permission permission-name on table-x
for rows where predicate-clause

enforced for all access [disable | enable]

create mask mask-name on table-x

for column column-name

return case-expression [disable | enable]

Example 1

The following row permission creates a rule that grants access to rows in the
PAYROLL table only to users who are members of the HR role.

create permission rpayroll on payroll
for rows where verify_role_for_user (USER, ‘HR’) = 1

enforced for all access enable;

Example 2

The following column mask creates a rule that grants access to the salary
column in the PAYROLL table only to users who are members of the SM role.

Other users will see NULL when they query the salary column.

create mask msalary on payroll
for column salary
return case when verify_role_for_user (USER, ‘SM’) = 1
then salary
else null

end

enable;

Some applications may not desire receiving a NULL value. Instead, they may
want to receive an alternate and format preserving data value (Goldsteen et al.,
2015). Our model can easily support this use case. All that is needed is to register
a User Defined Function (UDF) in the database and modify the CREATE MASK

26

SQL statement above such that instead of returning NULL, call the UDF to return
the desired output.

A table can have zero or more row permissions. When more than a single row
permission is defined on a table, the predicates from each one of them are
combined together by applying the logical OR operator. In other words, if a row
permission Ri gives user U4 access to a set of rows S4, and another row
permission R> on the same table gives that same user access to another set of
rows S», then both row permissions would give that user access to the union of
S1and Sz. A column can have zero or one mask. We extended the SQL compiler
so that during query compilation, row permissions and column masks are
dynamically injected into the query graph. This ensures that the query execution
plan generated automatically enforces the rules expressed by the row

permissions and column masks.

3.3.1 Row Permissions Enforcement
Row permissions defined on a given table are automatically applied when that

table is accessed through any table level SQL statements: SELECT, INSERT,
UPDATE, DELETE, and MERGE.

For SELECT statements, the predicates from all the row permissions defined
on the table are combined together through the logical OR operator to derive a
master predicate. This master predicate acts as a filter to limit the set of rows
returned. We extended the query optimizer component of the SQL compiler to
ensure that this master predicate is evaluated before any other unsafe user
predicates. This is important to guard against potential data leakage through such
unsafe user predicates. For example, suppose there is a UDF which emails the
table rows retrieved to some external party. If such UDF appears in a user
predicate and that predicate is executed before the master predicate, then by the
time the master predicate is applied it will already be too late as the row would
have already been sent out.

For INSERT statements, the rules specified in the row permissions defined on
that table are used to determine whether or not the row can be inserted into the
table. To qualify, the user attempting to insert the row must be able to retrieve it

back through a SELECT statement. This semantic is analogous to how symmetric

27

database views behave. More specifically, a user is not allowed to insert a row
they cannot retrieve back.

For UPDATE statements, the rules specified in the row permissions defined on
that table are used to determine whether or not the row can be updated. This is
a two-step process. First, the row permissions are used to filter out the set of rows
that can be updated. In other words, a user cannot update rows they are not
allowed to see. Next, the updated rows (if any) must conform to the same
semantic as for INSERT processing to ensure that the user does not inject rows

they cannot retrieve back.

For DELETE statements, the rules specified in the row permissions defined on
that table are used to filter the set of rows that can be deleted in order to ensure

that the user can only delete rows they can see.

A MERGE statement can be thought of as a combination of an INSERT and
an UPDATE statements. Therefore, a MERGE statement is processed as an
INSERT when dealing with new rows and as an UPDATE when dealing with
existing rows in the table.

3.3.2 Column Masks Enforcement
The goal of a column mask defined on a given column C1 is to ensure that when

C1 appears in the final results set of a query, C1 values are masked out if the
user is not authorized to see them. This has two important implications. First, the
SQL compiler will enforce the column mask for SELECT statements only.
INSERT, UPDATE, DELETE, and MERGE statements do not return a result set
to the user, so the column mask does not apply in these cases. Secondly, the
SQL compiler must ensure that the enforcement of a column mask does not break
database applications as this can have severe business impact. For example,
suppose that a column mask is applied when the column appears in a predicate.
This may totally change the final results set and the database application may
end up processing a different set of rows (e.g. giving a raise to the wrong
employees). Consequently, we have extended the SQL compiler such that
column masks do not interfere with the computation of the final results set and
the order or grouping thereof. More specifically, column masks are not applied
when the column appears in any of these situations: WHERE clauses, GROUP
BY clauses, HAVING clauses, SELECT DISTINCT, and ORDER BY clauses.

28

One consequence of this approach is that it may create opportunities for
inferences. But as discussed in Section 1, we focus on application access as
opposed to free direct SQL access to the database. Furthermore, the trusted
context concept introduced later in this chapter enables establishing a trusted
relationship between the application and the database server as well as
protecting against abuse of the application’s database user ID.

3.4 User Identity Propagation in Multitiered Environments

In multitiered environments, the middle tier application serves the needs of
several users over a pooled database connection. Under this model, the
database server only sees a generic user ID which identifies the middle tier
application, not the actual users of that application. Despite being a very popular
application model, the fact that the database server only sees a generic user ID

for all accesses poses several challenges.

First, the middle tier application cannot benefit from fine-grained database
authorization because the database server does not see the identity of the
application user. Thus, instead of delegating the authorization burden to the
database server where it can be enforced more effectively, the middle tier
application is forced to implement that fine-grained authorization in the
application itself. This renders the application more complex, exposes the
security policy to application programmers, and forces unnecessary patching of
the application each time the security policy needs to be updated.

Additionally, using a single user ID for all database accesses diminishes user
accountability. For example, one of the very first tasks in a forensic investigation
is to check the database audit logs for gaining insight into user activities.
However, if all accesses by all users are made using a single user ID, the
database audit log would unfortunately provide little to no value.

The naive approach to address this issue is to have the middle tier application
establish a separate database connection for each user. Unfortunately, this
approach may not be always feasible as the middle tier application may not have
access to the end user database credentials. Additionally, even if this were
feasible, this approach would not be desirable as establishing a large set of
database connections would introduce a database performance overhead. This

29

is the overhead associated with user authentication and the setting of the actual

connection structures on the database server side.

Clearly, a better approach is needed for relieving the middle tier application
from the burden of enforcing fine-grained authorization, and for holding users

accountable for their actions.

3.4.1 Trusted Contexts
We extend database systems by introducing a new concept called trusted

context. A trusted context is a database object which defines a trust relationship
between the database server and an external entity such as a middle tier
application server. The trust relationship allows the database security
administrator (DBSECADM) to specify a set of conditions which, when satisfied
by a database connection request, instructs the database server to internally
mark that database connection as trusted. A trusted connection gives the entity
that established such connection a set of privileges that are not available outside
the scope of that trusted connection. One example of such privileges is the ability
to reuse an existing database connection for a different user without having to re-
authenticate that user at the database server. Reusing an existing database
connection avoids incurring a performance overhead by eliminating the need to
establish a new database connection. Therefore, a middle tier application server
can take advantage of the trusted context concept to establish an initial trusted
connection, and then reuse that trusted connection to propagate an end user
identity to the database server before submitting database requests on behalf of

that end user.

The DBSECADM can choose from a variety of attributes to set the conditions
for a trusted relationship such as a user ID, an IP address, a domain name, a
digital certificate, and the type of encryption used to protect the communication
channel between the database server and the middle tier application (e.g., SSL).
The SQL language syntax for our trusted context concept is given below.

create trusted context context-name
based upon connection using system authid authorization-id
attributes key-value-pair-list
default role role-name
with use for user | role | group name [without authentication |

with authentication] [role role-name]

[disable | enable]

30

Example 3

The following trusted context establishes a trusted relationship between the
database server and a middle tier application. The attributes upon which this
trusted relationship is based are the user ID identifying the middle tier application
itself, the IP address of the server where that application is hosted, and the type
of communication encryption used to protect the communication channel

between the database server and the middle tier application.

create trusted context ctx1
based upon connection using system authid midtierApp1
attributes (address ‘174.94.142.56’ encryption ‘SSL’)
with use for role midtierApp1Users

without authentication

enable;

In our implementation of trusted contexts in IBM DB2, we have extended the
database server connection processing as follows. When a database connection
request is received, we go through the authentication process as usual, but we
also compare the attributes of that request with the attributes of the trusted
context objects defined at that database server. If there is a match, we mark that
connection as trusted. We have also extended the DB2 Command Level Interface
(CLI) with a new command to give applications the option to request switching
the current user ID on a trusted database connection. On the database server
side, when such request is received, we first verify this is within the scope of a
trusted connection, and then ensure that the user ID to switch to is authorized as
per the trusted context object definition. For example, the trusted context
definition above states that it is only permitted to switch to users who are
members of the role midtierApp1Users. Lastly, we also check whether the trusted
context definition authorizes switching users without authentication or requires
authentication. If authentication is not required as in Example 3 above, then no
further processing is required. Otherwise, the switch user request must provide a
valid authentication credential. Once the checks above are completed and the
switch user request is authorized, we reset the user environment over the current
physical connection to match the new user, and the application is now ready to
start sending database commands under the scope of this new user.

31

Also, in order to ensure database integrity is not compromised, we extended
the database server processing such that switching users over a trusted
connection is permitted only on transaction boundary. If such a request is made
outside of a transaction boundary, the current transaction is rolled back, and the
connection is put in an unconnected state, thus giving the middle tier application
the opportunity to recover.

3.4.2 Trusted Context-Based Authorization
Traditionally, database security models are such that the privileges granted to a

user are universally applicable irrespective of any context. For example, if a user
is granted SELECT privilege on the payroll database table, that user could
exercise that privilege regardless of how they gain access to the database. The
lack of control on when a privilege is available to a user can weaken overall
security since the privilege may be abused. For example, an application
administrator may choose to use the application’s database credentials to
connect to the database directly and make changes that are contrary to the

application business logic.

To provide control over when privileges may be exercised, we extend the
trusted context concept so that a DBSECADM can associate one or more roles
with a trusted context. Roles that are associated with a trusted context are only
exercisable when the user is acting within the scope of a trusted connection
based upon that trusted context. This enables organizations to better adhere to
zero-trust security, and in particular the “verify and never trust” tenet as the
database system verifies more security attributes before granting a role to user
(Gilman et al., 2017), (Walker-Roberts et al., 2018).

Example 4

The definition of the following trusted context is similar to Example 3, but it
specifies two database roles. The first role is DBCONNECT which the
DBSECADM decided not to grant to the user ID midtierApp1. Instead, they
assigned it to this trusted context. This means that if the application administrator
were to abuse this user ID by attempting to connect to the database from a server
other than what is stated in the trusted context definition, that connection will be
refused by the database server. The second role is HR, which is the role that
grants access to the content of the payroll table as per the row authorization in

32

Example 1. This in turn means that members of the HR role will have access to
the payroll table only within the scope of the trusted connection based upon this
trusted context. In other words, they will only have access when they are using
the application and not otherwise.

create trusted context ctx1
based upon connection using system authid midtierApp1
attributes (address ‘srv.dep.org.com’ encryption ‘SSL’)
default role DBCONNECT
with use for role midtierApp1Users

without authentication HR

enable;

In our implementation of trusted context-based authorization in IBM DB2, we
have extended the database server authorization model as follows. When a
database connection request is matched with a trusted context object, we check
if there are any default roles assigned to that trusted context and add them to the
user’s roles list so they are used when deciding whether or not the user is
authorized to connect to the database. Similarly, when a request to switch the
current user on a trusted connection is received, we check if the trusted context
definition grants any roles to the user to switch to and add any such roles to the

new user’s roles list accordingly.

3.5 Safe Coexistence with Fundamental Database Tenets
Database security needs to safely coexist with fundamental database tenets.
Failure to do so may create database vulnerabilities and limit adoption of the

solution.

3.5.1 User Defined Functions
A User Defined Function (UDF) is an important database concept which

applications depend upon to delegate certain tasks to the database system. We
extended the database system such that, by default, the row permission
predicates are evaluated first to avoid potential data leakage through UDFs that
may also appear in the set of predicates to apply on the table. The following
experiment illustrates this extension and can be consistently repeated on any
recent IBM DB2 system. The experiment creates a table T1 with 2 integer
columns A and B. It inserts 3 rows into this table (1,1), (2,2) and (3,3). Then, we

create a UDF which replaces any value in column A that is greater than 1 by 1.

33

When we run the simple SQL query SELECT A, B FROM T1 WHERE F1(A) =1,
we expectedly obtain 3 rows because the values 2 and 3 in column A are changed
to 1 by the UDF F1. Then we create a row permission with the predicate “A = 1”.
Now, when we run the SELECT query above any number of times, we
consistently get back a single row. This is because our design ensures that the
row permission predicates are executed before any unsafe UDF predicate. This
is how data leakage is prevented because the UDF could have done anything
with the data rows such as modifying them to alter the results set (as F1 does).
But our design ensures that the UDF only sees the rows which are authorized for
the user running the SELECT query. Below are the exact steps.

create table T1 (A int, B int);
insert into T1 values (1,1), (2,2), (3,3);
create function F1 (A int) returns int
language SQL contains SQL no external action deterministic
return (case when A > 1 then 1 else A end);
select A, B from T1 where F1(A) = 1;
create permission P1 on T1
for rows where A = 1
enforced for all access
enable;
select A, B from T1 where F1(A) = 1;

While executing the UDF predicate last is good from a security perspective, it
may not be necessarily good from a performance perspective, particularly if the
UDF is a trusted function. Therefore, we extended the database system with the
concept of secure UDF. By default, a UDF is not secure, but the administrator
can alter the definition of a UDF to mark it secure. This means that the
administrator confirms that the UDF is trusted. When a UDF is secure, the
database system can order the evaluation of predicates based on such UDF
anywhere the SQL compiler sees fit. Secure UDF enable performance and
database security to coexist in harmony.

3.5.2 Materialized Query Tables
A Materialized Query Table (MQT) is a special type of database table which

contains the results set of an SQL query. It is a critical database concept DBAs
depend upon to maintain high performance for complex SQL queries. So, why

34

does the design of database security need to pay attention to MQT? Suppose
that the DBA creates an MQT M1 based on an SQL query affecting two tables T1
and T2. Further, suppose that table T1 is protected through a set of row
permissions and column masks. If such row permissions and column masks are
applied during the creation of MQT M1, the content of that MQT becomes
dependent on what its creator can or cannot see in base table T1. This would
negatively affect the accuracy of the database system’s answers. For example, if
the database system decides to use M1 to answer a query from a user U1, that
user may get more data or less data than what they are authorized depending on
whether they have access to more data or less data in base table T1 than the
creator of MQT M1. A better approach is therefore to not enforce the row
permissions and column masks on T1 during the creation of MQT M1 (or
subsequent automatic refresh of its content). But we need to make sure that
security is not compromised when doing so. In this context, we have extended

the database system such that:

e Upon the creation of an MQT, the database system automatically
generates and applies a default row permission with the false predicate “1
= 0”. This ensures that direct SQL access to the MQT is blocked (i.e., “1 =
0” always evaluates to false). If certain users have a business need to
access the MQT directly, the administrator can create the appropriate row
permissions on the MQT to give them access. Any such row permissions
or column masks are enforced only during direct access to the MQT.

¢ When the database system decides to answer a user query from an MQT,
it always ensures that any row permissions and column masks on any
base table upon which the MQT is defined are automatically carried over
and applied on the MQT itself. This ensures that users do not inadvertently

get access to data in the base tables for which they are not authorized.

The following experiment illustrates how direct access to an MQT is automatically
blocked when its underlying base table is protected by a row permission. This
experiment can be consistently repeated on any recent IBM DB2 system. First,
we create a table T1 with 2 integer columns A and B. We then insert 3 rows into
this table, namely (1,1), (2,2) and (3,3). Next, we create an MQT M1 based on
table T1. When we run the statement SELECT A FROM M1, we get the exact

same data in base table T1. On the other hand, if we protect T1 with a row

35

permission and retry that exact same statement, we now get zero rows returned.
This is because our design automatically protects the MQT M1 to guard against

data leakage. Below are the exact steps.

create table T1 (A int, B int);
insert into T1 values (1,1), (2,2), (3,3);
create table M1 (a, b) as (select A, avg(B) from T1 group by A)
data initially deferred refresh deferred maintained by system;
refresh table M1;
select A from M1;
create permission P1 on T1
for rows where A = 1
enforced for all access

enable;

select A from M1;

3.5.3 Database Triggers
A database trigger is a critical database concept which applications depend upon

to preserve data integrity. For example, a banking application may decide to use
a trigger to ensure that each time a client’s balance is updated in the clients table,
a row is inserted into the statements table to record that particular withdrawal or
deposit transaction. So, why does the design of database security need to pay
attention to database triggers? Consider the banking application example above.
Suppose that the clients table is protected with a set of row permissions and
column masks. If such row permissions and column masks are blindly applied,
then it may not be possible to update the statements table as the required input
data could have been filtered out or masked. Clearly, this approach would
negatively impact data integrity.

A better approach is therefore to not enforce the row permissions or column
masks on the clients table. However, not doing so may affect security as the data
in the clients table now becomes visible to any triggers defined on such table and
may be abused. In this context, we have extended the database system by
introducing the notion of a secure trigger. By default, a database trigger is not
secure, but the administrator can alter the trigger’s definition to mark it secure.
This means that the administrator vouches for the trigger as trusted and can be
applied on a table protected with row permission or column mask constructs.

Secure triggers enable database security and triggers to coexist in harmony.

36

3.6 Performance Evaluation

We have conducted 4 different assessments during our performance evaluation.

The assessments were conducted using IBM DB2, extended with our fine-

grained authorization model, deployed on a dedicated AIX system with 8
processors @ 1452 GHz and 32GB of RAM. This is a fully dedicated system

(CPU, memory, networking and storage) running only our experiment to ensure

performance data stability. The time elapsed for a given query is measured from

the time the query is submitted to the time the results are returned. Before a query

is run, the database system is activated to ensure a fresh database set up. The

query is run several times. The first run is discarded from the statistics as the

database bufferpool (i.e., database cache) is cold.

Assessment 1: The goal of this assessment is to measure the impact to
performance when an application chooses to delegate fine-grained
authorization to the database. One of the key advantages of our fine-
grained authorization model is that it relieves applications from the burden
of enforcing fine-grained authorization by delegating such task to the
database. But it is important that this reduction in application complexity
does not result in any significant performance drawbacks for the
application. This assessment confirmed that applications can safely
delegate the enforcement of fine-grained database authorization to the
database with no performance concerns.

Assessment 2: The objective of this assessment is to measure the
scalability of column masks. Linear scalability has been confirmed by this
assessment.

Assessment 3: The goal of this assessment is to verify the independence
of column masks. This assessment has shown that the impact of all
column masks defined on a table is never higher than the sum of the
impact of each column mask defined individually.

Assessment 4: The objective of this assessment is to measure the impact
of row permissions. This test confirmed that the impact of row permissions

iS minimum.

37

3.6.1 Delegating Fine-Grained Authorization to the Database System

Methodology

We have selected TPC-H (Thanopoulou et al., 2012) as the application with
which to conduct our assessment. TPC-H is an industry standard benchmark for
measuring database performance. It consists of 22 queries representative of
decision support systems that examine large volumes of data. The performance
metric reported by TPC-H is called the TPC-H Composite Query-per-Hour
Performance Metric (QphH) and reflects multiple aspects of the capability of the
database system to process queries.

We focused on two scenarios in our assessment. In the first scenario, we
created a set of column masks and row permissions on the TPC-H database
schema to specify a fine-grained authorization policy. Then, we ran the TPC-H
benchmark and measured the QphH. In the second scenario, we created no
column masks or row permissions in the database. Instead, we modified the SQL

queries, so the same fine-grained authorization is enforced by the application.

Table 3.1 summarizes our findings. The ratio column represents the QphH of
the fine-grained authorization policy delegated to the database divided by the
QphH when that policy is enforced by the application itself and is plotted in Figure
3.3. The numbers on the x-axis of this figure represent the 22 TPC-H queries
referred to in Table 1. That is, 1 represents query Q1, 2 represents query Q2 and

SO on.
Discussion

Figure 3.3 shows that almost all the TPC-H queries perform the same or better
when the policy is enforced by the database than by the application. More
specifically, 13 queries performed fairly the same in both scenarios. 8 queries
performed better when the fine-grained authorization policy is enforced by the
database system (i.e., the ones where the ratio column is coloured in green in
Table 3.1). The improvement observed ranges from 8 to 68%. Lastly, for query
Q19, we observed a performance degradation of 15% when the fine-grained
authorization policy is enforced by the database.

38

Table 3.1 — Application vs Database Enforcement for TPC-H Queries

TPC- QphH Application QphH Database Ratio
H Query | Enforcement (a) Enforcement (b) (b/a)
Q1 1158.8 370 0.3193
Q2 19.7 12 0.6091
Q3 2350.6 2321.6 0.9877
Q4 6105.6 61034 0.9996
Q5 7352.6 6371.5 0.8666
Q6 27.8 25.6 0.9209
Q7 16654.1 16657.5 1.0002
Q8 884.2 882.5 0.9981
Q9 9653.8 94757 0.9816
Q10 8376.5 8367.3 0.9989
Q11 138.7 127.5 0.9193
Q12 112.6 113.6 1.0089
Q13 103.5 105.7 1.0213
Ql4 22.8 144 0.6316
Q15 26.7 18.3 0.6854
Ql6 243 24 0.9877
Q17 336.3 336.2 0.9997
Q18 288.5 2919 1.0118
Q19 93.6 107.6 1.1496
Q20 73.9 70.8 0.9581
Q21 9655.1 9644.6 0.9989
Q22 90.9 329 0.3619
14
1.2
1
0.8
0.6
0.4
0.2
0

1234567 8910111213141516171819202122

Figure 3.3— Ratio of database vs application enforcement for TPC-H queries

39

There are two main reasons for the results observed. First, the order in which
predicates are evaluated is important, particularly for table joins. For example,
consider the following query where tables T1 and T2 are joined on column C1:
“SELECT * FROM T1 INNER JOIN T2 on T1.C1 = T2.C1”. When a row
permission is enforced by an application, the application will modify the query
above by adding the row permission predicates to the SQL text directly as follows:
“SELECT * FROM T1 INNER JOIN T2 on T1.C1 = T2.C1 AND <row permission
predicate>". Recall from section 3 that we extended the SQL compiler so that, by
default, the row permissions predicates are evaluated first on the table to guard
against potential data leakage by any unsafe predicates in the query. So, when
the database enforces the fine-grained authorization policy, the query would
actually look as follows within the SQL compiler “SELECT * FROM (SELECT *
FROM T1 WHERE <row permission predicate>) INNER JOIN T1 on T1.C1 =
T2.C1”. However, when there are no unsafe predicates in the query, we do not
restrict the SQL compiler optimizer component from moving the row permission
predicates higher or lower in the query graph if it leads to a better query execution
plan. This was the case in our testing as we had no unsafe predicates. The only
situation where the SQL compiler optimizer component did not move the
predicate was for query Q19. This is because the row permission defined on the
table did not refer to any data in the table itself as it was a simple rule to check
whether or not the user issuing the query were a member of a given role.
Consequently, the optimizer selected a merge-join instead of a hash-join (Bruno
et al., 2014) (Balkesen et al., 2013). Normally, the merge-join would have
performed better but because the row permission did not actually filter any rows,
the merge-join ended up being more expensive, thus the observed degradation
in query Q19.

The second reason for the results observed is how column masks are
processed. When the database system enforces a column mask, it does so
internally within the actual query graph built by the SQL compiler. So, when the
same column appears multiple times within a query the SQL compiler does not
need to duplicate the column masks. However, when the fine-grained
authorization policy is enforced by the application, the rules representing the
column mask end up being duplicated in the SQL query text as the application
can only work with SQL. This explains the performance gain observed when the
fine-grained authorization policy is enforced by the database.

40

Our tests have shown that enforcing the fine-grained database authorization
policy by the database has not resulted in any significant performance drawbacks
for the application. This means that the gains in security and the reduction in
application complexity do not come at the expense of application SQL workload

performance.

3.6.2 Scalability of Column Masks

Methodology

We have created a table T1 with 10 columns, all of the same type. We have
populated the table with random data. No indices of any type were created on
this table. We have run a “SELECT * FROM T1” as our baseline. Then, we
created a column mask on the first column, ran the same query above and
measured its performance. We have repeated this process for each of the
remaining columns. The column mask created is exactly the same for each
column. We have run the experiment twice: One where T1 contains one million

rows and another one where it contains ten million rows. Table 3.2 summarizes

our findings.
Table 3.2 — Time Elapsed (in seconds)

Test 1,000,000 rows 10,000,000 rows
Baseline (No Masks) 4.58 4426
1 Mask 4.73 4597
2 Masks 4.74 46 .45
3 Masks 4.83 46.85
4 Masks 4.82 47.06
5 Masks 4.87 47.48
6 Masks 5 48.28
7 Masks 497 48.8
8 Masks 5.02 49.01
9 Masks 5.08 49.96
10 Masks 5.10 50

Discussion

Figure 3.4 shows that for both the one million and ten million rows cases, the

execution time of our query scales almost in a linear manner as the number of

41

masks increases. This confirms our expectation as our design and
implementation of column masks did not introduce any additional logic for
coordinating the execution of multiple masks when they are present on a given
table. Essentially, the overhead introduced is only the one associated with the
execution of the actual rule expressed in the column mask definition itself. In our
experimentation, the rule was checking user membership in a role to decide
whether they see the actual column value or a masked version thereof. It used
the built-in SQL function VERIFY_ROLE_FOR_USER. This function is highly
optimized. It keeps an in-memory list of users to roles mappings, making it very
fast to decide whether or not a user is a member in a given role. We introduced
this function to support the adoption of our row permissions and column masks
as security best practices advocate for simplifying the management of
authorization by assigning privileges to roles and assigning users to roles.
Authorization then simply becomes checking user membership in roles.

60
50
40
30
20
10

0

1 2 3 4 5 6 7 8 9 10 11

e 1,000,000 ROWS ~ em====10,000,000 Rows

Figure 3.4— Scalability of Column Masks

3.6.3 Independence of Column Masks

Methodology

We have created three column masks on the CUSTOMER table in the TPC-H
database schema: A simple column mask, an intermediate column mask, and
complex column mask. The simple column mask is similar to the column mask
shown in Example 2. It makes use of a single call to function
VERIFY_ROLE_FOR_USER to check whether the user is a member of the given
role. The intermediate column mask has four «calls to the
VERIFY_ROLE_FOR_USER function. Lastly, the complex column mask is

similar to the intermediate one but has a sub-select statement on top of that.

42

Our base line is a “SELECT * FROM CUSTOMER” query with no column
masks defined on the CUSTOMER table. We ran this query, measured the

elapsed time, and then performed the following tests:

¢ Run the same query with only the simple column mask enabled.
¢ Run the same query with only the intermediate column mask enabled.
¢ Run the same query with only the complex column mask enabled.

¢ Run the same query with all three column masks enabled.

Table 3.3 shows the time elapsed for each test when the CUSTOMER table
contains one million rows, and ten million rows respectively. Table 3.4 shows the

difference compared to the baseline for each of the tests conducted.

Table 3.3 — Time Elapsed (in seconds)

Test 1,000,000 rows 10,000,000 rows
Baseline (No Masks) 37.464 371.791

Simple Mask 38.812 387.457
Intermediate Mask 40.356 404.619
Complex Mask 58.592 556.439

All Masks 61.855 589.25

Table 3.4 — Difference with the Baseline

Test 1,000,000 rows 10,000,000 rows
Simple Mask 1.348 15.666
Intermediate Mask 2.892 32.828

Complex Mask 21.128 184.648

Sum of all Masks 25.368 233.142

All Masks 24.391 217.459

Discussion

Figure 3.5 contrasts the sum of the differences to the baseline for each of the
simple, intermediate, and complex mask tests with the difference to the baseline
for the test where all masks are enabled at the same time for both the one million
rows and ten million rows cases. For both cases, we can observe that the
difference with the baseline when all masks are enabled at the same time is never
higher than the sum of the differences to the baseline for each individual mask.

43

This confirms our expectation as our column masks design and implementation
did not require introducing any coordination when multiple masks are enabled at

the same time. The masks are in fact totally independent from each other.

250

200

150

100

50
0 I .

1,000,000 Rows 10,000,000 Rows

B Sum of All Masks ® All Masks

Figure 3.5— Independence of Column Masks

3.6.4 Row Permissions Impact

Methodology

We have created three row permissions on the CUSTOMER table in the TPC-
H database schema: One row permission that returns zero rows, one permission
that returns 50% of the rows, and another row permission that returns all rows.
We have run “SELECT * FROM CUSTOMERS” as our baseline. Then, we run
the same query with each of the row permissions above enabled individually (i.e.
one row permission at a time). Table 3.5 shows the time elapsed for each test
when the CUSTOMER table contains one million rows and ten million rows

respectively.
Table 3.5 — Time Elapsed (in seconds)
Test 1,000,000 rows 10,000,000 rows
Baseline (No Permissions) 38.163 380.118
Permission (0 rows) 0.11 3.173
Permission (50% rows) 19.679 169.154
Permission (All rows) 38.679 383.93
Discussion

Figure 3.6 and Figure 3.7 contrast the performance for each of the 3 tests with

our baseline for the one million rows and ten million rows respectively. The results

44

are similar for each case and show that the overhead of row permissions is very
minimal. For instance, when the row permission returns all rows, the performance
is almost identical to the baseline. This is expected as the rule expressed in the
row permission is internally implemented as a predicate. In our case, the
predicate includes the built-in VERIFY_ROLE_FOR_USER SQL function. If a
DBA decides to deploy their own UDF for use in a row permission definition, the
performance implications may be different depending on several factors such as
how optimized that UDF is and whether or not it is declared as trusted.

45

Baseline Permission (0 Permission Permission
rows (50% rows (All rows
returned) returned) returned)

Figure 3.6— Row Permissions Impact (1,000,000 rows)

450
400
350
300
250
200
150
100
50
0 -

Baseline Permission (0O Permission Permission

rows (50% rows (All rows

returned) returned) returned)

Figure 3.7— Row Permissions Impact (10,000,000 rows)

3.7 Use Case Scenario

We describe how our row permissions and column masks can be applied to meet
the needs of a banking application. All the SQL statements and outputs below
have been fully verified with our implementation on IBM DB2. These requirements

can be summarized as follows:

e Customer service representatives and telemarketers can see all data.

e Tellers can see only the data for their own branch customers.

45

e The customer account number is accessible only by customer service

representatives. All other users can only see the last 4 digits.

Customer information is stored in a table called CUSTOMER and bank
employee information is stored in a table called EMPLOYEE_INFO. The SQL
statements for creating these two tables are given below.

create table customer (account varchar (9),
name varchar (20),
income int,
branch char (1));

create table employee_info (branch char (1),

emp_id varchar (10));

We assume that tables CUSTOMER and EMPLOYEE_INFO are already

populated. Their content is given by tables 3.6 and 3.7 respectively.

Table 3.6 - CUSTOMER Table

ACCOUNT NAME INCOME BRANCH
1234-5678 Alice 22,000 A
2345-6754 Bob 71,000 B
3456-1298 Carl 123,000 B
4672-8901 David 172,000 C

Table 3.7 — EMPLOYEE_INFO Table

EMP_ID BRANCH
Amy A
Pat B
Haytham C

Tellers, customer service representatives, and telemarketers are members of
database roles TELLER, CSR, and TELEMARKETER respectively. SELECT
privilege to the CUSTOMER table is granted to these three roles. Users Amy, Pat
and Haytham are a teller, a customer service representative and a telemarketer

respectively. The SQL statements for setting up these roles are given below.

46

create role teller;

grant select on customer to role teller;
grant role teller to user amy;

create role csr;

grant select on customer to role csr;
grant role csr to user pat;

create role telemarketer;

grant select on customer to role telemarketer;

grant role telemarketer to user haytham;

To implement the first rule which states that customer service representatives

and telemarketers can see all customers, the following row permission must be

created.

create permission csr_row_access on customer
for rows where verify_role_for_user (USER, ‘csr’) =1 or
verify_role_for_user (USER, ‘telemarketer’) = 1

enforced for all access

enable;

To implement the second rule which states that tellers can only see customers

of their own branch, the following row permissions must be created. The sub-

select in the permission definition ensures that the customer’s branch and the

teller’s branch match.

create permission teller_row_access on customer
for rows where verify_role_for_user (USER, ‘teller’) = 1 and
branch = (select branch from employee_info
where emp_id = USER)
enforced for all access

enable;

To implement the third rule, the following column mask is created. The mask

ensures that when the user is not a member of the CSR role, they see only the

last 4 digits of the account number. The rest of the digits are replaced by “X”s for

them (masked out).

47

create mask csr_column_access on customer
for column account
return case when verify_role_for_user (USER, ‘csr’) = 1
then account
else 'XXXX-' || SUBSTR(ACCOUNT,5,4)

end

enable;

Now that the row permissions and column masks have been defined, any
future access to the CUSTOMER table will see the database system
automatically enforce the security policy. Table 3.8 contrasts the output when the
application issues the query “SELECT * FROM CUSTOMER?” for users Amy,
Haytham and Pat respectively.

When the application issues that query on behalf of user Amy, the database
only returns the rows for customers from branch A, which is where Amy works.
Note that the account number is masked out because Amy is not a member of
the CSR role.

On the other hand, when the application issues the exact same query on behalf
of user Haytham, the database returns all the rows in the table which is in
accordance with the first rule because Haytham is a telemarketer. Note that the
account number is still masked out because Haytham is not a member of the
CSRrole.

Lastly, when the same query is issued on behalf of user Pat, all the rows in the
table are returned and the account number is not masked out because Pat is a
member of the CSR role.

48

Table 3.8 — Outputs for Users Amy, Haytham and Pat

USER ACCOUNT NAME INCOME BRANCH

Amy XXXX-5678 Alice 22,000

Haytham XXXX-5678 Alice 22,000 A
XXXX-6754 Bob 71,000 B
XXXX-1298 Carl 123,000 B
XXXX-8901 David 172,000 C

Pat 1234-5678 Alice 22,000 A
2345-6754 Bob 71,000 B
3456-1298 Carl 123,000 B
4672-8901 David 172,000 C

This example has shown how the application logic can remain very simple. In
all 3 user situations, the application simply issues the simple “SELECT * FROM
CUSTOMERS” SQL query. The database system automatically applies the fine-
grained authorization rules, relieving the application from this burden, which in
turn contributes to reducing the complexity of the application.

3.8 Conclusion

We have introduced a fine-grained database authorization model which allows
applications to safely delegate the burden of fine-grained authorization to the
database system, where it is enforced more effectively. In particular, we have
shown how the trusted context mechanism introduced allows applications to
propagate user identities to the database system in a controlled manner in
multitiered environments, strengthening overall database security. We have also
shown how the trusted context mechanism can be used to provide control on
when the application privileges can be exercised which helps protect against
potential abuse of the application user ID (application bypass).

The row permission, column mask, and trusted context concepts introduced
also enable organizations to implement zero-trust security for database systems.
Row permissions and column masks allow such organizations to ensure that data
is accessed based on “need-to-know”, which is a key tenet of zero-trust security.
Additionally, trusted contexts help organizations implement the “verify and never
trust’ zero-trust security tenet, by having the database system verify additional
attributes before granting access to a user or application.

49

In our future work, we plan to focus on facilitating the adoption of our fine-
grained database authorization model. For example, defining a column mask is
a very easy task once you know which column to define it on. But in some
situations, this knowledge may not be available (e.g., a database inherited
through a merger or an acquisition). This is where data classification would be
useful. The main challenges in this context would be to investigate how to do the
data classification on the database efficiently and accurately. Additionally, we
want to explore machine learning for automatically generating the appropriate
row permissions and column masks. Machine learning has been explored for
detecting threats (Alloghani et al., 2020), (Aljawarneh et al., 2018), (Aldwairi et
al., 2012), but here we would like to explore it for fine-grained authorization policy

recommendation.

50

Chapter 4: Enhanced Data Encryption

This chapter provides a summary of the research portfolio in database encryption. It is
based primarily on a research publication “Holistic Database Encryption” that is given in
Appendix B. The chapter first reviews traditional data encryption methods in database
systems and contrasts them with holistic database encryption. Then, it introduces
holistic database encryption and discuss its implementation in a commercial database

system.

51

4.1 Introduction

Data encryption is a powerful control for protecting sensitive data. For database
systems, traditional data encryption approaches come in many shapes and
forms, but each with a set of challenges forcing organizations to make
compromises either on the security side or on the database side when adopting
such approaches. Clearly, a better approach was needed so that data encryption
coexists in harmony with fundamental database tenets such as performance and
compression, thus eliminating the need for organizations to make any such
compromises. In this thesis, this better approach is referred to as “holistic
database encryption’. Section 4.2 reviews the traditional approaches and
contrasts them with holistic database encryption. Section 4.3 introduces holistic
database encryption while Section 4.4 discusses its implementation in IBM DB2.
Lastly, Section 4.5 concludes this chapter.

4.2 Related Work
Traditional database encryption solutions can be divided into four main
categories: Column encryption, tablespace encryption, file system encryption and

self-encrypting disks.

Column encryption allows an application to encrypt data at the column level in
a database table (Benfield et al., 2001). Typically, the database system provides
a set of built-in UDFs to give applications the tools to encrypt and decrypt data
stored in database table columns. The main advantage of column encryption is
security as the column data remains encrypted from the point of entry in the
application all the way down to the storage and vice versa. However, this gain in
security comes at a cost. For example, because standard encryption is not order
preserving, queries with range predicates cannot benefit from index-based
access plans to limit the data to read from the table. Instead, the database system
is forced to read the entire table to evaluate the query. Additionally, encrypting
data in the application limits the value of database compression as compression
will be left to operate on encrypted data which typically does not include patterns.
Last but not least, column encryption complicates adoption of the solution for pre-
packaged applications where the organization does not own the source code for
the application. Holistic database encryption improves over column encryption. It
does not interfere at all with query execution and therefore does not negatively
impact the performance of range queries. It takes place within the database

52

kernel itself, after compression has occurred, thus allowing organization to benefit
from both database encryption and compression. Also, holistic database
encryption is totally transparent to applications. Lastly, while holistic database
encryption does not protect data in transmission, this can be easily mitigated by
ensuring TLS is turned on to secure the channel between the database system

and applications.

Tablespace encryption provides the DBA with the option to indicate that data
in given tablespace must be automatically encrypted by the database system
itself (Boobal, 2018). It improves over column encryption in the same way holistic
database encryption does. However, tablespace encryption can leave data
vulnerable to attacks. For example, DBAs often create materialized query tables
(MQT) to speed up the execution of data warehousing queries (Zilio et al., 2004).
In doing so, data from an encrypted tablespace may find itself in another
tablespace which the DBA omitted to specify it must be encrypted upon creation.
This would leave the data in the MQT vulnerable to attacks. Additionally, data in
the system-defined tablespaces is not encrypted. For example, the system
catalogues typically include statistics information which the database system
relies upon to generate optimal access plans for executing queries. Some of
these statistics include actual data values such as the most frequent values in a
column, and the highest and lowest values in that column. This would
unfortunately leave such data vulnerable to attacks. Holistic database encryption
improves over tablespace encryption because it automatically encrypts the
database as a whole including any system-defined or temporary tablespaces. It
simplifies database administration for the DBA and avoids the risk of creating
vulnerabilities when inadvertently moving data to an unencrypted tablespace,

such as when creating an MQT for boosting query performance purposes.

File system encryption is an indirect mechanism to encrypt the database
objects by encrypting their underlying physical files. Examples of file system
encryption solutions include the Encrypted File System (EFS) on the IBM AIX
systems (IBM, 2018), the EFS on the Microsoft Windows systems (Microsoft,
2018), and eCryptfs on Linux systems (Halcrow, 2007). File system encryption
can also be provided using add-on tools such as Vormetric Transparent Data
Encryption (Vormetric, 2018) and Gemalto Protect File (Gemalto, 2018). These

tools deploy an agent on the operating system where data encryption is needed.

53

The agent is a kernel module which extends that operating system to enable file
encryption. Compared to the native file system encryption above, these tools
allow an organization to manage file system encryption uniformly across a
heterogeneous operating systems environment. File system encryption also
improves over column encryption and shares the same benefits as tablespace
encryption. However, it is not supported on all file systems. For example, the IBM
EFS solution for AIX systems is only available on JFS2 file systems. This limits
the set of database deployments which can benefit from this solution.
Additionally, some database deployments choose to write their data directly to
raw devices bypassing the file system altogether. In this case, a file system
encryption solution cannot be used to encrypt the database objects. Also, native
file system encryption provides no protection against privileged users on the
operating system. As long as the file permissions allow access, such users can
easily browse the content of the encrypted files. Lastly, the division of
responsibilities between the DBA who is responsible for database administration
and the SA who is responsible for system administration may introduce security
vulnerabilities. For example, if a DBA creates a new tablespace and places it on
an unencrypted file system, the content of that tablespace will not be encrypted
and would be left open to attacks. Holistic database encryption addresses the file
system encryption challenges above. It is built in the database kernel itself, so it
is available anywhere the database is deployed. Also, being part of the database
kernel means that database can choose to write to raw devices directly and still
ensure data is encrypted. Additionally, the database content is not vulnerable to
users browsing the file systems since that content can only be decrypted by the
database itself. Last but not least, the division of responsibilities between the DBA
and SA does not create any vulnerabilities as the database is automatically and
fully encrypted by the database kernel itself.

Self-Encrypting Disks (SED) is another indirect mechanism for encrypting the
database objects by relying on the circuitry built into the hard drive itself to encrypt
the data (Dufrasne et al., 2016). Examples of SED include IBM DS8000, Seagate
SED, and Hitachi SED. They too improve over column encryption, share the
same benefits with tablespace, file system and holistic database encryption. They
provide the broadest coverage as the full disk is encrypted. With respect to
performance, SED actually add no overhead to the CPU as the encryption is done
by the hard drive itself. SED do have certain drawbacks, however. Firstly, they

54

are a disruptive and expensive approach as an organization would need to
purchase these new devices and replace existing hard drives. Secondly, SED
provide no protection against privileged users on the operating system. As long
as the file permissions allow access, such users can easily browse the content of
the encrypted files. Holistic database encryption addresses these challenges
because it is part of the database itself, so it creates no disruptions to the
organization’s IT infrastructure. It also ensures that the content of the database
is not vulnerable to users browsing the file system as that content can only be
decrypted by the database itself.

4.3 Holistic Database Encryption

The first objective of holistic database encryption is to ensure that the full
database content is automatically encrypted by the database system itself. This
needs to include not only user-defined tablespaces, system-defined tablespaces
and temporary tablespaces, but also data in transaction logs and database
backups. This is to ensure that no vulnerability is inadvertently introduced as with
the traditional methods discussed earlier. The second objective is to ensure that
the first objective is met without negatively impacting core database tenets such
as application transparency, schema transparency, performance, compression or
availability. It is achieving both of these objectives together that allows
organizations to adopt the solution without having to make any compromise either
on the security side or the database side, as with the traditional methods. In order
to achieve these two objectives, three requirements need to be carefully
considered: Encryption run-time placement, encryption run-time processing and
encryption key management. The design considerations for each of these

requirements is discussed below.

4.3.1 Encryption Run-Time Placement
Holistic database encryption places the run-time processing of encryption right

above the 1/O layer inside the database kernel. This ensures that all data is
encrypted regardless of whether it is tablespace data, transaction logs data or
backups data. Additionally, injecting encryption processing this deep inside the
kernel renders encryption totally transparent to database schemas and
applications. Recall that the lack of transparency to applications and database
schemas was one of the major drawbacks of column encryption. Also, being right
above the 1/O layer ensures that encryption does not interfere at all with query

55

execution so the SQL query compiler does not need to impose any restrictions
on itself when selecting an efficient execution plan for a query as it does in the
case of queries with range predicates when using column encryption. Last but
not least, this encryption run-time placement means that encryption comes after
compression which is the right order to ensure that organizations benefit from
both database compression and encryption. Recall that with column encryption,

the order is reversed which limits the value of database compression.

4.3.2 Encryption Run-Time Processing
Encryption run-time processing refers to the encryption and decryption functions.

Data is encrypted when it is pushed out to storage and decrypted when it is
retrieved from storage. These two functions take place right above the I/O layer
as indicated above. Encryption and decryption require carefully considering three
choices: The choice of the encryption algorithm, the choice of the encryption
algorithm key size and the choice of the encryption granularity.

Since database encryption is bulk encryption, symmetric algorithms are the
natural choice. While holistic database encryption can support any block cipher,
AES (Chandra et al., 2014) was selected as the default block cipher as it is the
standard algorithm. Holistic database encryption chose 256 bits as the default
key size to ensure that the solution is safe against potential future attacks by
quantum computers (Shor, 1997). In fact, a quantum computer running Grover’s
algorithm (Grover, 1996) renders AES 256 bits security equivalent to AES 128
bits so choosing 128 bits AES Keys would not be a good practice as that reduces
to 64 bits security. AES supports several modes. Holistic database encryption
uses Cipher Block Chaining (CBC) as that is more secure than Electronic Code
Book (ECB) for example. However, CBC requires maintaining an Initialization
Vector (IV) and this affects the choice the encryption granularity. Holistic
database encryption uses the “page” as the encryption granularity. A page is a
32KB of data containing the rows of a database table. A database table may
consist of several such pages. The choice of the page as the encryption
granularity versus the data row is evident as calling the encryption function for
each row in the page would result in a higher performance overhead. The choice
of a “chunk” of pages would in theory have been better. In fact, the database
kernel I/O layer writes a chunk of pages at a time for performance reasons.
However, given the chaining nature of CBC, this meant that if the database kernel

56

needs to decrypt page 4, it will first need to decrypt pages 1, 2 and 3. Thus, the
page level granularity was chosen for performance reasons.

4.3.3 Encryption Key Management
Figure 4.1 shows the architecture of holistic database encryption as implemented

in IBM DB2. It uses two levels of keys: A Data Encryption Key (DEK) and a Master
Key (MK). The DEK is the key used to actually encrypt the database content and
is fully managed within the database system. For tablespace data, the DEK is
stored together with the rest of the database configuration. However, this would
not be sufficient for transaction logs as these are typically needed when the
database is offline and need to be recovered. Consequently, transaction logs
have their own DEK that is stored within the transaction logs themselves. This is
also true for database backups which may need to be restored by a totally

different database instance.

DB2 Server PKCS #11 HSM Server

Vendor Client
Keyslore SSL Certifcate

Password B § (ot » [|=—

(5

 amamy Lua'y /
File p—
; PKCS11

Peeens Configuration File »(Logn AP)

Instance Level Orher AP J‘ =
KEYSTORE TYPE=PKCS11 4 4 M;s(e, Key
KEYSTORE LOCATION='/pkcs-config.cfg' | 1

B (MK)

‘,"' ™ \A 4

Database Level |
’\ — T :
(2 2 a
Encrypted | % ‘/
Delibasa] Encrypted DEK
;7.'“'- A
= ~n
Data Encryption Key
DEK
e ‘ // Encrypted
ENCRLIB='libdb2encr.so’ | _|g#= | Backup
ENCROPTS='Cipher=AES' [aisomatc Backup ndyption L (A, Image

=
Figure 4.1— Holistic Database Encryption Architecture

The MK is a Key Encrypting Key (KEK). It is used to protect the DEK and is
stored externally such as in a Hardware Security Module (HSM). There are three
reasons for this choice: Security, performance and availability. Storing the MK
externally ensures a better security in case the database system itself is
compromised (i.e., the attacker will not have access to both the data and the MK).

The two levels of keys also ensure availability and performance in key rotation

57

scenarios. In fact, rotating the MK is straightforward as it only means decrypting
the DEK with the old MK and re-encrypting it with the new MK. On the other hand,
a single level of keys would have meant re-encrypting the entire database with
the new key. This would affect availability if it is done offline or performance if it
is done while the database is online serving the needs of its applications.

4.4 Implementation
This section discusses the implementation of holistic database encryption in IBM
DB2 and shows the actual interfaces for adopting the solution.

441 Enabling Encryption for a Database
The DB2 CREATE DATABASE command was extended so that DBAs can

choose to enable encryption when creating a new database. For example, the
DB2 command below creates a database called test which will be encrypted
using AES as the encryption algorithm, 256 bits as the encryption key size, and

a master key whose unique identification is db-mk.

create database test
encrypt cipher AES key length 256

master key label db-mk

When processing the command above, the database system internally
generates a random 256 bits DEK and call out to the key management system
that has been set up for this database to encrypt the DEK before safely storing it
within the database configuration structures. Later on, when the database is
started to serve applications, the database system internally calls out to the key
management system to decrypt the DEK with the MK, and then uses the DEK for
transparently encrypting and decrypting data as it is written to and read from the

storage system.

4.4.2 Rotating the Database Master Key
Like user passwords, encryption keys need to be changed periodically in order to

minimize the risks when a key is compromised. This process is called key
rotation. The key rotation frequency is dictated by compliance requirements,
corporate requirements or both.

Holistic database encryption extended the IBM DB2 interfaces by introducing

a new stored procedure which DBAs can use to rotate the database MK as

58

required. For example, the DB2 stored procedure call below instructs the

database system to rotate the MK.

CALL admin_rotate_master_key (‘new-db-mk’);

When processing the stored procedure above, the database system performs
the following actions:
e Decrypt the DEK with the current MK.
e Re-encrypt the DEK with the new MK as identified by it is unique label
new-db-mk.
e Update the database configuration structures to reflect the changes
above.
If a new MK unique identifier has not been provided when calling the stored
procedure above, the database system will automatically generate a new MK and

assigns a unique identifier to it.

4.4.3 Taking an Encrypted Database Backup
Holistic database encryption extended the DB2 BACKUP DATABASE command

so that DBAs can choose to enable encryption when backing up a database.
Encryption for the backup is actually automatically enabled when the underlying
database is encrypted. But the explicit option in the BACKUP DATABASE
command itself gives DBAs the option to still encrypt a backup even when the
underlying database is not encrypted. For example, the DB2 command below
encrypts a backup for a database called test2 using AES as the encryption
algorithm, 256 bits as the encryption key size, and a master key whose unique

identification is db-mk2.

backup database test2
encrypt encrlib db2backupencrlib
encropts ‘Cipher=AES:Key LENGTH=256:Master Key Label=db-mk2’

When processing the command above, the database system internally
generates a random 256 bits DEK, uses that DEK to encrypt the payload piece
of the backup, call out to the key management system to encrypt the DEK with
the MK identified with unique identifier db-mk2, and safely store the encrypted

DEK and related meta-data in the header piece of the backup.

59

4.4.4 Performance Considerations
The performance evaluation shows that two factors affect the impact of holistic

database encryption. The first factor is the availability of hardware acceleration in
the CPUs where the database system is deployed. Holistic database encryption
automatically detects and exploits a number of hardware acceleration for
cryptographic operations built into modern CPUs such as the Intel Advanced
Encryption Standard New Instructions (AES-NI) and the IBM Power8 in-core
support for AES. The second factor is how insulated the database workload from
an increase in the latency of physical /O requests. Database workloads can be
insulated for this purpose through standard database tuning. For example, a DBA
can increase the buffer pool size so that database queries do not have to wait on
physical I/O. Enabling page prefetchers is another tuning option a DBA can
perform to avoid having queries wait on physical I/O. Following standard
database tuning, the encryption overhead observed is typically in the single digits
for data warehouse workloads on systems with exploitable hardware acceleration
for cryptographic operations. It is therefore recommended that enterprises deploy
the solution on systems where such hardware acceleration for cryptographic

operations is available.

4.5 Conclusion

This chapter has provided a summary of the research portfolio in database
encryption. It has reviewed the traditional approaches for database encryption
and showed how the holistic database encryption proposed improves over such
approaches. Holistic database encryption has been implemented in IBM DB2 and
is relied upon by several organizations from across the world to protect their
sensitive data without having to make compromises either on the security side or
the database side as the solution coexists in harmony with fundamental database
tenets as described in this chapter. The research portfolio publication “Holistic

Database Encryption” is given in Appendix B.

60

Chapter 5: Enhanced Mandatory Access Control

This chapter provides a summary of the research portfolio in mandatory access
control for database systems. It is a synthesis of the research publications given
in Appendix C. The chapter introduces a new multi-purpose implementation of
mandatory access control for database systems which improves over traditional
implementations. This new solution is not limited to the pure Multilevel Security
(MLS) semantics as the traditional approaches and can be used more broadly.
The chapter also shows how the multi-purpose implementation of mandatory
access control introduced can be used to enforce fine-grained authorization to

XML documents such as those stored in XML columns in database tables.

61

5.1 Introduction

For database tables, Mandatory Access Control (MAC) can be thought of as a
special form of fine-grained authorization where each row is tagged with a
security label representing its classification (e.g., TOP SECRET), each user is
assigned a security label representing their authorization (e.g., SECERT) and the
access rules are the standard Multilevel Security (MLS) “No Read Up” and “No
Write Down” rules. While this model is suitable for the US intelligence and
defense use cases, it remains a very rigid implementation that is rarely applicable
elsewhere. Clearly, a better approach is needed to broaden the applicability of
MAC implementations in database systems. This better approach is referred to
as “A Multi-Purpose MAC Implementation for Database Systems”. |t extends
the traditional MAC implementations for database systems with the required
flexibility in order to broaden its applicability. Section 5.2 reviews traditional MAC
implementations and contrasts them with the multi-purpose MAC implementation.
Section 5.3 introduces and discusses the multi-purpose MAC implementation in
IBM DB2. Section 5.4 shows how the multi-purpose MAC implementation can be
used for fine-grained authorization in XML documents. Lastly, Section 5.5
concludes this chapter.

5.2 Related Work

Traditional MAC implementations for database systems have focused on MLS.
The MLS model was originally introduced by Bell and LaPadula (Rjaibi et al.,
2004). It is defined in terms of objects and subjects. For database tables, an
object is a row in that table and a subject is a user requesting access to such row.
Both objects and subjects are assigned a security label representing their
classifications and authorizations respectively. A security label consists of two
components (Rjaibi et al., 2004): A hierarchical component, usually referred to as
level and a non-hierarchical component, usually referred to as compartments.
The level specifies the sensitivity of the data. For example, a military organization
might define the following levels: Top Secret, Secret and Confidential.
Compartments are used to categorize the data. For example, a military
organization might define the following compartments: Navy, Army and Marines.

A security label L1 is said to dominate a security label L2 if and only if the

following two conditions are true:
1. The level component of L1 is greater than or equal to that of L2.

62

2. The compartments component of L1 includes the compartments
component of L2.

For all data access, the MLS model enforces the following two rules:

1. No Read Up: A subject is allowed a read access to an object if and only if
the subject’s security label dominates the object’s security label.

2. No Write Down: A subject is allowed a write access to an object if and only
if the object’s security label dominates the subject’s security label.

The most noticeable implementations of MLS in database systems include:
Trusted Oracle (Oracle, 1992), Oracle Label Security (which replaced Trusted
Oracle) (Oracle, 2019), Informix OnLine/Secure (Informix, 1993) and IBM DB2
for z/OS MLS (Rayns et al., 2007). The research portfolio publications “An
Introduction to Multilevel Secure Database Systems” and “A Multi-Purpose
Implementation of Mandatory Access Control in Database Systems”
(Appendix C) cover the traditional MLS implementation in more details. But the
common theme across all these traditional implementations is that they are all a
rigid implementation and are rarely applicable in scenarios where the pure MLS
semantics is not desired. The multi-purpose MAC implementation introduced in
this thesis is a flexible implementation that is not limited to pure MLS semantics

and can be used more broadly as illustrated in Section 5.4.

5.3 A Multi-Purpose MAC Implementation for Database Systems

The first objective of the multi-purpose MAC implementation is to give DBAs the
tools to define the types of security labels and access rules that best suit their
needs as opposed to forcing the pure MLS semantics on them. This objective is
achieved through the SQL extensions discussed in section 5.3.1. The second
objective is to ensure that access to labelled data is enforced transparently,
securely and in accordance with the access rules specified. This is achieved
through the extensions made to the SQL Compiler discussed in section 5.3.2.
Lastly, the third objective is to enable the database system to integrate with an
external MAC system, if so desired, to centralize security labels and access rules
management. This is analogous to integrating with an LDAP server for user
authentication. This objective is achieved through the SQL and SQL Compiler
extensions discussed in section 5.3.3.

63

5.3.1 SQL Extensions
The multi-purpose MAC implementation extended SQL with the following new

concepts to give DBAs the tools to specify security label types and access rules:

e Security Label Component: This is the building block for security labels.
It is essentially a set of elements which can be either ordered or un-
ordered. In an ordered set, the order in which the elements appear is
important. The rank of the first element is higher than that of the second
element, and so on.

e Security Label Type: As a table schema defines the set of columns for
rows in that table, a security label type defines the set of security label
components that make up a security label. For example, the classical MLS
security label can be obtained by creating a security label type that
consists of two security label components, one that is ordered
representing the level component and one that is un-ordered representing
the compartments. On the other hand, if a DBAs wishes to use security
labels as data tags, they can simply create a security label type that
consists of a single un-ordered security label component, where each
element represents the desired tag.

e Security Label Access Policy: This is where the access rules are
defined. The access rules bring together an access label and a row label.
An access label is a security label that is granted to a database user. A
row label is a label that is assigned to a row in a table. The general form
of an access rule is “access label component-name <operator> row label
component-name”. The <operator> varies depending on whether the
component-name is an ordered set or an un-ordered set. For ordered set,
it can be anyone of the relational {=, <=, <, >, >=, I=}. For un-ordered sets,
it can be anyone of the set operators {INCLUDE, INTERSECT}.

e Exception: In some situations, a user may need to be granted an
exception from a certain access rule in a security label access policy. For
example, to allow the user to do a bulk load of data in a table.

e Labelled Table: Alabelled table is a table that is associated with a security
label policy. Such table will be automatically augmented with a new column
to hold the security label for each row. The security label is internally
transformed into a binary representation for efficient comparisons during

access enforcement.

64

Example

The following example shows how a DBA can specify security label and access
rules definitions to match the pure MLS semantics.

/I create security label components

create security label component LEVEL

using ordered set {TOP SECRET’, ‘SECRET’, ‘CLASSIFIED’};
create security label component COMPARTMENTS

using unordered set {MARINES’, ‘ARMY’, ‘NATO};

/I create security label type
create security label type MLS
components LEVEL, COMPARTMENTS;

/I create security label access policy
create security label access policy MLS-POLICY
security label type MLS
read access rule rule 1
access label level >= row label level
read access rule rule 2
access label compartments INCLUDE row label compartments
write access rule rule 1
row label level >= access label level
write access rule rule 2

row label compartments INCLUDE access label compartments;

// create a labelled table
create table T1 (A INT, B INT)
security label access policy MLS-POLICY;

5.3.2 Access Enforcement
The multi-purpose MAC implementation extended the SQL compiler to ensure

that when a labelled table is accessed, the access rules specified in the security
label access policy are observed. The extensions made are similar to the ones
done for row permissions and column masks (Figure 3.2 in Chapter 3) with a
couple of additional considerations. The first consideration is with respect to how
the user access label and potential exceptions are acquired. If these are acquired
at query compilation time, it will affect the caching of query execution plans. Some
database systems such as IBM DB2 cache the execution plan for an SQL query

65

so that the next time it is submitted it does not need to go through the SQL
compilation process again and performance is better. Imagine that the security
label and exceptions are acquired during compilation time, this means that logic
will need to be added to always check that the security label and exceptions of
the user submitting the query are the same as the ones recorded during query
compilation time. Otherwise, this could result in a security issue such as a user
getting more data than what their security label and exceptions permit. For this
reason, the execution plan generated by the SQL Compiler includes a new logic
to always acquire security labels and exceptions during run-time. This ensures
security as well as performance as the cached query execution plan can be
reused without having to worry about any potential differences between the
credentials of the user ID under which the query was compiled and the user ID
that is running the query.

The second consideration is index-only query execution plans. To access a
database table, the SQL compiler typically chooses between three options: (1)
Accessing the table directly and fetch the desired rows, (2) accessing an index to
first identify the IDs of the rows that need to be fetched and then access only the
pages containing such rows, or (3) accessing only an index on the table. The
latter is possible when all the desired columns are part of the index key. For large
tables, this is usually an advantageous option as indexes are usually smaller than
the table on which they are defined. For labelled tables, the row label is required
to decide whether or not the user should be given access to the row. Therefore,
to ensure that index only plans still work, we extended the database system so
that each time an index is created, the row label column is automatically included
in the index key.

5.3.3 Enterprise integration
Some tools such as IBM’s Resource Access Control Facility (RACF) (Winnard et

al., 2015) provide an MLS implementation where user security labels can be
centrally managed much like an LDAP server allows user authentication to be
managed centrally. RACF can also be used for access decisions. That is, given
a row label and a user ID, it can return true or false indicating whether or not the
given user can have access to that row according to the MLS rules. To enable
integration with such enterprise solutions, the multi-purpose MAC was further
extended as follows:

66

e The labelled table SQL syntax was extended to allow DBAs to indicate that
the security label access policy is managed by an external system and
provide the connection details to such system so it can be called for access
decision responses during access enforcement.

e The SQL compiler was extended to recognize this special case and inject
logic to query the external system for an access decision, passing on the
row label and the ID of the user attempting the access.

To minimize the overhead of calling out to the external system, the multi-
purpose MAC implementation introduced an access-decision cache. This cache
records the responses from the external system for each pair of user ID and row
label. The SQL compiler was then modified so that it consults this cache before
making a call to the external system. Table 5.1 illustrates the access-decision
cache. For example, user Amy is allowed read access to rows labelled with
security label L1, but not user Pat.

Table 5.1 — Access-Decision Cache

USER ID ROW LABEL TABLE ACCESS TYPE RESPONSE
Amy L1 Tl READ YES
Pat L1 Tl READ NO
Haytham L2 Tl WRITE YES

5.4 Applying Multi-Purpose MAC for XML Fine-Grained
Authorization

While the row permission, column mask and security label concepts introduced
so far in this thesis permit enforcing fine-grained authorization at the database
table row and column levels, they do not extend to enforcing fine-grained
authorization for XML documents stored within a column in such database tables.
For example, suppose the XML document in Figure 5.1 is stored in some
database table column. A user who is authorized to access that column will see
the entire XML document as opposed to the subset of such document they are

authorized to see.

67

Online_Seller

VIP_Accounts

Account

/

Customer

A2398 A3784 Customer (%05

Account

Name
Name

Credibility°

Barbara No

John

IID

17539 $230

Figure 5.1— Example XML Document

XML fine-grained authorization can be divided into two main categories. The first
category considers an XML node as the smallest unit of protection (Bertino et al.,
2001) (Bertino et al., 2002) (Bhatti et al., 2004). The approaches in this category
differs in terms of how privileges are propagated. Some methods block access to
the entire subtree rooted at a forbidden node while others would allow access to
nodes in the subtree but mask out the forbidden ancestor node. The second
category considers the ancestor-descendent and sibling relationships between
XML nodes as the smallest unit of protection (Zhang et al., 2006). For example,
blocking access to the account node “202” in Figure 1 can be achieved by
blocking the relationship to its ancestor node, the relationship to its descendant
nodes and the relationship to its sibling nodes. In both categories, the smallest
unit of protection (i.e., a node or a relationship) is specified through an XPath
expression (Clark et al., 2006). The Multi-Purpose MAC solution introduced
earlier could be used with either node-based or relationship-based fine-grained
authorization approaches. The research portfolio publication “Inter-Node
Relationship Labelling: A Fine-Grained XML Access Control
Implementation Using Generic Security Labels” shows that relationship-
based approaches improve over node-based approaches from a security
perspective. For example, the subtree rooted at node “101” represents VIP

68

account types. Therefore, knowing that an account (e.g., “201”) belongs to that
subtree reveals that this is a VIP account. Suppose that the relationship between
nodes “101” and “202” needs to be protected. With node-based approaches,
access to node “201” would reveal that node “202” is a VIP account since it is a
sibling to node “201”. This issue can be addressed using a relationship-based
approach by protecting the ancestor-descendant relationship between nodes
“101” and “202” as well as the sibling relationship between nodes “201” and “202”
while allowing the ancestor-descendant relationship between nodes “101” and
“201”. The rest of this section discusses the methodology for using the Multi-
Purpose MAC solution to enforce fine-grained authorization to XML documents

using the relationship-based approach.

5.4.1 Methodology
The methodology is analogous to how security labels are used to control access

to rows in a labelled table. In the same way a row label protects a row in a labelled
table, a path label protects a specific path in an XML document. The path label
consists of a single security label component which can take anyone of the

following three values:

o Existence: Attaching a path label with this value to a relationship between
two nodes permits users to know that such two nodes are related but does
not reveal any other details. For example, suppose an existence path label
is attached to the relationship between the account with AID A2398 and
its customer name in Figure 5.1. A query that wants to return all the
accounts’ AlDs that have a customer name would return AID A2398 but
will not reveal that the customer name is “John”. An example of such query
in XPath is: /Account[Customer/Name]/AID.

e Value: Attaching a path label with this value to a relationship between two
nodes permits users to know that such two nodes are related including the
actual details of such nodes. For example, suppose a value path label is
attached to the relationship between the account with AID A2398 and its
customer name in Figure 5.1. An XPath query such as
//Account[AID="A2398”]/Customer/Name would reveal that “John” is the
customer associated with that account. Evidently, if a relationship is not
accessible under an existence path label, then it is not accessible under a
value path label either.

69

¢ Null: Attaching a path label with value to a relationship between two nodes

means that this relationship is fully accessible. This is the default.

The proposed ATTACH SQL statement allows DBAs to attach a path label to
the desired relationships in an XML document. This can be either an ancestor-
descendant relationship or a sibling relationship. For example, the following SQL
statement attaches an existence path label to the relationships between account
nodes (i.e., ancestor) and their customer name nodes (i.e., descendants).

attach existence ancs //Account desc /Customer/Name

The following example shows how to associate a security label access policy
with a table T1 which includes a column B of type XML.

/I create security label components
create security label component level
using ordered set {EXISTENCE’, ‘VALUE’, ‘NULL’};

/I create security label type
create security label type XML

components level;

/I create security label access policy
create security label access policy XML-POLICY
security label type XML
read access rule rule 1
access label level >= path label level
write access rule rule 1

access label level = path label level;

// create a labelled table
create table T1 (A INT, B XML)
security label access policy XML-POLICY;

5.4.2 Access Enforcement
As discussed in section 5.3.2, access enforcement is implemented within the SQL

compiler. To handle queries on XML document, the following additional
considerations are observed by the SQL compiler. First, the XPath query

70

semantics is internally changed as follows to take into account any path labels
attached (Zhang et al., 2006).

1. If a child axis occurs, the evaluation follows a parent-child path.

2. If a descendant-or-self axis occurs, the evaluation follows an ancestor-
descendant path.

3. If a preceding-sibling axis occurs, the evaluation follows a preceding-
sibling path.

4. If a following-sibling axis occurs, the evaluation follows a following-sibling

path.

As with access to labelled tables, the user access labels are acquired at
runtime (as opposed to compilation time) to ensure that queries on XML
documents also benefit from caching of query execution plans. The general

access enforcement algorithm can be summarized as follows.

1. Fetch the user access labels and exceptions from the system catalogues.
2. For all paths accessed
a. If it is a read access and the read access rules do not allow the
access, skip the path.
b. If it is a write access and the write access rules do not allow the

access, skip the path.

5.5 Conclusion

This chapter has provided a summary of the research portfolio in mandatory
access control for database systems. It has introduced a new multi-purpose
implementation of mandatory access control for database systems which
improves over traditional implementations. This new solution is not limited to the
pure MLS semantics as the traditional approaches and can be used more
broadly. The chapter has also shown how the multi-purpose implementation of
mandatory access control can be used to enforce fine-grained authorization to
XML documents such as those stored in XML columns in database tables. The
multi-purpose mandatory access control solution has been implemented in both
IBM DB2 and Informix.

71

Chapter 6: Towards Zero-Trust Database Security

Zero-trust security is an information security framework which states that
organizations should not trust any entity inside or outside of their perimeter at any
time. This chapter explores both the direct and indirect means through which the
same data in a database system can be accessed and the challenges they pose
to adhering to the basic tenets of zero-trust security. It is based primarily on the
research publications “Towards Zero-Trust Database Security Part 1" and
“Towards Zero-Trust Database Security Part 2" which were fully developed during
the PhD registration period (Appendix B). The chapter then shows how the
concepts introduced earlier in this thesis such as row permissions, column
masks, trusted contexts and holistic database encryption come together to equip
database systems with the controls necessary to enable enterprises to effectively
implement zero-trust security for their database installations.

72

6.1 Introduction

Gartner estimates that the worldwide spending on Cybersecurity in 2018 was
around 114 billion US dollars, which represents an increase of 12.4% compared
to 2017 (Gartner, 2019). Unfortunately, despite this significant spending, data
breaches continue to occur and are becoming more and more costly. For
example, the Ponemon Institute’s 2018 Cost of a Data Breach Study found that
the global average cost of a data breach was 3.86 million US dollars, an increase
of 6.4% compared to 2017 (The Ponemon Institute, 2019). The study also found
that the average number of records lost or stolen following a data breach grew
2.2% from 2017. As a result of these alarming statistics, organizations are now

turning to zero-trust security to better protect their assets and reduce risk.

Zero-trust security is an information security framework which states that
organizations should not trust any entity inside or outside of their perimeter at any
time (Gilman et al., 2017). It assumes that untrusted entities exist both outside
and inside the enterprise network. The main tenets of zero-trust security can be

summarized as follows:

1. Tenet 1: Ensure all requests to access resources are always verified,
regardless of where they originated from.

2. Tenet 2: Grant access to resources based on “need-to-know” and
strictly enforce access control.

3. Tenet 3: Monitor and audit all user activities.

While zero-trust security for networks and identity management systems has
received a great deal of attention (Gilman et al., 2017), (Centrify, 2019), very little
focus has been devoted to zero-trust security for database systems (Rjaibi et al.,
2019). This is concerning as database systems contain an enterprise’s most
critical data and are often the primary subject of attacks by both internal and
external threats. The rest of this chapter is organized as follows. Section 6.2
introduces the database threat model and explores both the direct and indirect
means through which the same data in a database can be accessed. Next,
Section 6.3 shows how the concepts introduced earlier in this thesis equip
database systems with the tools necessary to effectively address the challenges
posed by the direct and indirect means through which data can be accessed.

Section 6.4 explores the notion of separation of duties as another critical

73

foundation to fully enable zero-trust database security. Lastly, Section 6.5 shows
a concrete example to illustrate how the row permission, column mask and
trusted context concepts introduced in this thesis come together to meet an

enterprise’s zero-trust database security requirements.

6.2 Database Threat Model

This threat model focuses on the direct and indirect means for accessing data in
a database and the challenges they pose to adhering to the basic tenets of zero-
trust security discussed above. The model assumes that enterprises are adhering
to basic database security hygiene such as user authentication, auditing and TLS,
which are standard features on all major database systems. The model also
assumes that standard operational policies such as operating system and
database system software vulnerability patching are in place.

The same data in a database can be accessed in two different ways: Directly
or indirectly. Direct access occurs using standard database interfaces such as
Structured Query Language (SQL). This can be divided into two scenarios:

1. Interactive database access: This access is typically performed by
database administrators using an interactive interface offered by the
database system such as SQL. It is usually used to carry out administrative
tasks such as granting database privileges.

2. Application database access: This is the most common database access
scenario. It involves end users interacting with an application which in turn
interacts with the database system to execute requests on behalf of those

end users.

The key issue with interactive database access is privilege abuse. For
example, a DBA might abuse their privileges to access sensitive employee data
such as salary and bonus information. The application database access poses
two key issues. The first one is application bypass where, for example, the
application administrator abuses the application’s database credentials to make
changes to the database that are contrary to the application’s business logic. The
second issue is the loss of user identity which diminishes the value of database
auditing to demonstrate compliance and to hold users accountable for their
actions. This issue stems from the fact that applications use a generic user ID to
access the database on behalf of all users as opposed to the actual user identity.

74

Indirect access takes place when a user bypasses the database system
altogether. This is the most dangerous type of access as it completely bypasses

all database access control and auditing. This can be divided into two scenarios:

1. File system access: This access occurs when a user chooses to access
the data directly on the file system using operating system commands.

2. Storage media access: This access occurs when a user recovers the
data from the actual storage media such as a stolen or lost hard drive.

Table 6.1 summarizes the challenges direct and indirect access to data pose
to adhering to the basic tenets of zero-trust security. Figure 6.1 summarizes the

database threat model.

Table 6.1 — Zero-trust database security challenges

Issue Type of data access Zero-trust security tenet
affected

Privilege abuse

Direct access

Tenets 1 and 2

Application bypass

Direct access

Tenets 1 and 2

Loss of user identity

Direct access

Tenet 3

File system access

Indirect access

Tenets 1 and 2

Storage media access

Indirect access

Tenets 1 and 2

%

Application bypass

Loss of user identity

et | U2

Database System
Privilege abuse

- user
B a8
E"f File system access File System
Indirect user
access |
a8 ‘
Storage media access
< > Storage Media

user

Figure 6.1— Database threat model.

75

6.3 Addressing Direct Data Access Challenges

As discussed in section 6.2, privilege abuse, application bypass and the loss of
user identity are the key challenges to adhering to the basic tenets of zero-trust
security when it comes to the direct data access use case. This section describes
how the concepts introduced in this thesis address these challenges.

6.3.1 Privilege Abuse
Historically, database systems have been designed such that the DBA had

access to all data in all tables in the database. Clearly, this model does not
prevent privilege abuse. Intuitively, fine-grained database authorization can be
thought of as the ideal solution for preventing privilege abuse as it controls access
at the row, column or cell level, thus ensuring that users have access to only the
subset of the data for which they are authorized. However, fine-grained database
authorization comes in many forms and not all such forms adequately protect

against privilege abuse.

Chapter 3 introduced row permissions and column masks. It also showed how
these concepts improve over traditional database views and application-based
security. In particular, row permissions and column masks are data-centric and
cannot be bypassed like database views and application-based security.
Similarly, Chapter 5 introduced the multi-purpose MAC implementation and
showed how it improved over traditional MLS implementations by providing more
flexibility around the specification of security label types and access policies. Both
row permissions and column masks, and the multi-purpose MAC implementation
effectively address the privilege abuse challenge. Figure 6.2 contrasts all the fine-
grained authorization options. Row permissions and column masks are ranked
slightly higher than the multi-purpose MAC because it is more flexible. In fact,
their authorization rules are expressed in SQL, thus provide more flexibility than
rules that only manipulate security labels. Therefore, row permissions and
column masks are most suitable for addressing the privilege abuse challenge.

76

Low Flexibility / High Security High Flexibility / High Security

Row Permissions and Column
Multilevel Security Masks
(MLS)
Multi-Purpose MAC

Security

Low Flexibility / Low Security High Flexibility / Low Security

Database Views and
Application-based FGAC

AN

Flexibility >
Figure 6.2— Fine-grained database authorization.

6.3.2 Application Bypass
A key drawback to application-based security is that applications can be

bypassed. For example, a malicious application administrator can choose to
abuse the application’s database credentials in order to access the database
directly, thus bypassing the application altogether. The malicious application
administrator can then gain access to sensitive data or make modifications to the

database that are contrary to the application’s business logic.

This application bypass is made possible because traditional database
authorization does not provide control around when a particular privilege can be
exercised. Section 3.4 in Chapter 3 introduced the concept of trusted context.
One of the benefits of this new concept is the ability to address application bypass
by linking database privileges to a trusted context. When a privilege is linked to a
trusted context, a user can exercise that privilege only when they are interacting
with the database system within the confines of a trust relationship. Application
bypass can be addressed in this manner by requiring the database system to
authorize the application’s user ID only and only if additional attributes have been
verified such as the IP address of the application server and the application’s
digital certificate. Therefore, an application administrator who wishes to abuse
the application credentials by connecting to the database outside the scope of
the application will find it much harder to do so.

77

6.3.3 Loss of User Identity
In multitiered database environments, the application interacts with the database

system using a generic user ID identifying the application itself, and not the actual
end users. One major implication of this is diminished user accountability.
Typically, database users are held accountable for their actions through auditing.
Unfortunately, when the application uses a generic user ID for all database
accesses, the database audit log will only show that user ID with no references

to the actual end user behind the application.

The trusted context concept introduced in Chapter 3 is a formal mechanism for
defining a trust relationship between the database system and an external
application based on a series of attributes such as the application’s user ID, the
IP address of the application server and the application’s digital certificate. One
of the capabilities that an application gains once it is working within the confines
of that trust relationship is the ability to switch the current user on a given
database connection. This enables the application to propagate the user identity
to the database where it is used for access control and auditing purposes, and
thus addressing the loss of user identity problem. The high-level steps for
leveraging the trusted context concept to address the loss of user identity problem

can be summarized as follows:

1. The database security administrator creates a trusted context object to
define a trust relationship between the application and the database.

2. The application establishes a trusted connection with the database.

3. Before issuing any request to the database on behalf of an end user, the
application switches the current user of the connection to the new user.
This automatically propagates the end user identity to the database where
it is used for all access control and auditing till the application switches

user again.

6.4 Addressing Indirect Data Access Challenges

As discussed in section 6.2, file system access and storage media access are
the key challenges to adhering to the basic tenets of zero-trust security when it
comes to the indirect data access use case. A powerful countermeasure to
protect against indirect access is data encryption as encrypted data is of no value
to an attacker. However, data encryption for database systems comes in many
forms and not all such forms of encryption effectively protect against indirect data

78

access. There are also performance implications that need to be taken into

account when selecting an encryption solution for a database.

Chapter 4 contrasted the traditional database encryption methods with the new
solution proposed in this thesis: Holistic database encryption. Figure 6.3 provides
a different perspective for contrasting these approaches. SEDs and file system
encryption provide the broadest coverage (i.e., they encrypt entire disks or file
systems), but they only protect against storage media access. In other words,
these methods do not stop a user from browsing the database files using
operating system commands. Tablespace encryption, holistic database
encryption and column encryption protect against both storage media access and
file system access. When these methods are employed, a user browsing the
database files using operating system commands will only see encrypted data,
which is of no value to them. Column encryption, however, is intrusive to
application and negatively affects performance. Tablespace encryption may
create a vulnerability when a DBA inadvertently moves data from an encrypted
tablespace to an unencrypted one, or when data is held in temporary
tablespaces. Therefore, holistic database encryption is most suitable for
protecting against indirect access and in turn adhering to the basic tenets of zero-

trust security.

Table 6.2 summarizes the issues around the direct data access and indirect
data access use cases. It also shows how the concepts introduced in this thesis
solve these issues. Row permissions and column masks address the privilege
abuse issue. Trusted contexts and in particular the conditional authorization
aspect of it solve the application bypass issue. The user identity propagation
aspect of trusted contexts solves the loss of user identity issue in multitiered
database environments. Finally, holistic database encryption addresses the
issues around file system access and storage media access.

79

Security

Column

Holistic DB
Encryption

Tablespace
Encryption

File System Encryption

AN

Coverage

Figure 6.3— Database encryption.

Table 6.2 — Zero-trust database security challenges and solutions.

\ 4

Issue

Type of data access

Zero-trust
security tenet
affected

Solution

Privilege abuse

Direct access

Tenets 1 and 2

- Row permissions

- Column masks

Application bypass

Direct access

Tenets 1 and 2

Trusted contexts
- Conditional authorization

Loss of user identity

Direct access

Tenet 3

Trusted contexts
- User identity propagation

File system access

Indirect access

Tenets 1 and 2

Holistic database encryption

Storage media

access

Indirect access

Tenets 1 and 2

Holistic database encryption

The performance evaluations for row permissions/column masks and holistic

database encryption have been covered in Chapter 3 and Chapter 4 respectively.

For trusted contexts, the performance evaluation (Bruni et al., 2007) has shown

that the overhead is in the low single digits regardless of whether or not user

authentication is required during the switch user processing. Intuitively, this is

expected as the database system reuses the existing database connection as

opposed to creating a new one to process requests on behalf of a new user.

6.5 Separation of Duties

Historically, database systems have been designed such that DBAs manage all

aspects of the database including security and auditing. Additionally, DBAs have

80

had implicit access to all data in all tables in the database. With the rise of internal
threats as a security concern equally important to external threats (Verizon,
2017), this traditional model makes it difficult for organizations to fully adhere to
zero-trust database security. It is therefore critical that database systems be
extended to provide the capabilities to allow organizations to vest security
administration and database administration into two non-overlapping roles so

separation of duties can be enforced.

Consequently, during the research, design and implementation of row
permissions, column masks, trusted contexts and holistic database encryption, |
have also made the following corollary enhancements:

1. Redesigned the role of the DBA to remove the implicit ability to access all
data in all tables as well as the ability to manage database security and
auditing.

2. Vested the ability to manage database security and auditing into a new
and independent database role, called Security Administrator (SECADM)
(Chen et al., 2008). In this context, row permissions, column masks,
trusted contexts and holistic database encryption are solely managed by
the SECDAM.

3. Implemented the new SECADM role and also ensured that such role
cannot make any privilege grants to itself either directly or indirectly
through membership in a role or a group. This automatically covers row
permissions and column masks as they are an additional level of control

on top the required table level privileges.

With this enhancement in place, organizations can now vest database security
and database administration into two separate roles, enabling them to remove
any notion of inherent trust in DBAs and consequently fully adhere to zero-trust
security for their database systems. It is paramount that organizations consider
separation of duties as they choose the type of database system to adopt
because not all database systems necessarily provide the required capabilities
to enforce separation of duties.

6.6 Example Scenario
The goal of this example is to show in great detail how the concepts introduced
in this thesis enable organizations to implement zero-trust database security. The

81

example will cover all the enhancements made, namely holistic database
encryption, trusted contexts (both the conditional authorization and the user
identity propagation aspects), row permissions and column masks. It builds upon
the example shown in Section 3.7 of Chapter 3. All SQL statements shown here
are the actual interfaces for the contributions made in this thesis as they have
been fully implemented in IBM DB2.

The example represents a banking application which stores and manages
customer sensitive data. It is a classical 3-tier application. The first tier is the set
of bank employees using the application through a standard web browser. The
second tier is the application server running the actual application logic. We
assume that the application server’s IP address is 72.137.255.114. Lastly, the
third tier is the database where the application stores and manages customer
data. Table 6.3 summarizes the bank’s security policy which must be

implemented by the application.

Table 6.3 — Banking application security policy.

Requirement

Rationale

All customer data must be protected against

online threats.

Protect against users browsing the database files

on the operating system — file system access.

All customer data must be protected against

offline threats.

Protect against loss or theft of storage media —

storage media access.

All customer data must be accessed through

the application only.

Protect against customer data changes outside
the application business logic — Application

bypass.

All application user activities must be tracked.

Ensure application users are held accountable for

their actions — Loss of user identity.

All customer data must be accessed on a need-

to-know basis.

Protect against DBAs abusing their privileges —

Privilege abuse.

Customer service representatives and

telemarketers can see the data about all

customers.

Ensure customer data is accessed on a need-to-

know basis.

Tellers can see only the data for their own

branch customers.

Ensure customer data is accessed on a need-to-

know basis.

The customer account number is accessible
only by customer service representatives. All
other users can only see the last 4 digits. The
rest of the account number digits are masked

out for such users.

Ensure customer data is accessed on a need-to-

know basis.

82

As discussed earlier in this chapter, requirements 1 and 2 (file system access
and storage media access) are addressed through holistic database encryption.

Below is the actual SQL statement to create the banking application’s database:

create database AppDB
encrypt cipher AES key length 256
master key label AppDB-MK;

The SQL statement above instructs the database system to create a new
database called AppDB and ensure that data stored within that database is
automatically encrypted using AES with a key that is 256 bits in size. The master
key label AppDB-MK is a unique identifier for a key wrapping key that is stored
outside the database such as a Hardware Security Module (HSM). This master
key is used to protect the Data Encryption Key (DEK) that is stored inside the
database. The DEK is the key that is actually used to encrypt and decrypt the
data stored in the database. The database system automatically interacts with
the HSM each time it needs to encrypt or decrypt the DEK with the master key.

To address requirements 3 and 4, we need to create a trusted context object
in the database to define a trust relationship between the database and the
application. Below is the actual SQL statement to create such trusted context.

create trusted context AppCtx
based upon connection using system authid AppUserlD
attributes (address ‘72.137.255.114’
encryption ‘SSL’)

default role DBCONNECT
with use for Amy without authentication,

Pat without authentication,

Haytham without authentication
enable;

There are two parts to the SQL statement above. The first one is the definition
of a trust relationship between the database and an application that is identified
by a series of attributes, namely the application’s user ID (AppUserID), the IP
address from which the application initiates database connections
(72.137.255.114) as well as the nature of the protection over the communication
channel between the application and the database (SSL). Each time a database

83

connection is attempted using AppUserID, the database system automatically
assesses the additional attributes of that incoming database connection. If the
incoming connection attributes fully match the attributes specified in the definition
of trusted context AppCitx, then that incoming connection automatically gains two
key capabilities that are not available to it otherwise. More specifically:

1. The incoming connection inherits the role DBCONNECT. This is the role
that actually authorizes the database connection to take place. In other
words, if the application administrator chooses to abuse the application
credentials to access the database directly, the database system will not
allow that database connection to take place. This is how requirement 3 is
addressed.

2. The incoming connection inherits the ability to switch user IDs on the
database connection established. In this specific example, the application
will be allowed to switch the current user on the established database
connection to users Amy, Pat and Haytham. So, each time the application
needs to issue database requests on behalf of any of these users, it will
first switch the current user on the connection to the desired user ID. This

is how requirement 4 is addressed.

Requirements 5, 6, 7 and 8 are about direct data access. This is where row
permissions and column masks come into play. Once these are in place,
customer data will be accessed based on the bank’s application security policy
(requirements 6, 7 and 8). Additionally, DBAs cannot abuse their privileges to
access such customer data because row permissions and column masks are
enforced uniformly across all users regardless of their privilege or authority
(requirement 5). The row permissions and column masks SQL to implement
requirements 6, 7 and 8 has already been given in Section 3.7 in Chapter 3 and
will not be repeated here.

6.7 Conclusion

This chapter explored both the direct and indirect means through which the same
data in a database system can be accessed and the challenges they pose to
adhering to the basic tenets of zero-trust security. Privilege abuse, application
bypass and the loss of user identity in multitiered database environments
represent the key challenges for the direct access scenarios while file system
access and storage media access represent those for the indirect access use

84

cases. The chapter then showed how the concepts introduced in this thesis
around holistic database encryption, trusted context’s conditional authorization,
trusted context’s user identity propagation, row permissions and column masks
come together to equip database systems with the controls necessary to help
enterprises effectively implement zero-trust security for their database
installations. Lastly, the chapter provided a concrete example showing the actual
interfaces for the concepts introduced in this thesis as implemented in a

commercial database system.

85

Chapter 7: Conclusion and Future Work

This chapter summarizes the thesis and outlines potential future research
directions in database security. Row permissions, column masks, trusted
contexts and holistic database encryption are the key contributions made in this
thesis. They equip database systems with the controls necessary to help
enterprises effectively implement zero-trust database security. Data
classification, machine learning and homomorphic encryption are three potential
research directions for database security. Data classification would help facilitate
the adoption of concepts such as row permissions and column masks. Machine
learning can be used to detect unknown threats such as SQL injections.
Homomorphic encryption would remove any privacy concerns when adopting

cloud database services.

86

7.1 Introduction

Database systems are at the core of an organization’s information system. They
store the organization’s most critical assets such as client personal data, patient
healthcare records, employee personal data, financial transactions, intellectual
property and are consequently the primary target of attacks by both insiders and
outsiders. They are also the subject of numerous compliance mandates such as
the European General Data Protection Regulation (GDPR), the US Health
Insurance Portability and Accountability Act (HIPAA) and the Payment Card
Industry Data Security Standard (PClI DSS). These compliance mandates
combined with the continuous increase in data breaches and the rise of internal
threats as a security concern equally important to external threats (Verizon, 2017)
have driven organizations towards zero-trust security to better protect their assets
and reduce risk.

7.2 Key Contributions
This thesis enhanced database systems to equip them with the necessary
controls to help enterprises effectively implement zero-trust database security.

The most noticeable contributions in this regard can be summarized as follows:

1. Holistic database encryption: This solution enables organizations to
effectively protect their data including the file system access and storage
media access challenges discussed in Chapter 6. Unlike other database
encryption methods (Rjaibi, 2018), this solution does not force
organizations to make any compromises on either the data side or the
security side. For example, unlike column encryption, holistic database
encryption does not negatively affect database performance because it
does interfere at all with query processing.

2. Row permissions and column masks: This solution enables enterprises to
ensure that data is accessed solely on a need-to-know basis. Unlike
previous methods (Rjaibi et al., 2020), this solution ensures that the
security policy is enforced uniformly across all users regardless of their
privilege or authority. This also addresses the privilege abuse challenge
discussed in Chapter 6. It also integrates thoughtfully with the rest of the
database tenets, so organizations do not have to make any compromises
when adopting the solution. For example, the solution harmonically
integrates with Materialized Query Tables (MQT) so organizations can still

87

benefit from the MQTs performance boost without having to compromise
database security.

3. Trusted contexts: This solution provides two key benefits. First, it extends
database systems with the required controls to address the application
bypass and the loss of user identity challenges outlined in Chapter 6. Next,
it enables applications to safely delegate the fine-grained authorization
policy to the database system where it can be enforced more effectively.
Without trusted contexts, fine-grained authorization solutions such as row
permissions and column masks are of little value in a multitiered database
environments because the database system only sees a generic user ID

representing the application itself and not its end users.

Throughout the research, emphasis has been on both innovation and
practicality. This is paramount for database systems as security innovations that
come at the expense of core database tenets such as performance, integrity,
compression or require changes to database applications are unlikely to be
adopted by a commercial database system, and even more unlikely to be used
in practice by clients. For example, a bank is unlikely to adopt a column masking
solution if that requires changing hundreds of applications. Similarly, the bank is
unlikely to enable database encryption if that causes a significant performance
degradation to a mission critical application or if encryption nullifies the benefits
of compression and forces the bank to purchase more storage hardware. In this
regard, the enhancements proposed in this thesis have been fully implemented
in several commercial database systems such as IBM DB2 and Informix, where
they are relied upon by thousands of banking, insurance, retail, government and
other types of organizations from around the world to protect their critical data

and meet their compliance mandates.

7.3 Future Directions

Database security needs to continue to evolve to facilitate the adoption of security
capabilities and address emerging challenges and use cases. In this context, data
classification, machine learning and homomorphic encryption are key future
directions for database security.

7.3.1 Data Classification
Data classification would facilitate the adoption of fine-grained authorization

solutions such as the row permission and column mask concepts introduced in

88

this thesis. The concepts themselves are very easy to implement once the data
to protect is known. But in some cases, the nature of this data may not be known.
For example, consider a database inherited from another department or perhaps
from an acquisition. The data needs to be analyzed and classified so the sensitive
tables and sensitive columns are identified. While data classification tools exist
(IBM, 2019), they either take a long time to classify a large database or they are
forced to sample the data and create room for false negatives. Building data
classification in the database system itself and enable the database to do this
automatically and transparently as the data is ingested would help solve this
problem. Besides the expected challenges around how to perform data
classification in a way that minimizes both false positives and false negatives, it
is critical that this data classification does not compromise other key tenets such
as database performance.

7.3.2 Machine Learning
Machine learning would enable the database system to address another class of

external threats. For example, consider a classical 3-tier application. Suppose
that it is an internet facing application and that an external attacker exploits an
SQL injection vulnerability in the application. While an SQL injection is an
application problem (as opposed to a database problem), the attacker can still
compromise the database by fooling the application into executing unintended
SQL statements such as retrieving the content of the application’s users table or
dropping actual database tables. In this case, the database system cannot figure
out that it is being attacked since the requests are coming from a legitimate
application which holds all the proper privileges to execute the requests it issued.
Machine learning can be used to enable the database system to build a model of
the database and user activities so that deviations from such model can be
detected. For example, if the application suddenly starts downloading massive
amounts of data, that may be a sign of an SQL injection attack. Besides the
expected challenges around what type of machine or deep learning models are
more effective for a database system, the solution must not compromise
database performance during model creation or subsequent online updates of
such model. While anomaly detection tools based on machine learning exist (Adir
et al., 2017), they often lack visibility into full database activities. Therefore,
implementing such capability in the database system itself would be more
effective as the database system has full visibility into all the user activities it

89

processes.

7.3.3 Homomorphic Encryption
Homomorphic encryption would allow enterprises to take full advantage of cloud

computing. For example, cloud database services relieve enterprises from the
burden of deploying, configuring, patching, upgrading, scaling, backing up and
recovering database systems. However, despite these significant gains
enterprises are still reluctant to adopt these database services. This is due to
security concerns around storing sensitive data in the cloud. While virtually all
cloud vendors provide encryption solutions for their database services, the mere
fact that data is encrypted on the cloud vendor premises means that there is a
time at which that sensitive data exists in clear text and may be abused by a
malicious entity. The ultimate solution would be to ensure that data is encrypted
on premises with keys managed by the client also on premises before it is
ingested into the cloud database service. The challenge would then be to enable
the database system to perform queries over the data without having to decrypt
it first. This is where homomorphic encryption may be able to help. The idea
would be to encrypt the data in such a way that the database system can evaluate
queries over the encrypted data directly and still return the same results as if the
evaluation were done over clear text data. While some research solutions exist
(Popa et al., 2011), they tend to restrict the type of SQL that can be executed
over the encrypted data. Clearly more research is needed here to ensure that the
benefits of homomorphic encryption does not come at the expense of key
database tenets such as functionality and performance.

7.4 Conclusion

This chapter summarized the thesis and discussed potential future research
directions in database security. Row permissions, column masks, trusted
contexts and holistic database encryption are the key contributions to the
database security field made in this thesis. These enhancements equip database
systems with the controls necessary to help enterprises effectively implement
zero-trust database security and meet security and privacy compliance
mandates. Data classification, machine learning and homomorphic encryption
are three potential research directions for database security. Data classification
would help facilitate the adoption of concepts such as row permissions and
column masks by automatically identifying where sensitive data resides so those

90

constructs can be applied to the appropriate tables and columns. Machine
learning can be used to detect unknown threats such as SQL injections and would
equip database systems with an additional layer of defense. Homomorphic
encryption would remove any privacy concerns when adopting cloud database
services and permit organizations to fully benefit from cloud computing.

91

References

Elmasri, R., Navathe, S. (2010). Fundamentals of Database Systems. 6! edition,
Addison-Wesley.

Rjaibi, W., Bird, P. (2004). ‘A Multi-Purpose Implementation of Mandatory Access
Control in Relational Database Management Systems’. In Proceedings of the
International Conference on Very Large Data Bases (VLDB).

Rjaibi, W. (2004). ‘An introduction to multilevel secure relational database
management systems’. In Proceedings of the conference of the Centre for
Advanced Studies on Collaborative research (CASCON).

Gilman, E., Barth, D. (2017). Zero Trust Networks: Building Secure Systems in
Untrusted Networks. O’Reilly Media.

Voigt, P., von dem Bussche, A. (2017). The EU General Data Protection
Regulation (GDPR): A Practical Guide. Springer.

Chuvakin, A., Williams, B. (2009). PCI Compliance: Understand and Implement
Effective PCI Data Security Standard Compliance. Elsevier.

Massachusetts Institute of Technology (MIT) (2019). Kerberos: The Network
Authentication Protocol. https://web.mit.edu/kerberos/. [Online; accessed 04-
January-2020].

Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan S., Rjaibi, W. (2005).
‘Extending relational database systems to automatically enforce privacy policies’.

In Proceedings of the International Conference on Data Engineering (ICDE).

Zaytsev, A., Malyuk, A., Miloslavskaya, N. (2017). ‘Critical Analysis in the
Research Area of Insider Threats’. In Proceedings of the IEEE 5th International

Conference on Future Internet of Things and Cloud (FiCloud).

Ghafir, ., Saleem, J., Hammoudeh, M., Faour, H., Prenosil, V., Jaf, S., Jabbar,
S., Baker, T. (2018). ‘Security threats to critical infrastructure: the human factor’.

The Journal of Supercomputing, Volume 74, Issue 10, Springer.

Gaetjen, S., Knox, D., Maroulis, W. (2015). Oracle Database 12c Security.

McGraw-Hill Education.

Carter, P. (2018). Securing SQL Server: DBAs defending the database. Apress.

92

Vertica (2019). https://www.vertica.com/documentation/vertica/. [Online;

accessed 04-January-2020].
Garbus, J. (2015). SAP ASE 16 / Sybase ASE Administration. SAP Press.

Chaudhuri, S., Dutta, T., Sudarshan, S. (2007). ‘Fine Grained Authorization
Through Predicated Grants’. In Proceedings of the International Conference on
Data Engineering (ICDE).

Chen, W., Barkai, B., DiPietro, J., Langman, V., Perlov, D., Riah, R., Rozenblit,
Y., Santos, A. (2014). Deployment Guide for Infosphere Guardium. 1BM
Redbooks.

Imperva (2019). https://www.imperva.com/. [Online; accessed 04-January-2020].

Walker-Roberts, S., Hammoudeh, M., Dehghantanha, A. (2018). ‘A Systematic
Review of the Availability and Efficacy of Countermeasures to Internal Threats in
Healthcare Critical Infrastructure’. IEEE Access, 6, pp.25167-25177.

Walker-Roberts, S., Hammoudeh, M. (2018). ‘Artificial Intelligent Agents as
Mediators of Trustless Security Systems and Distributed Computing Application’.
In: Parkinson S., Crampton A., Hill R. (eds) Guide to Vulnerability Analysis for
Computer Networks and Systems. Computer Communications and Networks.
Springer, Cham.

Goldsteen, A., Kveler, K., Domany, T., Gokhman, |., Rozenberg, B., Farkash, A.
(2015). ‘Application-Screen Masking: A Hybrid Approach’. |IEEE Software,
Volume 32, Issue 4.

Thanopoulou, A., Carreira, P., Galhardas, H. (2012). ‘Benchmarking with TPC-H
on Off-the-Shelf Hardware: An Experiments Report’. In Proceedings of the

International Conference on Enterprise Information Systems.

Alloghani, M., Al-dJumeily, D., Hussain, A., Mustafina, J., Baker, T., Aljaaf, A.
(2020). ‘Implementation of Machine Learning and Data Mining to Improve
Cybersecurity and Limit Vulnerability to Cyber Attacks’. In: Nature-Inspired
Computation in Data Mining and Machine Learning. Springer, Cham.

Aljawarneh, S., Aldwairi, M., Bani Yassein, M. (2018). ‘Anomaly-based intrusion
detection system through feature selection analysis and building hybrid efficient
model’. Journal of Computational Science, Volume 25, Elsevier.

93

Aldwairi, M., Alsalman, R. (2012). ‘Malurls: a lightweight malicious website
classification based on url features’. Journal of Emerging Technologies in Web

Intelligence, Volume, Issue 2, Academy Publisher.

Benfield, B., Swagerman, R. (2001). ‘Encrypting Data Values in DB2 Universal
Database’. IBM DeveloperWorks.

Boobal G. (2018). ‘TDE Tablespace Encryption’. http://www.dba-
oracle.com/t adv_plsql tde tablespace.htm. [Online; accessed 04-January-
2020].

Zilio, D., Rao, J., Lightstone, S., Lohman G. (2004). ‘DB2 Design Advisor:
Integrated Automated Physical Database Design’. In Proceedings of the

International Conference on Very Large Data Bases (VLDB).

IBM (2018). AIX Encrypted File System (EFS).
https://www.ibm.com/support/knowledgecenter/en/ssw aix 71/devicemanagem

ent/encrypted file system.html. [Online; accessed 04-January-2020].

Microsoft (2018). Encrypted File System (EFS). https://docs.microsoft.com/en-

us/windows/win32/fileio/file-encryption. [Online; accessed 04-January-2020].

Gemalto (A Thales Company) (2018). Online Product Documentation.
https://safenet.gemalto.com/data-encryption/data-center-security/protect-file-

encryption-software/. [Online; accessed 04-January-2020].

Dufrasne, B., Brunson, S., Reinhart, A., Tondini, R., Wolf, R. (2016). IBM DS8880
Data-at-rest Encryption. IBM Redbooks.

Grover, L. (1996). ‘A fast quantum mechanical algorithm for database search’. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing,

Oracle (1992). Trusted Oracle Administrator's Guide. Oracle Product

Documentation.

Oracle (2019). Online Product Documentation,
https://docs.oracle.com/cd/B19306 01/network.102/b14267/intro.htm. [Online;
accessed 04-January-2020].

Informix (1993). Informix OnLine/Secure Administrator’s Guide. Informix Product

Documentation.

94

Rayns, C., Behrends, D., Butler, R., Larsen, K., Lin, M., Yuki, G. (2007). Securing
DBZ2 and Implementing MLS on z/OS. IBM Redbooks.

Winnard, K., Biondo, J., Figueiredo, W., Hering, P. (2015). IBM z/OS V2R2
Security. IBM Redbooks.

Bertino, E., Castano, S., Ferrari, E. (2001). ‘On specifying security policies for
web documents with an xml-based language’. In SACMAT, pages 57—-65.

Bertino, E., Ferrari, E. (2002). ‘Secure and selective dissemination of xml
documents’. ACM Trans. Inf. Syst. Secure., 5(3):290-331.

Halcrow, M. (2007). ‘eCryptfs: A Stacked Cryptographic File System’.
https://www.linuxjournal.com/article/9400. [Online; accessed 04-January-2020].

Vormetric (A Thales Company) (2018). Online Product Documentation.

https://www.thalesesecurity.com/products/data-encryption/vormetric-

transparent-encryption. [Online; accessed 04-January-2020].

Bhatti, R., Bertino, E., Ghafoor, A., Joshi, J. (2004). ‘Xml-based specification for
web services document security’. In IEEE Computer, volume 4 of 37, pages 41—
49.

Zhang, Z., Rjaibi, W. (2006). ‘Inter-node Relationship Labelling: A Fine-Grained
XML Access Control Implementation Using Generic Security Labels’. In
Proceedings of the International Conference on Security and Cryptography
(SECRYPT).

Clark, J., DeRose, S. (2006). Language (XPath) version 1.0.
http://www.w3.org/TR/xpath. [Online; accessed 04-January-2020].

Gartner (2019). https://www.gartner.com/en/newsroom/press-releases/2018-08-

15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-
billion-in-2019. [Online; accessed 04-January-2020].

Centrify (2019). Online Product Documentation.
https://www.centrify.com/education/what-is-zero-trust-privilege. [Online;

accessed 04-January-2020].

Rjaibi, W., Hammoudeh, M. (2019). ‘Towards Zero-Trust Database Security Part
1’. IEEE Future Directions Newsletter: Technology Policy & Ethics, lssue
(September 2019).

95

Rjaibi, W., Hammoudeh, M. (2019). ‘Towards Zero-Trust Database Security Part
2'. IEEE Future Directions Newsletter: Technology Policy & Ethics, Issue
(December 2019).

Verizon (2017). Data Breach Investigations Report.
https://www.knowbe4.com/hubfs/rp DBIR 2017 Report execsummary en Xxdg.

pdf. [Online; accessed 04-January-2020].

Chen, W., Rytir, I., Read, P., Odeh, R. (2008). DB2 Security and Compliance
Solutions for Linux, UNIX, and Windows. IBM Redbooks.

Rjaibi, W. (2018). ‘Holistic Database Encryption’. In Proceedings of the
International Conference on Security and Cryptography (SECRYPT).

The Ponemon Institute (2019). https://www.ibm.com/security/data-breach.

[Online; accessed 04-January-2020].

Rjaibi, W., Hammoudeh, M. (2020). ‘Enhancing and Simplifying Data Security
and Privacy for Multitiered Applications’. Journal of Parallel and Distributed
Computing, Special Issue on Enabling Technologies for Energy Cloud.

IBM (2019). IBM Security Guardium Analyzer Online Product Documentation.
https://www.ibm.com/ca-en/marketplace/quardium-analyzer. [Online; accessed
04-January-2020].

Adir, A., Aharoni, E., Greenberg, L., Miroshnikov, R., Rozenberg, B. Sofer, O.
(2017). ‘Cyber Security Event Detection’. US Patent 10397259.

Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H. (2011). ‘CryptDB:
Protecting Confidentiality with Encrypted Query Processing’. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP).

Chandra, S., Paira, S., Alam, S., Sanyal, G. (2014). ‘A comparative survey of
Symmetric and Asymmetric Key Cryptography’. In Proceedings of the
International Conference on Electronics, Communication and Computational

Engineering.

Shor, P. (1997). ‘Polynomial time algorithms for prime factorization and discrete
logarithms on a quantum’. In SIAM J. Sci. Statist. 26 (1997).

Bruno N., Kwon, Y., Wu, M. (2014). ‘Advanced Join Strategies for Large-Scale
Distributed Computation’. In Proceedings of the Very Large Data Bases (VLDB)

96

Endowment, Vol. 7, No. 13.

Balkesen, C., Alonso, G., Teubner, J., Ozsu, M. (2013). ‘Multi-Core, Main-
Memory Joins: Sort vs. Hash Revisited’. In Proceedings of the Very Large Data
Bases (VLDB) Endowment, Vol. 7, No. 1.

Bruni, P., Harrison, K., Oldham, G., Pedersen, L., Tino, G. (2007). DBZ2 9 for z/0S
Performance Topics. IBM Redbooks.

97

Appendix A: Fine-Grained Authorization Portfolio

Table A.1 — Research Papers

ID Publication Key Contributions

1 Enhancing and Simplifying Data | - Design of a holistic fine-grained database authorization
Security and Privacy for Multitiered | solution which allows organizations to reduce the
Applications complexity of their applications and improve overall

database security.
Journal of Parallel and Distributed
Systems, Special issue on Enabling | - Enable organizations to adhere to zero-trust security.
Technologies for Energy Cloud
- Implementation of the solution in IBM DB2 for Linux,
(Also, Chapter 3 of this thesis) Unix and Windows, IBM DB2 for z/OS and IBM for DB2
for iSeries.

2 Extending Relational Database | - Design of a solution which extends database systems to
Systems to Automatically Enforce | be able to automatically enforce privacy policies.
Privacy Policies

- Enable organizations to meet privacy requirements for
International conference on Data | data stored in database systems.
Engineering (ICDE)

98

Extending Relational Database Systems to Automatically Enforce Privacy
Policies

Rakesh Agrawalf Paul Birdf Tyrone Grandison} Jerry Kiernanf Scott Logani Walid Rjaibi

7 IBM Almaden Research Center
650 Harry Road, San Jose, CA, USA
{ragrawal, tyroneg, jkiernan} @us.ibm.com

Abstract

Databases are at the core of successful businesses. Due
to the voluminous stores of personal data being held by
companies today, preserving privacy has become a crucial
requirement for operating a business. This paper proposes
how current relational database management systems can
be transformed into their privacy-preserving equivalents.
Specifically, we present language constructs and implemen-
tation design for fine-grained access control to realize this
goal.

1. Introduction

The pervasive use of computing technology and the in-
creased reliance on information systems have created a
heightened awareness and concern about the storage and use
of private information. This worldwide phenomenon has
ushered in a plethora of privacy-related guidelines and leg-
islations, e.g. the OECD Privacy Guidelines in Europe, the
Canadian Privacy Act, the Australian Privacy Amendment
Act, the Japanese Privacy Code, the Health Insurance Porta-
bility and Accountability Act (HIPAA), and Gramm-Leach-
Bliley Consumer Privacy Rule. Compliance with these leg-
islation has become an important corporate concern. The
current methods employed to address the disclosure com-
pliance problem involve training individuals to be cognizant
of the various regulations and changing organizational pro-
cesses and procedures. However, these approaches are only
a partial solution and need to be augmented with technology
support.

We present constructs for imbuing relational database
systems with fine grained access control (FGAC) and show
how they can be used to enforce disclosure control enun-
ciated in the vision for Hippocratic databases [1]. These
constructs have been designed to be integrated with the rest

T IBM Toronto Lab
8200 Warden Ave.,Markham, ON, Canada
{pbird, silogan, wrjaibi} @ca.ibm.com

of the infrastructure of a relational database system. We
also discuss the implementation of the proposed FGAC con-
structs, building upon the ideas from [6]. Finally, we show
how privacy policies written in a higher-level specification
language such as P3P [3] can be algorithmically translated
into the proposed constructs.

The users of relational databases are requiring that an
FGAC implementation meets the following desiderata:

e The implementation must solve the problem within the
database itself without application changes or applica-
tion awareness of the implementation.

e The implementation must ensure that all users of the
data are covered, regardless of how the data is ac-
cessed.

e The implementation must minimize the complexity
and maintenance of the FGAC policies.

e The implementation must provide the ability to control
access to rows, columns, or cells as desired.

Traditional methods of database access control have re-
lied upon the use of statically defined views, which are logi-
cal constructs imposed over database tables that can alter or
restrict the data seen by a user. Using predefined views as
the method for FGAC works well only when the number of
different restrictions is few or the granularity of the restric-
tions is such that it affects large, easily identified groups of
users. When these conditions are not true, view definitions
may become complex in an effort to accommodate all the
restrictions in one view. This complexity can strain system
limits and can make maintenance of the views difficult.

Consider the use of a large number of views, each one
implementing restrictions for a specific set of users. One
issue that arises immediately is how to correctly route user
requests to the view that is appropriate to them. Often, the
solution chosen is to resolve the request in the application,

not in the database. Moreover, if a user can bypass the view
when accessing data, for example by having direct access to
the underlying tables, then the restrictions are not enforced.

Given the shortcomings of the traditional methods of im-
plementing FGAC, some database vendors have proposed
solutions that do not rely on the use of views to control ac-
cess to tabular data. For instance, the Oracle Virtual Private
Database [5, 7] solution allows users to define a security
policy, which is a function written in PL/SQL that returns
a string representing a predicate, and to attach the security
policy to a table. When that table is accessed, the secu-
rity policy is automatically enforced. Sybase Row Level
Access Control [9] allows users to define access rules that
apply restrictions to retrieved data. The related work sec-
tion further discusses the Oracle and Sybase approaches.
Microsoft SQL Server primarily supports traditional view
based access control, though they have a feature called row
level permissions. However, row level permissions seem
to be usable only with table hierarchies. In DB2, support
for FGAC is currently provided through traditional mecha-
nisms based on views, triggers and special registers.

The remainder of this paper is organized as follows. Sec-
tion 2 proposes FGAC constructs that allow restrictions to
be expressed on database accesses. Aside from row and
column level restrictions that respectively restrict the set of
rows and columns of a table, cell level restrictions can be
specified to limit access to specific fields of a row. Sec-
tion 3 describes how restrictions expressed in terms of the
proposed constructs can be enforced using dynamic views.
Section 4 presents an algorithm for translating a P3P pri-
vacy policy into the proposed FGAC constructs. Section 5
discusses related work, and Section 6 presents concluding
remarks. Appendix A argues for extending the function-
ality of current relational database systems with cell level
access control.

2. Language Constructs

We provide constructs that allow restrictions to be spec-
ified on access to data in a table at the level of a row, a col-
umn, or a cell (i.e., individual column-row intersections).
Privacy policies specified in high-level languages such as
P3P can be translated into these constructs, or one could
specify the policy directly using these constructs.

The proposed facility is complimentary to the current ta-
ble level authorization mechanisms provided by commer-
cial database systems using the grant command [2]. While
grant controls whether a user can access a table at all, the
proposed constructs define the subset of the data within a
table that the user is allowed to access. Conceptually, a re-
striction defines a view of the table in which inaccessible
data has been replaced by null values. As discussed in [6], it
is possible to use either “table semantics” or “query seman-

create restriction restriction-name
on table-x
for auth-name-1 [except auth-name-2]
(((to columns column-name-list)
| (to rows [where search-condition])
| (to cells (column-name-list [where search-condition])+)
)
[for purpose purpose-list |
[for recipient recipient-list]
)+
command-restriction

Figure 1. Fine grained restriction syntax

tics”. With query semantics, if all the values in a row are
hidden by a restriction, then the row is omitted altogether
from the view. With table semantics, the row would instead
be retained.

Figure 1 gives the syntax of a fine grained restriction
command. It states that those in auth-name-1 except those
in auth-name-2 are allowed only restricted access to table-x.
The keywords public (i.e., all users), group, role, and user
can be used to qualify the authorized names. Table-x can be
any table expression.

A restriction can be specified at the level of a column
(Section 2.1), a row (Section 2.2), or a cell (Section 2.3).
More than one restriction can be specified on a table for the
same user (Section 2.4).

A restriction may additionally specify purposes and/or
recipients [1, 3, 6] for which the access is allowed. If no
purpose or recipient is specified, then the restriction applies
to all purposes and recipients respectively. If a purpose or
recipient is specified, the user’s access is limited to only the
specified purpose-recipient combinations.

Akin to the database system variable user that can be
referenced in queries and returns the id of the user issuing
the query, the new system variables purpose and recipient
return the list of purposes and recipients from the current
query context [6]. These values in turn determine the re-
strictions for the current query.

The command-restriction that appears as the last element
of the syntax has the following form and states that access
can be restricted to any combination of select, delete, insert,
or update commands:

restricting access to (all | (select | delete | insert | update)+)

The discussion below will use, for illustration, the Cus-
tomer table with the following schema: Customer (id inte-
ger, name char(32), phone char(32)).

2.1 Column Restriction

A column restriction specifies a subset of the columns in
table-x that auth-name-1 is allowed to access. The follow-
ing restriction, named r1, ensures that only the id column of
Customer is accessed by any database user:

create restriction rl

on Customer

for public

to columns id
restricting access to all

The restriction r2 below ensures that members of the
account group and user Bob have only select access to
columns name and phone.

create restriction r2

on Customer

for group acct, user Bob
to columns name, phone
restricting access to select

2.2 Row Restriction

A row restriction gives the subset of rows in table-x that
auth-name-1 is allowed to access. This subset is specified
using a search-condition over table-x. The restriction 13 be-
low ensures that every access to Customer is qualified by
the predicate, name = user.

create restriction r3

on Customer

for public

to rows where name = user
restricting access to all

If user Bob issues select * from Customer, he would
see id, name and phone for those rows where name equaled
Bob.

2.3 Cell Restriction

A cell restriction defines the row-column intersections
that auth-name-1 is allowed to access. It is possible to
specify multiple column-name lists, each possibly anno-
tated with a search-condition. A search-condition is a cor-
related subquery with an implicit correlation variable ¢ de-
fined over the tuples of table-x. Access to the columns in
column-name-list for each individual row identified by ¢
is conditionally granted depending upon the result of the
search condition. If no search-condition is given, then ac-
cess is granted to all column values in column-name-list in
table-x. If the search condition ignores correlation variable,
then access is granted or denied to all columns values in

column-name-list in table-x, depending upon the result of
the search-condition.

The following is an example of a cell restriction used to
enforce individual user’s privacy preferences expressed as
opt-in/out choices. Assume that for the purpose of market-
ing, Bob is allowed to see name, but his access to phone is
allowed only if the user has opted-in to revealing her phone
number.

create restriction r4
on Customer for user Bob,
to cells name,
(phone where exists (
select 1
from SysCat.Choices_Customer ¢
where c.ID = Customer.ID and c.C1 = 1))
for purpose marketing
for recipient others
restricting access to select

The above restriction specifies cell restrictions for two
column-name-lists: The first list contains the name column,
and the second contains the phone column. The restriction
allows Bob access to name, only if the variable purpose in-
cludes marketing, and recipient includes others. Otherwise,
all values of the name column will be null for Bob.

The second list of columns has a search-condition asso-
ciated with it since access to phone is dependent upon indi-
vidual user choices. The search-condition comprises an ex-
istential subquery that uses the implicit correlation variable
Customer. For each row in Customer, the subquery verifies,
using the SysCat.Choices_Customer table that stores indi-
vidual opt-in/out choices, whether the user has opted-in for
the disclosure of her phone number (represented by a col-
umn value of 1).

24 Combining Multiple Restrictions

If multiple restrictions have been defined for a user v and
atable 7', then u’s access to 1" is governed by the combina-
tion of these restrictions.

Assume initially that a user associates with a query a sin-
gle purpose and a single recipient. We consider two design
choices for combining multiple restrictions:

o Intersection — User u is allowed access to data defined
by the intersection of all applicable restrictions. The
details are shown in Table 1.

e Union — User u is allowed access to data defined by
the union of all applicable restrictions. The details are
shown in Table 2.

If the commands specified in the command-restriction
clauses of the restrictions being combined are different, they

row

column

cell

row

The search-conditions of individual row
restrictions are and’ed together to define
the intersection of rows accessible to a
user.

The row restriction limits the rows ac-
cessible to the user. The column restric-
tion further limits the columns within the
rows accessible to the user.

The row restriction limits the rows acces-
sible to the user. Within each row, the
cell restriction further limits the access
to the cells that qualify the cells’ search-
condition.

column

The user’s access is limited to those
columns that appear in both of the col-
umn restrictions.

Column and cell restrictions intersect
to limit access to only those columns
that appear in both the restrictions. In
addition, the cell restriction’s search-
condition further limits accessible cells
within a column.

cell

The search-conditions are and’ed to-
gether and the user is allowed access to
a cell if the composite condition is satis-
fied for the cell. The value of the com-
posite condition for a cell that does not
appear in both the restrictions is false.

Table 1. Combining restrictions with intersection

row

column

[cell

row

The search-conditions of individual row
restrictions are or’ed together to define
the union of rows accessible to a user.

The user is given access to all the cells
for any row that satisfies the row restric-
tion. Additionally, the user is allowed ac-
cess to all the cells in any of the columns
that satisfies the column restriction, ir-
respective of whether the corresponding
rows satisfy the row restriction.

The user is given access to all the cells
in any of the rows that satisfy the row
restriction. Additionally, the user is al-
lowed access to all other cells that satisfy
the cell restriction’s search-condition, ir-
respective of whether the corresponding
rows satisfy the row restriction.

column

The user is allowed access to a column
if it appears in either of the two column
restrictions.

The user is given access to all the cells
in any column appearing in the column
restriction, regardless of whether the cell
restriction is satisfied for these cells. For
cells in a column for which the column
restriction does not apply, access is given
if the cell restriction is satisfied.

cell

The search-conditions are or’ed together
and the user is allowed access to a cell
if the composite condition is satisfied for
the cell.

Table 2. Combining restrictions with union

Privacy
Policy User Query

with purpose

& recipient

[[
—
Policy Translator
e
Query Rewriting

FGAC
Restrictions L% Lot

Privacy Catalogs

RDBMS

Figure 2. Implementation architecture

are respectively and’ed or or’ed depending upon the choice
of intersection or union semantics.

Multiple restrictions can be combined in any order, both
with intersection and union semantics. With the intersec-
tion semantics, the user’s access to data decreases as addi-
tional restrictions are applied. Conversely, with union se-
mantics, access to data increases as additional restrictions
are applied.

We prefer intersection semantics over union since addi-
tional restrictions should intuitively decrease a user’s access
to information.!

Finally, if a query is annotated with multiple purpose-
recipient pairs, instead of a single pair, then restrictions gov-
erning access to any of the pairs become relevant for the
query. These restrictions are then combined as above. Note
that once a user’s access to a table has been restricted, the
user can only access the data allowed for the purposes and
recipients specified in the restrictions.

3. Implementation

We next present a design for implementing the proposed
constructs, building upon the ideas presented in [1, 6]. In
this and the remainder of the paper, we focus on cell re-
strictions limited to select statement access. Figure 2 shows
the overview of the design. The policy translator accepts a
privacy policy (written in, for example, P3P) and metadata

't is conceivable to use mixed modes for combining restrictions. For
example, intersection could be used to combine multiple row restrictions
while union could be used to combine multiple column or cell restric-
tions. However, the semantics of such combinations can become quite
complex as the restriction imposed by a combination may no longer be
order-independent.

stored in privacy catalogs and generates cell restrictions that
implement the policy. The schema of the privacy metadata
catalogs shown in Figure 2 used to drive the translation of
P3P privacy policies into cell level restrictions are given be-
low.

PR (purp-recip char(18),
p3ptype char(32),
choice_tabname char(32),
choice_colname char(32))

PT (p3ptype char (32), tabname char(32), colname char(32))

Table PR stores, for each purpose, recipient and p3p data
type pair, the (table name-column name) pair that records
individual user opt-in/out choice, should any choice be
available for that combination. Table PT stores, for each
P3P data type, the table names and column names which
store values of these P3P types.

Figure 3 gives the algorithm used for enforcing the fine
grain restrictions. For ease of exposition, we assume there is
a single purpose-recipient pair associated with a query and
there is at most a single restriction which is relevant for the
query. The enforcement algorithm combines the restrictions
relevant to individual queries annotated with purpose and
recipient information and transforms the user’s query into
an equivalent query over a dynamic view that implements
the restriction.

In detail, Line 1 iterates over each table reference ¢ in
a query (). Line 2 accesses metadata to determine if there
is a restriction r governing the usage of ¢ by user v who is
submitting the query Q. If no such restriction exists, then ¢
remains unmodified in (). Otherwise, Lines 3 and 4 replace
each reference to table ¢ in query) with a reference to a
dynamic view v.

The generation of the dynamic view v is implemented in
Lines 5 through 25. The view v is a select statement which
conditionally projects each column ¢ € ¢. Line 7 searches
for a column reference to ¢ € r. If no such reference exists
with the purpose/recipient of query (), then the user u is not
allowed access to ¢ and Line 8 thus projects a null value
for all values of c. Otherwise, Line 10 searches for a where
clause associated with ¢ € r. If no such clause exists, then
u is granted unconditional access to c. Otherwise, Line 15
outputs the condition of the where clause into a SQL case
statement which verifies the condition before outputting the
value of ¢ (on Line 18). If the condition is false, access to
the column value is denied and Line 19 outputs a null value
for c.

4. Translating Privacy Policies

It is expected that the privacy policies will likely be writ-
ten in some high-level policy language. The following illus-

1
2
3
4

10
11

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26

for each table reference ¢ in query () do begin

if (exists a restriction r pertaining to ¢ for Q) then begin

create a dynamic view v € Q over ¢

replace each reference to ¢ € () with a reference to v € @

/l create the dynamic view v using

/I the following print statements

1

print “select”

for each column c € ¢ do begin
/I ¢p, cr are the purposes, recipients
/I of column c in restriction r

/I Qp, Q- are the purpose, recipient of query ()

/!
if(cgr|Qp €cp NQr € ¢
// ¢ isn’t included in the restriction r
/I access to c is thus prohibited
/!
print "null”
else begin
// The whereClause function returns
/[the predicate associated with ¢
// that is specified in the restriction
/
let w = whereClause(c)
if w = null then
// There is no “where” condition

// governing the use of ¢ € r, thus access
// to all column values is granted unconditionally

1
print c.colname
else begin
// Implement the “where” condition
// using a SQL case statement to grant

// only conditional access to the column ¢

1
print “case when exists (”
print w.condition
print ”)”
print “then”
print c.colname
print “else null end as”
print c.colname
end
end

end

print “from”

print ¢ .tablename

end

Figure 3. Algorithm for enforcing fine grained
cell level restrictions using a Hippocratic

database system

trates the basic syntax of the P3P policy specification lan-
guage [3].

<POLICIES> ...
<POLICY name = "Policy Namel" > ...
<STATEMENT>
<PURPOSE>
stated-purpose
[required = ("always
</PURPOSE>
<RECIPIENT>
stated-recip
[required = ("always
</RECIPIENT>
<RETENTION> retention_val </RETENTION>
<DATA GROUP>
<DATA ref = data-ref-val>

" | Hopt_inu | uopt_outu)]

|||!|opt_inll|llopt_out|l)]

</DATA GROUP>
</STATEMENT>
</POLICY>
<POLICY>

</POLICY>
</POLICIES>

The process of transforming a policy like the one above
into fine grained restrictions involves: (1) parsing the policy
to extract the list of statements, (2) mapping data abstrac-
tions into their implementation specific equivalents, e.g. in
the above specification this would mean mapping data-ref-
val to its corresponding table name(s) and column name(s),
(3) structuring the choice tables which record individual
user opt-in/out choices (in some cases, this may not be nec-
essary since there may be no such choices), and (4) gener-
ating the restriction statements. Assuming that data-ref-val
maps to columns A and B of table T, the above abstract
specification would lead to the following restriction being
constructed:

create restriction Policy_Namel
onT
for public
to cells A,B
[where opt-in-out-conditions]

for purpose stated-purpose

for recipient stated-recip
restricting access to select

Figure 4 is a detailed example of a privacy policy, for a
fictional Healthcare provider.

The metadata contains the information needed to asso-
ciate “#personal” (personal information) and “#medical”
(medical information) with database tables which store this
information. Personal information maps to the name, SSN,
address, email and DOB fields of the Patients table, while
medical information maps to the xray, pharmacy, family,
appointment and lifestyle fields of the Patients table. Thus,

<!-- Statementl -->
<STATEMENT>
<CONSEQUENCE>
Encodes that personal and medical information
can be accessed for emergency purposes
by ourselves
</CONSEQUENCE>
<PURPOSE>
<other-purpose>
Emergency
</other-purpose>
</PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref = "#personal"/>
<DATA ref = "#medical">
<CATEGORIES>
<health/>
</CATEGORIES>
</DATA>
</DATA-GROUP>
</STATEMENT>

<!-- Statement2 -->
<STATEMENT>
<CONSEQUENCE>
Encodes that we and drug companies
with the same data usage policies
can access personal and medical information
for new_drug_research on an opt-out basis
</CONSEQUENCE>
<PURPOSE><develop/></PURPOSE>
<RECIPIENT>
<ours required="opt-out"/>
<same required="opt-out"/>
</RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref = "#personal"/>
<DATA ref = "#medical">
<CATEGORIES>
<health/>
</CATEGORIES>
</DATA>
</DATA-GROUP>
</STATEMENT>

create restriction Statementl
on Patients
for public
to cells Name, SSN, Address, Email, DOB,
XRay, Pharmacy, Family,
Appointment, Lifestyle
purpose Emergency
recipient ours
restricting access to select

create restriction Statement2.1
on Patients

for public
to cells Name, SSN, Address, Email, DOB,
XRay, Pharmacy, Family,
Appointment, Lifestyle
where
exists (

select 1
from SysCat.Choices_Patients cp
where cp.ID = Patients.ID
and cpCl=1)
for purpose develop
for recipient ours
restricting access to select

create restriction Statement2.2
on Patients

for public
to cells Name, SSN, Address, Email, DOB,
XRay, Pharmacy, Family,
Appointment, Lifestyle
where
exists (

select 1
from SysCat.Choices_Patients cp
where cp.ID = Patients.ID
and cp.C2=1)
for purpose develop
for recipient same
restricting access to select

Figure 4. A sample privacy policy written for
a health care provider

Figure 5. Translation of the privacy policy in
Figure 4 into fine grained cell level restric-
tions

the P3P healthcare policy given in Figure 4 is translated into
the restrictions given in Figure 5.

For simplicity, the restrictions in Figure 5 assume that all
data types in a P3P statement are contained in a single table.

The Choices_Patients table is created by the database
administrator to record individual opt-in/out decisions de-
scribed in the privacy policy. In Figure 5, C1 represents the
choice to allow Drug_Research to see personal and medical
data if the drug research is being conducted by the health-
care company itself. Choice C2 is the option to allow usage
of the personal and medical data for drug research by other
healthcare companies having the same privacy policy as this
company. The example illustrates the basic steps involved
in the translation process.

Figure 6 gives the pseudo-code showing the steps in-
volved in transforming P3P policy into our proposed
constructs. A unique restriction name, needed for the
command, is generated on Line 5. Line 7 uses the
mapP3PStatementToTable function to recover the table
name which stores the information described by the data
types in the P3P statement. This metadata has been pop-
ulated by the database administrator. On Line 8, the the
restriction is set to public to apply to all users. Line 10 uses
the mapP3PDataTypeToColumns function to retrieve the
column names that store information described by the P3P
data types in the statement. Again, this information has
been prepared and supplied by the database administrator
and stored in metadata tables.

The function mapP3PPurposeToChoiceTable accepts
a statement id and returns the table storing individ-
ual user choices for this statement. = The function
mapP3PPurposeToChoiceColumn accepts a statement-
purpose pair and returns the column in the choice table
which records the corresponding users’ choices. Both these
functions are driven from metadata.

5. Related Work

5.1 Oracle

Oracle has introduced a fine-grained access control ca-
pability via their security policy concept [5, 7] which, once
defined on a table or view, modifies any future query against
that table by adding a predicate into the query. In essence,
they have allowed row restrictions traditionally handled by
views to be dynamically added to queries [8].

The fundamental difference between the Oracle ap-
proach and the one in this paper is that Oracle modifies the
query by adding predicates while the approach in this paper
leaves the query alone and effectively modifies the table be-
ing accessed by injecting a dynamically created view of the
table between the query and the target table.

1

for each statement s in policy do begin

2 for each purpose p in s do begin

3 for each recipient 7 in s do begin

4 print “create restriction ”

5 print generate-unique-restriction-name()

6 print ” on table ”

7 print mapP3PStatementToTable(s)

8 print ” for public

9 print ” to cells ”

10 print mapP3PDataTypeToColumns(s)

11 if (p.required != always) then

12 print “where exists (select 1 from ”

13 + mapP3PPurposeToChoiceTable(s)

14 + 7 p where p.ID =+ mapP3PStatementToTable(s) +”.ID
15 and "+ mapP3PPurposeToChoiceColumn(s,p) + "= 1))”
16 if (r required != always) then

17 print “and exists (select 1 from ”

18 + mapP3PRecipientToChoiceTable(s)

19 + 7 r where r.ID = "+ mapP3PStatementToTable(s) +”.ID”
20 + ”and "+ mapP3PRecipientToChoiceColumn(s,) + "= 1))”
21 print “for purpose” + p.name

22 print "for recipient” + r.name

23 end

24 end

25 end

26 print “restricting access to select”

Figure 6. Algorithm for translating a P3P pri-
vacy policy into fine grained cell level restric-
tions

The Oracle approach shares the following advantages

with our design:

e It is pervasive to all users of the table.
e It does not require application modification.

e It does not require a large number of statically defined
views.

Its primary disadvantages are:

e It requires user programming of a strictly defined
“predicate producing” procedure in order to implement
a security policy.

e It does not address column or cell restrictions.

5.2 Sybase

Sybase Adaptive Server version 12.5 has introduced a

feature called row level access control [9] that enables the
database owner or table owner to restrict access to a table’s

rows by defining access rules and binding those rules to the
table. Access to data can be further controlled by setting
application contexts and creating login triggers.

Access rules apply restrictions to retrieved data, enforced
on select, update and delete operations. Adaptive Server
enforces the access rules on all columns that are read by
a query, even if the columns are not included in the select
list. Using access rules is similar to using views, or using
an ad hoc query with where clauses. The query is compiled
and optimized after the access rules are attached, so it does
not cause performance degradation. Access rules provide
a virtual view of the table data, the view depending on the
specific access rules bound to the columns.

Our proposal differs from the Sybase row level access
control solution as follows:

e It allows restrictions to be defined on columns and cells
in addition to rows.

e A restriction can contain as many predicates as desired
and this is done in a single statement (i.e., create re-
striction). Sybase would need to create a separate ac-
cess rule for each predicate, and’ing them, and then
binding them to the appropriate columns.

6. Conclusion

Databases of the future must ensure the privacy of the
data subjects that they store information on. The security
functionality offered by current commercial database prod-
ucts is not adequate to enforce privacy compliance. The
main contributions of this paper are:

e Language constructs for specifying restrictions at the
level of a row, a column, or a cell that integrate well
with the rest of the relational database infrastructure.

e Semantics of combining multiple restrictions.
e Design for implementing the proposed constructs.

e Algorithm for translating a P3P privacy policy into the
proposed constructs.

Our fond hope is that this paper will serve to create dia-
log on the right functionality that the database systems must
support and the efficient ways of its implementation.

Acknowledgments We wish to thank Alvin Cheung for
useful comments on the paper.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In 28th Int’l Conference on Very Large Databases,
Hong Kong, China, August 2002.

(2]
(3]

(4]
(5]
(6]

(71
(8]

(9]

D. Chamberlin. A Complete Guide to DB2 Universal
Database. Morgan Kaufmann, 1998.

L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle. The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation,
April 2002.

US Department of Health
http://www.hhs.gov/ocr/hipaa.
T. Kyte. Fine-grained access control. Technical report, Oracle
Corporation, 1999.

K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt. Limiting disclosure in Hippocratic
databases. In 30th Int’l Conf. on Very Large Data Bases,
Toronto, Canada, August 2004.

A. Nanda and D. K. Burleson. Oracle Privacy Security Au-
diting. Rampant, 2003.

M. Stonebraker and E. Wong. Access control in a relational
data base management system by query modification. In
ACM/CSC-ER, 1974.

Sybase. Sybase Adaptive Server Enterprise 12.5, Sys-
tem Administration Guide, Row Level Access Control.
http://sybooks.sybase.com/onlinebooks.

and Human Services.

ID | Name HomePhone WorkPhone Salary
1 Alicia Campbell | 408-418-5198 | 408-419-9111 10,000
2 | Bob Bobbett 408-418-5198 | 408-419-9112 | 20,000
3 Carl Abrahams 408-333-6633 408-419-9113 30,000
4 | Dan Charmer 408-432-8644 | 408-419-9114 | 40,000
5 | Ellen Generous 408-555-1235 | 408-419-9115 | 50,000

Table 3. Table of BlueCo’s clients
Name HomePhone OfficePhone
Alicia Campbell | - 408-419-9111
Bob Bobbett 408-418-5198 | -

Carl Abrahams 408-333-6633 | 408-419-9113

Table 4. Cell level enforcement

A. The Case for Cell Level Enforcement

Compliance with current privacy legislation mandates
that the user’s consent be obtained for the use/disclosure
of the personal information stored about them. Row or col-
umn level restriction are not adequate for modeling scenar-
ios where individuals may make opt-in/out choices with dif-
ferent aspects of their information. To achieve this goal of
minimal disclosure while allowing useful tasks to be per-
formed on relevant information, cell level enforcement is
key. A similar case for cell level enforcement has been
made in [6].

Consider a scenario requiring adherence to the HIPAA
regulation [4]. BlueCo is a healthcare provider that stores
personal data on individuals who enroll in its plans. BlueCo
has affiliations with a number of hospitals, research institu-
tions, and marketing companies. Under HIPAA, any indi-
vidually identifiable healthcare information held or trans-
mitted by BlueCo is considered protected information. For
any use or disclosure of protected health information that is
not for treatment, payment, or health care operation and that
is not otherwise permitted (e.g. law enforcement), BlueCo
must get the data subject’s consent.

Assume a simplified version of BlueCo’s database given
in Table 3. ResearchCo is an epidemiological research
institute that periodically harvests BlueCo’s data. Under
HIPAA, all clients must give their consent for release of
their home and office numbers.

Alicia Campbell opts out of having her home phone
number, but does not mind if BlueCo discloses her office
number. Suppose John Seeker, a researcher at ResearchCo
issues the following query:

select name, homephone, officephone
from clients where salary < 30000

Given the choices that Alicia has made, only her name
and office phone number should be displayed as shown in
Table 4.

OfficePhone
408-419-9113

HomePhone
408-333-6633

Name
Carl Abrahams

Table 5. Row level enforcement

Database systems employing row level controls restrict
disclosure to all information in a particular row, when a re-
striction is only on particular columns in that row. Thus, us-
ing conventional row level controls, the results for the query
are those shown in Table 5. Both Alicia and Bob are no
longer present in the result, even though they have agreed
that one of their two phone numbers can be disclosed.

This simple example illustrates the inadequacy of row
level restrictions. Similar arguments can be made for col-
umn level restrictions. They are not flexible enough to allow
disclosure of non-sensitive data and suppression of sensitive
data on a subject by subject basis.

Table A.2 — Granted Patents

Systems to Automatically Enforce

Privacy Policies

US Patent US 7,243,097 B1

ID Publication Key Contributions

1 Method and System for Using This patent is the foundation for the row permission and
Fine-Grained Access Control | column mask concepts discussed in the core publication
(FGAC) to Control Access to Data | #1 in table A.1 above.
in a Database
US Patent US8,234.299B2

2 Method for Establishing a Trusted | This patent is the foundation for the trusted context
Relationship Between a Data | concept discussed in the core publication #1 in table A.1
Server and a Middleware Server above
US Patent US 7,647,626B2

3 Access Control for Elements in a | This patent is the foundation for the table restriction
Database Object concept discussed in publication #2 in table A.1 above.
US Patent US7,865,521B2

4 Extending Relational Database | This patent is the foundation for the method to translate

privacy policies into table restrictions discussed in

publication #2 in table A.1 above.

99

US008234299B2

a2 United States Patent (10) Patent No.: US 8,234,299 B2
Bird et al. 45) Date of Patent: Jul. 31, 2012
(54) METHOD AND SYSTEM FOR USING 6487552 BL* 11/2002 Leietal. wooooorecriicverrrrernrens U1
N 6,813,617 B2* 11/2004 Wongetal. . e U1
FINE-GRAINED ACCESS CONTROL (FGAC) 7483.896 B2* 12000 JORNSON woosi 1
TO CONTROL ACCESS TO DATA IN A 2002/0016924 Al* 2/2002 Shahetal. ... 713/200
DATABASE 2003/0014394 A1* 1/2003 Fujiwara et al. . 70713
2003/0236781 Al* 12/2003 Leietal. 707/3
(75) Inventors: Paul Miller Bird, Markham (CA); %883;8%‘5‘222 ﬁ} 18%883 gomer etttﬂL
O 00ZECT € .
Yao-Ching Stephen Chen, Saratoga 2005/0144176 Al* 6/2005 Leietal. ..o 707/100
(CA); George Gerald Kiernan, San 2005/0177570 Al* 82005 Duttaetal. . e 707/9
Jose, CA (US); Scott Ian Logan, Don 2005/0246338 Al* 11/2005 Bird c 707/9
Mills (CA); Allen William Luniewski, 2005/0289342 Al* 12/2005 Needham etal. .. 713/169
Cupertino, CA (US); Walid Rjaibi 2006/0020581 Al* 1/2006 Dettinger etal. .. . 70773
’ ’ ’ 2006/0059567 Al* 3/2006 Birdetal. 726/27
Markham, CA (US) 2008/0010233 Al* 1/2008 Sacketal. ... e T07/1
2008/0071785 Al* 3/2008 Kabraetal. 707/9
(73) Assignee: International Business Machines (Continfler(;l)e :
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Chaudhuri et al., Fine Grained Authorization Through Predicated
U.S.C. 154(b) by 472 days. Grants, Apr. 2007, IEEE Xplore, pp. 1174-1183.*
(21) Appl. No.: 12/013,253 (Continued)
(22) Filed: Jan. 11. 2008 Primary Examiner — Wilson Lee
’ Assistant Examiner — Jessica N Le
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Sawyer Law Group, P.C.
US 2009/0182747 Al Jul. 16, 2009 (57) ABSTRACT
method and system for controlling access to data stored 1
(51) Int.Cl A method and system f lling d di
GO6F 7/00 (2006.01) a table of a database are provided. The method includes
GO6F 17730 (2006.01) marking the table of the database as being protected with
(52) US.CL oo, 707/781 fine-grained access control (FGAC), creating a system autho-
(58) Field of Classification Search 707/9. 694 rization class for the table of the database, the system autho-
707/713. 781. 999 009 rization class having a default row authorization that prevents
See application file for complete search histéry ' access to all rows in the table, the system authorization class
' being unmodifiable, creating a user authorization class for the
(56) References Cited table of the database, the user authorization class having a

U.S. PATENT DOCUMENTS
5,987,455 A * 11/1999 Cochraneetal.c........ 1

6,085,191 A * 7/2000 Fisher et al. .
6,212,511 B1* 4/2001 Fisheretal. ..., 1
6,236,996 Bl 5/2001 Bapat et al.

default row authorization that prevents access to all rows in
the table, the user authorization class being modifiable, and
associating the system authorization class and the user autho-
rization class with the table of the database.

18 Claims, 2 Drawing Sheets

’/— 200

MARK TABLE AS BEING PROTECTED ON A / 202
TABLE-LEVEL, E.G., BY A FINE-GRAINED
ACCESS CONTROL (FGAC) MECHANISM

!

CREATE AUTHORIZATION CLASS THAT
DENIES ALL ACCESS TO ROWS AND
COLUMNS TO A TABLE

204
/

{

ASSOCIATE AUTHORIZATION CLASS WITH 206
TABLE TO ENFORCE A DEFAULT RULE OF /
“NQ ACCESS” TO ROWS AND COLUMNS
OF THE TABLE

US 8,234,299 B2
Page 2

U.S. PATENT DOCUMENTS

2008/0162402 Al* 7/2008 Holmesetal. 707/1
2008/0313134 Al* 12/2008 Leicccocoone. . 70772
2008/0319999 Al* 12/2008 Simpsonetal. 707/9

OTHER PUBLICATIONS

Leicester, J. M., “VPDand Columnar FGAC” Oramoss Oracle, http://
72.14.203.104/search?q=cache: yPsSX99vWwAJ:oramossoracle.

blogspot.com/+database+FGAC+%22column-level+security22&
hl=en&gl=us&ct=clnk&cd=3, Jan. 8, 2006, 4 Pages.

Burleson Consulting, “Oracle Virtual Private Database Policy (VPD)
Tips”, http://www.dba-oracle.com/art_builder_ vpd.htm, Oracle
Virtual Private Database VPD with RLS and FGAC, Aug. 25, 2003,
5 Pages.

* cited by examiner

U.S. Patent Jul. 31, 2012 Sheet 1 of 2 US 8,234,299 B2

INPUT/QUTPUT
DEVICES 102

PROGRAMMED COMPUTER 104

DBMS 108

CONTROL MODULE 11

DATA ACCESS i

’/— 100

DATABASE 106

FiG. 1

’/— 200

MARK TABLE AS BEING PROTECTED ON A
TABLE-LEVEL, E.G., BY A FINE-GRAINED
ACCESS CONTROL (FGAC) MECHANISM

!

202
/

CREATE AUTHORIZATION CLASS THAT
DENIES ALL ACCESS TO ROWS AND
COLUMNS TO A TABLE

!

204
/

ASSOCIATE AUTHORIZATION CLASS WITH
TABLE TO ENFORCE A DEFAULT RULE OF
“NQ ACCESS” TO ROWS AND COLUMNS
OF THE TABLE

206
/

FIG. 2

U.S. Patent

4

COMMUNICATION

Jul. 31, 2012

N

312

LINK

NETWORK
ADAPTER
310

® MEMORY
304A

PROCESSOR

302

MEMORY
3048

FIG. 3

Sheet 2 of 2 US 8,234,299 B2

(o8]
=g
o))

110
DEVICE
3088

US 8,234,299 B2

1
METHOD AND SYSTEM FOR USING
FINE-GRAINED ACCESS CONTROL (FGAC)
TO CONTROL ACCESS TO DATAIN A
DATABASE

FIELD OF THE INVENTION

The present invention relates generally to data processing,
and more particularly to techniques for controlling access to
data in a database.

BACKGROUND OF THE INVENTION

Business enterprises typically maintain data in database.
For both legal and business reasons, business enterprises are
increasingly becoming sensitive to unauthorized access to
data in their databases. One type database system that is
commonly used by enterprise businesses is a relational data-
base in which data is organized in rows and columns of one or
more tables (or table objects). Accordingly, business enter-
prises are exploring and implementing a number of mecha-
nisms to prevent inadvertent or unauthorized access to row
and/or column data. In a relational database management
system (RDBMS), table object privileges granted to a user
control whether or not access to the data in the table object is
allowed. In general, such privilege control does not conven-
tionally extend to the column-level or the row-level.

One technique for controlling access to data in a tableon a
column-level or a row-level includes use of a label-based
access control (LBAC) mechanism—i.e., unless a label of a
user is compatible with a label associated with a row or
column of a table, then the data for that row or column is not
returned to the user. Business enterprises, however, have gen-
erally been less accepting of label-based access control
mechanisms due to the restrictive nature oflabel components,
the need to provide a label for rows and columns, the lack of
flexibility in terms of what can be expressed within labels.

Business enterprises have turned to more flexible mecha-
nisms—e.g., fine-grained access control (FGAC) mecha-
nisms including views, triggers, Oracle’s virtual private data-
base, and so on. Such fine-grained access control mechanisms
all have one thing in common—the mechanisms supplement,
but do not supplant, access control provided by privileges.
That is, if a user has a SELECT privilege on a table, the user
has access to all row and column data in the table; with
conventional fine-grained access control mechanisms, that
access is restricted by the addition of predicates and other
logic to reduce the rows (and columns) seen by the user. But,
by default, every user with privileges on a table has full access
to all row and column data until and unless a fine-grained
access control restriction is applied to rows or columns. This
leaves open the possibility that a user, with privileges on a
table object, can inadvertently be missed or not affected by
fine-grained access control mechanisms, and therefore the
user may be able to access data that the user would otherwise
not be allowed to access.

BRIEF SUMMARY OF THE INVENTION

In general, this specification describes a method, system,
and computer program for method for controlling access to
data stored in a table of a database. In one implementation, the
method includes marking the table of the database as being
protected with fine-grained access control (FGAC), creating a
system authorization class for the table of the database, the
system authorization class having a default row authorization
that prevents access to all rows in the table, the system autho-

20

25

30

35

40

45

50

55

60

65

2

rization class being unmodifiable, creating a user authoriza-
tion class for the table of the database, the user authorization
class having a default row authorization that prevents access
to all rows in the table, the user authorization class being
modifiable, and associating the system authorization class
and the user authorization class with the table of the database.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system
including a data access control module in accordance with
one implementation.

FIG. 2 illustrates one implementation of a method for
controlling access to data in a table of a database.

FIG. 3 is a block diagram of a data processing system
suitable for assisting a user in creating software code inaccor-
dance with one implementation.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates generally to data processing,
and more particularly to techniques for controlling access to
data in a database system. The following description is pre-
sented to enable one of ordinary skill in the art to make and
use the invention and is provided in the context of a patent
application and its requirements. The present invention is not
intended to be limited to the implementations shown but is to
be accorded the widest scope consistent with the principles
and features described herein.

FIG. 1 illustrates a data processing system 100 in accor-
dance with one implementation. Data processing system 100
includes input and output devices 102, a programmed com-
puter 104, and a database 106. Input and output devices 102
can include devices such as a printer, a keyboard, a mouse, a
digitizing pen, a display, a printer, and the like. Programmed
computer 104 can be any type of computer system, including
for example, a workstation, a desktop computer, a laptop
computer, a personal digital assistant (PDA), a cell phone, a
network, and so on. Database 106 can be a relational database
including one or more tables (not shown) for storing data.

Running on programmed computer 104 is a database man-
agement system (DBMS) 108 including a data access control
module 110. In one implementation, the database manage-
ment system (DBMS) 108 and data access control module
110 are features of DB2 available from International Business
Machines, Corporation of Armonk, N.Y. In one implementa-
tion, the data access control module 110 implements a fine-
grained access control (FGAC) to control user access to data
stored in one or more tables of the database 106. The FGAC
can be used to deny access to particular row(s) or column(s)
of the one or more tables in the database 106, which will be
discussed in greater detail below.

In one implementation, the data access control module 110
implements row authorization and column authorization as
the FGAC on the one or more tables in database 106. In
addition to the row/column authorization, there may also be
traditional object-level (or table-level) privileges on each
table (e.g., SELECT privilege on a table EMPLOYEE). In
one implementation, a row authorization allows the holder of
such authorization access to a subset of rows of an FGAC
protected table. In one implementation, a column authoriza-

US 8,234,299 B2

3

tion allows the holder of such authorization access to a subset
of'values (or cells) in a column of an FGAC protected table. In
one implementation, row authorizations take precedence over
column authorizations—i.e., if a user is not authorized to see
any rows in an FGAC protected table, a column authorization
for some column in that table will not allow that user to see
any values in that column.

In one implementation, row and column authorizations are
associated with a higher level entity called an authorization
class. An authorization class (in one implementation) is asso-
ciated with one and only one FGAC protected table, and
contains one or more row authorizations and zero or more
column authorizations. When an authorization class is cre-
ated, a default row authorization that denies all access (e.g., a
row predicate of “1=0") is created and implicitly granted to
PUBLIC. This default row authorization cannot be deleted
from the class nor can the default row authorization be
revoked as it represents the default access available to users
(which is none) through this authorization class.

FIG. 2 illustrates a method 200 for controlling access to
data in a table of a database in accordance with one imple-
mentation. A table (e.g., in database 106) is marked as being
protected on a table-level (step 202). For example, the table
can be marked as being protected on a table-level by a data-
base management system assigning one or access privileges
to the table—i.e., access to the table is defined to the table as
awhole. In one implementation, a fine-grained access control
mechanism is applied to the table to protect (or control access
to) the table on a table-level. Other suitable techniques for
protecting access to a table on a table-level (or object-level)
can be implemented. An authorization class is created (e.g.,
by the database management system) that, as a default, pre-
vents access to all rows and columns of a table (step 204). In
one implementation, a default system authorization class is
created as well as a default user authorization class. Both of
these classes contain the normal class default row authoriza-
tion described above. The system authorization class enforces
the default access rule of “no access” for an FGAC protected
table and this class cannot be dropped or modified in any way.
The default user authorization class is provided as a location
for any authorizations for which no authorization class is
specified (i.e. it is a convenience to allow for authorizations to
be defined without creating an authorization class); while the
default user authorization class cannot be dropped, it can be
modified like any other user defined authorization class.

An authorization class can be granted to (or revoked from)
users, roles, groups, or PUBLIC. Granting an authorization
class implicitly includes all authorizations defined within that
class. If subsequent changes are made to the contents of that
authorization class, those changes are automatically inherited
by anyone granted the authorization class. If desired, row
authorizations and column authorizations from an authoriza-
tion class can be individually granted (with the exception of
the class default row authorization); this would be of value in
those cases where one or more of the authorizations, but not
all, within an authorization class are to be granted or where
there is no desire to have future changes to the contents of the
authorization class automatically inherited.

The authorization class (or classes) is associated with the
table to enforce a default rule of “no access” to rows and
columns of the table (step 206). All authorization classes
defined on the same table affect and are considered for each
and every query against that table. When more than one
authorization of the same type (e.g., row or column) from the
same authorization class apply to the same user, these autho-
rizations are logically OR’ed together allowing that user
access to the union of data authorized through those authori-

20

25

30

35

40

45

50

55

60

65

4

zations. For example, if user Joe is authorized to see all blue
rows according to one row authorization in class AC1, and is
authorized to see all red rows according to another authori-
zation from the same authorization class AC1, then user Joe is
allowed access to the union of blue and red rows.

By default, (in one implementation) the contents of differ-
ent authorization classes on the same table are logically
OR’ed together to achieve a union. However, sometimes this
is not the desired behavior—i.e., in some cases, the contents
of one or more of the authorization classes are considered to
refine the contents of other authorization classes and the
desire is to have the intersection of these authorization classes
be used rather than the union. In such cases, the relationship
between two authorization classes can be explicitly defined to
be an intersect and the aggregate of authorizations present in
the query from each authorization class will be logically
AND’ed together instead. Specifically, when two classes are
defined as intersecting, authorizations from the same autho-
rization class will be OR’ed together to form a set and then
logically AND’ed with the set from the other authorization
class. For example, if user Joe is authorized to see all blue
rows according to a row authorization in one authorization
class AC1, and is authorized to see all rows for Canadian
residents according to another authorization from a different
authorization class AC2, where authorization class AC2 has
been defined as intersecting with authorization class AC1,
then user Joe is authorized to see a view that contains the blue
rows representing Canadian residents only (not all the blue
rows). An authorization class can be defined to intersect with
one or more (or all) authorization classes on the same FGAC
protected table.

EXAMPLE

The following example illustrates one implementation of
the techniques discussed above. Assume the following envi-
ronment:

CREATE TABLE MYSCHEMA.T1 (C1 INT, C2 INT
WITH ALTERNATE VALUE 99, C3 INT) PRO-
TECTED BY FGAC

CREATE ROLE WAREHOUSE

CREATE ROLE ACCOUNTING

CREATE ROLE TEMPORARY_ACCOUNTING

GRANT SELECT ON MYSCHEMA.T1 TO ROLE
WAREHOUSE, ROLE ACCOUNTING, ROLE TEM-
PORARY_ACCOUNTING

GRANT ROLE WAREHOUSE TO FERNANDO

GRANT ROLE ACCOUNTING TO BOB

GRANT ROLE TEMPORARY_ACCOUNTING TO
HALEY

The introduction of FGAC protection causes two authoriza-
tion classes to be created:

the system authorization class SYSIBM_DEFAULT con-
taining the row authorization ROWDEFAULT with the
(1=0) predicate which is implicitly granted to PUBLIC

the default user authorization class USER_DEFAULT con-
taining the row authorization ROWDEFAULT with the
(1=0) predicate which is implicitly granted to PUBLIC

Bob, Fernando, and Haley all have SELECT privilege on
MYSCHEMA.T1 from their role membership, but they do
not have access to any rows in that table. If any of them issues
aSELECT * FROM MYSCHEMA.T1, the internal represen-
tation of the query within the SQL compiler is the equivalent
of:

SELECT * FROM (SELECT C1, 99, C3 FROM

MYSCHEMA.T1 WHERE (1=0) OR (1=0))

US 8,234,299 B2

5

Observe that there are two “1=0" predicates injected in
SELECT query statement. The first predicate represents the
default row authorization contained by the default user autho-
rization class that was created when the table was marked as
FGAC protected; the second predicate represents the default
row authorization from the system defined authorization
class. Since there are no column authorizations granted to any
of'them, DB2 injects just the alternate value for column C2 in
the column. (NOTE: the SQL compiler is smart enough to
remove the redundant 1=0 predicates above but leaving them
in makes the description easier to follow).

Letus assume that the job definition for the members of the
ACCOUNTING role requires them to see all rows where the
column C1 equals 5. To allow this, a row authorization needs
to be created and granted to the role. The security adminis-
trator decides to create an authorization class to represent the
access needed for the ACCOUNTING job definition, creates
a row authorization within the authorization class, and grants
the set as a whole to the ACCOUNTING role.

CREATE AUTHORIZATION CLASS ACCOUNTING

ON MYSCHEMA.T1
CREATE AUTHORIZATION ROWAUTH1 WITHIN
MYSCHEMA.T1 ACCOUNTING
FOR ROWS WHERE C1=5
GRANT AUTHORIZATION
MYSCHEMA.T1.ACCOUNTING
ACCOUNTING

Now, if Bob issues a SELECT * FROM MYSCHEMA.T1,
he will be able to access some rows in this table based on the
following reasons. First, Bob has SELECT privilege on
MYSCHEMA.T1 granted to him via the role ACCOUNT-
ING. Second, this same role has been granted an authoriza-
tion class, ACCOUNTING, defined on table MYSCHE-
MA.T1. The ACCOUNTING class contains a row
authorization which allows Bob to see all rows in MYSCHE-
MA.T1 where column C1=5. However, Bob does not hold
(directly or indirectly) a column authorization for protected
column C2. Therefore, Bob will still see the alternate value 99
for all rows in MYSCHEMA.T1 where column C1=5. The
internal representation of the query within the SQL compiler
is the equivalent of:

SELECT * FROM (SELECT Cl1, 99, C3 FROM

MYSCHEMA.T1
WHERE ((C1=5) OR (1=0)) OR (1=0) OR (1=0))

The first row predicate of ((C1=5) OR (1=0)) represents the
authorizations granted to Bob indirectly when the authoriza-
tion class ACCOUNTING was granted to the role
ACCOUNTING. The first row predicate represents all the
current authorizations in this authorization class. The next
row predicate (1=0) is the default row authorization from the
default user authorization class. The last row predicate (1=0)
is the default row authorization from the system defined
authorization class. Since no class intersects with any other,
the predicates are OR’ed together to get the union.

To allow Bob access to values in column C2, a column
authorization must be defined and granted to him, or to a role
he is member in, or to a group he is member in, orto PUBLIC.
Let’s assume that the ACCOUNTING job definition requires
access to column C2 so the security administrator defines a
new column authorization in the existing ACCOUNTING
authorization class which contains a condition allowing
access only to a set of specific values in column C2.

CREATE AUTHORIZATION COLUMNAUTHI

WITHIN ACCOUNTING
FOR COLUMN C2 WHERE C2>10

CLASS

TO ROLE

20

25

30

35

40

45

50

55

60

65

6
Now, if Bob issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com-
piler is the equivalent of:

SELECT * FROM (SELECT C1, (CASE WHEN C2>10
THEN C2 ELSE 99 END), C3 FROM MYSCHE-
MA.T1
WHERE ((C1=5) OR (1=0)) OR (1=0) OR (1=0))

The row predicates are as they were in the previous case but
now Bob has automatically inherited the new column autho-
rization in the ACCOUNTING authorization class as well.

Meanwhile, Haley is still unable to access any rows in the

table. As a temporary employee in accounting, let us assume
that she is only allowed to see the same rows as Bob but not
the contents of column C2. The security administrator could
define an authorization class to represent this particular case,
but instead the security administrator chooses to simply grant
the ROWAUTHI authorization, but not the ACCOUNTING
authorization class itself, directly to the role TEMPORARY _
ACCOUNTING since the security administrator plans to
later remove it (i.e., it is a temporary solution:)

GRANT AUTHORIZATION ROWAUTH1 WITHIN
MYSCHEMA.T1. ACCOUNTING TOROLE TEMPO-
RARY_ACCOUNTING

Now, if Haley issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com-
piler is the equivalent of:

SELECT * FROM (SELECT CI1, 99, C3 FROM
MYSCHEMA.T1
WHERE ((C1=5) OR (1=0)) OR (1=0) OR (1=0))

Since Haley does not have column authorization for column
C2, she will simply get the alternate value. Also, since she was
granted a specific authorization and not the authorization
class, she will not automatically inherit the rest of the autho-
rizations, or any future changes, that exist in the class.

Suppose that the security administrator wishes to stop all

access as he tracks a security problem. To do so, the security
administrator quickly alters the default user authorization
class, which currently only has the default row authorization,
to intersect with all other authorization classes on the table as
follows:

ALTER AUTHORIZATION CLASS USER_DEFAULT
ON MYSCHEMA.T1 INTERSECTS WITH ALL

At this point, if Bob or Haley issues a SELECT * FROM
MYSCHEMA.T1, they will see no rows at all for the follow-
ing reason. The change to make the USER_DEFAULT autho-
rization class intersect with all other authorization classes
now means that the granted authorizations from USER_DE-
FAULT, in this case the default row authorization for the class,
are logically AND’ed with all the others. The internal repre-
sentation of the query within the SQL compiler is the equiva-
lent of:

SELECT * FROM (SELECT C1, (CASE WHEN C2>10
THEN C2 ELSE 99 END), C3 FROM MYSCHE-
MA.T1
WHERE ((1=0) AND (((C1=5) OR (1=0)) OR (1=0)))

In this case, the relevant authorizations from the intersecting
authorization class have been placed in the first predicate and
then logically AND’ed with the union of the relevant autho-
rizations from all the other classes. Obviously, Bob sees no
rows this way. To remove the emergency access stoppage, the
security administrator modifies the USER_DEFAULT autho-
rization class so that is not longer intersecting with all others.
Accordingly, authorization classes can dynamically adjust to
change (e.g., changes to class are automatically seen by all
who have access to class).

Fernando can still not see any rows as nothing has changed

for him. As a member of the Warehouse team, it is decided

US 8,234,299 B2

7

that Fernando is allowed to see any rows where column
C3<100. The security administrator decides not to create a
new authorization class for this case and does the following:

CREATE AUTHORIZATION ROWAUTH?2
FOR ROWS WHERE (C3<100)

This causes a row authorization to be created in the USER_
DEFAULT authorization class. The security administrator
now grants this to the Warehouse role so that Fernando
acquires the row authorization, as follows:

GRANT AUTHORIZATION ROWAUTH2 WITHIN
MYSCHEMA.T1.USER_DEFAULT TO ROLE
WAREHOUSE

Now, if Fernando issues a SELECT * FROM MYSCHE-
MA.T1, the internal representation of the query within the
SQL compiler is the equivalent of:

SELECT * FROM (SELECT Cl1, 99, C3 FROM

MYSCHEMA.T1

WHERE ((1=0)) OR ((C3<100) OR (1=0)) OR (1=0))
Since Fernando does not have column authorization for col-
umn C2, he will simply get the alternate value. The first row
predicate (1=0) is the default row predicate from the
ACCOUNTING authorization class while the second row
predicate ((C3<100) OR (1=0)) shows the union of all autho-
rizations available to Fernando in the USER_DEFAULT
authorization class. The last row predicate is the default row
predicate from the system defined authorization class.

Suppose that the security administrator wishes to limit the
rows that can be seen on the weekend by anyone in accounting
to those for which column C3 is equal to zero. To do so, the
security administrator creates a new authorization class
WEEKEND_ACCESS that intersects with authorization
class ACCOUNTING as follows:

CREATE AUTHORIZATION CLASS WEEKEND_AC-

CESS ON MYSCHEMA.T1 Intersects with Accounting

CREATE AUTHORIZATION ROWAUTH3 WITHIN
WEEKEND_ACCESS
FOR ROWS WHERE (IS_WEEKEND() AND C3=0)

GRANT AUTHORIZATION CLASS MYSCHEMA.T1
WEEKEND_ACCESS TO PUBLIC

Now, if Bob issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com-
piler is the equivalent of:

SELECT * FROM (SELECT C1, (CASE WHEN C2>10
THEN C2 ELSE 99 END), C3 FROM MYSCHE-
MA.T1
WHERE (((IS_WEEKEND() AND C3=0) OR (1=0))

AND ((C1=5) OR (1=0))) OR (1=0) OR (1=0)))

In this case, the predicate ((IS_WEEKEND() AND C3=0)
OR (1=0)) represents all the relevant authorizations from the
new authorization class WEEKEND_ACCESS and these are
logically AND’ed with all the relevant authorizations from
the intersecting authorization class ACCOUNTING in the
form of the predicate ((C1=5) OR (1=0)). Finally, the relevant
authorizations from the other, non-intersecting authorization
classes are OR’ed in (for this example, they are simply the
class default authorizations for the system and user default
classes).

Note that this new intersecting class also affects Haley but
not Fernando. If Haley issues a SELECT * FROM MY SCHE-
MA.T1, the internal representation of the query within the
SQL compiler is the equivalent of:

SELECT * FROM (SELECT Cl1, 99, C3 FROM

MYSCHEMA.T1
WHERE (((IS_WEEKEND() AND C3=0) OR (1=0))
AND ((C1=5) OR (1=0))) OR (1=0) OR (1=0)))
Since Haley’s access is dependent on the authorizations in the
ACCOUNTING class, the new authorization WEEKEN-

5

20

25

30

35

40

45

50

55

60

65

8

D_ACCESS class can close off that access since its authori-
zations are AND’ed with those in the ACCOUNTING class.
If Fernando issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com-
piler is the equivalent of:

SELECT * FROM (SELECT CI1, 99, C3 FROM

MYSCHEMA.T1
WHERE (((IS_WEEKEND() AND C3=0) OR (1=0))
AND ((1=0))) OR ((C3<100) OR (1=0)) OR (1=0)))
In this case, Fernando is not dependent on authorizations
from ACCOUNTING and so his access is not affected by the
new authorization class.

In the example above, rather than modify the column defi-
nition to implement FGAC, an administrator can simply cre-
ate a column authorization as follows:

CREATE AUTHORIZATION AUTHx

ON TABLE T1

FOR COLUMN C2

(Case when C2>10 then C2 Else 99 End)

Hence, the alternate value need not be specified together with
the table definition and could be done separately within the
column authorization definition.

Implementation

In one implementation, SQL DDL statements are used to
create authorization classes and authorizations as well as to
grant and revoke the authorization classes. Modified SQL
statements can be used to modify table attributes to activate
FGAC protection. When an SQL/XML statement is com-
piled, for each reference to a table marked as FGAC pro-
tected, the authorization classes defined for that table, be it the
one created explicitly by the administrator or the default one
created by the system when the table is marked protected, are
searched and any relevant row or column authorizations in
that class for the statement authorization information (pri-
mary and secondary authorization IDs) are gathered; rel-
evancy is determined by whether the authorization class, or
individual authorization, has been granted to one of the autho-
rization IDs in the statement authorization information.

A “pseudo-view” definition is created by: gathering all the
relevant row authorizations from the same authorization class
and logically OR’ing them together in a “authorization class
expression”; identifying which authorization classes, if any,
are defined as intersecting with each other and logically
AND’ing the “authorization class expression” for each of
these classes with the other to create a “intersecting authori-
zation class expression” set; logically OR’ing any remaining
“authorization class expression” with each other and then
logically OR’ing them with all “intersecting authorization
class expression” sets; using the final result as the predicate
portion of the “pseudo-view” definition. Similar logic is fol-
lowed for dealing with the expressions from all relevant col-
umn authorizations with the end result for each unique col-
umn being implemented as CASE logic in the appropriate
location for the column in select list of the “pseudo-view”
definition. If no column authorizations are found, then the
defined alternate value is implemented as a constant in that
location.

One or more of method steps described above can be per-
formed by one or more programmable processors executing a
computer program to perform functions by operating on input
data and generating output. Generally, the invention can take
the form of an entirely hardware embodiment, an entirely
software embodiment or an embodiment containing both
hardware and software elements. In one implementation, the
invention is implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.

US 8,234,299 B2

9

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device. The medium can be
an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. Examples of a computer-readable medium
include a semiconductor or solid state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk. Current examples of optical
disks include compact disk—read only memory (CD-ROM),
compact disk—read/write (CD-R/W) and DVD.

FIG. 3 illustrates a data processing system 300 suitable for
storing and/or executing program code. Data processing sys-
tem 300 includes a processor 302 coupled to memory ele-
ments 304A-B through a system bus 306. In other implemen-
tations, data processing system 300 may include more than
one processor and each processor may be coupled directly or
indirectly to one or more memory elements through a system
bus. Memory elements 304A-B can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories that provide temporary storage
of at least some program code in order to reduce the number
of times the code must be retrieved from bulk storage during
execution. As shown, input/output or I/O devices 308A-B
(including, but not limited to, keyboards, displays, pointing
devices, etc.) are coupled to data processing system 300. [/O
devices 308A-B may be coupled to data processing system
300 directly or indirectly through intervening I/O controllers
(not shown).

In one implementation, a network adapter 310 is coupled to
data processing system 300 to enable data processing system
300 to become coupled to other data processing systems or
remote printers or storage devices through communication
link 312. Communication link 312 can be a private or public
network. Modems, cable modems, and Ethernet cards are just
a few of the currently available types of network adapters.

Various implementations for controlling access to data in a
database have been described. Nevertheless, various modifi-
cations may be made to the implementations. For example,
steps of the methods described above can be performed in a
different order and still achieve desirable results. Accord-
ingly, many modifications may be made without departing
from the scope of the following claims.

What is claimed is:

1. A computer-implemented method for controlling access
to data stored in a table of a database, wherein the computer
performs the functions in the following method, the method
comprising:

marking the table of the database as being protected with

fine-grained access control (FGAC);

creating a system authorization class for the table of the

database, the system authorization class having a default
row-level authorization that prevents access to all rows
in the table, the system authorization class being
unmodifiable;

creating a user authorization class for the table of the data-

base, the user authorization class having a default row-
level authorization that prevents access to all rows in the
table, the user authorization class being modifiable

10

15

20

25

30

35

40

45

50

55

60

65

10

wherein the user authorization class is provided as a
location for any authorizations for which no authoriza-
tion class is specified;

associating the system authorization class and the user

authorization class with the table of the database,
wherein the association of the system authorization class
with the table of the database operates to deny access to
the rows and columns of the table;

receiving a request from a user seeking to access data in the

table of the database;

determining whether any other user authorization class is

applicable to the user;

responsive to no other user authorization class being appli-

cable to the user,

determining whether the system authorization class and
the user authorization class are defined as intersecting
classes;

responsive to the system authorization class and the user
authorization class being defined as intersecting
classes, preventing the user from accessing any row in
the table of the database;

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes, permitting the user to access rows or columns
in the table of the database based on the union of
authorizations.

2. The computer-implemented method of claim 1 further
comprising:

responsive to the system authorization class and the user

authorization class not being defined as intersecting

classes,

forming a union of authorizations by logically OR’ing
authorizations from the system authorization class
and the user authorization class.

3. The computer-implemented method of claim 2, wherein
responsive to at least one other user authorization class being
applicable to the user, the method further comprises:

determining whether the system authorization class and the

at least one other user authorization class are defined as
intersecting classes; and

responsive to the system authorization class and the at least

one other user authorization class being defined as inter-
secting classes, preventing the user from accessing any
row in the table of the database.

4. The computer-implemented method of claim 3, wherein
responsive to the system authorization class and the at least
one other user authorization class not being defined as inter-
secting classes, the method further comprises:

determining whether the user authorization class and the at

least one other user authorization class are defined as
intersecting classes;

responsive to the user authorization class and the at least

one other user authorization class being defined as inter-

secting classes,

forming a first set of authorizations by logically OR’ing
authorizations from the user authorization class;

forming a second set of authorizations by logically
OR’ing authorizations from the at least one other user
authorization class;

forming an intersection of authorizations by logically
AND’ing the first set of authorizations and the second
set of authorizations; and

permitting the user to access rows or columns in the table
of the database based on the intersection of authori-
zations.

5. The computer-implemented method of claim 4, wherein
responsive to the user authorization class and the at least one

US 8,234,299 B2

11

other user authorization class not being defined as intersect-
ing classes, the method further comprises:
forming a union of authorizations by logically OR’ing
authorizations from the user authorization class and the
at least one other user authorization class; and

permitting the user to access rows or columns in the table of
the database based on the union of authorizations.

6. The computer-implemented method of claim 1, wherein
the database is a relational database.

7. A non-transitory computer program product comprising
anon-transitory computer readable storage medium, the non-
transitory computer readable storage medium for controlling
access to data stored in a table of a database, the computer
program comprising computer executable code for:

marking the table of the database as being protected with

fine-grained access control (FGAC);
creating a system authorization class for the table of the
database, the system authorization class having a default
row-level authorization that prevents access to all rows
in the table, the system authorization class being
unmodifiable wherein the user authorization class is pro-
vided as a location for any authorizations for which no
authorization class is specified;
creating a user authorization class for the table of the data-
base, the user authorization class having a default row-
level authorization that prevents access to all rows in the
table, the user authorization class being modifiable; and

associating the system authorization class and the user
authorization class with the table of the database,
wherein the association of the system authorization class
with the table of the database operates to deny access to
the rows and columns of the table;

receiving a request from a user seeking to access data in the

table of the database;

determining whether any other user authorization class is

applicable to the user;

responsive to no other user authorization class being appli-

cable to the user,

determining whether the system authorization class and
the user authorization class are defined as intersecting
classes;

responsive to the system authorization class and the user
authorization class being defined as intersecting
classes, preventing the user from accessing any row in
the table of the database;

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes, permitting the user to access rows or columns
in the table of the database based on the union of
authorizations.

8. The non-transitory computer product of claim 7,
wherein the computer program product further comprises
computer executable code for:

responsive to the system authorization class and the user

authorization class not being defined as intersecting

classes,

forming a union of authorizations by logically OR’ing
authorizations from the system authorization class
and the user authorization class.

9. The non-transitory computer program product of claim
8, wherein responsive to at least one other user authorization
class being applicable to the user, the computer program
product further comprises computer executable code for:

determining whether the system authorization class and the

at least one other user authorization class are defined as
intersecting classes; and

5

10

20

25

30

35

40

45

50

55

60

65

12

responsive to the system authorization class and the at least
one other user authorization class being defined as inter-
secting classes, preventing the user from accessing any
row in the table of the database.

10. The non-transitory computer program product of claim
9, wherein responsive to the system authorization class and
the at least one other user authorization class not being
defined as intersecting classes, the computer program product
further comprises computer executable code for:

determining whether the user authorization class and the at

least one other user authorization class are defined as
intersecting classes;
responsive to the user authorization class and the at least
one other user authorization class being defined as inter-
secting classes,
forming a first set of authorizations by logically OR’ing
authorizations from the user authorization class;
forming a second set of authorizations by logically
OR’ing authorizations from the at least one other user
authorization class;
forming an intersection of authorizations by logically
AND’ing the first set of authorizations and the second
set of authorizations; and
permitting the user to access rows or columns in the table
of the database based on the intersection of authori-
zations.
11. The non-transitory computer program product of claim
10, wherein responsive to the user authorization class and the
at least one other user authorization class not being defined as
intersecting classes, the computer program product further
comprises computer executable code for:
forming a union of authorizations by logically OR’ing
authorizations from the user authorization class and the
at least one other user authorization class; and

permitting the user to access rows or columns in the table of
the database based on the union of authorizations.

12. The non-transitory computer program product of claim
7, wherein the database is a relational database.

13. A non-transitory computer system comprising:

a processing system;

a storage medium;

a database; and

a database management system controlling access to data

stored in a table of the database, the database manage-

ment system

marking the table ofthe database as being protected with
fine-grained access control (FGAC);

creating a system authorization class for the table of the
database, the system authorization class having a
default row-level authorization that prevents access to
all rows in the table, the system authorization class
being unmodifiable;

creating a user authorization class for the table of the
database, the user authorization class having a default
row-level authorization that prevents access to all
rows in the table, the user authorization class being
modifiable wherein the user authorization class is pro-
vided as a location for any authorizations for which no
authorization class is specified;

associating the system authorization class and the user
authorization class with the table of the database,
wherein the association of the system authorization
class with the table of the database operates to deny
access to the rows and columns of the table;

receiving a request from a user seeking to access data in
the table of the database;

US 8,234,299 B2

13

determining whether any other user authorization class
is applicable to the user;

responsive to no other user authorization class being
applicable to the user,

determining whether the system authorization class and
the user authorization class are defined as intersecting
classes;

responsive to the system authorization class and the user
authorization class being defined as intersecting
classes, preventing the user from accessing any row in
the table of the database;

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes, permitting the user to access rows or columns
in the table of the database based on the union of
authorizations.

14. The non-transitory computer system of claim 13,
wherein the database management system further

responsive to the system authorization class and the user

authorization class not being defined as intersecting

classes,

forms a union of authorizations by logically OR’ing
authorizations from the system authorization class
and the user authorization class.

15. The non-transitory computer system of claim 14,
wherein responsive to at least one other user authorization
class being applicable to the user, the database management
system further

determines whether the system authorization class and the

at least one other user authorization class are defined as
intersecting classes, and

responsive to the system authorization class and the at least

one other user authorization class being defined as inter-
secting classes, prevents the user from accessing any
row in the table of the database.

[

10

20

25

30

14

16. The non-transitory computer system of claim 15,
wherein responsive to the system authorization class and the
at least one other user authorization class not being defined as
intersecting classes, the database management system further

determines whether the user authorization class and the at

least one other user authorization class are defined as
intersecting classes,

responsive to the user authorization class and the at least

one other user authorization class being defined as inter-

secting classes,

forms a first set of authorizations by logically OR’ing
authorizations from the user authorization class,

forms a second set of authorizations by logically OR’ing
authorizations from the at least one other user autho-
rization class,

forms an intersection of authorizations by logically
AND’ing the first set of authorizations and the second
set of authorizations, and

permits the user to access rows or columns in the table of
the database based on the intersection of authoriza-
tions.

17. The non-transitory computer system of claim 16,
wherein responsive to the user authorization class and the at
least one other user authorization class not being defined as
intersecting classes, the database management system further

forms a union of authorizations by logically OR’ing autho-

rizations from the user authorization class and the at
least one other user authorization class, and

permits the user to access rows or columns in the table of

the database based on the union of authorizations.

18. The non-transitory computer system of claim 13,
wherein the database is a relational database.

a2 United States Patent

Bird et al.

US007647626B2

US 7,647,626 B2
*Jan. 12, 2010

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR ESTABLISHING A TRUSTED
RELATIONSHIP BETWEEN A DATA SERVER
AND A MIDDLEWARE SERVER

(735)

(73)

@1
(22)

(65)

(1)

(52)
(58)

(56)

Inventors: Paul Miller Bird, Markham (CA); Curt
Lee Cotner, Gilroy, CA (US); Walid
Rjaibi, Markham (CA); Timothy Jon
Vincent, Toronto (CA)

Assignee:

International Business Machines

Corporation, Armonk, NY (US)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 745 days.

This patent is subject to a terminal dis-

claimer.
Appl. No.:

Filed:

11/008,507

Dec. 8, 2004

Prior Publication Data

US 2006/0123468 A1l

Int. Cl1.
GO6F 7/04
GO6F 15/16
GO6F 17/30
HO4L 29/06

US.CL ..o
Field of Classification Search

Jun. 8, 2006

(2006.01)
(2006.01)
(2006.01)
(2006.01)
............... 726/5; 726/2; 726/3

726/2,
726/3, 5

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,586,260 A 12/1996
5,598,536 A * 1/1997
5,619,657 A * 4/1997
5,841,869 A 11/1998
6,052,785 A 4/2000
6,076,092 A 6/2000

Hu .o 395/200.2
Slaughter et al. 709/219
Sudama et al. 709/225
Merkling et al.

Linetal. ...oocoovninnn. 713/201
Goldberg et al. 707/103

32

-

6,112,196 A 8/2000 Zimowskietal. 707/2
6,212,636 B1* 4/2001 Boyleetal. 713/168
6,266,666 Bl 7/2001 Ireland et al. 707/10
6,286,104 Bl 9/2001 Buhle et al. 713/201
6,349,338 B1* 2/2002 Seamonset al. 709/229
6,377,994 B1* 4/2002 Aultetal. ...cccocouveveneee 709/229
(Continued)
OTHER PUBLICATIONS

Park, J. S. and Sandhu, R. 2000. Secure Cookies on the Web. IEEE
Internet Computing 4, 4 (Jul. 2000), 36-44.*

(Continued)

Primary Examiner—Christian LaForgia
Assistant Examiner—James Turchen
(74) Attorney, Agent, or Firm—Sughrue Mion, PLLC

(57) ABSTRACT

A data server of a data processing system is operably coupled
to a database and in communication with a middleware server.
A connection between the data server and the middleware
server is established and managed. A set of attributes identi-
fying trusted middleware servers is instituted with the data
server. The middleware server transmits a connection request
to the data server. The connection request has request
attributes including identifying the connection request as
being for a new connection or reuse of an existing connection
with different connection request attributes. A connection
with the middleware server is established by the data server
based on the connection request. A connection status message
is received by the middleware server from the data server
indicating a status of the connection request. A trust indicator
for the connection is established at the data server according
to a trust status identified by the set of attributes for the
middleware server.

36 Claims, 8 Drawing Sheets

314

MIDDLEWARE SERVER 104

.

402

DATA SERVER134

USER
COMMAND CODE 105

EXECUTED

©ODE 105C

CODE 1050
CODE 1058

40t
REUSE CONNECTION
COMMAND

404
ACCEPTANCE NOTICE

CODE 135

CODE 1381

DECLINE REUSE OF
CONNECTION FOR
USER

408
GOPY OF USER
COMMAND

410
DECLINE EXECUTION OF
USER COMMAND

Wi

212
RESULTS OF EXECUTED
USER COMMAND

CONNECTION 302

=
UVE CONNECTIONS
ADMIN l TRUSTED

420
USER PRIVILEGES

NETWORK 118

US 7,647,626 B2
Page 2

6,434,543
6,516,416
6,631,371
6,745,332
7,174,565
7,181,764
7,325,246
2002/0016777
2002/0049914
2002/0065956
2002/0184217

U.S. PATENT DOCUMENTS

Bl
B2 *
Bl
BL*
B2 *
B2 *
BL*
Al*
Al
Al
Al*

8/2002
2/2003
10/2003
6/2004
2/2007
2/2007
1/2008
2/2002
4/2002
5/2002
12/2002

Goldberg et al. 707/2
Greggetal.cccoeeueeneee 726/8
Lei et al.

Wongetal.cccceeeennnn. 726/4
Kadyk et al. 726/12
Zhuetal. 726/4
Halaszetal. 726/2
Seamons et al. 705/76
Inoueetal.oeeeenennes 713/201
Yagawa etal. 709/330
Bisbeeetal.c.oeeel 707/9

2003/0014527 Al 1/2003 Terwindtetal. 709/227
2003/0236975 Al 12/2003 Birk et al.
2004/0064335 Al* 42004 Yangcccccovevviininnnnnnn. 705/1

2006/0075075 Al
OTHER PUBLICATIONS

Chadwick, D. W., Otenko, A., and Ball, E. 2003. Role-Based Access
Control With X.509 Attribute Certificates. IEEE Internet Computing
7,2 (Mar. 2003), 62-69.*
Kiristol, D. and Montulli, L. 1997 HTTP State Management Mecha-
nism. RFC. RFC Editor.*

4/2006 Malinen et al.

* cited by examiner

US 7,647,626 B2

Sheet 1 of 8

Jan. 12, 2010

U.S. Patent

INIFNIFHOV Tvad3IN

12°12

h

HOLVHLSININAY H3ANHIAS vivd
cst

'

A4

0€} .8. W3LSAS ONISSIO0NHd Viva

h

HOLVHLSININGY
HIAEIS IHVYMITAAIN
0sl

!

001 WV W3LSAS ONISSTO0Hd vivd

¢0l AHOW3IN
ZEL AHOWIN
051 HOLVHISININGY 40
S3LNGIMLLY NOILYDI4ILNIAl ¥3SN
90L
) M%
€€l 4601 30090
A 5€L 3000 . 3009 319vLNO3X3

. 3009 318vLND3XT . ¥ILNDINOD

. Y3LNdWOD . IYYMITIAIN

. 3009 Y3INHIS V S0L 3009 S0L
a v SEL 300D el
GMF <l—

0L ¥IAHIS JHVYMIAAIN
vEL ¥3IAYIS Viva s
» LNdLNO/LNdNI] O/ Y
T Ny B b snsinonan le—uf o], L0
601 80} * + _" + *
AV1dSia aYvOaAIM asia MHOMLIN as1d Q¥YOgAIN AVdSId
cLi |42 91l gLl g1l vt cli

Vi 'Old

US 7,647,626 B2

Sheet 2 of 8

Jan. 12, 2010

U.S. Patent

el AHOW3N

vElL ¥3AY3IS Viva

0€l 9 W3LSAS ONISS300Hd vivd

[

gl Old

0L AHOW3N

y0l ¥43aNL3S
JAVMINAAIN

00} V INTLSAS ONISSIO0dd v1vd

AHOMLIN

8Ll

H

oclL

3Svaviva

¢S5l AMOW3N

0S1L O W31SAS ONISS3O0¥d vivd

US 7,647,626 B2

Sheet 3 of 8

Jan. 12, 2010

U.S. Patent

0} W3LSAS ONISSID0Hd Vivad

ZEL AHOW3IW
.04} 1SN¥L $0Z ¥3INY3IS
1oNOa | Jdvm3anadin
HOLVDIANI
1snil y3asn
SNOILDINNOD
JAILOV LNIHHEND 40 1S
0Lz

¢ ‘Old

811 MJOML3N

102 WALSAS ONISSTO0Ud Vivd

H

gs€1 3300

v&elL 3000

Sel 33a02

€1 ¥3NY3AS viva

S3HNOSIY
d3AY3S

SS300V s—
Ol 1S3N03Y

1474

NOILOINNOD
90¢

20¢ AJOW3N

NPN\\

3309
v80e

3402
80¢

$0Z H3AY3S JHVYMIICAIN

oz

US 7,647,626 B2

Sheet 4 of 8

Jan. 12, 2010

U.S. Patent

T ZzicWoLvoIaNI

o~

() LSNYL| v0lL ¥3AN3S
JUYM3ITQAIN l/\\

¥02 ¥3AL3S
(.0, 1SNYL ON |FAVMITAAIN

NOLLO3NNOD
HOLYOIONI LSNYL H3asn

SNOILOINNOD
ALY INTHHND 40 18I
0Le

1SNyl

¥1€ ¥OLVOIONI
NOILO3ANNOD

€ Old

90} Q1" ¥3SN 40 AJOD
80E

SY3IAYIS
3UYMITAaIN
Q31sNyl 40 18N
omm

b

96EL 3000

46€1 3d0D

35€1 3000

aset 3000

J6€1 30300

GEl 3002

PE1 ¥3AY3S VIvd

Zel AMOW3N

811 MHOMLIN

al
NINQV ¥3AY3S
FAVYMIITAIN
90L
|

!

80¢

901 AI"¥3SN 40 AdOD

g¢0i 3000

NOILD3INNOD

90e

HSINEV1S3 Ol 183Nn03yd G0l 300D

VS04 3000

¥0€ ‘3OVXOVd

#0L YHIAYTS FJHVMITAGIN

1

r/

vie

A%

201 AHOW3N

US 7,647,626 B2

Sheet 5 of 8

Jan. 12, 2010

U.S. Patent

811 MHOMLIN

Z0€ NOILOINNOD

ANVINNOD ¥3SN
a3Lno3x3 40 S1INS3
454

|

EEQERINI S REN]
ozvy
a3isnydl NIWav

ANVIWWOD ¥3sN
40 NOILND3AX3 3ANIND3A
[0]% 4

SNOILO3INNOD 3AIN
otz

AONVYWWOO
d3SN 4O AdOD
80t

IS€1 3000

HSEL 3000

g€l 3000

PELYIAYIS VIVa

d3sn
HO03 NOILOINNOD
40 3SN3Y 3NIN03Aa
90t

3OILON 3ONVLd300V
oY

ANVYWWOD
NOILOINNOD 38N3Y
[10)4

¥ "'Old

3504 3000

asoL 3a00

0S0L 300

S0l 3000

143>

$01 Y3IAYIS IHVMITAAIN

a3Lndax3
3801

ANVAIWOD
¥3Isn

0¥

433

US 7,647,626 B2

Sheet 6 of 8

Jan. 12, 2010

U.S. Patent

PEL ¥3AN3S V1ivd

¢ "Old

(0) snivis (1) LML
A3L03NNOD H3SN-NON b
For ¥3sn 811 ¥HOMLAN
(1) SNiV1S A3 LDANNOD
ATLNINNND ¥3ASN (.l 1snyL| NINaY
0 _.<o_omz_ ¢0€ NOILO3INNQOD
NOILDINNOD 40 3dAL | HOLVOIANI LSNYL d3sn
oie SNOILOINNOD 3AIT
SNLV1S
a3Lo3aNNoO2D
¥3SN-NON
Ol HOLVIIANI
NOILD3INNOD
-+ 3dAL 1383
ANVYWWOD
z0s
MGEL 3A00
ANVIWINOD
rGelL 34020 - NOILO3INNOD
3IsN3d
Ge1 3000 105

4501 3002

G0l 3000

|

/

cle

Y0l ¥ING3S FHVMITAdIN

U.S. Patent Jan. 12, 2010 Sheet 7 of 8 US 7,647,626 B2

[FORMING A VERBAL AGREEMENT }——602
y
[REGISTER THE VERBAL AGREEMENT }—604
v
RECEIVE CONNECTION REQUEST FROM | 606
MIDDLEWARE SERVER

608

628

TRANSMIT
NO | ERROR

MESSAGE
B CREATE A CONNECTION }—612
[TRANSMIT CONNECTION STATUS MESSAGE ___ }—0614
UPDATE MIDDLEWARE SERVER CONNECTION | _g46

INDICATOR
' 618
SET AND CHECK MIDDLEWARE SERVER TRUST
INDICATOR
634
"
TRANSMIT
ERROR
MESSAGE

[REUSE CONNECTION WITH NEW ATTRIBUTES _ |—622

| TRANSMIT CONNECTION STATUS MESSAGE | —624
I

| RECEIVE COMMAND TO OBTAIN DATA }—626

| EXECUTE COMMAND TO OBTAIN DATA }—630
1

TRANSMIT OBTAINED DATA TO MIDDLEWARE |_-632
SERVER

600 —~ FIG. 6

U.S. Patent Jan. 12, 2010 Sheet 8 of 8 US 7,647,626 B2

TRANSMIT A REQUEST FOR A NEW CONNECTION TO THE | _~ 702
DATA SERVER

[

RECEIVE A CONNECTION STATUS MESSAGE FROM THE
DATA SERVER INDICATING THAT THE CONNECTION HAS [704
BEEN ESTABLISHED

|

TRANSMIT A REQUEST TO REUSE THE CONNECTION WITH 706
NEW ATTRIBUTES
|

RECEIVE A CONNECTION STATUS MESSAGE FROM THE | — 708
DATA SERVER FOR THE REUSE REQUEST

DOES THE
CONNECTION STATUS MESSAGE
FOR REUSE REQUEST INDICATE THAT THE REQUEST.

NO WAS GRANTED?

YES

710

TRANSMIT COMMAND TO OBTAIN DATA FROM DATABASE |~ 712
|

| RECEIVE REQUESTED DATA r— 714
\
INFORM USER THAT REUSE REQUEST WAS — 716
UNSUCCESSFUL
700~

FIG. 7

US 7,647,626 B2

1

METHOD FOR ESTABLISHING A TRUSTED
RELATIONSHIP BETWEEN A DATA SERVER
AND A MIDDLEWARE SERVER

FIELD OF THE INVENTION

The present invention relates to the field of establishing a
trusted relationship between a data server and a middleware
server.

BACKGROUND

Access to sensitive data in a database is often managed by
relying on the use of user identifications and passwords. If a
user desires access to data in the database, a user id and
password are often checked to determine if the user is regis-
tered to access data from the database. If the user is registered
and the correct password has been provided then a connection
with the database may be established.

Frequently, access to databases relying on user ids and
passwords originate from a few primary locations. However,
in such a case multiple user ids may access this data from the
same location. Since these locations may be known and
trusted, there may not be a requirement to authenticate every
different user id and password for these locations.

SUMMARY

In accordance with an aspect of the present invention there
is provided for a data server of a data processing system
operably coupled to a database, a method of managing a
connection with a middleware server, the middleware server
sending a request for a connection to the data server, the
request comprising request attributes, the method compris-
ing: instituting a set of attributes identifying trusted middle-
ware servers with the data server; establishing a connection
with the middleware server based on a request therefrom; and
establishing a trust indicator for the connection according to
a trust status identified by the set of attributes for the middle-
ware server.

In accordance with an aspect of the present invention there
is provided for a middleware server of a data processing
system, a method of establishing a connection with a data
server operably coupled to a database, the method compris-
ing: transmitting a connection request to the data server, the
connection request having request attributes including iden-
tifying the connection request as being for a new connection
or reuse of an existing connection with different connection
request attributes; and receiving a connection status message
from the data server indicating a status of the connection
request.

In accordance with an aspect of the present invention there
is provided for a data server of a data processing system
operably coupled to a database, a computer program product
for managing a connection with a middleware server, the
middleware server sending a request for a connection to the
data server, the request comprising request attributes, the
computer program product comprising: a computer readable
medium for tangibly transporting computer executable code
to the middleware server, the computer executable code com-
prising: code for instituting a set of attributes identifying
trusted middleware servers with the data server; code for
establishing a connection with the middleware server based
on a request therefrom; and code for establishing a trust
indicator for the connection according to a trust status iden-
tified by the set of attributes for the middleware server.

20

25

30

35

40

45

50

55

60

65

2

In accordance with an aspect of the present invention there
is provided for a middleware server of a data processing
system, a computer program product for establishing a con-
nection with a data server operably coupled to a database, the
computer program product comprising: a computer readable
medium for tangibly transporting computer executable code
to the middleware server, the computer executable code com-
prising: code for transmitting a connection request to the data
server, the connection request having request attributes
including identifying the connection request as being for a
new connection or reuse of an existing connection with dif-
ferent connection request attributes; and code for receiving a
connection status message from the data server indicating a
status of the connection request.

A data server of a data processing system is operably
coupled to a database and in communication with a middle-
ware server. A connection between the data server and the
middleware server is established and managed. A set of
attributes identifying trusted middleware servers is instituted
with the data server. The middleware server transmits a con-
nection request to the data server. The connection request has
request attributes including identifying the connection
request as being for a new connection or reuse of an existing
connection with different connection request attributes. A
connection with the middleware server is established by the
data server based on the connection request. A connection
status message is received by the middleware server from the
data server indicating a status of the connection request. A
trust indicator for the connection is established at the data
server according to a trust status identified by the set of
attributes for the middleware server.

Other aspect and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of embodiments of the
invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in conjunction with
the drawings in which:

FIGS. 1A and 1B show a data server operatively coupled to
a middleware server;

FIG. 2 shows another middleware server attempting to
negotiate data with the data server of FIG. 1;

FIG. 3 shows the middle ware server of FIG. 1 attempting
to negotiate data with the data server of FIG. 1;

FIG. 4 shows a response taken by the middleware server
and the data server of FIG. 1 when a user command requests
a copy of data from the data server 134;

FIG. 5 shows interaction between the middleware server
and the data server of FIG. 1 when another user attempts to
send a command requesting data servable by the data server;

FIG. 6 illustrate a method of managing connections with
the middleware server for the data server; and

FIG. 7 illustrates a method of establishing a connection
with the data server for the middleware server.

DETAILED DESCRIPTION

FIG. 1A shows two data processing systems (A 100 and B
130) in operable communication via network 118. Both data
processing systems 100 and 130 contains a bus 108 that
operatively couples a central processing unit (CPU) 109, an
input/output interface 110 and a memory 102/132. The input/
output interface 110 manages communications between the

US 7,647,626 B2

3

bus 108 and a display 112, a keyboard 114, adisc 116 and the
network 118 for each of the data processing systems 100 and
130.

The memory 132 of data processing system B 130 includes
a data server 134, a database 136 operatively coupled to the
data server 134, and an operating system 133. The data server
134 may be, for example, an information retrieval system of
a database management system. The data server 134 includes
computer executable code 135 with a collection of modules
135A to 135K. These modules 135A to 135K perform func-
tions (when compiled and executed) that compose a data
server method. The functions of the data server method may
include using the network 118 to communicate with data
processing system A 100. In an alternate embodiment, the
database 136 may be located in another data processing sys-
tem, in which case, the data processing system B 130 may use
the network 118 for communication with the database 136.

The memory 102 of the data processing system A 100
includes a middleware server 104 and an operating system
103. The middleware server 104 includes computer execut-
able code 105 with a collection of modules 105A to 105K.
These modules 105A to 105K perform functions (when com-
piled and executed) that compose a middleware server
method. The functions of the modules 105A to 105K may
include directing the middleware server 104 to negotiate for
data with the data server 134.

The data server 134 of the data processing system B 130
acts as an intermediary between the database 136 and the
middleware server 104.

A data server administrator 152 administers the data server
134 according to a verbal agreement 154. A middleware
server administrator 150 administers the middleware server
104 according to the verbal agreement. The verbal agreement
154 contains an agreement between the data server adminis-
ter 152 and the middleware server administer 150 regarding
the characteristics of connections and data transfers between
the middleware server 104 and the data server 134. For
example, the verbal agreement 154 may set forth that the data
server 134 is to be set up such that connection requests from
the middleware server 104 received thereat are treated by the
database 136 as trusted connection. To perform such an exem-
plary setup, the data server administrator 152 registers (in the
database 136, for example) connection trust attributes that are
associated with the trusted connections. The connection trust
attributes may include a user id associated with a trusted
connection, an IP (internet protocol) address of data process-
ing system from which connection requests are received, or
other attributes. The middleware server 104 includes user
identification attributes 105 for the middleware server admin-
istrator 140.

It will be appreciated that the middleware server 104, the
data server 134 and the database 136 may be present on the
same or on different data processing systems.

FIG. 1B shows an alternative to storing the database 136 in
the memory 132 of the data processing system B 130 of FIG.
1A. The database 136 maybe stored ina memory 152 ofa data
processing system C 150. The data processing systems A 100,
B 130 and C 152 are in operable communication via the
network 188.

FIG. 2 illustrates another middleware server 204 in com-
munication with the data server 134 via the network 118. The
middleware server 204 contains code 208 with a module
208A. The middleware server 204 is located in a memory 202
of a data processing system 201.

The data processing system 201 includes known modules
that facilitate communication via the network 118 and is
indicated as a connection line 216. Such a connection line 212

20

25

30

35

40

45

50

55

60

65

4

is also used to connect the data processing system B 130 with
the network 118. The connection lines 216 and 212 are used
for establishing a connection 206 (via the network 118)
between the data processing system B 130 and the data pro-
cessing system 201.

The middleware server 204 has not been set up as being
trusted on the data server 134 by the data server administrator
152. This may be because an agreement was not previously
set between administrators of the data server 134 and the
middleware server 204 to govern interactions between these
two servers 134 and 204.

The middleware server 204 is attempting to negotiate to
obtain data through the data server 134. The code 208 directs
a CPU (not illustrated) of the data processing system 201 to
establish the connection 206 with the data server 134. Once
the connection 206 is established, the code 208 directs the
data processing system 201 to issue a request 214 for request-
ing access to the data associated with the data server 134. The
request 214 is sent to the data server 134 via the connection
line 216 through the connection 206 and over to the connec-
tion line 212.

A 1ist 210 is stored in the memory 132 of the data process-
ing system A 130 indicating currently active connections
established with the data server 134. The code 135A directs
the data processing system B 130 to update the list 210 in
response to the data processing system B 130 establishing a
connection with the middleware server 204. Once the con-
nection 206 is set up, the code 135B directs the data process-
ing system B 130 to set a trust indicator in the list 210 to “do
not trust” (for example, a bit may be used and set to a value of
“0” for this case) because the middleware server 204 has not
bee previously registered with the data server 134 as a trusted
entity.

The decision to trust or not to trust a requesting middleware
server is performed by the data server 134 on the basis of
verbal agreements 154 between the database 136 and various
middle ware servers that have been registered with the data
server 134. Such verbal agreements 154 are registered with
the data server 134 by the data server administrator 152 to
provide an indication of connections that are to be trusted.
This information may be stored in a table that the data server
134 can search each time a request connection is received.

For each connection request received, the data server 134
compares attributes of the connection request (e.g. user id, IP
address, etc.) with information stored in the database 136
about the connections that are to be trusted. If there is a match
then the current connection is marked as a trusted connection;
otherwise, the connection is marked as untrusted.

The data server 134 will establish a connection with the
middleware server 204 based on the request; however, that
connection will be marked as not trusted because the middle-
ware server 204 has not been registered as trusted on the data
server 134. The data server 134 will continue to honor
requests from the middleware server 204 but since the con-
nection between these two is not trusted the data server 134
will reject a request from the middleware server 204 to reuse
the connection under a different user id without supplying a
password. On the other hand, a middleware server that is
registered as being trusted with the data server 134 will have
requests to reuse the existing connection under a different
user granted without requiring that a password be supplied.

FIG. 3 illustrates a connection between the middleware
server 104 and the data server 134 of FIG. 1. The middleware
server 104 has a connection line 312 with the network 118 and
the data server 134 has a connection line 314 with the network
118. The memory 132 of the data processing system B 130
may include a list 310 of trusted middle ware servers in

US 7,647,626 B2

5

addition to the data server 134 and the list of current active
connections 210. The list 310 of trusted middleware server
may also be derived when examining a request by looking at
the list 210 and selecting those connections that have a posi-
tive trust indicator.

The list 210 of current active connections includes an indi-
cation as to whether or not the connection is trusted. A con-
nectionis trusted when the data server 134 determines that the
connection’s source attributes match the attributes of a con-
nection source (i.e. middle ware server) registered in the
database 136 as to be trusted.

The middleware server 104 attempts to make a connection
with the data server 134. The code 105 A directs the middle-
ware server 104 to establish a connection 302 with the data
server 134.

The data processing system 100 includes known modules
that facilitate communication via the network 118 and is
indicated as a connection line 312. Such a connection line 314
is also used to connect the data processing system B 130 with
the network 118. The connection lines 312 and 314re used for
establishing a connection 302 (via the network 118) between
the data processing system B 130 and the data processing
system 100.

A request 306 to establish a connection along with a copy
308 of the user id 106 currently associated with the middle-
ware server 104 are sent as a package 304 from the middle-
ware server 104 to the data server 134 via the network 118.
There are two possible scenarios for processing of this request
by the data server 134: either this is a new connection between
the middleware server 104 and the data server 134 or a con-
nection already exists between these two parties and the
request contains a request to maintain the connection ther-
ebetween using a different user id (and possibly a password).

If the package 304 is for a request for a new connection,
then the data server 134 receives the request and authenticates
the user id and the password before the connection is estab-
lished. As part of the authentication process, the data server
updates the list 210 of current active connections. The data
server 134 then examines attributes of the connection with the
middleware server 104 and if such attributes match attributes
in the database 136 of a trusted server then the middleware
server 104 is identified as being trusted and marks the con-
nection as trusted. Once this is complete, the middleware
server 104 can start requesting services from the database 136
through the data server 134 via this connection.

If'the package is for arequest to maintain a connection with
a different user id, then the data server 134 receives the
request and examines the list 210 to determine if the middle-
ware server 104 is a trusted connection. If the existing con-
nection between the middleware server 104 and the data
server 134 is trusted then the current connection between the
parties is maintained with the different user id without requir-
ing a password associated with the different user id; other-
wise, a password is required and the connection can be bro-
ken.

The connection source attributes in the database 136 may
indicate that all connections from a particular source are to be
trusted, irregardless of the user id. Alternatively, the connec-
tion source attributes may indicate only specific user ids that
may be interchanged on a trusted connection without the
requirement of a password, other user ids from the same
source may require passwords.

FIG. 4 illustrates a situation when a user command 402 is
received by the middleware server 104 requesting a copy of
data from the data server 134.

In response to receiving the user command 402, the code
105C directs the middleware server 104 to transmit a reuse

20

25

30

35

40

45

50

55

60

65

6

connection command 401 to the data server 134 via the estab-
lished connection 302. The connection 302 shows a copy of
the reuse connection command 401 which is then received by
the data server 104.

In response to the data server 134 receiving the reuse con-
nection command 401, the code 135H directs the data server
134 to determine whether to reuse the established connection
302 for executing the user command 402 received by the
middleware server 104. The code 135H may direct the data
server 134 to issue a notice indicating that the established
connection 302 may be reused for executing the user com-
mand 402 submitted by the middleware server 104 if the
trusted indicator (as shown in table 210) indicates that the
middleware server 104 may be trusted. If the middleware
server 104 may be trusted, the code 135H may direct the data
server 134 to transmit an acceptance notice 404 to the middle-
ware server 104 via connection 302. The code 135H may
direct the data server 134 to decline executing the user com-
mand 402 received by the middleware server 104 ifthe trusted
indicator (as shown in table 210) indicates that the middle-
ware server 134 may not be trusted. If the middleware server
104 is not to be trusted, the code 135H may direct the data
server 134 to transmit a decline notice (to the middleware
server 104) for declining the reuse of the connection 302 for
the user command 402.

In response to receiving the acceptance notice 404, the
code 105D may direct the middleware server 104 to transmit
the user command 402 to the data server 134 (via connection
302); thus, the connection 302 is reused for transmitting the
user command to the data server 134. In response to receiving
the decline notice, the code 105D may direct an error message
(not shown) to the user who submitted the user command 402
indicating that the user command 408 for requesting data
access was declined by the data server 134.

In response to the data server 134 receiving a copy of the
user command 408 from the middleware server 104, the code
1351 directs the data server 134 to receive the copy of the user
command 408, and then to execute the user command 408.

In an alternative, before the data server 134 executes the
user command 408, the code 1351 may direct the data server
143 to determine whether the user associated with the user
command 408 has predetermined data access privileges (for
accessing the data being requested) that were previously
established with the data server 134. For example, the data
server 134 may decline execution of the user command 408
because the data server 134 determines that the user as no
predetermined access rights established for accessing that
data identified in the user command 408. In this case, the data
server 134 transmits a decline execution notice 410 to the
middleware server 104. For the case when the data server 134
determines that the user is associated with access privileges
with the data, the data server 134 may execute the user com-
mand 408 to access the data stored in the database 136, then
the data server 134 transmits the accessed data 412 via con-
nection 302 over to the middleware server 104.

In response to receiving the decline notice 410 declining
access to data, the code 105E directs the middleware server
104 to transmit an error message (not shown) to the user. In
response to receiving the accessed data 412, the code 105E
directs the middleware server 104 to transmit the accessed
data 412 to the user.

FIG. 5 shows an interaction between the data server 134
and the middleware server of FIG. 1 when another user
attempts to send a command from the middleware server 104
for accessing data via by the data server 134. The code 105
includes the code 105F. The code 135 includes the code 135]
and the code 135K.

US 7,647,626 B2

7

In response to receiving a release signal from the user, the
code 105F directs the middleware server 104 to transmit a
type of connection reset command 501 to the data server 134.
The reused connection command 501 is shown in the connec-
tion 302.

In response to receiving the reused connection command
501 via the established connection 302, the code 135] directs
the data server 134 to set a type of connection indicator of user
to indicate that the user is currently connected. For example,
the data server 134 may set the user ID to the name of the
current user of the connection. Once the user has completed
using the connection 302, the user may wish to either request
more data from the data server 134 or reset the type of con-
nection indicator which permits other users to interact with
the data server 134.

In response to receiving a release indicator from the user,
the code 105F directs the middleware server 104 to transmit a
type of connection reset command 502 to the data server 134
via the established connection 302.

The code 135], in response to the data server 134 receiving
the type of connection reset command 502 via the connection
502, directs the data server 134 to permit another user to use
the connection 302. The table 210 contains indications for
each user id of the trust and use status; for example, the
non-user status connection indicator is “1” (which indicates
the user JOE is reusing the connection 302), and the user
status connection indicator is set to “0” to indicate that the
administrator 150 of the MDW_(W) 104 is not using the
connection 302. This arrangement provides a mechanism
which permits user JOE exclusive channel to submit user
commands to the data server 134.

In response to receiving the reset command 502 from the
middleware server 104 via the connection 302, the code 135K
directs the data server 134 to set the type of connection
indicator to indicate a non-user connection status, which
includes setting the currently connected status to of user
ID=Admin (the administrator 152) to “1” (the “1” indicates
the administrator has control of the connection 302), and
setting the currently connected status of user JOE to “0” (the
“0” indicates that user JOE is no longer the active user using
the connection 302). Now another user of the middleware
server may reuse the connection 302.

FIG. 6 illustrates a method 600 for the data server 134 of
managing a connection with a middleware server. A verbal
agreement is formed between the middleware server and the
data server in step 602. The verbal agreement indicates
whether or not the data server will trust the middleware server
and to what degree the middleware server will be trusted. This
verbal agreement is then registered with the data server in step
604.

A connection request is received from the middleware
server in step 606. The connection request includes request
attributes such as whether the request is for a new connection
or a reuse of an existing connection, a user identification (and
possibly password) for a user of the middleware server, an IP
address for the middleware server, etc. In step 608 the request
attributes are examined to determine if the request is a reuse
of an existing connection using different attributes (e.g. dif-
ferent user identification). If the request is not to reuse the
connection then it is a request for a new connection.

The request for a new connection is examined in step 610
to determine if the request attributes contain access privileges
for the database (e.g. does the user identification and pass-
word match a user id and password registered in the data-
base). If the request contains access privileges, then a con-
nection between the data server and the middleware server is
created in step 612. A connection status message is transmit-

20

25

30

40

45

50

55

60

65

8

ted to the middleware server in step 614 indicating that the
connection was established. A connection indicator is
updated in step 616 to indicate that the middleware server is
connected with the data server. A trust indicator is then setand
checked for the middleware server in step 618. Based on
attributes of the middleware server in the request (e.g. IP
address) and attributes of servers that can be trusted (as found
in the registered verbal agreement), the trust indicator is set as
‘trust’ or ‘not trust’ for the middleware server.

If the connection request for a new connection does not
contain database access privileges then an error message is
transmitted to the middleware server in step 628.

If the connection request is to reuse a connection then the
trust indicator for the middleware server is examined in step
620. If the trust indicator indicates that the middleware server
is not a trusted server then an error message is transmitted to
the middleware server in step 634.

If'the trust indicator indicates that the middleware server is
a trusted server then the connection may be reused with new
attributes. These new attributes are set for the connection in
step 622. A connection status message is transmitted to the
middleware server in step 624 indicating that the connection
is being reused with the new attributes.

After a new connection has been established or the existing
connection is set up to be reused, a command to obtain data
from the data base is received from the middleware server in
step 626. The command to obtain data is executed in step 630
and the obtained data is transmitted to the middleware server
in step 632.

FIG. 7 illustrates a method 700 of establishing a connection
with the data server by the middleware server. A request for a
new connection is transmitted from the middleware server to
the data server instep 702. A connection status message is
received from the data server in step 704 indicating whether
or not the connection has been established.

After a connection has been established a request to reuse
the connection with different attributes 9e.g. different user id)
is transmitted to the data server in step 706. A connection
status message is received form the data server in step 708
indicating whether or not the request to reuse the connection
was granted.

The connection status message is examined in step 710 to
determine if the request to reuse the connection was granted.
If the request was not granted then a user is informed in step
716 that the request was unsuccessful.

Ifthe request was successful then a command to obtain data
from the database is transmitted to the data server in step 712.
The requested data is received form the data server in step
714.

The detailed description of the embodiments of the present
invention does not limit the implementation of the embodi-
ments to any particular computer programming language.
The computer program product may be implemented in any
computer programming language provided that the OS (Op-
erating System) provides the facilities that may support the
requirements of the computer program product. A preferred
embodiment is implemented in the C or C++ computer pro-
gramming language (or may be implemented in other com-
puter programming languages in conjunction with C/C++).
Any limitations presented would be a result of a particular
type of operating system, computer programming language,
or data processing system and would not be a limitation of the
embodiments described herein.

It will be appreciated that the elements described above
may be adapted for specific conditions or functions. The
concepts of the present invention can be further extended to a
variety of other applications that are clearly within the scope

US 7,647,626 B2

9

of'this invention. Having thus described the present invention
with respect to preferred embodiments as implemented, it
will be apparent to those skilled in the art that many modifi-
cations and enhancements are possible to the present inven-
tion without departing from the basic concepts as described in
the preferred embodiment of the present invention.

The invention claimed is:

1. For a data server of a data processing system operably
coupled to a database, a method of managing a connection
with a middleware server, the middleware server sending a
request for a connection to the data server, the request com-
prising request attributes, the method comprising:

storing a set of attributes identifying middleware servers

trusted by the data server;

establishing a connection between the middleware server

and the data server based on a request, having connec-
tion request attributes, received from the middleware
server; and

setting a trust indicator for the connection, according to a

trust status determined by comparing the set of attributes
identifying the middleware server to the received con-
nection request attributes, the trust status indicating
whether the connection is one of a trusted connection
and a non-trusted connection,

wherein if the connection between the middleware server

and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware
server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

2. The method of claim 1, wherein the step of establishing
a connection comprises:

updating a connection indicator after the connection has

been established to indicate that the connection has been
established.

3. The method of claim 2, wherein the step of setting a trust
indicator comprises:

determining if the trust indicator is set for the connection;

and

if the trust indicator is set, determining whether the con-

nection is trusted after the connection indicator indicates
the connection is established.

4. The method of claim 1 wherein the step of storing com-
prises:

forming an agreement between the data server and the

middleware server containing the set of attributes; and
registering the set of attributes with the data server.
5. The method of claim 1 wherein the step of establishing
a connection comprises:
receiving a request from the middleware server to establish
a connection therebetween; and

determining whether the request attributes indicate a
request for a new connection or a reuse of an existing
connection with different request attributes.

6. The method of claim 5 wherein the step of establishing
a connection further comprises:

determining if the request attributes include access privi-

leges for the database if the request attributes indicate a
request for a new connection;

creating the connection if the request attributes include

access privileges; and

transmitting a connection status message to the middle-

ware server indicating that the connection has been
established.

20

25

30

35

40

45

50

55

60

65

10

7. The method of claim 5 wherein the request attributes
comprises a user identification and the different request
attributes comprises a different user identification.

8. The method of claim 7, wherein the step of establishing
the connection further comprises:

determining whether the existing connection can be reused

based on the trust indicator of the existing connection.

9. The method of claim 8, wherein the step of determining
whether the existing connection can be reused comprises:

transmitting a connection status message to the middle-

ware server indicting that the connection may be reused
if the trust indicator indicates that the middleware server
is trusted.

10. The method of claim 8, wherein the step of determining
whether the existing connection can be reused comprises:

transmitting a connection status message to the middle-

ware server indicating that the existing connection may
not be reused if the trust indicator indicates that the
middleware server is not trusted.
11. The method of claim 1 further comprising:
receiving a command via the connection for obtaining data
in the database from the middleware server; and

executing the command in the request if the trust indicator
for the middleware server indicates that the middleware
server is trusted.
12. The method of claim 11, wherein the step of executing
comprises:
transmitting a decline execution notice to the middleware
server if the request attributes do not include access
privileges for the data identified in the command; and

transmitting obtained data to the middleware server in
response to the command if the request attributes
include access privileges for the data identified in the
command.

13. The method of claim 1, wherein the middleware server
receives the request for connection to the data server from a
user connected to the middleware server over a network.

14. The method of claim 1, wherein the connection request
attributes comprise attributes of a user connected to the
middleware server and attributes of the middleware server.

15. The method of claim 1, wherein the trust indicator is
stored at the data server.

16. The method of claim 1, wherein the storing the set of
attributes identifying middleware servers trusted by the data
server occurs prior to the establishing the connection between
the middleware server and the data server based on the
request.

17. For a middleware server of a data processing system, a
method of establishing a connection with a data server oper-
ably coupled to a database, the method comprising:

transmitting a connection request to the data server, the

connection request having request attributes that iden-
tify the connection request as being one of a new con-
nection and reuse of an existing connection having dif-
ferent connection request attributes; and

receiving a connection status message from the data server

indicating a status, when the data server determines that
the middleware server is one of a trusted middleware
server and a non-trusted middleware server by compar-
ing the request attributes to a stored set of attributes
identifying the middleware server, of the connection as
being one of a trusted connection and a non-trusted
connection,

wherein if the connection between the middleware server

and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware

US 7,647,626 B2

11

server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

18. The method of claim 17, wherein the step of transmit-
ting a connection request comprises:

transmitting the connection request with the request to

reuse the existing connection to the data server via the
existing connection,

wherein the request attributes comprises a user identifica-

tion and the different request attributes comprises a dif-
ferent user identification than the existing connection.

19. The method of claim 17, further comprising:

transmitting a command for obtaining data in the database

to the data server if the connection status message indi-
cates that the connection has been established.

20. The method of claim 19 further comprising:

receiving obtained data from the data server in response to

the command.

21. For a data server of a data processing system operably
coupled to a database, a computer program product having
computer executable codes embodied on a computer-read-
able storage medium for managing a connection with a
middleware server, the middleware server sending a request
for a connection to the data server, the request comprising
request attributes, the computer program product comprising:

code storing a set of attributes identifying middleware

servers trusted by the data server;

code establishing a connection between the middleware

server and the data server based on the request received
from the middleware server; and

code setting a trust indicator for the connection according

to a trust status determined by comparing the set of
attributes identifying the middleware server to the
received connection request attributes, the trust status
indicating whether the connection is one of a trusted
connection and a non-trusted connection,

wherein if the connection between the middleware server

and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware
server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

22. The computer program product of claim 21, wherein
the code establishing a connection comprises:

code updating a connection indicator after the connection

has been established to indicate that the connection has
been established.

23. The computer program product of claim 22, wherein
the code setting a trust indicator comprises:

code determining if the trust indicator is set for the con-

nection; and

code, if the trust indicator is set, determining whether the

connection is trusted after the connection indicator indi-
cates the connection is established.

24. The computer program product of claim 21, wherein
the code storing comprises:

code forming an agreement between the data server and the

middleware server containing the set of attributes; and
code registering the set of attributes with the data server.

25. The computer program product of claim 21, wherein
the code establishing a connection comprises:

code receiving a request from the middleware server to

establish a connection therebetween; and

[

10

20

30

35

40

N

5

50

wn

5

65

12

code determining whether the request attributes indicate a
request for a new connection or a reuse of an existing
connection with different request attributes.

26. The computer program product of claim 25, wherein

the code establishing a connection further comprises:

code determining if the request attributes include access
privileges for the database if the request attributes indi-
cate a request for a new connection;

code creating the connection if the request attributes
include access privileges; and

code transmitting a connection status message to the
middleware server indicating that the connection has
been established.

27. The computer program product of claim 25, wherein
the request attributes comprises a user identification and the
different request attributes comprises a different user identi-
fication.

28. The computer program product of claim 27, wherein
the code establishing the connection further comprises:

code determining whether the existing connection can be
reused based on the trust indicator of the existing con-
nection.

29. The computer program product of claim 28, wherein
the code determining whether the existing connection can be
reused comprises:

code transmitting a connection status message to the
middleware server indicting that the connection may be
reused if the trust indicator indicates that the middleware
server is trusted.

30. The computer program product of claim 28, wherein
the code determining whether the existing connection can be
reused comprises:

code transmitting a connection status message to the
middleware server indicating that the existing connec-
tion may not be reused if the trust indicator indicates that
the middleware server is not trusted.

31. The computer program product of claim 21, further

comprising:

code receiving a command via the connection for obtaining
data in the database from the middleware server; and

executing the command in the request if the trust indicator
for the middleware server indicates that the middleware
server is trusted.

32. The computer program product of claim 31, wherein

the step of executing comprises:

code transmitting a decline execution notice to the middle-
ware server if the request attributes do not include access
privileges for the data identified in the command; and

code transmitting obtained data to the middleware server in
response to the command if the request attributes
include access privileges for the data identified in the
command.

33. For a middleware server of a data processing system, a
computer program product having computer executable
codes embodied on a computer-readable storage medium for
establishing a connection with a data server operably coupled
to a database, the computer program product comprising:

code transmitting a connection request to the data server,
the connection request having request attributes that
identify the connection request as being for one of a new
connection and reuse of an existing connection having
different connection request attributes; and

code receiving a connection status message from the data
server indicating a status, when the data server deter-
mines that the middleware server is one of a trusted
middleware server and a non-trusted middleware server
by comparing the request attributes to a stored set of

US 7,647,626 B2

13

attributes identifying the middleware server, of the con-
nection as being one of a trusted connection and a non-
trusted connection,

wherein if the connection between the middleware server
and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware
server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

34. The computer program product of claim 33, wherein

the code transmitting a connection request comprises:
code transmitting the connection request with the request

to reuse the existing connection to the data server via the 15

existing connection,

14

wherein the request attributes comprises a user identifica-
tion and the different request attributes comprises a dif-
ferent user identification than the existing connection.
35. The computer program product of claim 33, further
comprising:
code transmitting a command for obtaining data in the
database to the data server if the connection status mes-
sage indicates that the connection has been established.
36. The computer program product of claim 35, further
comprising:
code receiving obtained data from the data server in
response to the command.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,647,626 B2 Page 1 of 1
APPLICATION NO. : 11/008507

DATED : January 12,2010

INVENTOR(S) : Bird et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 1047 days.

Signed and Sealed this
Sixteenth Day of November, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

US007865521B2

a2 United States Patent (10) Patent No.: US 7,865,521 B2
Bird et al. 45) Date of Patent: *Jan. 4, 2011
(54) ACCESS CONTROL FOR ELEMENTS IN A 6,721,727 B2 4/2004 Chauetal. ...ccceeveevvnnnennn. 707/3
DATABASE OBJECT 7,133,875 B1* 11/2006 Chatterjee etal. 707/999.102
2003/0046550 Al* 3/2003 Carroll etal, 713/185

(75) Inventors: Paul Miller Bird, Markham (CA); . a_rro cta
Walid Rjaibi, Markham (CA) 2004/0139043 Al* 7/2004 Leietal. wooovooovvevovvene.. 707/1

2005/0246338 Al 11/2005 Bird

(73) Assignee: International Business Machines 2007/0033196 Al* 2/2007 MOOIE .oovevevevrrererernnens 707/10
Corporation, Armonk, NY (US) 2007/0038596 AL* 2/2007 Pizzo etal. .ooooooooeeeeeee 707/2

(*) Notice: Subject to any disclaimer, the term of this 2008/0275880 Al 11/2008 Bird et al.

patent is extended or adjusted under 35
U.S.C. 154(b) by 263 days.

This patent is subject to a terminal dis- OTHER PUBLICATIONS
lai .
clammer Panagiotis Katsaros, “On the Design of Access Control to Prevent
. Sensitive Information Leakage in Distributed Object Systems: A
21) Appl. No.: 11/299,857
@D ppl. o ’ Colored Petri Net Based Model”, SpringerLink Contemporary, Oct.
(22) Filed: Dec. 12. 2005 11, 2005, vol. 3761. Download: http://www.springerlink.com/con-
: .12,

tent/5p7 Iw09j9rlepaye/fulltext.pdf.*
(65) Prior Publication Data
US 2007/0136291 Al Jun. 14, 2007

(Continued)

Primary Examiner—John E Breene

(51) Int.CL Assistant Examiner—Hares Jami
GO6F 7/00 (2006.01) (74) Attorney, Agent, or Firm—Terry Carroll; SVL IP Law
GO6F 17/30 (2006.01)
(52) US.CL oo 707/781; 707/783; 707/999.1; (7) ABSTRACT
707/999.9
(58) Field of Classification Search 707/1-10, . .
707/781. 783. 999.1. 999 9 A method, for controlling access to elements in a database
See application file for complete search history. object are provided. The method provide for receiving a
. request from a user to access the database object, determining
(56) References Cited whether an access restriction is imposed on the database
U.S. PATENT DOCUMENTS object, and controlling access to the elements in the database
_ object by the user based on the access restriction. The access
5,815,574 A 9/1998 TFortinsky restriction specifies one or more users to which the access
6,026,388 A . 2/2000 L_lddy etal. restriction is applicable, defines a dynamic condition the one
6,085,191 A 7/2000 Fisheretal.cccccoeeneeee 707/9 or more users must satisfy in order to access the database
6,308,273 Bl 10/2001 Goertzel et al. object, and identifies one or more of the elements in the
6,321,235 Bl 11/2001 Bird ..cccocuvvrrnirneeeeeennn. 707/203 d . .
atabase object accessible to the one or more users when the
6,321,334 Bl 11/2001 Jerger et al. dvnamic condition is satisfied
6,424,974 Bl 7/2002 Cotneretal. 707/103 ¥ ’
6,487,552 B1* 11/2002 Leietal.cccooevunennenece 707/4
6,643,633 B2 11/2003 Chauetal.cccoeunvnnnnnns 707/1 30 Claims, 7 Drawing Sheets
RECEWVE A REQUEST 302
FROM A USER TO ACCESS
THE DATABASE OBJECT
304 Yo
RESTRICTION
{MPOSED?. PERMIT USER TO ACCESS 306
YES THE ELEMENTS IN THE
308 e~ DATABASE OBJECT

USER
SATISFIES 1ST

PROMIBIT USER FROM
accessnaThe |7 912
ELEMENTS IN THE
DATABASE OBJECT

e

s
USER SATISFIE!
ADDITIONAL DYNAMIC
CONDITION?

s

¥

314

GENERATE A DYNAMIC
PSEUDO-VIEW OF THE 316
DATASASE OBJECT
COMPRISING ONLY THE
1ST ELEMENT SET IN THE
DATABASE OBJECT

RESPOND TO THE

REQUESTUSING THE |/~ 70
DYNAMIC PSEUDO-VIEW

OF THE DATABASE OBJECT

N

US 7,865,521 B2
Page 2

OTHER PUBLICATIONS

Hadjiefthymiades, SP et al., “A Generic Framework for the Deploy-
ment of Structured Databases on the World Wide Web,” Computer
Networks and ISDN Systems, May 1996, vol. 28, No. 7-11, 9 pgs.
Zhenchuan, Xu et al., “Dynamic Tuning of XML Storage Schema in
VXMLR,” IEEE 2003, Proceedings of the Seventh International
Database Engineering and Applications Symposium, pp. 1-11.
International Search Report (ISR) dated Jan. 3, 2007, for correspond-
ing foreign Application.

Rakesh Agrawal, et al., “Extending Relational Database Systems To
Automatically Enforce Privacy Policies”, IBM Almaden Research
Center, 650 Harry Road, San Jose, CA, Proceedings of the 21st
International Conference on Data Engineering , IEEE, 2005.

Office Action dated Oct. 16, 2006; cited in U.S. Appl. No.
10/837,387.

Final Office Action dated May 4, 2007; cited in U.S. Appl. No.
10/837,387.

Office Action dated Oct. 18, 2007; cited in U.S. Appl. No.
10/837,387.

Office Action dated Apr. 23, 2008; cited in U.S. Appl. No.
10/837,387.

Office Action dated Apr. 10, 2009; cited in U.S. Appl. No.
10/837,387.

Tzelepi, S. et al., “Security of Medical Multimedia,” Medical
Informatics and the Internet in Medicine, vol. 27, No. 3, Sep. 2002,
pp. 169-184.

Damiani, E. et al., “Regulating Access to Semistructured Information
on the Web,” Information Security for Global Information Infrastruc-
tures, Sixteenth Annual Working Conf. on Information Security, Aug.
22-24, 2000, Beijing, China, pp. 351-360.

Duesterwald, E. “A Practical Data Flow Framework for Array Ref-
erence Analysis and its use in Optimizations,” ACM Sigplan Notices
vol. 28, No. 6, Jun. 1993, Proc of the ACM SIGPLAN ’93 Conf. on
Programming Language Design and Implementation Albuquerque,
NM, Jun. 23-25, pp. 68-67.

Low, M. et al., “Fine Grained Object Protection in Unix,” Operating
Systems Review vol. 27, No. 1, Jan. 1993, pp. 33-50.

Salemi, C. et al,, “A Privilege Mechanism for UNIX System V
Release 4 Operating Systems,” Conf. Proceedings, USENIX, Sum-
mer 1992 Technical Conf., San Antonio, Texas, Jun. 8-12, 1992, pp.
235-241.

Leiss, E. et al., “Protecting Statistical Databases by Combining
Memoryless Table Restrictions With Randomizations,” AFIPS
Conf., Proc., vol. 56, 1987 National Computer Conference, Jun.
15-18, 1987, Chicago, Illinois, pp. 591-600.

Damiani, E. et al., “A Fine-Grained Access Control System for XML
Documents,” ACM Transactions on Information and System Secu-
rity, vol. 5, No. 2, May 2002, pp. 169-202.

Grimm, R. et al., “Separating Access Control Policy, Enforcement,
and Functionality in Extensible Systems,” ACM Transactions on
Computer Systems, vol. 19, No. 1, Feb. 2001, pp. 36-70.
Coulouris, G. et al., “Security Requirements for Cooperative Work: A
Model and Its System Implications,” Position Paper for 6th SIGOPS
European Workshop, Dagstuhl, Sep. 1994, pp. 184-186.

Wang, Weigang, “Team-and-Role Based Organizational Context and
Access Control for Cooperative Hypermedia Environments,”
Hypertext 99, Darmstadt Germany, Copyright ACM 1999, pp. 37-46.
Bohlen, Michael H. et al., “Temporal Statements Modifiers,” ACM
Transaction on Database Systems, vol. 25, No. 4, Dec. 2000, pp.
407-456.

Lakshmanan, Laks, V.S. et al., “SchemaSQL-An Extension to SQL
for Multidatabase Interoperability,” ACM Transactions on Database
Systems, vol. 26, No. 4, Dec. 2001, pp. 476-519.

Ng, Wilfred, “An Extension of the Relational Data Model to Incor-
porate Ordered Domains,” ACM Transactions on Database Systems,
vol. 26, No. 3, Sep. 2001, pp. 344-383.

Hadjiefthymiades, SP et al., “A Generic Framework for the Deploy-
ment of Structured Databases on the World Wide Web,” Computer
Networks and ISDN Systems, May 1996, vol. 28, No. 7-11, pp.
1139-1148. (Abstract).

Zhenchuan, Xu et al., “Dynamic Tuning of XML Storage Schema in
VXMLR,” 2003, Proceedings International Database Engineering
and Applications Symposium, pp. 76-86. (Abstract).

* cited by examiner

U.S. Patent Jan. 4, 2011 Sheet 1 of 7 US 7,865,521 B2

102

RECEIVE A REQUEST FROM A USER TO ACCESS
THE DATABASE OBJECT

Y

DETERMINE WHETHER AN ACCESS RESTRICTION
IS IMPOSED ON THE DATABASE OBJECT

104

CONTROL ACCESS TO ELEMENTS IN THE 106
DATABASE OBJECT BY THE USER BASED ON THE
ACCESS RESTRICTION

FIG. 1

US 7,865,521 B2

Sheet 2 of 7

Jan. 4, 2011

U.S. Patent

90z
354N0S3Y f

€90¢

ounosay | ———)

14014
3Svaviva
>

[4014
H3IAH3S

¢ 9Old

—

80¢
AHYOMLIN

~

u-gLe
AN3IMD

[A] 24
AN3ITO

L-012
IN3ITO

U.S. Patent Jan. 4, 2011 Sheet 3 of 7 US 7,865,521 B2

RECEIVEAREQUEST | -~ 302
FROM A USER TO ACCESS
THE DATABASE OBJECT

304

ACCESS
RESTRICTION
IMPOSED?

NO

PERMIT USER TO ACCESS / 306
—» THE ELEMENTS IN THE
DATABASE OBJECT

YES

USER IN
1ST GROUP?

YES

308

USER
SATISFIES 1ST
DYNAMIC

310

PROHIBIT USER FROM 312
ACCESSING THE e

ELEMENTS IN THE

DATABASE OBJECT

314

ADDITIONAL DYNAMIC
CONDITION?

GENERATE A DYNAMIC
PSEUDO-VIEW OF THE 216
DATABASE OBJECT |/~
COMPRISING ONLY THE
1ST ELEMENT SET IN THE
DATABASE OBJECT

y

RESPOND TO THE 318
REQUESTUSINGTHE |/~
DYNAMIC PSEUDO-VIEW
OF THE DATABASE OBJECT

FIG. 3

U.S. Patent Jan. 4, 2011 Sheet 4 of 7 US 7,865,521 B2
RECEIVE A REQUEST 402
FROMAUSERTO |/~
ACCESS THE
DATABASE OBJECT

404 ACCESS NO

RESTRICTION

MPOSED? PERMIT USER TO 406
ACCESS THE e
| ELEMENTS IN THE
408 DATABASE OBJECT
USER IN
1ST GROUP?
OBTAIN ONE OR
410 a\ MORE SESSION
VARIABLES
ASSOCIATED WITH 416
THE USER
418
ONE OR PROHIBIT USER

412 MORE SESSION MORE SESSION FROM ACCESSING

VARIABLES = 1ST

NO

VARIABLES = 2ND
DYNAMIC
ONDITION?,

THE ELEMENTS IN
THE DATABASE
OBJECT

414
N

ALLOWUSERTO
ACCESS 18T
ELEMENT SET IN THE
DATABASE OBJECT

ALLOWUSER TO
ACCESS 2ND
ELEMENT SET IN THE
DATABASE OBJECT

420
/

FIG. 4

US 7,865,521 B2

Sheet S of 7

Jan. 4, 2011

U.S. Patent

905 \

g 'Ol

44

NOILOIY1S3Y
SS300V 3HL
NO d3svd 103r8o0
3SvavLva 3HL
NI SINJFW3T3 3HL OL
SS300V T0Y1INOD

!

NOILOIY1S3Y SNOILOIN1STY
SS3DOV ¥IHL0 FHL $S3D0V HLO8
NO g3sva L53rgo NO @3sva L23rg0
/] 3svavivaaHi IsvavivaaHL [\
ris NI SINJW313 3HL OL NI SINIIN313 3HL OL
SS300V TOULNOD SS300V TOHLINOD
ON ON
103rg0 3svaviva
3HL NI SINIWIT3
JHL SS30JV S3A S3A
0L ¥3sN LINy3d a5 < o) 0z
A
£03SOdIN £a3S0dN
NOILOIYLSTY NOILOIMLSTY

oN $S300V $S300V on

JIHLONY 4IHLONY

018 916
S3A ON
805
203SOdIN
NOILOIY1S3Y
ON 05
193rg0 3Svav.Lvd
3HL SSIDOV
/1 o1wy3snvwoud
¢0s 1S3N03y V IAIZD3Y

81§

U.S. Patent Jan. 4, 2011 Sheet 6 of 7 US 7,865,521 B2
6({2 6(<4 6%6 608
610-1 NAME ADDRESS PHONE CREDIT CARD
610-2 \ J. Adams 290 E. 59th Street, New York, NY | (212) 555-1555 | 2221-5553-4466-8837
610-3 T. Browne 15 W. 19th Street, Chicago, IL (312) 555-4587 | 6351-4215-7893-1105
610-4 \ M. Davis 8890 N.W. 8th Street, Miami, FL | (305) 555-8259 | 4821-1355-7913-4103
610-5 C. Edwards | 63 University Street, Seattle, WA | (206) 555-5692 | 8923-7561-5225-8978
\ P. Hall 700 Pacific Avenue, Dallas, TX (214) 555-7396 | 3614-7465-0121-3254
® ° °]
° ° ® °
. ® °)
610-n
\ W. Zappa |39 N.W. H Street, Washington, DC | (202) 555-6923 | 5214-9874-3156-5647

'/ 612a

FIG. 6

NAME ADDRESS CREDIT CARD
J. Adams 290 E. 59th Street, New York, NY | 2221-5553-4466-8837
T. Browne 15 W. 19th Street, Chicago, IL | 6351-4215-7893-1105
M. Davis 8890 N.W. 8th Street, Miami, FL | 4821-1355-7913-4103
C. Edwards | 63 University Street, Seattle, WA | 8923-7561-5225-8978
P. Hall 700 Pacific Avenue, Dallas, TX | 3614-7465-0121-3254
°) °
]) °
) °)
W. Zappa |39 N.W. H Street, Washington, DC | 5214-9874-3156-5647
'/ 612b
NAME ADDRESS
J. Adams 290 E. 59th Street, New York, NY
T. Browne 15 W. 19th Street, Chicago, IL
M. Davis 8890 N.W. 8th Street, Miami, FL
C. Edwards | 83 University Street, Seattle, WA
P. Hall 700 Pacific Avenue, Dallas, TX
° ®
' ®
° °
W. Zappa 39 N.W. H Street, Washington, DC

US 7,865,521 B2

U.S. Patent Jan. 4, 2011 Sheet 7 of 7
110
DEVICE

708a
|
|
|
|
|
|

COMMUNICATION ! "A%%’?g;
T 210 MEMORY
| 704a
|
| BUS
712 I
' 706
|
|
| PROCESSOR MEMORY
: 702 704b
|
|
|
|
|
Ry A I (.
e
DEVICE
708b

FIG. 7

US 7,865,521 B2

1

ACCESS CONTROL FOR ELEMENTS IN A
DATABASE OBJECT

FIELD OF THE INVENTION

The present invention relates generally to database man-
agement systems. More particularly, the present invention is
directed to controlling access to elements in a database object.

BACKGROUND OF THE INVENTION

In a Database Management System (DBMS), data is stored
in tables made up of records (e.g., rows) having one or more
fields (e.g., columns). A view is a logical construct imposed
over a table and is defined by metadata in the DBMS known
as a view definition. The view definition contains mappings to
one or more rows and columns in one or more tables stored in
a database. Tables and views are considered to be database
objects.

Fine-Grained Access Control (FGAC) is a mechanism by
which the DBMS controls access to database object records
and/or fields based on the identity of the user attempting to
access the database object. FGAC complements the tradi-
tional Discretionary Access Control (DAC) implemented by
many DBMS by allowing the DBMS to enforce two levels of
access control: DAC is enforced at the object level (e.g., does
the user have the right to access that table?) and FGAC is
enforced atthe element level (e.g., does the user have the right
to access that row or column?).

Traditional methods of implementing FGAC within
DBMS have relied upon the use of views. A view can be used
to alter or restrict the data seen by a user using the view to
access the underlying table(s). Views, however, have a num-
ber of shortcomings. For example, when the number of dif-
ferent restrictions is numerous, view definitions may become
quite complex in an effort to incorporate all of the restrictions
in one view, which strains system limits and makes mainte-
nance of the view difficult.

Additionally, if a large number of simple views are desired,
e.g., each one implementing a unique view of a table based on
the restrictions for a specific set of users, the routing of user
requests becomes difficult with the solution often being
resolved within the database application rather than the
DBMS. Furthermore, a user may be able to bypass the FGAC
implemented through the views by accessing the base tables
directly.

Another known implementation of FGAC is the use of user
attributes to modify queries by adding predicates into the
queries. A predicate is a condition that must be satisfied for
the DBMS to return a value. In this approach, the user
attributes (e.g., user identifier) are compared against a secu-
rity policy defined within a procedure provided by the user on
a table or view to make decisions regarding access to data.
This approach allows row restrictions, traditionally handled
by views, to be dynamically added to queries without requir-
ing application modification.

One drawback of the query modification approach is that it
only allows the DBMS to control access at the row-level.
Views still have to be used to control access at the column-
level. Additionally, the approach requires user programming
of a strictly defined “predicate producing” procedure in order
to implement a security policy. Moreover, query modification
interferes with dynamic query caching because the modified
queries will no longer match the original text of the queries,
which makes query matching problematic and impacts the
performance benefits of caching.

20

25

30

35

40

45

50

55

60

65

2

Further, the solutions described above fail to address the
requirements from emerging privacy applications. Generally,
a privacy policy indicates who can access what information,
for what purpose, and resulting in what obligations. For
example, a user John Doe may be allowed to access the credit
card column from a customer table if he is using the billing
application to process a customer order, but he may not be
allowed to access that column for the purpose of sending
marketing information to the customer. Existing FGAC solu-
tions cannot address this requirement because they either do
not support controlling access at the column level or they
provide control access at the column level, but only for col-
umns that have been statically defined (i.e., view-based tech-
niques). Hence, a user is always restricted to a set of columns,
regardless of the purpose for which he or she is accessing
those columns.

Privacy applications are only one example where such
flexibility is needed. Recent user requirements in the area of
database security indicate that there is a need for database
vendors to provide the notion of a session context. A session
context is uniquely identified by a set of session attributes that
may include the ID of the user who established that session,
the 1P address of the computer from which the user initiated
the session, as well as other attributes as dictated by a par-
ticular implementation or scenario. Within a particular con-
text, a user can have one or more privileges on one or more
database objects that are not necessarily available to them
within a different context. Thus, it is only natural that the next
logical user requirement would be to allow certain columns to
be accessible within one context, but not within another con-
text. Currently, the only way to accomplish this would be to
define a set of views that restrict access to certain columns and
grant access on those views to users depending on their ses-
sion context. Maintaining several views, however, has the
same drawbacks mentioned earlier.

Accordingly, there is a need for a flexible mechanism to
control access to elements in a database object based on one
or more dynamic conditions, such as a session context or an
access purpose without requiring the creation and mainte-
nance of static views or the modification of queries. The
present invention addresses such a need.

SUMMARY OF THE INVENTION

A method, computer program product, and system for con-
trolling access to elements in a database object are provided.
In this document, a group of one or more users is denoted as
a user group and a set of one or more of the elements in a
database object is denoted as an element set in the database
object. The method, computer program product, and system
provide for receiving a request from a user to access the
database object, determining whether an access restriction is
imposed on the database object, the access restriction speci-
fying a first user group to which the access restriction is
applicable, defining a first dynamic condition the first user
group must satisfy in order to access the database object, and
identifying a first element set in the database object accessible
to the first user group when the first dynamic condition is
satisfied, and controlling access to the elements in the data-
base object by the user based on the access restriction.

Controlling access to elements in a database object using
access restrictions, rather than views or modified queries,
eliminates the worries concerning the creation and mainte-
nance of complex views, the users bypassing restrictions by
accessing underlying tables directly, the difficulties associ-
ated with routing user requests when there is a large number
of views, the ability to control access at both the row and

US 7,865,521 B2

3

column level, the need to program strictly defined “predicate
producing” procedures, and the problems of dynamic query
caching interferences. In addition, because the access restric-
tions are defined using one or more dynamic conditions, the
flexibility needed to address current privacy and security
concerns is achieved.

Particular implementations can include controlling access
to the elements in the database object by confirming whether
the user is in the first user group when the access restriction is
imposed on the database object, verifying whether the user
satisfies the first dynamic condition when the user is in the
first user group, and allowing the user to access the first
element set when the user satisfies the first dynamic condi-
tion.

Verifying whether the user satisfies the first dynamic con-
dition may include obtaining one or more session variables
associated with the user when the user is in the first user group
and comparing the one or more session variable associated
with the user to the first dynamic condition to determine
whether the user satisfies the first dynamic condition. In an
implementation, allowing the user to access the first element
set in the database object comprises generating a dynamic
pseudo-view of the database object comprising only the first
element set in the database object when the user satisfies the
first dynamic condition and responding to the request from
the user using the dynamic pseudo-view of the database
object.

In some embodiments, the database object is a table or a
view, at least one element in the first element set is a column,
the first dynamic condition is a session context or a session
purpose associated with a user in the first user group, and the
access restriction is stored in a database. Additionally, the
access restriction can further define an additional dynamic
condition the first user group must satisfy in order to access
the first element set.

In other implementations, the access restriction further
defines a second dynamic condition the first user group must
alternatively satisfy in order to access the database object and
further identifies a second element set in the database object
accessible to the first user group when the second dynamic
condition is satisfied. At least one element in the first element
set may also be an element in the second element set.

Further aspects may include determining whether another
access restriction is imposed on the database object, the other
access restriction specifying a second user group to which the
other access restriction is applicable. The other access restric-
tion can also define another dynamic condition the second
user group must satisfy in order to access the database object
and identify another element set in the database object acces-
sible to the second user group when the other dynamic con-
dition is satisfied. In one embodiment, at least one user in the
first user group is also a user in the second user group.

Another implementation also includes deciding whether
an exception to the access restriction is applicable to the user
requesting access to the database object and permitting the
user to access the elements in the database object when the
exception to the access restriction is applicable to the user.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a process flow of a method for controlling access
to elements in a database object according to an aspect of the
invention.

FIG. 2 illustrates a system according to one embodiment of
the invention.

20

25

30

35

40

45

50

60

65

4

FIGS. 3-5 depict flowcharts of methods for controlling
access to elements in a database object according to various
implementations of the invention.

FIG. 6 shows a sample database object and exemplary
dynamic pseudo-views generated based on the sample data-
base object according to one aspect of the invention.

FIG. 7 is a block diagram of a data processing system with
which embodiments of the present invention can be imple-
mented.

DETAILED DESCRIPTION

The present invention relates generally to database systems
and more particularly to controlling access to elements in a
database object. The following description is presented to
enable one of ordinary skill in the art to make and use the
invention. Various modifications to the preferred implemen-
tations and the generic principles and features described
herein will be readily apparent to those skilled in the art. Thus,
the present invention is not intended to be limited to the
implementations shown, but is to be accorded the widest
scope consistent with the principles and features described
herein.

FIG. 1 depicts a process 100 for controlling access to
elements in a database object. At 102, a request to access the
database object is received from a user. A determination is
then made at 104 as to whether an access restriction is
imposed on the database object. In an embodiment, the access
restriction specifies a first user group comprising one or more
users to which the access restriction is applicable, defines a
first dynamic condition the first user group must satisfy in
order to access the database object, and identifies a first ele-
ment set comprising one or more of the elements in the
database object accessible to the first user group when the first
dynamic condition is satisfied. In this document, a group of
one or more users is denoted as a user group and a set of one
or more of the elements in a database object is denoted as an
element set in the database object.

Access to the elements in the database object by the user is
controlled based on the access restriction when the access
restriction is imposed on the database object and the user is in
the first user group (106). In some implementations, the data-
base object is a table or a view, at least one element in the first
element set is a column, and the first dynamic condition is a
session context or a session purpose associated with a user in
the first user group.

A session purpose could be determined based on the type of
application the user is employing when requesting access to
the database object, for example, a purchasing application or
a marketing application. A session context could be the loca-
tion from which the user is requesting access to the database
object, for instance, from the office or at home. The location
may be determined based on the IP address of the computer
from which the user is requesting access.

Session context and session purpose are just two examples
of dynamic conditions. A dynamic condition can also be a
function. For example, the condition can be “F(current time)
is TRUE” where “F” is a function that compares the current
time to the time of the day when access can be granted.

Iustrated in FIG. 2 is a system 200 including a server 202
interconnected to clients 210-1 to 210-» via a network 208.
Server 202 and clients 210-1 to 210-» may be any data pro-
cessing system, such as computers, workstations, and hand-
held portable devices. In addition, system 200 may include
more or less clients in other embodiments. Network 208 may
be the Internet or World Wide Web (WWW) in some imple-
mentations.

US 7,865,521 B2

5

System 200 also includes a database 204 and resources
206a-2065. Each resource may be a storage media, a data-
base, a set of XML (eXtensible Markup Language) docu-
ments, a directory service, such as LDAP (Lightweight Direc-
tory Access Protocol) server, or a backend system. Other
embodiments of system 200 may include more or less data-
bases and/or resources.

Database 204 and resources 206a-2065 are coupled to
server 202. The interface between server 202 and database
204 and resources 206a-2065 may be a local area network,
Internet, a proprietary interface, or any combination of the
foregoing. Clients 210-1 to 210- can access database 204
and resources 206a-2065 through server 202. Any of server
202, database 204, resources 206a-2065, and clients 210-1 to
210-»may be located remotely from one another or may share
a location.

The configuration of system 200 is not intended as a limi-
tation of the present invention, as will be understood by those
of ordinary skill in the art from a review of the following
detailed description. For example, network 208 may com-
prise a wireless link, a telephone communication, a radio
communication, or a computer network (e.g., a Local Area
Network (LAN) or a Wide Area Network (WAN)).

In one implementation, database 204 is operable to store a
database object comprising a plurality of elements and server
202 is operable to receive a request from a user to access the
database object. The request may be submitted by the user
through one of clients 210-1 to 210-z. Server 202 is also
operable to determine whether an access restriction is
imposed on the database object. The access restriction speci-
fies a first user group to which the access restriction is appli-
cable, defines a first dynamic condition the first user group
must satisfy in order to access the database object, and iden-
tifies a first element set in the database object accessible to the
first user group when the first dynamic condition is satisfied.

Server 202 is then operable to control access to the ele-
ments in the database object by the user based on the access
restriction when the access restriction is imposed on the data-
base object and the user is in the first user group. In some
embodiments, database 204 is further operable to store the
access restriction. The access restriction may be stored in a
catalog of database 204 (not shown).

FIG. 3 shows a process 300 for controlling access to ele-
ments in the database object according to an aspect of the
invention. A request to access the database object is received
from a user at 302. At 304, a determination is made as to
whether an access restriction is imposed on the database
object. The access restriction specifies a first user group to
which the access restriction is applicable, defines a first
dynamic condition and an additional dynamic condition the
first user group must satisfy in order to access the database
object, and identifies a first element set in the database object
accessible to the first user group when the first dynamic
condition and the additional dynamic condition are satisfied.

If no access restriction is imposed on the database object,
the user is permitted to access the elements in the database
object (306). However, if the access restriction is imposed on
the database object, process 300 confirms whether the user is
in the first user group to which the access restriction is appli-
cable (308). When the user is not in the first user group,
process 300 proceeds to 306 and the user is permitted to
access the elements in the database object.

When the user is in the first user group, process 300 verifies
whether the user satisfies the first dynamic condition (310). If
the user does not satisfy the first dynamic condition, the user
is prohibited from accessing the elements in the database
object (312). If the user does satisfy the first dynamic condi-

20

25

30

35

40

45

50

55

60

65

6

tion, process 300 verifies whether the user satisfies the addi-
tional dynamic condition (314). When the user fails to satisfy
the additional dynamic condition, process 300 proceeds to
312 and prohibits the user from accessing the elements in the
database object.

A dynamic pseudo-view of the database object comprising
only the first element set is generated when the user satisfies
the first dynamic condition and the additional dynamic con-
dition (316). The request from the user is then responded to
using the dynamic pseudo-view of the database object (318).
A dynamic pseudo-view is a view-like entity with attributes
similar to a predefined regular view. However, because it is
dynamically created, it does not exist in a database, such as
database 204 in FIG. 2, and has no dependencies.

Depicted in FIG. 4 is another process 400 for controlling
access to elements in a database object. At 402, a request is
received from a user to access the database object. A deter-
mination is then made at 404 as to whether an access restric-
tion is imposed on the database object. The access restriction
specifies a first user group to which the access restriction is
applicable, defines a first dynamic condition the first user
group must satisfy in order to access the database object, and
identifies a first element set in the database object accessible
to the first user group when the first dynamic condition is
satisfied.

In the embodiment, the access restriction also defines a
second dynamic condition the first user group must alterna-
tively satisfy in order to access the database object and iden-
tifies a second element set in the database object accessible to
the first user group when the second dynamic condition is
satisfied. In some implementations, at least one element in the
first element set is also an element in the second element set.

When no access restrictions are imposed on the database
object, the user is permitted to access the elements in the
database object (406). When the access restriction is imposed
on the database object, process 400 confirms whether the user
is in the first user group (408). If the user is not in the first user
group, process 400 proceeds to 406 and permits the user to
access the elements in the database object.

If the user is in the first user group, one or more session
variables associated with the user is obtained (410). In one
embodiment, when the user establishes a session through
some application, a session start trigger will populate one or
more session variables associated with the user with the
appropriate values based on information from the user and the
application. The session start trigger is a program that is
automatically executed when a session is established. Process
400 then compares the one or more session variables associ-
ated with the user to the first dynamic condition to determine
whether the user satisfies the first dynamic condition (412).

The user is allowed to access the first element set in the
database object when the user satisfies the first dynamic con-
dition, i.e., the one or more session variables match or corre-
spond to the first dynamic condition (414). When the one or
more session variables do not match the first dynamic condi-
tion, process 400 compares them to the second dynamic con-
dition (416). If they also fail to match the second dynamic
condition, the user is prohibited from accessing the elements
in the database object (418). However, if the one or more
session variables associated with the user match the second
dynamic condition, the user is allowed to access the second
element set in the database object (420).

FIG. 5 illustrates a process 500 for controlling access to
elements in a database object according to a further embodi-
ment of the invention. A request to access the database object
is received from a user at 502. A determination is then made
at 504 as to whether an access restriction has been imposed on

US 7,865,521 B2

7

the database object. The access restriction specifies a first user
group to which the access restriction is applicable, defines a
first dynamic condition the first user group must satisfy in
order to access the database object, and identifies a first ele-
ment set in the database object accessible to the first user
group when the first dynamic condition is satisfied.

Ifno access restrictions are imposed on the database object,
the user is permitted to access the elements in the database
object (506). If, however, the access restriction has been
imposed on the database object, process 500 decides whether
an exception to the access restriction is applicable to the user
requesting access to the database object (508). When the
exception to the access restriction is applicable to the user at
block 508, a determination is made as to whether another
access restriction is imposed on the database object, the other
access restriction specifies a second user group to which the
other access restriction is applicable (510). In an implemen-
tation, at least one user in the first user group is also a user in
the second user group.

The other access restriction may further define another
dynamic condition the second user group must satisfy in
order to access the database object and identify another ele-
ment set in the database object accessible to the second user
group when the other dynamic condition is satisfied. Addi-
tionally, the other element set in the database object may be a
subset of the first element set.

Process 500 will proceed to 506 to permit the userto access
the elements in the database object when no other access
restrictions are imposed on the database object. However, it
will decide whether an exception to the other access restric-
tion is applicable to the user requesting access to the database
object when the other access restriction is also imposed on the
database object (512). The user is permitted to access the
elements in the database object if the exception to the other
access restriction is applicable to the user (506). In contrast,
access to the elements in the database object by the user is
controlled based on the other access restriction if the excep-
tion to the other access restriction is inapplicable to the user
(514).

When the exception to the access restriction is not appli-
cable to the user at block 508, a determination is made as to
whether another access restriction is imposed on the database
object (516). If no other access restrictions are imposed on the
database object, access to the elements in the database object
by the user is controlled based on the access restriction (518).
However, if another access restriction is imposed on the data-
base object, process 500 will decide whether an exception to
the other access restriction is applicable to the user requesting
access to the database object (520).

Access to the elements in the database object by the user
will be controlled based on the access restriction when the
exception to the other access restriction is applicable to the
user (518). Conversely, access to the elements in the database
object by the user will be controlled based on both access
restrictions when the exception to the other access restriction
is not applicable to the user (522).

Shown in FIG. 6 is a sample database object 600 with
elements 602-610. Database object 600 is a table called “cus-
tomer data” with a column 602 for names, a column 604 for
addresses, a column 606 for phone numbers, and a column
608 for credit card numbers. Table 600 has n number of rows
610-1 to 610-z. Embodiments of the present invention
enables access restrictions to be created such that it becomes
possible to express which elements 602-610 in database
object 600 are accessible by a user and under what condition.

For example, suppose a user named “Bob” is allowed to
access columns 602, 604, and 608 in table 600 for the purpose

20

25

30

35

40

45

50

55

60

65

8

of “Billing” and only columns 602 and 604 for the purpose of
“Marketing.” The following Structured Query Language
(SQL) statement illustrates how an access restriction can be
created to limit user Bob’s access to columns 602-610 in table
600 based on the purpose of access.

CREATE RESTRICTION rl1

ON TABLE customer data

FOR Bob

TO COLUMNS

(name, address, credit card) WHEN (SessionVari-
ablePurpose =Billing’)

(name, address) WHEN (SessionVariablePurpose
=‘Marketing’)

Thus, when table 600 is queried by user Bob, server 202 in
FIG. 2 for example, can determine that an access restriction
applies for user Bob. Server 202 may then look up a session
variable “SessionVariablePurpose” associated with user Bob
and read its value. If it is set to “Billing,” server 202 will
implement access restriction “r1” in the query plan as if that
restriction was statically defined as follows:

CREATE RESTRICTION rl1

ON TABLE customer data

FOR Bob

TO COLUMNS (name, address, credit card)

A dynamic pseudo-view 612a of table 600 that is depicted in
FIG. 6 can be generated to respond to user Bob’s queries to
table 600.

However, if the value of the session variable “SessionVa-
riablePurpose” was “Marketing,” then server 202 will imple-
ment restriction “r1” in the query plan as if that restriction was
statically defined as follows:

CREATE RESTRICTION rl1

ON TABLE customer data

FOR Bob

TO COLUMNS (name, address)

A dynamic pseudo-view 61256 of table 600, which is illus-
trated in FIG. 6, will be generated to respond to user Bob’s
queries on table 600. For more information regarding the
creation and use of access restrictions, see “A Method for
Implementing Fine-Grained Access Control Using Access
Restrictions,” U.S. patent application Ser. No. 10/837,387,
filed on Apr. 30, 2004, which is hereby incorporated by ref-
erence in its entirety for all purposes.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment containing both hardware and software ele-
ments. In one aspect, the invention is implemented in soft-
ware, which includes, but is not limited to, firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer-readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk, and an optical disk. Current examples

US 7,865,521 B2

9

of optical disks include DVD, compact disk-read-only
memory (CD-ROM), and compact disk-read/write (CD-R/
W).

FIG. 7 depicts a data processing system 700 suitable for
storing and/or executing program code. Data processing sys-
tem 700 includes a processor 702 coupled to memory ele-
ments 704a-b through a system bus 706. In other embodi-
ments, data processing system 700 may include more than
one processor and each processor may be coupled directly or
indirectly to one or more memory elements through a system
bus.

Memory elements 704a-b can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories that provide temporary storage
of at least some program code in order to reduce the number
of times the code must be retrieved from bulk storage during
execution. As shown, input/output or /O devices 708a-b
(including, but not limited to, keyboards, displays, pointing
devices, etc.) are coupled to data processing system 700. [/O
devices 708a-b may be coupled to data processing system 700
directly or indirectly through intervening I/O controllers (not
shown).

In the embodiment, a network adapter 710 is coupled to
data processing system 700 to enable data processing system
700 to become coupled to other data processing systems or
remote printers or storage devices through communication
link 712. Communication link 712 can be a private or public
network. Modems, cable modems, and Ethernet cards are just
a few of the currently available types of network adapters.

Various implementations for controlling access to ele-
ments in a database object have been described. Nevertheless,
one of ordinary skill in the art will readily recognize that
various modifications may be made to the implementations,
and any variations would be within the spirit and scope of the
present invention. For example, the above-described process
flows are described with reference to a particular ordering of
process actions. However, the ordering of many of the
described process actions may be changed without affecting
the scope or operation of the invention. Accordingly, many
modifications may be made by one of ordinary skill in the art
without departing from the spirit and scope of the following
claims.

What is claimed is:
1. A method of controlling access to elements in a database
object, the method comprising:

receiving a request from a user to access the database
object, wherein the request includes a query to retrieve
information from the database object;

determining whether an access restriction is imposed on
the database object, the access restriction specifying a
first user group to which the access restriction is appli-
cable, defining a first dynamic condition the first user
group must satisfy in order to access the database object,
and identifying a first element set in the database object
accessible to the first user group when the first dynamic
condition is satisfied, wherein the first element set
includes at least one, and less than all, table columns of
the database object to restrict access to one or more table
columns, wherein the first dynamic condition indicates
access information including one or more of a session
context and session purpose for the user to access the
database object, and wherein two or more of said session
contexts and purposes for the user to access the database
object enable access to be restricted to at least one dif-
ferent table column of said database object; and

20

25

30

40

45

50

55

60

65

10

controlling access to the elements in the database object by
the user based on the access restriction, wherein control-
ling access to the elements in the database objects com-
prises:
confirming whether the user is in the first user group
when the access restriction is imposed on the database
object;
verifying whether the user satisfies the first dynamic
condition when the user is in the first user group by
ascertaining session information for the user from one
or more session variables associated with the user,
wherein the session information includes one or more
of the session context and session purpose for access
of the database object, and comparing the session
information for the user against the access informa-
tion indicated by the first dynamic condition to deter-
mine satisfaction of that condition; and
allowing the user to access the first element set when the
user satisfies the first dynamic condition, wherein
allowing the user to access the first element set com-
prises:
dynamically generating a dynamic pseudo-view of
the database object comprising only the first ele-
ment set in response to said verification of the user
satisfying the first dynamic condition; and
responding to the request from the user by applying
the received query to the dynamic pseudo-view of
the database object to retrieve the information.

2. The method of claim 1, wherein the database object is a
table or a view.

3. The method of claim 1, wherein the access restriction
further defines a second dynamic condition the first user
group must alternatively satisty in order to access the data-
base object and further identifies a second element set in the
database object accessible to the first user group when the
second dynamic condition is satisfied.

4. The method of claim 3, wherein at least one element in
the first element set is also an element in the second element
set.

5. The method of claim 1, wherein the access restriction
further defines an additional dynamic condition the first user
group must satisfy in order to access the first element set.

6. The method of claim 1, further comprising:

determining whether another access restriction is imposed

on the database object, the other access restriction speci-
fying a second user group to which the other access
restriction is applicable.

7. The method of claim 6, wherein the other access restric-
tion further defines another dynamic condition the second
user group must satisfy in order to access the database object
and identifies another element set in the database object
accessible to the second user group when the other dynamic
condition is satisfied.

8. The method of claim 7, wherein the other element set is
a subset of the first element set.

9. The method of claim 6, wherein at least one user in the
first user group is also a user in the second user group.

10. The method of claim 1, further comprising:

deciding whether an exception to the access restriction is

applicable to the user requesting access to the database
object; and

permitting the user to access the elements in the database

object when the exception to the access restriction is
applicable to the user.

11. A system comprising:

a database operable to store a database object, the database

object comprising elements; and

US 7,865,521 B2

11

a server coupled to the database, the server comprising a
processor and a memory, the server being operable to:
receive a request from a user to access the database

object, wherein the request includes a query to
retrieve information from the database object;
determine whether an access restriction is imposed on
the database object, the access restriction specifying a
first user group to which the access restriction is appli-
cable, defining a first dynamic condition the first user
group must satisty in order to access the database
object, and identifying a first element set in the data-
base object accessible to the first user group when the
first dynamic condition is satisfied, wherein the first
element set includes at least one, and less than all,
table columns of the database object to restrict access
to one or more table columns, wherein the first
dynamic condition indicates access information
including one or more of a session context and session
purpose for the user to access the database object, and
wherein two or more of said session contexts and
purposes for the user to access the database object
enable access to be restricted to at least one different
table column of said database object; and
control access to the elements in the database object by
the user based on the access restriction, wherein con-
trolling access to the elements in the database object
comprises:
confirming whether the user is in the first user group
when the access restriction is imposed on the data-
base object;
verifying whether the user satisfies the first dynamic
condition when the user is in the first user group by
ascertaining session information for the user from
one or more session variables associated with the
user, wherein the session information includes one
or more of the session context and session purpose
for access of the database object, and comparing
the session information for the user against the
access information indicated by the first dynamic
condition to determine satisfaction of that condi-
tion; and
allowing the user to access the first element set when
the user satisfies the first dynamic condition,
wherein allowing the user to access the first ele-
ment set comprises:
dynamically generating a dynamic pseudo-view of
the database object comprising only the first ele-
ment set in response to said verification of the
user satisfying the first dynamic condition; and
responding to the request from the user by applying
the received query to the dynamic pseudo-view
of'the database object to retrieve the information.

12. The system of claim 11, wherein the database object is
a table or a view.

13. The system of claim 11, wherein the access restriction
further defines a second dynamic condition the first user
group must alternatively satisty in order to access the data-
base object and further identifies a second element set in the
database object accessible to the first user group when the
second dynamic condition is satisfied.

14. The system of claim 13, wherein at least one element in
the first element set is also an element in the second element
set.

15. The system of claim 11, wherein the access restriction
further defines an additional dynamic condition the first user
group must satisfy in order to access the first element set.

5

20

25

30

35

40

45

50

60

65

12

16. The system of claim 11, wherein the server is further
operable to:

determine whether another access restriction is imposed on

the database object, the other access restriction specify-
ing a second user group to which the other access restric-
tion is applicable.

17. The system of claim 16, wherein the other access
restriction further defines another dynamic condition the sec-
ond user group must satisfy in order to access the database
object and identifies another element set in the database
object accessible to the second user group when the other
dynamic condition is satisfied.

18. The system of claim 17, wherein the other element set
is a subset of the first element set.

19. The system of claim 16, wherein at least one user in the
first user group is also a user in the second user group.

20. The system of claim 11, wherein the server is further
operable to:

decide whether an exception to the access restriction is

applicable to the user requesting access to the database
object; and

permit the user to access the elements in the database object

when the exception to the access restriction is applicable
to the user.

21. A computer program product comprising a computer-
readable storage medium, the computer-readable storage
medium including a computer-readable program for control-
ling access to elements in a database object, wherein the
computer-readable program when executed on a computer
causes the computer to:

receive a request from a user to access the database object,

wherein the request includes a query to retrieve infor-
mation from the database object;

determine whether an access restriction is imposed on the

database object, the access restriction specifying a first
user group to which the access restriction is applicable,
defining a first dynamic condition the first user group
must satisfy in order to access the database object, and
identifying a first element set in the database object
accessible to the first user group when the first dynamic
condition is satisfied, wherein the first element set
includes at least one, and less than all, table columns of
the database object to restrict access to one or more table
columns, wherein the first dynamic condition indicates
access information including one or more of a session
context and session purpose for the user to access the
database object, and wherein two or more of said session
contexts and purposes for the user to access the database
object enable access to be restricted to at least one dif-
ferent table column of said database object; and
control access to the elements in the database object by the
user based on the access restriction, wherein controlling
access to the elements in the database object comprises:
confirming whether the user is in the first user group
when the access restriction is imposed on the database
object;
verifying whether the user satisfies the first dynamic
condition when the user is in the first user group by
ascertaining session information for the user from one
or more session variables associated with the user,
wherein the session information includes one or more
of the session context and session purpose for access
of the database object, and comparing the session
information for the user against the access informa-
tion indicated by the first dynamic condition to deter-
mine satisfaction of that condition; and

US 7,865,521 B2

13

allowing the user to access the first element set when the
user satisfies the first dynamic condition, wherein
allowing the user to access the first element set com-
prises:
dynamically generating a dynamic pseudo-view of
the database object comprising only the first ele-
ment set in response to said verification of the user
satisfying the first dynamic condition; and

responding to the request from the user by applying
the received query to the dynamic pseudo-view
ofthe database object to retrieve the information.

22. The computer program product of claim 21, wherein
the database object is a table or a view.

23. The computer program product of claim 21, wherein
the access restriction further defines a second dynamic con-
dition the first user group must alternatively satisfy in order to
access the database object and further identifies a second
element set in the database object accessible to the first user
group when the second dynamic condition is satisfied.

24. The computer program product of claim 23, wherein at
least one element in the first element set is also an element in
the second element set.

25. The computer program product of claim 21, wherein
the access restriction further defines an additional dynamic
condition the first user group must satisfy in order to access
the first element set.

20

25

14

26. The computer program product of claim 21, wherein
the computer-readable program when executed on the com-
puter further causes the computer to:

determine whether another access restriction is imposed on

the database object, the other access restriction specify-
ing a second user group to which the other access restric-
tion is applicable.

27. The computer program product of claim 26, wherein
the other access restriction further defines another dynamic
condition the second user group must satisfy in order to
access the database object and identifies another element set
in the database object accessible to the second user group
when the other dynamic condition is satisfied.

28. The computer program product of claim 27, wherein
the other element set is a subset of the first element set.

29. The computer program product of claim 26, wherein at
least one user in the first user group is also a user in the second
user group.

30. The computer program product of claim 21, wherein
the computer-readable program when executed on the com-
puter further causes the computer to:

decide whether an exception to the access restriction is

applicable to the user requesting access to the database
object; and

permit the user to access the elements in the database object

when the exception to the access restriction is applicable
to the user.

US007243097B1

a2z United States Patent

Agrawal et al.

US 7,243,097 B1
Jul. 10, 2007

(10) Patent No.:
45) Date of Patent:

(54) EXTENDING RELATIONAL DATABASE
SYSTEMS TO AUTOMATICALLY ENFORCE
PRIVACY POLICIES

(75) Inventors: Rakesh Agrawal, San Jose, CA (US);

Paul Miller Bird, Markham (CA);
Tyrone W. A. Grandison, San Jose,
CA (US); Gerald George Kiernan, San
Jose, CA (US); Scott Ian Logan, Don
Mills (CA); Walid Rjaibi, Markham
(CA)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 11/307,763

(22) Filed: Feb. 21, 2006
(51) Imt.CL
GO6F 7/00 (2006.01)
GOGF 17/00 (2006.01)
(52) US.CL e 707/3; 707/100
(58) Field of Classification Search 707/3,

707/9, 10, 100; 709/220, 225
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,941,947 A * 8/1999 Brown et al. 709/225
6,065,012 A 5/2000 Balsara et al.
6,253,203 B1* 6/2001 O’Flaherty et al. 707/9
6,496,832 B2 12/2002 Chi et al.
2002/0095405 Al* 7/2002 Fujiwarac.ceceeeueenenee 707/3
2004/0215626 Al 10/2004 Colossi et al.
2005/0144176 Al* 6/2005 Leietal. ..cccccceeennnnnnn. 707/100
2005/0289342 Al 12/2005 Needham

OTHER PUBLICATIONS

P3P Definition, obtained from www.wikipedia.org, Jun. 27, 2006.*
Graefe, Goetz; “Query Evaluation Techniques for Large Data-
bases”; ACM Computing Surveys, vol. 25, No. 2, Jun. 1993.

Privacy

Agrawal et al.; “Hippocratic Databases”; Proceedings of the 28th
VLDB Conference, Hong Kong, China, 2002.

LeFevre et al.; “Limiting Disclosure in Hippocratic Databases”;
Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004.
“New Features in Adaptive Server Version 12.5”; What’s New in
Adaptive Server Enterprise?; Chapter 1; http://manuals.sybase.com/
onlinebooks/group-as/asg1250e/whatsnew/@Generic_ Book
TextView/445 hf=0#X.

“Fine Grained Access Control and Application Contexts” Ask Tom
(part of Oracle Magazine); Jun. 1999; http://asktom.oracle.com/~
tkyte/article2/index html.

Stonebraker et al.; “Access Control in a Relational Data Base
Management System by Query Modification”; Department of Elec-
trical Engineering and Computer Sciences and the Flectrical
Research Laboratory, University of California, Berkley, California
94720.

Chamberlin, Don; “A Complete Guide to DB2 Universal Database”;
pp. 122-128; Morgan Kaufmann Publ.; Jun. 1998.

Nanda et al; “Oracle Privacy Security Auditing: Includes Federal
Law Compliance with HIPAA, Sarbanes-Oxley & The Gramm-
Leach-Bliley Act GLB”; pp. 240-251; Oracles in Focus; Rampant
TechPress; Dec. 2003.

* cited by examiner

Primary Examiner—Sam Rimell
(74) Attorney, Agent, or Firm—Ramraj Soundararajan; [P
Authority, LLC

(57) ABSTRACT

A method of transforming relational database management
systems into their privacy-preserving equivalents is pro-
vided. Language constructs allow fine grained access control
(FGAQ) restrictions to be specified on the access to data in
a table at the level of a row, a column or a cell. Fine grained
restrictions are a combination of access control and privacy
policy restrictions, which ensure compliance with current
privacy legislation mandates.

13 Claims, 6 Drawing Sheets

Uscr Query

| Policy with purpose
o201 and recipient
2190
Policy
Translator
202
Query E}‘ewn'ting
FGAC - Privacy
Restrictions PR Catalogs
204 206
RDBMS
208

U.S. Patent

Jul. 10, 2007 Sheet 1 of 6

US 7,243,097 B1

creaie resfriction restnichion-name

on table-x

for auth-pame-1 [except auth-name-2]
{ { {to columns column-name-list)
| {te rows [where search-condition 1)
| (to cells (colume-name-list [where search-rondition])+

j

[for purpese purpose-lst

[for recipient recipient-list]

o

command-restristion

Figure 1

Privacy User Query
Policy with purpose
201 and recipient
L 210
A N
Policy
Translator
202
R
Y
Query Rewriting
i
FGAC Privacy
Restrictions PR PT Catalogs
204 206
RDBMS
208

Figure 2

U.S. Patent

Jul. 10, 2007 Sheet 2 of 6

US 7,243,097 B1

recelving a user query
300

l

identifying and combining
restrictions
302

l

transforming the user

query
304

l

accessing data from
database

306

Figure 3

U.S. Patent Jul. 10, 2007 Sheet 3 of 6 US 7,243,097 Bl

1 for each table reference ¢ in guery £ dn begin
2 if {emists a restriction « pertaining to & for O then begin
3 create 3 dynamee wew v £ {J over £
4 veplace each reference to £ &) with a reference to v & 0
create the dypamic view o using
& the following print siatements
5 print "select”
] fm pach column ¢ £ £ do begin
! oy are the pmpme recipisnts
i of column ¢ in resiziciion v
Qe Gl are the puspose, recipient of guery {J
7 (o @ vl £ 0p Ay & o
ff et mdi; e in thr esinciion ¥
i access to o 15 Thus prohibited
i
8 print Tnull”
9 elze begin
£ The whereClavse fanction returms
i the predicate sssoctated with ¢
7 that 15 specified in the resirction
7
14 let w = whereClause{c)
11 if w = null then
¥ There 15 no “whers” condition
governing ri*z& use of ¢ £ r, thus access
o all column values 1s gmmed naconditionally
12 print ocoloame
13 else begin

i Imgplement the “where™ condition
Husing 5 BQL case siatement to grant

i onby conditions! access to the column ¢
i

14 print “case when exists
15 pring w.condition

16 primt 7"

17 print “then”

18 print c.oolname

1% print “else null end 57
2 print ¢.coluame

21 end

22 end

23 exd

4 print "from”

25 print fiablenzme

26 end

Figure 4

U.S. Patent Jul. 10, 2007 Sheet 4 of 6 US 7,243,097 Bl

al-- SBrtatementl --»
<ETATEMERT »
<COHNSEQUENCE:
Encodssz that personal and wmedical information
can be acosssed for smergency purposses
by oursgelves
< CONGEQUEHCE >
<PURBIEZE:>
ot her-purposse»
Emergency

= other -purposs:
2 { PURPOSE =
«BECIPIENT »<ours) »= /RECIPTENT »
<RETENTION=<atated-purpose/ < /HETENT I{HT-
<DATA-GROTE
<DATA ref = "Hperacnal® /s
<DATE ref = "Hwedical”s
=CATEGURIES »
<heslth -
=/ CATEGORIES >
= f DAT K>
« / DATE-GROUP-
< STATEMENT 5

#l-- Btatemsnta --»
< B TR TEMERT =
= HEEQTUENCE >
Bnoodes that we and drug companies
with the sames data usage policies
can Access pereonal and medical information
for new _drug ressearch on an opt-out basis
< CONBEGUIENCE >
£ PURPOSE~zdavelop/ »« f FURPOSE>
<BEECIPIEHT >
zourg resuireds"opt-oub® /o
cgans reqgulred="opt-cut? o
<« /RECIPIENT:
<RETENTIOHscatated-purpess f »< fRETENTION:»
<DRTH-GRITP>
«DATE ref = “#persoral®™f»
<IRTA ref = "fmadical”s
=CATBGORIBE »
ahealth/ »
< fUBRTRGORIBS
</ DATA
= /DATA-GROUP>
=/ BTATEMENT >

Figure 5

U.S. Patent Jul. 10, 2007 Sheet 5 of 6 US 7,243,097 Bl

create vestriction Statemendt
on Patients
for public
to celis Name, 55N, Address, Emal, DOB,
XRay, Pharmarcy, Fanuly,
Appomtment, Lifestyle
purpsse Emergency
vecipient ours
restricting access to select

create restriction Statement? 1
on Patients
for public
to cells Name, SEN, Address, Email. DOB,
KRay, Pharmary, Family,
Appomtment, Lifestyle
wlhiere
exists {
select 1
from SysCat Chosces_Patients cp
where cp ID = Patients 1D
andcpC1=1)
for purpose develop
for recipient ours
restricting access to select

create restriction Sintement? 2
on Pattents

for public
fo oells MWame, 55N, Address, Fal, DOR,
XRav, Pharmacy, Famly,
Appomtment, Lifestyle
where

exists {
select 1
from SyvsCat Chotces_Patients cp
where cp ID = Patients 1D
and cpC2=1
for purpose develop
for recipient same
restricting access to select

Figure 6

U.S. Patent Jul. 10, 2007 Sheet 6 of 6 US 7,243,097 Bl

L

L g £

G5 ef O

)

12
13

15

16
17
18
19
20
22
3
24

B

25 end

for each stateme
for each purpose p in s do begin
for each recipient + in 5 do begin

at 5 in policy de begin

print Ccreste restriction

pring generate-tauogne-res

print " on table ©

print mapPiPStatementToTable(s)
print 7 for public

print 7 o cells 7

print mapP 3PDstaTvpe ToColumas{ &)

fctioni-name)

=

g &

if {p required 1= always) then
print “where exists {zelect 1 from ™
+ wp P 3PPurposeToCholce Table(s)
+ 7 o where pID = "+ mapF2PStstementToTablels) +7.1D
and "+ mapP3PPipose ToChoiceColurans py = ™= 1317

if {rrequired b= always) then
print "and exists {zelect 1 fom 7
+ mapP 3P ReciprentToChioiceTable(s}
+ % ¢ where ¢ 1D = "+ mepP3PStatementTo Tableds) +7. 107
+ "and "+ mspPiPRecipient ToChoiceColamnds, #} + 7= 1317
priut "oy puepose” + poosimne
print “for secipient” + r.amne

e

26 print "resfricting sccess to select”

Figure 7

US 7,243,097 B1

1

EXTENDING RELATIONAL DATABASE
SYSTEMS TO AUTOMATICALLY ENFORCE
PRIVACY POLICIES

FIELD OF THE INVENTION

The present invention relates generally to the field of
database systems. More specifically, the present invention is
related to privacy preserving relational database manage-
ment systems.

DISCUSSION OF PRIOR ART

The pervasive use of computing technology and the
increased reliance on information systems have created a
heightened awareness and concern about the storage and use
of private information. This worldwide phenomenon has
ushered in a plethora of privacy-related guidelines and
legislations, e.g. the OECD Privacy Guidelines in Europe,
the Canadian Privacy Act, the Australian Privacy Amend-
ment Act, the Japanese Privacy Code, the Health Insurance
Portability and Accountability Act (HIPAA), and Gramm-
Leach-Bliley Consumer Privacy Rule. Compliance with
these legislations has become an important corporate con-
cern. The current methods employed to address the disclo-
sure compliance problem involve training individuals to be
cognizant of the various regulations and changing organi-
zational processes and procedures. However, these
approaches are only a partial solution and need to be
augmented with technological support.

The users of relational databases require that a fine
grained access control (FGAC) implementation meet the
following desiderata:

the implementation must solve the problem within the

database itself without application changes or applica-
tion awareness of the implementation.

the implementation must ensure that all users of the data

are covered, regardless of how the data is accessed.
the implementation must minimize the complexity and
maintenance of the FGAC policies.

the implementation must provide the ability to control

access to rows, columns, or cells as desired.

Traditional methods of database access control have
relied upon the use of statically defined views, which are
logical constructs defined over database tables that can alter
or restrict the data seen by a user. Using predefined views as
the method for FGAC works well only when the number of
different restrictions is few or the granularity of the restric-
tions is such that it affects large, easily identified groups of
users. When these conditions are not true, view definitions
can become complex in an effort to accommodate all the
restrictions in one view. This complexity can strain system
limits and can make maintenance of views difficult.

If a large number of views are used, each one implement-
ing restrictions for a specific set of users, one issue that
arises is how to correctly route user requests to the view that
is appropriate to them. Often, the solution chosen is to
resolve the request in the application, not in the database.
Moreover, if a user can bypass the view when accessing
data, for example by having direct access to the underlying
tables, then the restrictions are not enforced.

Given the shortcomings of the traditional methods of
implementing FGAC, some database vendors have proposed
solutions that do not rely on the use of views to control
access to tabular data. For instance, Oracle™ Virtual Private
Database solution as described in article titled, “Fine-
grained access control” by Kyte and pages 240-253 of book

20

25

30

35

40

45

50

55

60

65

2

titled, “Oracle Privacy Security Auditing” by Nanda et al.,
allows users to define a security policy, which is a function
written in PL/SQL that returns a string representing a
predicate, and to attach the security policy to a table. When
that table is accessed, the security policy is automatically
enforced. In essence, row restrictions traditionally handled
by views are allowed to be dynamically added to queries as
described in article entitled, “Access control in a relational
database management system by query modification”, by
Wong et al. The disadvantages of this approach are that
Oracle™ requires user programming of a strictly defined
“predicate producing” procedure in order to implement a
security policy and it does not address column or cell
restrictions. Sybase® Row Level Access Control as
described in e-book entitled, “Sybase—Sybase Adaptive
Server Enterprise 12.5, System Administration Guide”,
allows users to define access rules that apply restrictions to
retrieved data. Sybase® Adaptive Server Enterprise 12.5
enables the database owner or table owner to restrict access
to a table’s rows by defining access rules and binding those
rules to the table. Access to data can be further controlled by
setting application contexts and creating login triggers.
Access rules apply restrictions to retrieved data, enforced on
select, update and delete operations. Adaptive Server
enforces the access rules on all columns that are read by a
query, even if the columns are not included in the select list.
Using access rules is similar to using views, or using an
adhoc query with where clauses. The query is compiled and
optimized after the access rules are attached, so it does not
cause performance degradation. Access rules provide a
virtual view of the table data, the view depending on the
specific access rules bound to the columns. Sybase® needs
to create a separate access rule for each predicate, and’ing
them, and then binding them to the appropriate columns.
Microsoft® SQL Server primarily supports traditional view
based access control, though it has a feature called row level
permissions, but it seems to be usable only with table
hierarchies. In IBM® DB2, the only support for FGAC is
currently provided through the view mechanism.

The following references provide for creating views of
datasets in database systems.

U.S. patent assigned to Microsoft Corporation, (U.S. Pat.
No. 6,065,012), discloses rows and columns with data
source control which will be asked for data in a particular
cell. A dynamic summary view is generated by defined
HTML page that links data binding HTML tables and other
HTML controls to predetermined data within a storage of
data. Accessing the subset of the program module is done at
the cell level and may be done by executing a script to call
defined methods of the objects within the program module
or accessing a control module defined within the program
module.

U.S. patent assigned to NCR Corporation, (U.S. Pat. No.
6,253,203), uses a large number of statically defined views
to handle restrictions.

U.S. patent assigned to University of Minnesota, (U.S.
Pat. No. 6,496,832), discloses a system for analyzing data
organized into data sets and for transforming datasets into a
visual representation. The visual representation appears to
provide a dynamic view of cell structure and transformed
data sets with the value of cells linked.

U.S. patent application publication assigned to Interna-
tional Business Machines Corporation, (2004/0215626 Al),
discloses a method and system for improving performance

US 7,243,097 B1

3

of database queries within an RDBMS system with metadata
objects. The view of the data in support of one or more
summary tables is automatically identified and adjusted.

Article entitled, “Query Evaluation Techniques for Large
Databases”, by Graefe, discloses enforcement of access
control within a relational database environment.

Article entitled, “Hippocratic Databases” by Agrawal et
al., discusses a vision of database systems that take respon-
sibility for the privacy of data they manage, inspired by the
Hippocratic Oath. The article also enunciates the key pri-
vacy principles that Hippocratic Databases should support.

Article entitled, “Limiting Disclosure in Hippocratic
Databases” by LeFevre et al., discusses the incorporation of
privacy policy enforcement into an existing application and
database environment. Privacy policies (prescribed rule and
conditions) are stored in the database where they can be used
to enforce limited disclosure. Every query is associated with
purpose and recipient pairs. SQL queries issued to the
database are intercepted and augmented to reflect the pri-
vacy policy rules regarding the purpose and recipient issuing
the query.

Whatever the precise merits, features, and advantages of
the above cited references, none of them achieves or fulfills
the purposes of the present invention.

SUMMARY OF THE INVENTION

The present invention provides for a method of providing
fine grained access control within a database, the method
comprising the steps of: receiving a user query; identifying
and combining restrictions relevant to the user query, the
restrictions specifying access to data in a table in the
database at the level of at least one of or a combination of:
individual rows, individual columns or individual cells, and
the restrictions comprising a combination of access control
and privacy policy restrictions; transforming the user query
into an equivalent query which implements the restrictions;
and accessing the data based on the equivalent query.

The present invention provides for a system providing
fine grained access control (FGAC) within a database,
wherein the system comprises a policy translator which
accepts as input a least a privacy policy and privacy meta-
data catalogs; and a relational database which stores the
privacy metadata catalogs and FGAC restrictions. The
FGAC restrictions specify access to data in a table in the
relational database at the level of at least one of or a
combination of: individual rows, individual columns or
individual cells, these restrictions comprising a combination
of access control and privacy policy restrictions.

The present invention provides for an article of manufac-
ture comprising a computer usable medium having computer
readable program code embodied therein which provides
fine grained access control within a database, the medium
comprising: computer readable program code aiding in
receiving a user query; computer readable program code
identifying restrictions on access to data in a table in the
database at the level of at least one or a combination of:
individual rows, individual columns or individual cells, the
restrictions comprising a combination of access control and
privacy policy restrictions; computer readable program code
transforming the user query into an equivalent query which
implements the restrictions; and computer readable program
code aiding in accessing the data based on the equivalent

query.

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates fine grained restriction syntax, as per the
present invention.

FIG. 2 illustrates implementation architecture for con-
structs, as per the present invention.

FIG. 3 illustrates a method of providing fine grained
access control within a database, as per the present inven-
tion.

FIG. 4 illustrates an algorithm for enforcing fine grained
restrictions, as per the present invention.

FIG. 5 illustrates an example of a privacy policy for a
healthcare provider, as per the present invention.

FIG. 6 illustrates the translation of a privacy policy into
fine grained cell level restrictions, as per the present inven-
tion.

FIG. 7 illustrates an algorithm for translating a P3P
privacy policy into fine grained cell level restrictions, as per
the present invention.

BRIEF DESCRIPTION OF THE PREFERRED
EMBODIMENTS

While this invention is illustrated and described in a
preferred embodiment, the invention may be produced in
many different configurations. There is depicted in the
drawings, and will herein be described in detail, a preferred
embodiment of the invention, with the understanding that
the present disclosure is to be considered as an exemplifi-
cation of the principles of the invention and the associated
functional specifications for its construction and is not
intended to limit the invention to the embodiment illustrated.
Those skilled in the art will envision many other possible
variations within the scope of the present invention.

Databases of the future must ensure the privacy of the data
subjects whom they store information on. The security
functionality offered by current commercial database prod-
ucts does not adequately address the key issues necessary to
enforce privacy compliance: cell level policy enforcement.
Compliance with current privacy legislation mandates that
the user’s consent be obtained for the use/disclosure of their
personal information. Row or column level restrictions are
not adequate for modeling scenarios where individuals may
have opt-in/out choices with different aspects of their infor-
mation. To achieve this goal of minimal disclosure while
allowing useful tasks to be performed on relevant informa-
tion, cell level enforcement is key. A similar case for cell
level enforcement is made in article titled, “Limiting dis-
closure in Hippocratic Databases” by LeFevre et al.

The U.S. Department of Health and Human Services
website provides a scenario requiring adherence to the
HIPAA regulation. BlueCo is a healthcare provider that
stores personal data on individuals who enroll in its plans.
BlueCo has affiliations with a number of hospitals, research
institutions, and marketing companies. Under HIPAA, any
individually identifiable healthcare information held or
transmitted by BlueCo is considered protected private infor-
mation. For any use or disclosure of protected health infor-
mation that is not for treatment, payment, or health care
operation and that is not otherwise permitted (e.g. law
enforcement), Blue Co must get the data subject’s consent.

A simplified version of BlueCo’s database is given in
Table 1. ReasearchCo is an epidemiological research insti-
tute that periodically harvests BlueCo’s data. Under HIPAA,
all clients must give their consent for release of their home
and office numbers.

US 7,243,097 B1

5

TABLE 1

Table of BlueCo’s clients

ID Name Home Phone Work Phone Salary
1 Alicia Campbell 408-418-5198 408-419-9111 10,000
2 Bob Bobbett 408-418-5198 408-419-9112 20,000
3 Carl Abrahams 408-333-6633 408-419-9113 30,000
4 Dan Charmer 408-432-8644 408-419-9114 40,000
5 Ellen Generous 408-555-1235 408-419-9115 50,000

Alicia Campbell opts out of having her home phone
number, but does not mind if BlueCo discloses her office
number. A researcher at Research Co issues the following
query:

select name, homephone, officephone

from clients where salary<=30000

Given the choices that Alicia made, only her name and
office phone number should be displayed as shown in Table
2.

TABLE 2
Cell Level Enforcement
Name Home Phone Office Phone
Alicia Campbell — 408-419-9111
Bob Bobbett 408-418-5198 —
Carl Abrahams 408-333-6633 408-419-9113

Database systems employing row level controls restrict
disclosure of all information in a particular row, when a
restriction is only on particular columns in that row.

Thus, using conventional row level controls, the results
for the query are those shown in Table 3. Both Alicia and
Bob are no longer present in the result, even though they
have agreed that one of their two phone numbers can be
disclosed. This simple example illustrates the inadequacy of
row level restrictions. Similar arguments can be made for
column level restrictions. They are not flexible enough to
allow disclosure of non-sensitive data and suppression of
sensitive data on a subject by subject basis.

TABLE 3

Row Level Enforcement

Name Home Phone Office Phone

Carl Abrahams 408-333-6633 408-419-9113

The present invention presents constructs for imbuing
relational database systems with fine grained access control
and show how they can be used to enforce disclosure control
enunciated in the vision for Hippocratic databases as
described in article entitled, “Hippocratic Databases” by
Agrawal et al. These constructs have been designed to fit
well with the rest of the infrastructure of a relational
database system. The present invention also provides for the
implementation of proposed FGAC constructs. The present
invention further describes how privacy policies written in a
higher-level specification language such as P3P can be
algorithmically translated into the proposed constructs.

Constructs defined according to the present invention,
allow restrictions to be specified on the access to data in a
table at the level of a row, a column, or a cell (i.e. individual
column-row intersections). Privacy policies specified in

20

25

30

40

45

50

55

60

65

6

high-level languages such as P3P can be translated into these
constructs, or the policy could be specified directly using
these constructs.

The proposed construct is complimentary to the current
table level authorization mechanisms provided by commer-
cial database systems using the ‘grant’ command as
described in pages 122-128 of book entitled, “A complete
Guide to DB2 Universal Database” by Don Chamberlin.
While the ‘grant’ command controls whether a user can
access a table at all, the constructs of the present invention
define the subset of the data within a table that the user is
allowed to access. Conceptually, a restriction defines a view
of the table in which inaccessible data has been replaced by
null values. As discussed in article entitled, “Limiting dis-
closure in Hippocratic Databases” by LeFevre et al, it is
possible to use either “table semantics™ or “query seman-
tics”. With query semantics, if all the values in a row are
hidden by a restriction, then the row is omitted altogether
from the view. With table semantics, the row would instead
be retained unless a primary key column is restricted.

FIG. 1 gives the syntax of a fine grained restriction
command, as per the present invention. It states that those in
auth-name-1 except those in auth-name-2 are allowed only
restricted access to table-x. As a short hand, the restriction
can be defined for public (i.e., all users), and in that case the
exception to all users can be provided in auth-name-2. The
keywords group and user can be used to qualify the autho-
rized names. FIG. 1’s table-x can be any table expression.

A restriction, as per the present invention, presents a
single command that comprises a combination of access
control and privacy policy restrictions. A restriction can be
specified at the level of a column, a row, or a cell. More than
one restriction can be specified on a table for the same user.
A restriction may also specify purposes and/or recipients for
which the access is allowed. If no purpose or recipient is
specified, then the restriction applies to all purposes and
recipients respectively. If a purpose or recipient is specified,
the user’s access is limited to only the specified purpose-
recipient combinations.

Akin to the database system variable user that can be
referenced in queries and returns the id of the user issuing
the query, the new system variables purpose and recipient
return the list of purposes and recipients from the current
query context. These values in turn determine the restric-
tions for the current query.

The command-restriction that appears as the last element
of the syntax has the following form and states that access
can be restricted to any combination of select, delete, insert,
or update commands:

restricting access to (alll(select/delete/insertlupdate)+)

The Customer table with the following schema: Customer
(id integer, name char(32), phone char(32)) is used below for
illustration purposes.

Column Restriction:

A column restriction specifies a subset of the columns in
table-x that auth-name-1 is allowed to access. The following
restriction, named rl, ensures that only the id column of
Customer is accessed by any database user:

create restriction rl

on Customer

for public

to columns id

restricting access to all

The restriction r2 below ensures that members of the
account group and user Bob have only select access to
columns name and phone.

US 7,243,097 B1

create restriction r2

on Customer

for group acct, user Bob
to columns name, phone
restricting access to select

Row Restriction:

A row restriction gives the subset of rows in table-x that
auth-name-1 is allowed to access. This subset is specified
using a search-condition over table-x. The restriction r3
below ensures that every access to Customer is qualified by
the predicate, name=user.

create restriction r3

on Customer

for public

to rows where name=user

restricting access to all

If user Bob issues select * from Customer, he would see
id, name and phone for those rows where name equaled Bob.

Cell Restriction:

A cell restriction defines the row-column intersections
that auth-name-1 is allowed to access. It is possible to
specify multiple column-name lists, each possibly annotated
with a search-condition. A search-condition is a correlated
subquery with an implicit correlation variable t defined over
the tuples of table-x. Access to the columns in column-
name-list for each individual row identified by t is condi-
tionally granted depending upon the result of the search
condition. If no search-condition is given, then access is
granted to all column values in column-name-list in table-x.
If the search condition ignores the implicit correlation
variable, then access is granted or denied to all columns
values in column-name-list in table-x, depending upon the
result of the search-condition.

The following is an example of a cell restriction used to
enforce individual user’s privacy preferences expressed as
opt-in/out choices. Assume that for the purpose of market-
ing, Bob is allowed to see name, but his access to phone is
allowed only if the user has opted-in to revealing her phone
number.

20

25

30

35

create restriction r4
on Customer for user Bob,
to cells name,
(phone where exists (
select 1
from SysCat.Choices_ Customer ¢
where ¢.ID = Customer.ID and ¢.Cl = 1))
for purpose marketing
for recipient others
restricting access to select

The above restriction specifies cell restrictions for two
column-name-lists: The first list contains the name column,
and the second contains the phone column. The restriction
allows Bob access to name, only if the variable purpose
includes marketing, and recipient includes others. Other-
wise, all values of the name column will be null for Bob.

The second list of columns has a search-condition asso-
ciated with it since access to phone is dependent upon
individual user choices. The search-condition comprises an
existential subquery that uses the implicit correlation vari-
able Customer. For each row in Customer, the subquery
verifies, using the SysCat.Choices Customer table that stores
individual opt-in/out choices, whether the user has opted-in
for the disclosure of her phone number (represented by a
column value of 1).

Combining Multiple Restrictions:
If multiple restrictions have been defined for a user u and
a table T, then u’s access to T is governed by the combina-
tion of these restrictions.
Assume initially that a user associates with a query a
single purpose and a single recipient. Two design choices for
combining multiple restrictions have been considered
Intersection—User u is allowed access to data defined by
the intersection of all applicable restrictions. The
details are shown in Table 4.

Union—User u is allowed access to data defined by the
union of all applicable restrictions. The details are
shown in Table 5.

TABLE 4

Combining Restrictions with Intersection

column cell

restrictions are and’ed
together to define the

TOW
TOW
of individual
intersection of rows
accessible to a user.
column
cell

The search conditions

The row restriction limits the rows
accessible to the user. Within each
row, the cell restriction further limits
the access to the cells that qualify the
cells” search condition.

The row restriction
limits the rows
accessible to the user.
The column restriction
further limits the
columns within the
rows accessible to the
user.

Column and cell restrictions intersect
to limit access to only those columns
that appear in both the restrictions. In
addition, the cells restriction’s search-
condition further limits accessible cells
within a column.

The user’s access is
limited to those
columns that appear in
both of the column
restrictions.

The search-conditions are and’ed
together and the user is allowed access
to a cell if the composite condition is
satisfied for the cell. The value of the
composite condition for a cell that does
not appear in both the restrictions is
false.

US 7,243,097 B1

TABLE 5

Combining Restrictions with Union

The user is given access to all the
cells in any of the rows that satisfy

oW column cell
oW The search The user is given
conditions of access to all the cells
individual for any row that the row restriction. Additionally,

column

restrictions are
or’ed together to
define the union of
rows accessible to a
user.

satisfies the row
restriction.
Additionally, the
user is allowed
access to all the cells
in any of the
columns that
satisfies the column
restriction,
irrespective of
whether the
corresponding rows
satisfy the row
restriction.

The user is allowed
access to a column if
it appears in either
of the two column
restrictions.

the user is allowed access to all
other cells that satisfy the cell
restriction’s search-condition,
irrespective of whether the
corresponding rows satisfy the row
restriction.

The user is given access to all the
cells in any column appearing in the
column restriction, regardless of
whether the cell restriction is
satisfied for these cells. For cells in
a column for which the column
restriction does not apply, access is

10

given if the cell restriction is

satisfied.

cell The search conditions are or’ed
together and the user is allowed
access to a cell if the composite
condition is satisfied for the cell.

If the commands specified in the command-restriction
clauses of the restrictions being combined are different, they
are respectively and’ed or or’ed depending upon the choice
of intersection or union semantics.

Multiple restrictions can be combined in any order, both
with intersection and union semantics. With the intersection
semantics, the user’s access to data decreases as additional
restrictions are applied. Conversely, with union semantics,
access to data increases as additional restrictions are applied.

Finally, if a query is annotated with multiple purpose
recipient pairs, instead of a single pair, then restrictions
governing access to any of the pairs become relevant for the
query. These restrictions are then combined as above. Note
that once a user’s access to a table has been restricted, the
user can only access the data allowed for the purposes and
recipients specified in the restrictions.

A system for implementing the constructs of the present
invention is shown in FIG. 2. Cell level restrictions limited
to select statement access are discussed in the remainder of
the application; however, FGAC restrictions also apply to
row and column level restrictions.

A policy translator 202 accepts a privacy policy 201
(written in, for example P3P) and metadata stored in privacy
catalogs 206 in database 208 and generates restrictions that
implement the policy. FGAC restrictions 204 are a combi-
nation of the privacy policy restrictions generated by policy
translator 202 and access control restrictions that may be
defined in the database. The FGAC restrictions relevant to
individual queries annotated with purpose and recipient
information 210 are identified and combined, and the user’s
query is transformed into an equivalent query over a
dynamic view that implements the restriction. The schema

40

45

50

55

60

65

of the privacy metadata catalogs shown in FIG. 2 used to
drive the translation of P3P privacy policies into cell level
restrictions are given below:

PR (purp-recip char(18),

p3ptype char(32),

choice tabname char(32),

choice colname char(32))

PT (p3ptype char (32), tabname char(32), colname char
(32))

Table PR stores, for each purpose, recipient and p3p data
type pair, the (table name-column name) pair that records
individual user opt-in/out choice, should any choice be
available for that combination. Table PT stores, for each P3P
data type, the table names and column names which store
values of these P3P types.

FIG. 3 is a flowchart illustrating an exemplary method as
per the teaching of the present invention to provide fine
grained access control within a relational database. A user
query is received at step 300. The user query is annotated
with purpose and recipient information. FGAC restrictions
which are a combination of privacy policy and access
control restrictions are stored in the database. These FGAC
restrictions may be specified at the level of individual rows,
columns, cells, or a combination of these. In step 302, the
FGAC restrictions relevant to the user query are identified
and combined. The user query is then transformed into an
equivalent query over a dynamic view that implements the
restriction, in step 304. The data from the database is
accessed based on the equivalent query, in step 306.

FIG. 4 illustrates an exemplary algorithm, as per the
teaching of the present invention, which enforces the fine
grain restrictions. For ease of exposition, it is assumed that
there is a single purpose-recipient pair associated with a
query and there is at most a single restriction which is

US 7,243,097 B1

11

relevant for the query. The enforcement algorithm combines
the restrictions relevant to individual queries annotated with
purpose and recipient information and transforms the user’s
query into an equivalent query over a dynamic view that
implements the restriction.

In detail, Line 1 iterates over each table reference tin a
query Q. Line 2 accesses metadata to determine if there is a
restriction r governing the usage of t by user u who is
submitting the query Q. If no such restriction exists, then t
remains unmodified in Q. Otherwise, Lines 3 and 4 replace
each reference to table tin query Q with a reference to a
dynamic view v.

The generation of the dynamic view v is implemented in
Lines 5 through 25. The view v is a select statement which
conditionally projects each column cet. Line 7 searches for
a column reference to cer. If no such reference exists with
the purpose/recipient of query Q, then the user u is not
allowed access to ¢ and Line 8 thus projects a null value for
all values of c¢. Otherwise, Line 10 searches for a where
clause associated with cer. If no such clause exists, then u is
granted unconditional access to ¢. Otherwise, Line 15 out-
puts the condition of the where clause into a SQL case
statement which verifies the condition before outputting the
value of ¢ (on Line 18). If the condition is false, access to the
column value is denied and Line 19 outputs a null value for
c.

The following illustrates the basic syntax of the P3P
policy specification language:

<POLICIES> . . .
<POLICY name = “Policy_ Namel”> . . .
<STATEMENT>

<PURPOSE>
stated-purpose
[required = (“always
</PURPOSE>
<RECIPIENT>
stated-recip
[required = (“always
</RECIPIENT>
<RETENTION> retention_ val </RETENTION>
<DATA GROUP>
<DATA ref = data-ref-val>

5[%

opt-in”[“opt-out™)]

5[%

opt-in”[“opt-out™)]

</DATA GROUP>
</STATEMENT>
</POLICY>
<POLICY>

</POLICY>

</POLICIES>

The process of transforming a policy like the one above
into fine grained restrictions involves: (1) parsing the policy
to extract the list of statements, (2) mapping data abstrac-
tions into their implementation specific equivalents, e.g. in
the above specification this would mean mapping data-ref-
val to its corresponding table name(s) and column name(s),
(3) structuring the choice tables which record individual user
opt-in/out choices (in some cases, this may not be necessary
since there may be no such choices), and (4) generating the
restriction statements. Assuming that data-ref-val maps to
columns A and B of table T, the above abstract specification
would lead to the following restriction being constructed:

create restriction Policy Name 1

onT

for public

20

25

30

35

40

45

50

55

60

65

12

to cells A,B

[where opt-in-out-conditions|

for purpose stated-purpose

for recipient stated-recip

restricting access to select

FIG. 5 is a detailed example of a privacy policy, for a
fictional Healthcare provider. The metadata contains the
information needed to associate “#personal” (personal infor-
mation) and “#medical” (medical information) with data-
base tables which store this information. Personal informa-
tion maps to the name, SSN, address, email and DOB fields
of the Patients table, while medical information maps to the
xray, pharmacy, family, appointment and lifestyle fields of
the Patients table. Physician, Healthcare and Drug_Research
are assumed to be user roles and thus do not require refining.
Thus, the P3P healthcare policy given in FIG. 5 is translated
into the restrictions given in FIG. 6. For simplicity, the
restrictions in FIG. 6 assume that all columns in a P3P policy
are contained in a single table.

The creation and population of the Choices_Patients table
should be coordinated to synchronize with the creation and
update of the patients table. The policy translator modifies
the structure of the choices_patients table to ensure that the
correct number of choice fields are present for recording
opt-in/opt-out decisions for a particular table. In the above
example, C1 represents the choice to allow Drug_Research
to see personal data if the drug research is being conducted
by the healthcare company itself. Choice C2 is the option to
allow usage of personal data for drug research by other
healthcare companies having the same privacy policy as this
company. The example illustrates the basic steps involved in
the translation process. FIG. 7 gives the pseudo-code show-
ing the steps involved in transforming P3 policy into the
present invention’s language constructs.

A unique restriction name, needed for the command is
generated on Line 2. Line 3 uses the mapP3PPolicyToTable
function to uncover the table name which stores the infor-
mation described by the data types in the P3P statement.
This metadata is populated by the database administrator.
On Line 4, the set of users who are authorized to access data
specified by the policy are obtained using the
mapP3PPolicyToAuthorizedUsers command which uses
database metadata to derive the set of authorized users. The
database administrator is responsible for populating this
information in the database metadata tables. Line 10 uses the
mapP3PDataTypeToColumns function to retrieve the col-
umn names that store information described by the P3P data
types in the statement. Again, this information has been
prepared and supplied by the database administrator and
stored in metadata tables.

The function mapP3PPurposeToChoiceTable accepts a
statement id and returns the table storing individual user
choices for this statement. The function
mapP3PPurposeToChoiceColumn accepts a statement-pur-
pose pair and returns the column in the choice table which
records the corresponding users’ choices. Both these func-
tions are driven from metadata.

Although the present invention, as described, provides
restrictions specified for tables and at least one or a combi-
nation of rows, columns or cells in a relational database; it
should be noted that restrictions can also be specified for
collection of objects and attributes of these objects in an
object database, or collection of documents and attributes of
elements in these documents in an XML database. Hence,
how such restrictions are specified should not be used to
limit the scope of this invention.

US 7,243,097 B1

13

Additionally, the present invention provides for an article
of manufacture comprising computer readable program code
contained within implementing one or more modules to
provide fine grained access control in a relational database.
Furthermore, the present invention includes a computer
program code-based product, which is a storage medium
having program code stored therein which can be used to
instruct a computer to perform any of the methods associ-
ated with the present invention. The computer storage
medium includes any of, but is not limited to, the following:
CD-ROM, DVD, magnetic tape, optical disc, hard drive,
floppy disk, ferroelectric memory, flash memory, ferromag-
netic memory, optical storage, charge coupled devices, mag-
netic or optical cards, smart cards, EEPROM, EPROM,
RAM, ROM, DRAM, SRAM, SDRAM, or any other appro-
priate static or dynamic memory or data storage devices.

Implemented in computer program code based products
are software modules for:

(a) aiding in receiving a user query;

(b) identitying and combining restrictions relevant to the
user query, the restrictions specifying access to data in a
table in the database at the level of at least one or a
combination of: individual rows, individual columns or
individual cells, and the restrictions comprising a combina-
tion of access control and privacy policy restrictions;

(c) transforming the user query into an equivalent query
which implements the restrictions; and

(d) aiding in accessing the data based on the equivalent

query.
CONCLUSION

A system and method has been shown in the above
embodiments for the effective implementation of extending
relational database systems to automatically enforce privacy
policies. While various preferred embodiments have been
shown and described, it will be understood that there is no
intent to limit the invention by such disclosure, but rather, it
is intended to cover all modifications falling within the spirit
and scope of the invention, as defined in the appended
claims. For example, the present invention should not be
limited by software/program, computing environment, or
specific computing hardware. Moreover, the present inven-
tion should not be limited to how the restrictions are
specified. All programming and data related thereto are
stored in computer memory, static or dynamic, and may be
retrieved by the user in any of: conventional computer
storage, display (i.e., CRT) and/or hardcopy (i.e., printed)
formats.

What is claimed is:
1. A method of providing fine grained access control
within a database, said method comprising:
receiving a user query;
identifying and combining restrictions relevant to said
user query, said restrictions specifying access to data in
a table in said database at the level of at least one of or
a combination of: individual rows, individual columns
or individual cells, and said restrictions comprising a
combination of access control and privacy policy
restrictions, said privacy policy restrictions being gen-
erated by transforming a privacy policy by the follow-
ing steps:
parsing said privacy policy to extract a list of state-
ments,
mapping data abstractions in said privacy policy into
their implementation specific equivalents,

20

25

30

35

40

45

50

55

60

65

14

structuring choice tables which record individual user
opt-in/out choices, and
generating restriction statements;

transforming said user query into an equivalent query
which implements said restrictions; and

accessing said data based on said equivalent query.

2. A method of providing fine grained access control
within a database, according to claim 1, wherein said
restrictions are generated by transforming said privacy
policy and using privacy metadata catalogs.

3. A method of providing fine grained access control in a
database, according to claim 1, wherein said restrictions are
combined by union or intersection.

4. A method of providing fine grained access control in a
database, according to claim 2, wherein said privacy policy
is written in high-level policy language.

5. A method of providing fine grained access control in a
database, according to claim 4, wherein said high-level
policy language is P3P.

6. A method of providing fine grained access control in a
database, according to claim 2, wherein said privacy meta-
data catalogs store individual opt-in/opt-out choices.

7. A method of providing fine grained access control in a
database, according to claim 1, wherein said restrictions
specify purposes and/or recipients for which access is
allowed.

8. A system providing fine grained access control (FGAC)
within a database, said system comprising:

a database to store privacy metadata catalogs and FGAC
restrictions, said FGAC restrictions specifying access
to data in a table in said database at the level of at least
one of or a combination of: individual rows, individual
columns or individual cells and said FGAC restrictions
comprising a combination of access control and privacy
policy restrictions, said data of said database being
accessed based on a transformed equivalent query
which implements said FGAC restrictions; and

a policy translator to accept as input a least a privacy
policy and said privacy metadata catalogs, said policy
translator transforming said privacy policy into said
privacy policy restrictions by: parsing said privacy
policy to extract a list of statements, mapping data
abstractions in said privacy policy into their implemen-
tation specific equivalents, structuring choice tables
which record individual user opt-in/out choices, and
generating restriction statements.

9. A system providing fine grained access control (FGAC)
within a database, according to claim 8, wherein said
privacy policy is written in high-level policy language.

10. A system providing fine grained access control
(FGAC) within a database, according to claim 9, wherein
said high-level policy language is P3P.

11. A system providing fine grained access control
(FGAC) within a database, according to claim 8, wherein
said privacy metadata catalogs store individual opt-in/opt-
out choices.

12. A system providing fine grained access control
(FGAC) within a database, according to claim 8, wherein
said FGAC restrictions specify purposes and/or recipients
for which access is allowed.

13. An article of manufacture comprising a computer
usable medium having computer readable program code
embodied therein which provides fine grained access control
within a database, said medium comprising:

computer readable program code aiding in receiving a
user query;

US 7,243,097 B1

15

computer readable program code identifying restrictions
on access to data in a table in said database at the level
of at least one or a combination of: individual rows,
individual columns or individual cells, said restrictions
comprising a combination of access control and privacy
policy restrictions;

computer readable program code transforming a privacy
policy into said privacy policy restrictions by: parsing
said privacy policy to extract a list of statements,
mapping data abstractions in said privacy policy into

16

their implementation specific equivalents, structuring
choice tables which record individual user opt-in/out
choices, and generating restriction statements;

computer readable program code transforming said user
query into an equivalent query which implements said
restrictions; and

computer readable program code aiding in accessing said
data based on said equivalent query.

#* #* #* #* #*

Appendix B: Data Encryption Portfolio

Table B.1 — Research Papers

ID Publication Key Contributions
1 Holistic Database Encryption - Design of a holistic database encryption solution which
allows organizations to meet their security and
International Conference on Security
compliance requirements without having to make
and Cryptography (SECRYPT)))) .
compromises either on the security side or on the
database side.
- Enable organizations to adhere to zero-trust security.
- Implementation of the solution in IBM DB2 for Linux,
Unix and Windows.
2 Towards Zero-Trust Database | - Introduces a database threat model and raises
Security — Part 1 awareness of the direct and indirect means through which
the same data in a database can be accessed.
IEEE Future Directions Newsletter:
Technology Policy & Ethics
3 Towards Zero-Trust Database | - Outlines solutions (including encryption) to address the
Security — Part 2 direct and indirect access challenges and to enable zero-
trust database security.
IEEE Future Directions Newsletter:
Technology Policy & Ethics

100

Holistic Database Encryption

Walid Rjaibi
IBM Canada Lab, 8200 Warden Avenue, Markham, Ontario, Canada
wrjaibi@ca.ibm.com

Keywords:

Abstract:

Databases, Encryption, Key Management, Security, Compliance.

Encryption is a key technical control for safeguarding sensitive data against internal and external threats. It

is also a requirement for complying with several industry standards and government regulations. While
Transport Layer Security (TLS) is widely accepted as the standard solution for encrypting data in transit, no
single solution has achieved similar status for encrypting data at rest. This is particularly true for database
encryption where current approaches are forcing organizations to compromise either on the security side or
on the database side. In this paper, we discuss the design and implementation of a holistic database
encryption approach which allows organizations to meet their security and compliance requirements without
having to sacrifice any critical database or security properties.

1 INTRODUCTION

Internal threats, external threats, government
regulations, and industry standards require
organizations to implement security controls to
ensure information is adequately protected. Failure
to do so can have a negative impact on an
organization such as loss of customer data, damage
to brand reputation, and even financial penalties.
Encryption is a key technical control for protecting
information. It is also an explicitly stated
requirement for compliance with many regulations
and standards such as the General Data Protection
Regulation (Voigt, 2017) and the Payment Card
Industry Data Security Standard (Chuvakin, 2009).

While TLS is widely accepted as the standard
solution for encrypting data in transit, no single
solution has achieved similar status for encrypting
data at rest. This is particularly true for database
encryption where current approaches are forcing
organizations to compromise either on the security
side or on the database side. Indeed, database
encryption poses some very unique challenges as not
only the solution needs to be sound from a security
perspective, but it also needs to coexist in harmony

with critical database properties such as
performance, integrity, availability, and
compression.

The rest of this paper is organized as follows.
Section 2 discusses the related work around database
encryption. In section 3, we state our contributions.
Section 4 defines the threats our database encryption
solution defends against. In section 5, we describe
our solution design in full details. Lastly, section 6
summarizes our approach and outlines our future
work.

2 RELATED WORK

Current database encryption solutions can be divided
into four main categories: Column encryption
(Benfield, 2001), tablespace encryption (Freeman,
2008), file system encryption (Anto, 2018), and self-
encrypting disks (Dufrasne, 2016). Unfortunately,
each of these solutions forces the organization to
make a compromise either on the database side or on
the security side.

Column encryption negatively affects database
performance as queries with range predicates cannot
benefit from index-based access plans to limit the
data to read from the table. Instead, the database
system is forced to read the entire table to evaluate
the query. Tablespace encryption may leave certain
data vulnerable to attacks when, for example, an
administrator inadvertently takes an action that
moves data from an encrypted tablespace to an
unencrypted one. An example of such action would

be the creation of a materialized query table (MQT)
to speed up the execution of data warehousing
queries. File system encryption and self-encrypted
disks provide no protection against privileged users
on the operating system. As long as the file
permissions allow access, such users can easily view
the content of the database by browsing the
underlying files on the operating system.

3 CONTRIBUTIONS

The crux of our contribution is the design of a
holistic database encryption approach which allows
organizations to meet their security and compliance
requirements without having to make compromises
either on the security side or on the database side.
Our solution improves over the state of the art
discussed above as follows:

e Pervasiveness: All data is encrypted
whether it is user tablespace data, system
tablespace data, temporary tablespace data,
transaction logs data, or database backups
data.

e Security: The database content is not
vulnerable to attacks by malicious
administrators who may choose to bypass
the database and access the database
indirectly through the file system
interfaces.

e Performance: The database system is not
forced to dismiss index-based access plans
to answer queries with range predicates.

e Breadth: The solution is built into the
database engine itself which means that it is
available on all platforms where the
database system itself runs. Also, it does
not force the database system to dismiss the
opportunity to bypass the file system and
write data directly to raw devices in order
to boost performance.

e Quantum-safety: The implementation does
not make use of asymmetric encryption to
wrap data encryption keys. Data encryption
keys are wrapped with symmetric
encryption (Chandra, 2014). Therefore, the
implementation is safe against future
attacks by quantum computers
implementing Shor’s algorithm which is
known to break asymmetric encryption that

is based on integer factorization such as
RSA or on discrete logarithms such as
Diffie-Hellman (Shor, 1997). Additionally,
the default encryption key size is 256 bits.
This also makes the implementation safe
against future attacks by quantum
computers implementing Grover’s
algorithm which is known to offer a
quadratic improvement in brute-force
attacks on symmetric encryption schemes
like AES (Grover, 1996).

We have also implemented the solution in a
commercial database system (IBM DB2 for Linux,
Unix, and Windows).

4 THREAT MODEL

We focus on protecting data at rest. For protecting
data in transit between a database server and a client
application against eavesdroppers, we assume TLS
has been configured to provide this protection. TLS
is the standard for protecting data in transit and is
implemented by all major database systems.

The content of a database deployed on a given
database server can be accessed in two different
ways: Directly and indirectly. Direct access is when
users interact with the database using the usual
database interfaces such as querying the database
tables using SQL. In this context, we assume that the
database authentication and authorization
mechanisms have been configured to ensure that
data is accessible only to the appropriate users.
Authentication ensures that users are who they claim
they are while authorization ensures that
authenticated users have access only to those objects
or elements within objects for which they have been
granted permissions (Rjaibi, 2004).

Indirect access is when a user chooses to bypass
the database system altogether and uses operating
system commands to browse the content of the
database. For example, on Linux, the following
command would display the content of the physical
file associated with a given tablespace:

strings
‘/u0l/database/payroll tbspace’

This command will be executed by the operating
system bypassing all the database authentication and
authorization controls.

Our solution addresses this threat by encrypting
the database and ensuring that such encryption is
under the control of the database system itself. This
means that if a user chooses to bypass the database
system as shown above, the operating system
command will return cipher text which will be of no
value to the attacker.

An attacker may also choose to access the
database content from decommissioned hard drives
or by physically stealing such hard drives. Our
solution addresses this concern as well because the
attacker will only find cipher text on those drives.
Figure 1 gives a high level overview of our database
threat model.

Database System

é Uses database

File System

é Bypasses database

& Steals storage media

Storage

Figure 1: Database threat model.

S DATABASE ENCRYPTION
DESIGN

5.1 Encryption Key Management

Encryption key management is a critical aspect of an
encryption solution. Our solution uses two types of
encryption keys: A Data Encryption Key (DEK) and
a Master Key (MK).

The DEK is the encryption key used to encrypt
the actual data in the database. It is automatically
generated by the database system at database
creation time. The DEK is encrypted with the MK
and stored within the database configuration
structures together with the following attributes:

e The encryption key size: This is the length
of the encryption key in bits (e.g., 256 bits).

e The encryption algorithm: This is the
symmetric encryption algorithm used to
encrypt the data with the DEK (e.g., AES).

e The master key label: This is the unique
identifier of the master key within the
external management system. For example,
if the external management system is a
Hardware Security Module (HSM), then
the database system will call out to the
HSM and ask it to either encrypt or decrypt
the DEK as required. A call to decrypt the
DEK is done once when the database
system starts up. A call to encrypt the DEK
is also done once when the database is
created.

e The master key integrity value: To guard
against the (rare) event where the MK
acquired at some future point in the life of
the database is not the one that was actually
used to encrypt the DEK, we calculate an
integrity value for the MK. We do this by
applying a Hash Message Authentication
Code (HMAC) function to the MK and
store the result. Before making use of the
DEK, we first compute an HMAC based on
the MK acquired. If the computed HMAC
and the stored HMAC match this implies
that the master key acquired is indeed the
one that was used to encrypt the DEK.
Although rare, this is important to avoid
corrupting data through decryption with the
wrong key.

The MK is the encryption key used to encrypt
the DEK. Only a unique identifier of the MK is
stored within the database configuration structures.
The MK itself is stored in an external key
management system such as an HSM.

The reasons for choosing these two types of keys
are security, performance, and availability. By
storing the MK physically away from the database
system, we are assured that compromise of the
database system infrastructure does not give the
attacker access to both the encrypted data and the
encryption keys. Additionally, the concept of MK
allows database administrators to rotate encryption
keys without impacting the database performance or
worse requiring the database to be taken offline to
complete the operation. In fact, rotating the MK only
requires decrypting the DEK with the old MK and
re-encrypting it again with the new MK. In contrast,
rotating the DEK requires reading the whole
database, decrypting the data with old DEK, re-
encrypting it with the new DEK, and writing it back
to disk. Thus, the two types of keys we chose in our
solution design (DEK and MK) allow administrators

to meet their regulatory compliance needs around
rotating encryption keys without necessarily having
to incur a performance penalty or take a downtime.

5.2 Data Encryption

Implementing security in database systems is always
a delicate balance between meeting the security
requirements, and ensuring that security coexists in
harmony with other critical database features such as
performance, compression, and availability. For
database encryption, this means that the placement
of the encryption run-time processing is key to
designing an effective solution.

5.2.1 Encryption Run-time Placement

Our design places the encryption run-time
processing just above the database I/O layer in the
database kernel stack. The reasons for this choice are
the following:

e Pervasiveness: This ensures that all data is
encrypted whether it is user tablespace data,
system tablespace data, temporary
tablespace data, or transaction logs data.

e Transparency: This ensures that encryption
has no impact on database schemas and
user applications. In fact, encryption can be
thought of as invisible to them.

e Performance: This ensures that data stored
in the database buffer cache remains in
clear text. Consequently, encryption
imposes no restrictions on the database
system when it comes to selecting the most
efficient plan to execute a query (e.g.,
queries with range predicates).

e Compression: Database systems implement
compression techniques to reduce the size
of the data stored on disk. Typically, these
techniques look for repeating patterns in
order to avoid storing all copies of such
patterns. Encryption, by definition, removes
all patterns. This means that the order in
which compression and encryption are
performed is important. For example, if
encryption is performed first, then the
compression rate will be zero as encryption
will leave no patterns. Thus, placing our
encryption run-time processing just above
the database 1/O layer ensures that
encryption and compression can coexist in
harmony.

5.2.2 Encryption Run-time Processing

The encryption run-time processing consists of two
functions: Encryption and decryption. Encryption
takes place when the database system is writing data
out to the storage system. Decryption happens when
the database system is reading data in from the
storage system.

While the solution can easily support any
symmetric block cipher for encryption/decryption,
we have chosen to implement support for only AES
and 3DES as they are the most commonly used
block ciphers. AES is actually the standard
symmetric block cipher. Block ciphers support many
modes of operations. Electronic Code Book (ECB)
is the easiest mode to implement but is also the
weakest from a security perspective. This is because
in ECB mode the same clear text input will always
result in the same cipher text. This may be fine for
encrypting small pieces of data such as a password,
but not for database encryption as this will introduce
patterns and may compromise the encryption
solution. Instead, we have chosen to use the Cipher
Block Chaining (CBC) mode as it does not introduce
patterns. This means we need to provide an
initialization vector when calling the block cipher in
CBC mode for encryption, as well as maintain that
initialization vector in our meta-data so that it is
available for decryption purposes. Note that the
initialization vector is not meant to be a secret. It
only needs to be random.

When writing data to the file system, the
database system writes them in chunks to minimize
the 1/0 overhead. A chunk is a collection of data
pages where each page is 4KB in size. A page is set
of rows, and a database table is a collection of pages.
This poses an interesting question as to the level of
granularity to adopt for encryption. We have chosen
the data page to be that level granularity. A row
level granularity would have had a higher impact on
performance as encryption calls would have to be
made for each row separately. A chunk level
granularity would have created a dependency
between the pages in that chunk due to the chaining
inherent to the CBC mode. For example, to decrypt
page 5, one must first decrypt pages 1, 2, 3, and 4.
This would have had a negative impact on query
performance as it diminishes the value of index-
based access.

It is also worth noting that the data page level
granularity has allowed us to avoid having to

needlessly increase the database size due to
encryption. In fact, encryption block ciphers such as
AES and 3DES encrypt data one block at a time. For
example, the block size for AES is 16 Bytes. This
means that when the clear text to encrypt is not an
exact multiple of the block size, padding is required
and this obviously increases the cipher text
compared to the original clear text. Fortunately, the
choice of a data page for the encryption granularity
avoids this problem as data pages are always an
exact multiple of the encryption block size.

5.2.3 Transaction logs

Transaction logs are files where the database system
logs transactions such as insert, delete, and update
operations. They are a critical component for
ensuring the integrity of the database as well as for
allowing recoverability of the database following a
database crash. The structure of a transaction log file
consists of two pieces: A header which contains
meta-data about the file, and a payload which
contains the actual database transaction details.

In section 5.2.2 above, we have seen how the
placement of the encryption run-time ensures that all
data written to disk, including transaction logs, is
automatically encrypted. However, transaction logs
pose one additional challenge. In a database
recovery scenario, we must be able to decrypt the
transaction logs even when the database system is
down. This means that we cannot rely on the DEK
related information (section 5.1 above) to decrypt
the transaction logs as the database system may be
offline. To address this challenge, the transaction
logs structure has been extended so that these logs
are self-contained when decryption is required. More
specifically, the header piece of the transaction logs
structure has been extended so that it contains its
own copy of the DEK related information. This also
opens the door for an opportunity to further boost
security by generating a separate DEK for the
transaction logs that is distinct from the DEK for the
database.

5.2.4 Database backups

A database backup is a copy of the database content
at a given point in time. Database systems provide a
command and/or API to allow users to take those
backups. In the case of a database crash, the
database can be recovered to the state it was at when
the last backup was taken. Additionally, when
healthy transaction logs from the damaged database
are available, it is possible to recover the database to

a further point in time by reapplying the database
transactions from the transaction logs. Like
transaction logs, a database backup consists of two
pieces: A header which contains meta-data about the
backup, and a payload which contains the actual
copy of the database.

Database backups pose the same challenge as
transaction logs in the sense that they too need to be
self-contained when decryption is required.
Consequently, this challenge is addressed in the
same way by extending the database backup header
piece so that it contains its own copy of the DEK
related information. Like transaction logs, database
backups have their own unique DEK.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a holistic approach
to database encryption which allows organizations to
meet their security and compliance needs without
having to make compromises either on the security
side or on the database side. Figure 2 gives a high
level overview of the architecture, which we
implemented in IBM DB2 for Linux, Unix, and
Windows.

DB2 Server PKCS #11 HSM Server

File

Instance Level

Vendor Client
Keys(ore
Password s K”
Snarea
Ubrary
File T
Permissions F'KCS“ . o

)u.‘tswoxu: TYPE=PKCS11
uysmm: _LOCATION='/pkcs-config.cfg

Database Level

s 4

Database Encrypted DEK

Encrypted [= ..""/

Data Encryphon Key
(DEl

K)
1 Encrypted
ENCRLIB='libdb2encr.s0 . ' nd Backup
ENCROPTS=" c ipher=AES' 2 Image

-

Automatic Backup Endyption

Figure 2: Database encryption architecture.

In our future work, we intend to enhance our
holistic database encryption solution to better
address two challenges. The first challenge is
encrypting existing databases. Unlike newly created
databases, an existing database already has data and
turning encryption on for that database means not

only encrypting new incoming data, but also
encrypting that existing data. The current solution
requires the organization to turn on the encryption
for the existing database during a scheduled database
maintenance window. This is because the current
approach for encrypting an existing database works
by having the database administrator take a backup
of the existing database and then restoring it using
the RESTORE DATABASE command. While
processing the restore, the database system encrypts
the data as that is analogous to new incoming data.
We would like to allow database administrators to
turn on encryption for their existing databases
without having to wait for a scheduled maintenance
window. To do so, we plan to investigate creating a
background process which encrypts the database
incrementally while the database system continues
to serve applications. The main challenge would be
finding out how to perform this incremental
encryption without compromising the data integrity.

The second challenge is rotating the DEK online.
Currently, our solution allows rotating only the MK
online. While rotating the MK is usually sufficient,
there may be situations where rotating the DEK
itself is required. Currently, the only way to do this
is during a scheduled maintenance window
following the same database backup and restore
discussed above. We believe that the solution for
encrypting existing databases without having to wait
for scheduled maintenance window would also
allow rotating the DEK online as that is
fundamentally the same problem. That is, in both
cases, the database content needs to be read, re-
encrypted with a new DEK, and written back to disk.

ACKNOWLEDGEMENTS

The author would like to thank Saifedine Rjaibi and
Devan Shah for their valuable comments.

REFERENCES

Rjaibi, W., Bird, P.,, 2004. A Multi-Purpose
Implementation of Mandatory Access Control in
Relational Database Management Systems. In
VLDB’04, 30th International Conference on Very
Large Data Bases. Morgan Kaufmann.

Chandra, S., Paira, S., Alam, S., Sanyal, G., 2014. A
Comparative Survey of Symmetric and Asymmetric
Key Cryptography. In ICECCE’l4, International

Conference on Electronics, Communication and
Computational Engineering. IEEE.

Grover, L., 1996. A Fast Quantum Mechanical Algorithm
for Database Search. In STOC’96, 28th Annual ACM
Symposium on Theory of computing. ACM.

Shor, P., 1997. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SIAM Journal on Computing, Volume 26
Issue 5.

Dufrasne, B., Brunson, S., Reinhart, A., Tondini, R., Wolf,
R., 2016. IBM DS8880 Data-at-rest Encryption, IBM
Redbooks. New York, 7th edition.

Benfield, B., Swagerman, R., 2001. Encrypting Data

Values in DB2 Universal Database. IBM
DeveloperWorks.

Anto, 1., 2008. Understanding EFS. IBM
DeveloperWorks.

Freeman, R., 2008. Oracle Database 11g New Features,
McGraw-Hill.

Voigt, P., Von Dem Bussche, A., 2017. The EU General
Data Protection Regulation (GDPR), Springer
International.

Chuvakin, A., Williams, B., 2009. PCI Compliance:
Understand and Implement Effective PCI Data
Security Standard Compliance, Elsevier.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Towards Zero-Trust Database Security —
Part 1

Walid Rjaibi, Mohammad Hammoudeh

Abstract—The rise of external threats, internal threats and data breaches is driving enterprises to implement zero-trust security
to better protect their IT assets and reduce risk. While zero-trust security for networks and identity management systems have
received a great deal of focus, very little attention has been devoted to zero-trust security for database systems. This is a major
issue as database systems are the custodian of enterprises most critical data and are often the primary target of both external
and internal attacks. After all, databases contain valuable data such attackers want to steal. In Part One of this series, we

explore both the direct and indirect means through which the

same data in a database system can be accessed and the

challenges they pose to adhering to the basic tenets of zero-trust security. In Part Two, we outline a set of solutions that are
most suitable to address these challenges and enable enterprises to implement zero-trust database security without negatively

impacting core database tenets such as query performance.

Index Terms—Databases, Security, Zero-Trust.

INTRODUCTION

1
THE 2018 Cost of a Data Breach Study, conducted by
the Ponemon Institute and sponsored by IBM, found
that the global average cost of a data breach was $3.86
million [1]. This was an increase of 6.4% compared to 2017
according to the same study. The study also found that
the average size of a data breach (in terms of number of
records lost or stolen) grew 2.2% from 2017. Meanwhile,
Gartner estimates that worldwide spending on cyberse-
curity in 2018 was around $114 billion, an increase of
12.4% compared to 2017 [2]. Recognizing that current ap-
proaches aren’t sufficiently adequate, several organiza-
tions are now turning into zero-trust security to better
protect their assets and reduce the risk of incurring a data
breach. So, what exactly is zero-trust security?

Zero-trust security was coined by Forrester’s John
Kindervag in 2010 [3], [4]. In its essence, zero-trust securi-
ty removes the notion of trust from the enterprise net-
work (e.g.,, no more trusted users, devices, or applica-
tions). It assumes that untrusted entities exist both out-
side and inside the enterprise network. The basic tenets of
zero-trust security can be summarized as follows:

1. Tenet 1: Ensure all resources are accessed in a
secure manner regardless of location.

2. Tenet 2: Grant access to resources based on
“need-to-know” and strictly enforce access
control.

3. Tenet 3: Monitor and audit all user activities.

While extensive coverage of zero-trust security imple-

o Walid Rjaibi is with the Departmentof Computing and Mathematics, Man-
chester Metropolitan University, and the IBM Canada Lab, 8200 Warden
Avenue, Markham ON L6E 1E9. E-mail: wrjaibi@ca.ibm.com.

o Mohammad Hammoudeh is with the Department of Computing and
Mathematics, Manchester Metropolitan University, Manchester M15 6BH.
E-mail: M.Hammoudeh@mmu.ac.uk.

XXXX-XXXX/0x/$xx.00 © 200x IEEE

mentations for networks [3] and identity management sys-
tems [5] exists, very little coverage exists for database sys-
tems. We contend that zero-trust security implementations
for database systems is equally important for three main
reasons. First, database systems are the custodians of the
enterprise most valuable data. This is the very data attack-
ers of all sorts are seeking. Secondly, the same data entrust-
ed with the database system can be accessed in a variety of
distinct and independent ways, thus broadening the data-
base attack surface. Lastly, the database privileges model is
inherently a double-edged sword, creating opportunities
for privileges to be abused intentionally or unintentionally.

2 DATABASE THREAT MODEL

We assume that organizations are implementing user au-
thentication, auditing and Transport Layer Security (TLS)
which are standard features on all major database systems
today. We also assume that organizations are implement-
ing adequate operational policies such as operating sys-
tem and database software vulnerability patching. In this
paper, we focus on direct and indirect means for accessing
data in a database and the challenges they pose to adher-
ing to the three zero-trust security tenets outlined in sec-
tion 1.

The same data in a database can be accessed in two dif-
ferent ways: Indirectly or directly. Indirect access occurs
when a user bypasses the database system altogether.
This is most dangerous because it completely bypasses all
database access control and auditing. We distinguish be-
tween two use cases:

1. File system access: This takes place when a

user chooses to access the data directly on the
file system using operating system com-

Published by the IEEE Computer Society

mands.

2. Storage media access: This takes place when a
user recovers the data from the actual storage
media such as a stolen or lost hard drive or
tape.

Failure to address these two use cases makes it impos-
sible to adhere to the first two tenets of zero-trust security
outlined in section 1.

Direct access takes place using standard database inter-
faces such as Structured Query Language (SQL). We dis-
tinguish between two use cases:

1. Interactive database access: This is typically
done by database administrators using an in-
teractive interface offered by the database sys-
tem. This is usually used to perform adminis-
trative tasks.

2. Application database access: This is the most
common use case where end users interact
with an application which in turn interacts
with the database system to execute requests
on behalf of those end users.

The issue with interactive database access is privilege
abuse where, for example, a database administrator
chooses to abuse their privileges to access sensitive data.
The application database access poses two issues. The
first one is application bypass where, for example, the ap-
plication administrator chooses to abuse the application
database credentials to access sensitive data or make
changes that are not permitted by the application’s busi-
ness logic. The second issue is the loss of user identity
which diminishes the value of auditing to hold users ac-
countable for their actions. This stems from the fact that
the application uses a generic user ID to access the data-
base on behalf of all users as opposed to the actual user
identity.

Application bypass
User 1 -

. Application access
User2.
Direct | © 2 g
é Interactive access
—_—

access B
user

UserN
é File system access
—_—

Indirect user

é Storage media access
P ——

user

Database System

File System

aceess

Storage Media

Fig. 1. Database threat model.

Failure to address privilege abuse and application by-
pass makes it impossible to adhere to the first two tenets
of zero-trust security outlined in section 1. Similarly, fail-
ure to address the loss of user identity makes it impossi-
ble to adhere to the third tenet of zero-trust security (aslo
outlined in section 1). Fig. 1 summarizes our database
threat model.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

3 CONCLUSION

Database systems contain enterprises most valuable data
and are often the primary target of both internal and ex-
ternal attacks. Implementing zero-trust database security
starts with first understanding the database threat model.
Table 1 summarizes these threats and how they relate to
the basic tenets of zero-trust security. In Part Two of this
series we outline solutions and best practices for address-
ing these threats and implement zero-trust database secu-

rity.

TABLE 1
ZERO-TRUST DATABASE SECURITY CHALLENGES
Threat Threat | Fundamental zero-trust
type security tenet
File system | Indirect | Tenets 1 and 2
access
Storage media | Indirect | Tenets 1 and 2
access
Privilege abuse | Direct | Tenets 1 and 2
Application Direct | Tenets 1 and 2
bypass
Loss of end | Direct | Tenet3
user identity in
multitiered
environments
REFERENCES
[1] The Ponemon Institute, https:/ /www.ibm.com/security/data-breach,
2019.

[2] Gartner, https: / /www.gartner.com /en /newsroom / press-

releases /2018-08-15-gartner-forecasts-worldwide-information-
security-spending-to-exceed-124-billion-in-2019, 2019.

[3] E. Gilman, D. Barth, Zero Trust Networks: Building Secure Systems
in Untrusted Networks. O'Reilly Media, 2017.

[4] S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, “A Systemat-
ic Review of the Availability and Efficacy of Countermeasures to In-
ternal Threats in Healthcare Critical Infrastructure”, IEEE Access, 6,
Pp-25167-25177,2018.

[5] Centrify, https:
trust-privilege, 2019.

www.centrify.com /education /what-is-zero-

Walid Rjaibi is Distinguished Engineer and Chief
Technology Officer (CTO) for Data Security with IBM in Toronto,
Canada. Prior to his current role, Walid was Research Staff Member
in network security and cryptography with IBM Research in Zurich,
Switzerland. Walid’s work on Data Security has resulted 26 granted
patents and several publications in journals and conference proceed-
ings such as the IDUG solutions journal, the internation conference
on security and cryptography (SECRYPT), the internation confer-
ence on data engineering (ICDE), and the internation conference on
Very Large Databases (VLDB).

AUTHOR ET AL.: TITLE

Mohammad Hammoudeh is the Head of the
CfACS loT Laboratory and a Reader in Future Networks and Securi-
ty with the Department of Computing and Mathematics, Manchester
Metropolitan University. He has been a researcher and publisher in
the field of big sensory data mining and visualization. He is a highly
proficient, experienced, and professionally certified cybersecurity
professional, specializing in threat analysis, and information and
network security management. His research interests include highly
decentralized algorithms, communication, and cross-layered solu-
tions to Internet of Things, and wireless sensor networks.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Towards Zero-Trust Database Security —
Part 2

Walid Rjaibi, Mohammad Hammoudeh

1 INTRODUCTION

N Part One, we have explored the direct and indirect

means through which the same data in a database sys-
tem can be accessed and the challenges they pose to ad-
hering to the basic tenets of zero-trust security. Here, we
outline the solutions that are most suitable to address
these challenges and enable enterprises to implement ze-
ro-trust database security without negatively impacting
core database tenets such as query performance.

2 SEPARATION OF DUTIES

Traditionally, database systems have been designed such
that the Database Administrator (DBA) manages all as-
pects of the database, including security and auditing.
Additionally, the DBA inherently had full access to all
tables in the database. With the emergence of insider
threats as a security concern equally important to external
threats [1], this traditional model clearly hampers an or-
ganization’s ability to fully implement zero-trust database
security.

We contend that database systems must provide the
capability to allow organizations to vest security admin-
istration and database administration into two non-
overlapping roles so separation of duties can be enforced.
Separation of duties also ensures that the DBA does not
have implicit access to all the data in the database. This
separation of duties enables organizations to better ad-
here to zero-trust security. It may also dictate the type of
database system to adopt as not all database systems nec-
essarily provide the capabilities to enforce separation of
duties.

3 DATA ENCRYPTION

Indirect access is most dangerous as it completely bypass-
es all access control and auditing in the database system.
A powerful countermeasure to protect against indirect
access is data encryption as encrypted data is of no value
to an attacker. However, data encryption for database
systems comes in many forms and not all forms of en-
cryption address the indirect access threats outlined.
There are also performance implications that need to be
taken into account when selecting a database encryption
solution.

Fig. 1 contrasts the key database encryption options.
Self-Encrypting Disks and file system encryption provide
the broadest coverage (they encrypt entire disks or file
systems), but they only protect against indirect access to

storage media. Tablespace encryption, full database en-
cryption and column encryption protect against indirect
access to both storage media and file system. Column
encryption, however, is intrusive to applications and neg-
atively affects performance. Tablespace encryption may
create a vulnerability when a DBA inadvertently moves
data from an encrypted tablespace to an unencrypted one,
or when data is held in temporary tablespaces. Therefore,
full database encryption allows organizations to imple-
ment zero-trust security without having to compromise
either on the database side or on the security side. The
design of one such solution is discussed in detail in [2]. To
give an example, consider a classical 3-tier banking appli-
cation which stores client data in its backend database. To
protect this data against indirect access, the application
would enable full database encryption for its backend
database. Using the solution discussed in [2], this can be
achieved using SQL as follows:

CREATE DATABASE <db-name> ENCRYPT

Full Database
Encryption

Tablespace
Encryption

Security

File System Encryption

Self-Encrypting Disks (SED)

Coverage

Fig. 1. Database encryption options.

4 FINE-GRAINED ACCESS CONTROL

Fine-Grained Access Control (FGAC) refers to the ability
to control access to database tables at the row level, col-
umn level, or cell level. This level of granularity ensures
users are granted only the privileges they need and is
paramount for mitigating the direct access scenarios out-
lined in Part One. However, database FGAC comes in
many forms and not all forms adequately address the
direct access threats. There are also usability implications
that need to be taken into account when selecting a data-
base FGAC solution.

Fig. 2 contrasts the database FGAC options. Database
views [3] and application-based FGAC provide most flex-

ibility in terms of expressing FGAC rules, but the security
they provide is not data-centric and can be bypassed. La-
bel-Based Access Control (LBAC) [5] is a data-centric se-
curity model where the security policy is always enforced
regardless of whether the table is accessed directly or in-
directly through a view. However, LBAC lacks in flexibil-
ity when it comes to expressing security rules outside of
the rigid No Read-Up and No Write-Down rules of Multi-
level Security (MLS) [6]. Row permissions and column
masks [4] combine the benefits of views and LABC. They
are very suitable to implementing zero-trust security. To
give an example, consider our banking application again.
Suppose that client data is stored in a table called CLI-
ENT. Further, suppose that the bank’s security policy is
such that only members of the TELLER role can see the
full account number in table CLIENT. Anyone else can
only see the last 4 digits. Using the solution discussed in
[4], this can be achieved using SQL as shown below. The
mask construct created is automatically evaluated by the
database system each time the account number column is
accessed and ensures the bank’s security policy is en-
forced.

CREATE MASK ACCOUNT _ACCESS

ON CLIENT

FOR COLUMN account RETURN

CASE WHEN
VERIFY _ROLE_FOR_USER (USER, ‘TELLER’) =1
THEN account
ELSE 'XXXX-"| | SUBSTR(ACCOUNT,5,4)

END

ENABLE;

Low Flexibility / High Security High Flexibility / High Security

Row Permissions and Column
Masks

Label-Based Access Control
(LBAC)

Security

Low Flexibility / Low Security High Flexibility / Low Security

Database Views and
Application-based FGAC

Flexibility
Fig. 2. Database FGAC options.

5 USER IDENTITY PROPAGATION IN MULTITIERED
ENVIRONMENTS

In multitiered database environments, the application
interacts with the database system using a generic user
ID. This model does not contribute to implementing zero-
trust security because the database system does not see
the actual end user identities. One major implication of
this is diminished user accountability as the database au-
dit log will only show a generic user ID with no refer-
ences to the actual end users behind the application.

Some database systems provide the notion of Applica-
tion Context to give applications the tools to propagate the
end user identity to the database system where it can be

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

used for auditing purposes [7]. In other solutions such as
the Trusted Context concept introduced in [4], a more
formal mechanism is used to allow the establishment of a
trust relationship between the database system and the
application and for the propagation of end user identities
to the database system in a controlled and secure manner.

Strategies for implementing zero-trust database securi-
ty must consider multitiered database environments to
ensure that user accountability is maintained. This may in
turn dictate the type of database system to adopt as not
all database systems necessarily provide the capabilities
to enable applications to propagate end user identities. To
give an example, let’s continue with our banking applica-
tion. To ensure that the actual end user identities are
propagated to the database, the application can leverage
the trusted context concept introduced in [4]. This re-
quires the following steps:

1. The administrator creates a trusted context
object to define a trust relationship between
the application and its backend database.

2. The application establishes a trusted connec-
tion with its backend database.

3. Before issuing any request to the database on
behalf of an end user, the application switches
the current user of the connection to the new
user. This automatically propagates the end
user identity to the database where it is used
for all access control and auditing till the ap-
plication switches user again.

6 CONDITIONAL AUTHORIZATION

Traditional database authorization does not provide control
around when a particular privilege can be exercised. One
major use case where this model falls short is application
bypass. An application administrator may choose to abuse
the application credentials by accessing the database outside
the scope of the application.

Some database systems provide a capability to allow
organizations to require the database system to verify
more attributes before allowing a user to exercise their
privileges. For example, the Trusted Context concept in-
troduced in [4] addresses application bypass by requiring
the database system to authorize the application user ID
only when additional attributes have been verified.
Therefore, an application administrator who wishes to
abuse the application credentials by accessing the data-
base outside the scope of the application will find it hard
to do so.

Strategies for implementing zero-trust database securi-
ty must consider enforcing conditional authorization to
protect against privilege abuse scenarios. This may also
influence the choice of the database system to adopt as
not all database systems necessarily support conditional
authorization.

AUTHOR ET AL.: TITLE

7 CONCLUSIONS

Databases contain enterprises most critical data and are the
subject of attacks by both insiders and outsiders. Implement-
ing zero-trust database security is therefore paramount to
protect critical data. While user authentication, Transport
Layer Security and auditing are standard practices and are
usually implemented adequately by most organizations, the
indirect and direct threats outlined in this paper require care-
ful thinking including the choice of the database system to
adopt. Table 1 summarizes the indirect and direct threats we
outlined together with the security best practices to address
them and enable adherence to zero-trust security.

TABLE 1
IMPLEMENTING ZERO-TRUST DATABASE SECURITY
Threat Threat | Security best practice
type
File system | Indirect | Full database encryption
access
Storage media | Indirect | Full database encryption
access
Privilege abuse | Direct | - Separation of duties
- Fine-Grained Access Con-
trol (FGAQ)
Application Direct | Conditional authorization
bypass
Loss of end | Direct | User identity propagation
user identity in
multitiered
environments
REFERENCES

[1] Verizon,
https:/ /www.knowbe4.com /hubfs/rp DBIR 2017 Report exe

csummary en xg.pdf, 2017.
[2] W. Rjaibi, “Holistic Database Encryption”, Proc. International Confer-

ence on Security and Cryptography, 2018.

[3] R. Elmasri, S. Navathe, Fundamentals of Database Systems 6™.
Addison-Wesley, 2010.

[4] W.Rjaibi, M. Hammoudeh, " Fine-Grained Database Authoriza-
tion and User Identity Propagation in Multitiered Environ-

ments", IEEE Trans. On Knowledge and Data Engineering, submit-
ted for publication (Pending evaluation), 2019.

[5] W. Rjaibi, P. Bird, “A Multi-Purpose Implementation of Mandatory
Access Control in Relational Database Management Systems”, Proc.
International Conference on Very Large Data Bases, 2004.

[6] W. Rjaibi, “An introduction to multilevel secure relational da-
tabase management systems”, Proc. The conference of the Centre
for Advanced Studies on Collaborative research (CASCON), 2004.

[7] Oracle, “Defense-in-Depth Database Security for On-Premises

Cloud

https:/ /www.oracle.com/technetwork / database / security / sec

urity-compliance-wp-12¢-1896112.pdf., 2019.

and Databases”,

\Walid Rjaibi is Distinguished Engineer and Chief
Technology Officer (CTO) for Data Security with IBM in Toronto,
Canada. Prior to his current role, Walid was Research Staff Member
in network security and cryptography with IBM Research in Zurich,
Switzerland. Walid’s work on Data Security has resulted 26 granted
patents and several publications in journals and conference proceed-
ings such as the IDUG solutions journal, the international conference
on security and cryptography (SECRYPT), the international confer-
ence on data engineering (ICDE), and the international conference
on Very Large Databases (VLDB).

Mohammad Hammoudeh is the Head of the
CfACS loT Laboratory and a Reader in Future Networks and Securi-
ty with the Department of Computing and Mathematics, Manchester
Metropolitan University. He has been a researcher and publisher in
the field of big sensory data mining and visualization. He is a highly
proficient, experienced, and professionally certified cybersecurity
professional, specializing in threat analysis, and information and
network security management. His research interests include highly
decentralized algorithms, communication, and cross-layered solu-
tions to Internet of Things, and wireless sensor networks.

Appendix C: Mandatory Access Control Portfolio

Table C.1 — Research Papers

Computer Science and Software

Engineering

ID Publication Key Contributions

1 A Multi-Purpose Implementation of | - Design of a mandatory access control solution for
Mandatory Access Control in | database systems which addresses the limitations of
Relational Database Management | traditional Multilevel Security (MLS).

Systems
- Enable organizations to adhere to zero-trust security.
Very Large Databases (VLDB)
Conference - Implementation of the solution in IBM DB2 for Linux,
Unix and Windows, and Informix.

2 Inter-Node Relationship Labeling: | - Design of a solution which improves over traditional
A Fine-Grained XML Access | node-based XML access control approaches, by
Control Implementation Using | considering inter-node relationships as the control
Generic Security Labels granularity.

International conference on security | - Enable databases to extend fine-grained authorizations
and cryptography (SECRYPT) to XML columns in database tables.
- Enable organizations to meet privacy requirements and
adhere to zero-trust security.

3 An Introduction to Multilevel | Survey and critique of traditional implementations of
Secure Relational Database | mandatory access control in database systems (i.e.,
Management Systems MLS).

International Conference on

101

A Multi-Purpose Implementation of Mandatory Access
Control in Relational Database Management Systems

Walid Rjaibi

Paul Bird

IBM Toronto Software Laboratory
8200 Warden Avenue
Markham, Ontario
Canada
{wrjaibi, pbird}@ca.ibm.com

Abstract

Mandatory Access Control (MAC) implemen-
tations in Relational Database Management
Systems (RDBMS) have focused solely on
Multilevel Security (MLS). MLS has posed
a number of challenging problems to the
database research community, and there has
been an abundance of research work to ad-
dress those problems. Unfortunately, the use
of MLLS RDBMS has been restricted to a few
government organizations where MLS is of
paramount importance such as the intelligence
community and the Department of Defense.
The implication of this is that the investment
of building an MLS RDBMS cannot be lever-
aged to serve the needs of application domains
where there is a desire to control access to ob-
jects based on the label associated with that
object and the label associated with the sub-
ject accessing that object, but where the label
access rules and the label structure do not nec-
essarily match the MLS two security rules and
the MLS label structure. This paper intro-
duces a flexible and generic implementation of
MAC in RDBMS that can be used to address
the requirements from a variety of application
domains, as well as to allow an RDBMS to ef-
ficiently take part in an end-to-end MAC en-
terprise solution. The paper also discusses the
extensions made to the SQL compiler compo-
nent of an RDBMS to incorporate the label

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1010

access rules in the access plan it generates for
an SQL query, and to prevent unauthorized
leakage of data that could occur as a result of
traditional optimization techniques performed
by SQL compilers.

1 Introduction

Mandatory Access Control (MAC) is a means of re-
stricting access to objects based on the sensitivity
(as represented by a label) of the information con-
tained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such
sensitivity[8]. A well-known implementation of MAC
is Multilevel Security (MLS), which, traditionally, has
been available mainly on computer and software sys-
tems deployed at highly sensitive government organi-
zations such as the intelligence community or the U.S.
Department of Defense. The Basic model of MLS was
first introduced by Bell and LaPadula[9]. The model
is stated in terms of objects and subjects. An object is
a passive entity such as a data file, a record, or a field
within a record. A subject is an active process that
can request access to objects. Every object is assigned
a classification, and every subject a clearance. Classi-
fications and clearances are collectively referred to as
labels. A label is a piece of information that consists of
two components: A hierarchical component and a set
of unordered compartments. The hierarchical compo-
nent specifies the sensitivity of the data. For example,
a military organization might define levels Top Secret,
Secret, Confidential and Unclassified. The compart-
ments component is nonhierarchical. Compartments
are used to identify areas that describe the sensitivity
or category of the labeled data. For example, a mili-
tary organization might define compartments NATO,
Nuclear and Army. Labels are partially ordered in
a lattice as follows: Given two labels L; and Lo,
Ly >= Lo if and only if the hierarchical component
of L; is greater than or equal to that of Ly, and the

compartment component of L1 includes the compart-
ment component of Ly. L; is said to dominate L.
MLS imposes the following two restrictions on all data
accesses:

e The Simple Security Property or “No Read Up”:
A subject is allowed a read access to an object
if and only if the subject’s label dominates the
object’s label.

e The *-Property (pronounced the star property) or
“No Write Down”: A subject is allowed a write
access to an object if and only if the object’s label
dominates the subject’s label.

1.1 Problem Statement

MAC implementations in Relational Database Man-
agement Systems (RDBMS) have focused solely on
MLS. MLS has posed a number of challenging prob-
lems to the database research community, and there
has been an abundance of research work to address
those problems. There has also been three commercial
MLS RDBMS offerings, namely, Trusted Oracle[16],
Informix OnLine/Secure[17], and Sybase Secure SQL
Server[20]. Unfortunately, the use of MLS RDBMS
has been restricted to a few government organizations
where MLS is of paramount importance such as the in-
telligence community and the Department of Defense.
In fact, very few commercial organizations need such
type of security. The implication of this is that the in-
vestment of building an MLS RDBMS cannot be lever-
aged to serve the needs of application domains where
there is a desire to control access to objects based on
the label associated with that object and the label as-
sociated with the subject accessing that object, but
where the label access rules and the label structure
do not necessarily match the MLS two security rules
and the MLS label structure (i.e., a hierarchical com-
ponent and a set of unordered compartments). The
question that begs to be asked is therefore the follow-
ing: Do such application domains exist and, if so, what
are they?

We contend that the answer to that question is an
unequivocal yes. Privacy[19] is one example of such
application domain. Generally, a privacy policy indi-
cates for which purposes an information is collected,
whether or not it will be communicated to others,
and for how long that information is retained before
it is discarded. For example, a user cannot access a
customer record for the purpose of sending that cus-
tomer marketing information if that customer did not
agree to receive such information. Access to privacy-
sensitive data can be regarded as analogous to access
to MLS data in the sense that in both cases there is
a tag associated with the object being accessed and
the subject accessing that object. The tag represents
a “purpose” in the case of the former and represents

1011

a “security label” in the case of the latter. Unfor-
tunately, a MAC implementation in an RDBMS that
strictly implements MLS fails to address privacy re-
quirements for the following two main reasons. First,
MLS labels include a hierarchical component that is
not applicable in the case of privacy. Next, the MLS
security properties do not apply in the context of pri-
vacy. For example, to read an object in MLS, the
subject’s compartment component must include that
object’s compartment component (the simple security
property). In privacy, the rule is exactly the opposite.
That is, if an object is tagged with the purposes mar-
keting and purchase, then a user accessing that object
for the purpose of sending marketing information must
be allowed to access that object.

Another application domain is private banking. In
private banking, country laws and regulations often re-
quire to limit the amount of data that can be viewed
by a bank employee. For example, Swiss banking laws
do not allow a Swiss bank employee located in Toronto
to access account information for customers based in
Switzerland. Typically, banking applications code this
fine-grained access control in the application itself, as
opposed to delegating this task to the RDBMS. Un-
fortunately, this application-aware approach has made
enterprise security policies a laborious and complex
task. It also has the drawback of exposing the secu-
rity policies to the application programmers. If each
customer account is tagged with a label indicating the
geographical location of the customer and if each bank
employee can be assigned a label that also indicates
the geographical location of that employee (for exam-
ple, based on the system security context established
when that employee logs on to the database), then an
RDBMS that implements a form of MAC where the
database administrator could define the label struc-
ture and the label access rules could relieve the ap-
plications from implementing such fine-grained access
control policies.

Moreover, the ever increasing enterprise demands
for more security has led to the emergence of label
security products that provide the ability to set up
and control access based upon labels throughout an
entire network from end-to-end. For example, such la-
bel security products have the ability to control the
network to decide whether or not a particular labeled
data row can be transmitted on a particular channel
or be delivered to a particular workstation on that net-
work. An important advantage of such label security
products is their ability to offer a centrally managed
tool for defining label access policies and for assign-
ing access labels to users as well as to other entities
on the network. Traditional implementations of MAC
in RDBMS (i.e., MLS) do not offer the required flex-
ibility to efficiently integrate with such label security
products and to provide pervasive system coverage us-
ing a unified and centrally managed label access policy.

Therefore, there is a need for a flexible and generic
implementation of MAC in RDBMS that can be used
to address the requirements from a variety of appli-
cation domains, including those of MLS, and to ef-
ficiently take part in an end-to-end MAC enterprise
solution.

1.2 Contributions

The contributions made in this paper can be summa-
rized as follows:

1. A methodology to define labels and to set up a
database table such that access to a row in that
table is based upon the label associated with that
row and the label associated with the user access-
ing that row. More specifically, the methodology
introduces a number of extensions to SQL that
would allow a database administrator to:

e Define label types

e Define label access rules and exceptions to
them

e Assign labels and exceptions to database
users

e Attach a label type and a set of label access
rules to a database table

2. Extensions to the SQL compiler component of an
RDBMS to:

e Incorporate the label access rules in the ac-
cess plan it generates for an SQL query

e Prevent unauthorized leakage of data that
could occur as a result of traditional opti-
mization techniques performed by SQL com-
pilers

3. Extensions to the runtime processor component
of an RDBMS to enforce label access rules

4. A method to allow an RDBMS to efficiently take
part in an end-to-end MAC enterprise solution

1.3 Synopsis

Section 2 gives a brief survey of MAC implementations
in RDBMS. Section 3 introduces our methodology for
defining labels and for setting up a database table such
that access to a row in that table is based upon the
label associated with that row and the label associated
with the user accessing that row. Section 4 presents
our extensions to the SQL compiler component of an
RDBMS to incorporate the label access rules in the ac-
cess plan it generates for an SQL query, and to prevent
unauthorized leakage of data that could occur as a re-
sult of traditional optimization techniques performed
by SQL compilers. Section 5 describes our extensions
to the methodology introduced in section 3 in order to

allow an RDBMS to efficiently take part in an end-to-
end MAC enterprise solution. Lastly, section 6 sum-
marizes our results and discusses future work.

2 Related Work

MAC implementations in Relational Database Man-
agement Systems have focused solely on MLS, which
is of paramount importance to a few government or-
ganizations such as the intelligence community or the
Department of Defense. In fact, there has been an
abundance of research within the last two decades or
so in the area of multilevel secure relational databases.
The results of such research can be divided into three
broad areas as follows.

2.1 Multilevel Secure Relational Database
Models

The Sea View model[1] was the pioneering formal mul-
tilevel secure relational database designed to provide
mandatory access control. It extended the concept of
a database relation to include the security labels. A
relation that is extended with the security labels is
called a multilevel relation. The Sea View model also
coined the concept of polyinstantiation, which refers to
the simultaneous existence of multiple tuples with the
same primary key, where such tuples are distinguished
by their security labels. In order to avoid covert chan-
nels, subjects with different security labels are allowed
to operate on the same database relation through
the use of polyinstantiation[l]. The Jajodia-Sandhu
model[2] was derived from the Sea View model. It
was shown in [3] that the Sea View model can re-
sult in the proliferation of tuples on updates and the
Jajodia-Sandhu model addresses this drawback. The
Smith-Winslett model[4] was the first model to exten-
sively address the semantics of an MLS database. The
MLR model[5] is based on the Jajodia-Sandhu model,
and also integrates the belief-based semantics of the
Smith-Winslett model. It was shown in [7] that all the
aforementioned models can present users with some
information that is difficult to interpret. The BCMLS
model[6] addresses those concerns by including the se-
mantics of an unambiguous interpretation of all data
presented to the users.

2.2 Multilevel Secure RDBMS Architectures

Multilevel secure RDBMS architectures schemes can
be divided into two general categories: The Trusted
Subject architecture and the Woods Hole architec-
tures.

The Trusted Subject architecture[10] is a scheme
that contains a trusted RDBMS and a trusted oper-
ating system. The RDBMS is custom-developed to
include all the required security rules, but uses the as-
sociated trusted operating system to make actual disk
data accesses. A benefit of this scheme is that the

1012

RDBMS has access to all levels of data at the same
time, which minimizes retrieval and update process-
ing. However, this scheme results in a special purpose
RDBMS that requires a large amount of trusted code
to be developed and verified along with the normal
RDBMS features.

The Woods Hole architectures assume that an un-
trusted off-the-shelf RDBMS is used to access data and
that trusted code is developed around that RDBMS
to provide an overall secure RDBMS. They can be di-
vided into two main categories: The kernelized archi-
tectures and the distributed architectures[10, 11].

The kernelized architecture scheme uses a trusted
operating system and multiple copies of the RDBMS,
where each copy is associated with some trusted front-
end. Each pair (trusted front-end, RDBMS) is asso-
ciated with a particular security level. The trusted
operating system ensures that data at different secu-
rity levels is stored separately, and that each copy of
the RDBMS gets access to data that is authorized for
its associated security level. A benefit of this scheme
is that data at different security levels is isolated in
the database, which allows for higher level assurance.
However, this scheme results in an additional over-
head as the trusted operating system needs to separate
data at different security levels when it is added to the
database and might also need to combine data from
different security levels when data is retrieved by an
RDBMS copy that is associated with a high security
level.

The distributed architecture scheme uses multiple
copies of the trusted front-end and RDBMS, each as-
sociated with its own database storage. In this archi-
tecture scheme, an RDBMS at security level [contains
a replica of every data item that a subject at level [
can access. Thus, when data is retrieved, the RDBMS
retrieves it only from its own database. Another ben-
efit of this architecture is that data is physically sepa-
rated into separate hardware databases. However, this
scheme results in an additional overhead when data is
updated as the various replicas need to be kept in sync.

2.3 Multilevel Secure Transaction Processing

Although the two MLS security properties described
above prevent direct legal flow of information from a
security level to another nondominated security level,
they are not sufficient to ensure that security is not
compromised since it could be possible for leakage
of information to occur through indirect means via
covert channels. A covert channel can easily be es-
tablished with conventional concurrency control algo-
rithms such as two-phase locking (2PL) and times-
tamp ordering (TO). In both 2PL and TO algorithms,
whenever there is contention for the same data item
by transactions executing at different security levels,
a lower level transaction may be either delayed or sus-
pended to ensure correct execution. In such a scenario,

two colluding transactions executing at high and low
security levels can establish an information flow chan-
nel from a high security level to a low security level
by accessing the selected data item according to some
agreed-upon code[12].

Considerable effort has been devoted to the de-
velopment of efficient, secure algorithms for the ma-
jor schemes of RDBMS architectures described above.
In [13], Keefe et al. present a formal frame-
work for secure concurrency control in multilevel
databases. Lamport[14] offers solutions to the secure
readers/writers problem. While these solutions are se-
cure, they do not yield serializable schedules when ap-
plied to transactions, and they suffer from the prob-
lem of starvation, i.e., transactions that are reading
data items at a low security level may be delayed
indefinitely[18]. In [15], Ammann and Jajodia offer
two timestamp-based algorithms that yield serializable
schedules, but both suffer from starvation. On the
commercial secure RDBMS side, both Trusted Oracle
RDBMS|16] and Informix OnLine/Secure RDBMSJ17]
offer concurrency control solutions that are free from
covert channels.

3 Methodology for Setting up MAC in
an RDBMS

The methodology we propose allows a database ad-
ministrator to define labels and to set up a database
table such that access to a row in that table is based
upon the label associated with that row and the la-
bel associated with the user accessing that row. More
specifically, the methodology allows the database ad-
ministrator to:

e Define label types
e Define label access rules and exceptions to them
e Assign labels and exceptions to database users

e Attach a label type and a set of label access rules
to a database table

We now introduce our extensions to SQL to imple-
ment this methodology. The goal of this exercise is
not to describe the blueprint for the implementation.
Rather, we will focus on the new SQL concepts that
must be implemented to support such methodology.
Also, we have chosen not to overload the paper with
the details of the exact syntax of the SQL extensions
proposed, as we believe that such level of details is
more appropriate for a standardization proposal to the
SQL standard committee. However, we will illustrate
the syntax and the concepts introduced via examples.

3.1 Label Component

A label component is a database entity that can be
created, altered and dropped. It is introduced as a

1013

building block for labels (i.e., a label is composed of
one or more label components). The label component
definition specifies the set of valid elements for that
label component. This set of elements can be either
ordered or unordered (the default). In an ordered set,
the order in which the elements appear is important:
The rank of the first element is higher than the rank
of the second element, the rank of the second element
is higher than the rank of the third element, and
so on. To allow database administrators to create,
alter and drop label components, we introduce the
CREATE, ALTER and DROP label component SQL
statements. The CREATE LABEL COMPONENT
SQL statement creates a label component that can
be used to define a label type. The ALTER LABEL
COMPONENT SQL statement permits to add or
drop an element to/from a label component. The
DROP LABEL COMPONENT SQL statement drops
a label component.

Example 1

The following SQL statement creates a label compo-
nent called level and specifies the set of valid values
for this label component.

CREATE LABEL COMPONENT level

OF TYPE varchar(15)

USING ORDERED SET

{“TOP SECRET”, “SECRET”, “CLASSIFIED” }

The following SQL statement creates a label com-
ponent called compartments and specifies the set of
valid values for this label component. Note that the
set specified is unordered.

CREATE LABEL COMPONENT
compartments OF TYPE varchar(15)
USING SET

{“NATO”, “NUCLEAR”, “ARMY”}

The following SQL statement adds a new ele-
ment to the level component and specifies the rank of
this new element within the ordered set.

ALTER LABEL COMPONENT level
ADD ELEMENT “UNCLASSIFIED”
AFTER “CLASSIFIED”

The following SQL

component.

statement drops the level

DROP LABEL COMPONENT level

3.2 Label Type

The relationship between a label and a label type
is analogous to the relationship between a data row

and a table schema. As the table schema defines
the set of columns that make up a data row, so the
label type defines the set of label components that
make up a label. To allow database administrators
to create, alter and drop label types, we introduce
the CREATE, ALTER and DROP label type SQL
statements. The CREATE LABEL TYPE creates a
label type by specifying the label components that
make up such label type. The ALTER LABEL TYPE
alters the definition of a label type by adding or
dropping a label component to/from that label type.
The DROP LABEL TYPE SQL statement drops a
label type.

Example 2

The following SQL statement creates a label type
called MLS and specifies its label components.
Note the keyword MULTIVALUED next to the
compartments component. This indicates that the
compartments component can have more than a
single value at a time. This keyword can only be
specified for label components based on an unordered
set (section 3.4 explains the reason behind this choice).

CREATE LABEL TYPE MLS
COMPONENTS level,
compartments MULTIVALUED
The following SQL statement drops the level
component from label type MLS.

ALTER LABEL TYPE MLS DROP level

The following SQL statement drops the MLS la-
bel type.

DROP LABEL TYPE MLS

3.3 Access Labels and Row Labels

We distinguish two types of labels: Access labels and
row labels. Access labels are created and assigned to
database users, which, in conjunction with the label
access rules (section 3.4), determine which labeled
rows these users have access to. To allow database
administrators to create, drop, grant and revoke
access labels, we introduce the CREATE, DROP,
GRANT and REVOKE access label SQL statements.
The CREATE ACCESS LABEL SQL statement
creates an access label based on an existing label type.
The GRANT ACCESS LABEL SQL statement grants
an access label to a database user. The REVOKE
ACCESS LABEL SQL statement revokes an access
label from a database user. The DROP ACCESS LA-
BEL SQL statement drops an access label and revokes
it from any database user to whom it has been granted.

1014

Example 3

The following SQL statement creates an access
label.

CREATE ACCESS LABEL 14
OF LABEL TYPE MLS
level “SECRET”, compartments “NATO”

The following SQL statement grants access label
L4 to database user Joe.

GRANT ACCESS LABEL L,
TO USER Joe

The following SQL statement revokes access la-
bel L from database user Joe.

REVOKE ACCESS LABEL L,
FROM USER Joe

The following SQL statement drops access label
L.

DROP ACCESS LABEL L,

A row label labels a data row in a database ta-
ble. To allow database users to provide a row label
when inserting or updating a row in a database table,
we introduce the ROWLABEL function. ROWLA-
BEL is a means of providing the label value of a data
TOw.

Example 4

The following INSERT SQL statement shows how the
row label can be provided using the ROWLABEL
function. The statement inserts a row into a database
table called T1 having two columns A and B both of
type integer. We assume that rows in table T1 are
labeled with a label of label type MLS defined above.

INSERT INTO T1 VALUES
(ROWLABEL(“SECRET”, “NATO"), 1, 2)

The following SQL statement shows how the
ROWLABEL function can be used to update the level
component of the row label for the row inserted above.

UPDATE T1 SET
ROWLABEL(level) = “TOP SECRET”
WHERE A = 1 AND B = 2

3.4 Label Access Policy

A label access policy defines the label access rules that
the RDBMS evaluates to determine whether or not a
database user is allowed access to a labeled data row in

1015

a database table. Access rules can be divided into two
categories: Read access rules and write access rules.
Read access rules are applied by the RDBMS when
a user attempts to read a labeled data row (e.g., a
SELECT statement). The RDBMS applies the write
access rules when a user attempts to insert, update or
delete a labeled data row. In both cases, an access rule
is a predicate that puts together the same component
from an access label and a row label and an operator
as follows:

Access Label component-name
<operator>
Row Label component-name

The type of operator allowed depends on the
label component. For label components based on
an ordered set, the operator can be any of the
relational operators {=, <=, <, >, >=,!=}. For label
components based on an unordered set, the operator
must be one of the set operators {IN, INTERSECT}.
Recall from section 3.2 that a label component based
on an unordered set can be multivalued. That is,
it can contain more than a single value at a time.
Thus, when comparing multivalued label components
we are actually comparing data sets. This is the
reason why the operators supported are set operators,
i.e., inclusion and intersection. Obviously, certain
RDBMS could choose to support additional operators
but we contend that the ones given above would
be the most commonly used. To allow database
administrators to create, alter and drop label policies,
we introduce the CREATE, ALTER and DROP
label policy SQL statements. The CREATE LABEL
POLICY SQL statement creates a label access policy
for a given label type by specifying one or more read
access rules and one or more write access rules. The
ALTER LABEL POLICY SQL statement permits the
addition or dropping an access rule to/from a label
access policy. The DROP LABEL SQL statement
drops a label access policy.

Example 5

The following SQL statement creates a label ac-
cess policy that implements the two MLS properties
introduced in section 1 above (i.e., “No Read Up”
and “No Write Down”).

CREATE LABEL POLICY mls-policy
LABEL TYPE MLS
READ ACCESS RULE rulel
ACCESS LABEL level >= ROW LABEL level
READ ACCESS RULE rule2
ROW LABEL compartments IN
ACCESS LABEL compartments
WRITE ACCESS RULE rulel
ACCESS LABEL level <= ROW LABEL level

WRITE ACCESS RULE rule2
ACCESS LABEL compartments IN
ROW LABEL compartments

The following SQL statement drops read access
rule rule2 from label access policy mls-policy.

ALTER LABEL POLICY mls-policy
DROP READ ACCESS RULE rule2

The following SQL statement drops label access
policy mls-policy.

DROP LABEL POLICY mls-policy

3.5 Exceptions

Exceptions are introduced to provide the flexibility
for some database users to bypass one or more access
rules. For example, in an MLS context, it is often
the case that some special users are allowed to write
information to lower security levels even though
this is in contradiction with the *-security property.
Thus, exceptions are introduced to allow the database
administrator to grant a database user an exception
to bypass one or more access rules in a particular
label access policy. To allow database administrators
to grant and revoke exceptions, we introduce the
GRANT and REVOKE exception SQL statements.
The GRANT EXCEPTION SQL statement grants
a database user an exception to bypass one or more
access rules in a label access policy. The REVOKE
EXCEPTION SQL statement revokes a previously
granted exception from a database user.

Example 6

The following SQL statement grants an excep-
tion to database user Joe so that he can bypass the
write access rules in label access policy mls-policy.

GRANT EXCEPTION

ON WRITE ACCESS RULE rulel, rule2
FROM LABEL POLICY mls-policy

TO USER Joe

The following SQL statement revokes the above
exception from user Joe.

REVOKE EXCEPTION

ON WRITE ACCESS RULE rulel, rule2
FROM LABEL POLICY mls-policy
FROM USER Joe

3.6 Labeled Tables

A labeled table is a database table that contains
labeled data rows. When the database administrator

1016

creates a labeled table he/she specifies the label type
and the label access policy to be used for that table.
The label type determines the structure of the label
to be used to label the table’s data rows and the label
access policy determines the access rules to be used
for enforcing access to that labeled table. To allow
database administrators to create labeled tables, we
extend the CREATE TABLE SQL statement by a
new optional clause to specify the label type and the
label access policy.

Example 7

The following SQL statement creates a database
table T1 and specifies the label type and the la-
bel access policy. Note that in our examples so
far we have used MLS-like label types and label
access policies because they are well understood
by the database research community. But it is
obvious that one can follow the methodology given
in this paper to define any label type and any la-
bel access policy, and attach them to a database table.

CREATE TABLE T1 (A integer, B integer)
LABEL TYPE MLS
LABEL POLICY mls-policy

When creating such table, the RDBMS internally
adds a third column to store the label associated with
each row in this table. The choice of the column’s
type depends on the label type. For example, if the
label type is made up of a single component of type,
say varchar(15), then the column’s type would be
varchar(15). If the label type is made up of more
than a single column then the column’s type must
be an Abstract Data Type (ADT). ADTs have been
introduced in SQL’99[21] and are supported by most
commercial RDBMS. Alternatively, the RDBMS
could choose not use an ADT and store the different
label components in separate columns.

4 Extensions to the SQL Compiler
Component in an RDBMS

When a labeled table is accessed, the RDBMS needs
to enforce two levels of access control. The first level
is the traditional Discretionary Access Control (DAC)
which is implemented by all commercial RDBMS|[21].
That is, the RDBMS verifies whether the user at-
tempting to access the table has been granted the re-
quired privilege to perform the requested operation on
that table. A discussion of this level of access con-
trol is beyond the scope of this paper. The second
level is MAC. That is, for each data row accessed, the
RDBMS verifies whether the user is allowed access to
that row based on the label associated with the row
and the user’s access label.

4.1 Enforcing MAC on Labeled Tables

There are two possible ways that MAC can be enforced
when a labeled table is accessed. The first possibility is
for the SQL compiler to modify any query that refers
to a labeled table in order to incorporate the access
rules from the label access policy associated with that
table in the form of regular predicates. Next, the SQL
compiler compiles the modified query and generates an
access plan for the query in the normal fashion. The
main advantage of such an approach is its simplicity.
However, it has a major drawback: The access plan
generated for a query that refers to a labeled table
cannot be reused by other users because it is depen-
dent on the access label of the user who issued the
query. Note that some commercial RDBMS cache the
access plan generated for an SQL query so that it can
be reused the next time the SQL query is submitted.
This has some performance benefits as it eliminates
the need to recompile the query. Another drawback of
this approach is that it could result in unauthorized
leakage of data if special care is not taken by the SQL
compiler. This will be detailed further in section 4.2.

The second possibility is to not modify a query that
refers to a labeled table. Rather, the SQL compiler
inserts logic into the access plan that implements the
access rules from the label access policy associated
with any labeled table referred to in the query. Thus,
when the access plan is executed, the access rules from
the label access policy associated with a labeled table
are evaluated for each data row when that labeled
table is accessed. The general processing algorithm to
be inserted in the access plan for a labeled table is as
follows.

Begin
Fetch the user’s access label (e.g., from a
system catalog table)
if (SELECT access)
{

for each row accessed

{

if (read access rules do not permit access)

{

}
}

Skip row

}

else

{
// INSERT, UPDATE, or DELETE access
for each row

{
if (INSERT or UPDATE)

{
if (the row label provided is not valid with
respect to the label type associated with
the labeled table)

1017

Reject INSERT or UPDATE
}
if (write access rules do not permit access)
Reject INSERT, UPDATE or DELETE

}
End

This second approach addresses the two shortcomings
of the previous approach (1.e., query modification).
That is, it allows the cached access plan to be reused
because the access label of the user who issued the
query is acquired at runtime, and it is more secure as
it will be demonstrated in section 4.2.

4.2 Predicates Evaluation Sequence

SQL compilers have traditionally been guided by per-
formance reasons in selecting the order in which the
predicates contained in a query are evaluated. For ex-
ample, more selective predicates are often evaluated
first to narrow down the set of rows to be passed on to
a subsequent join because join operations are costly. If
the method chosen to enforce MAC on a labeled table
is based on query modification to incorporate the ac-
cess rules in the form of regular predicates, then special
care must be taken in selecting the order in which the
predicates on that table are evaluated to avoid unau-
thorized leakage of labeled data rows. For example,
suppose that a query has a predicate on a labeled ta-
ble that involves a User-Defined Function (UDF). Fur-
ther suppose that this UDF takes the whole data row
as an input parameter and that the UDF source code
makes a copy of the data row outside the database (or
sends it as an e-mail to some destination). Now, sup-
pose that some data row R cannot be returned to the
user who issued the query because this would violate
the access rules from the label access policy associated
with this labeled table. If the predicate involving the
UDF is evaluated prior to evaluating the predicates
that implement the access rules then data row R will
be consumed by the UDF and consequently leaked to
an unauthorized user.

If the RDBMS chooses the query modification
method to enforce MAC on a labeled table, then it
must ensure that the predicates that implement the
access rules are evaluated before any other predicate
so that no labeled row leakage could occur. The alter-
native approach that is not based on query modifica-
tion evaluates the access rules immediately after the
row is accessed, and before any predicate is evaluated.
It is therefore more secure than the query modification
approach. It also allows the SQL compiler to continue
to select the order in which predicates are evaluated
in the usual way.

4.3 Index-Only Access Methods

When selecting an access plan, SQL compilers choose
between three methods of accessing the data in a
database table: Scanning the entire table sequentially,
locating specific table rows by first accessing an index
on the table, or accessing just an index on the table
if all the required columns are part of the index key.
This latter method is known as index-only access. SQL
compilers usually rely on the statistics available about
the table and the indices to choose between those three
access methods. If an index only plan is selected then
the label column is not available and therefore the ac-
cess rules from the label access policy associated with
the table cannot be evaluated. MLS RDBMS extended
the primary key on an MLS relation with the secu-
rity label column in order to allow the simultaneous
existence of multiple tuples with the same (non ex-
tended) primary key (i.e., polyinstantiation)[l]. We
borrow this idea from the MLS work to extend every
index created on a labeled table (including the primary
key) with the row label column(s). This would allow
SQL compilers to continue to choose index only access
methods when this is appropriate, and for the access
rules from the label access policy associated with the
table on which the index is created to be evaluated.

5 Methodology for an End-to-end
MAC Enterprise Solution

The ever-increasing enterprise demands for more secu-
rity has led to the emergence of label security products
that provide the ability to set up and control access
based upon labels throughout an entire network from
end to end. For example, such label security prod-
ucts have the ability to control the network to decide
whether or not a particular labeled data row can be
transmitted on a particular channel or be delivered to
a particular workstation on that network. Cryptek[22]
is an example of such a label security product. An
important advantage of such label security products is
their ability to offer a centrally managed tool for defin-
ing label access policies and for assigning access labels
to users as well as to other entities on the network.
We contend that a MAC implementation in RDBMS
should offer the flexibility to integrate with a label se-
curity product for the following reasons:

1. Eliminate the need for the system administrator
to define the label access rules in more than a
single location (i.e., both in the RDBMS and in
the label security product)

2. Eliminate the need for the system administrator
to assign access labels to users in more than a
single location

3. Allow the access to a labeled data row in the
database to be based on more sophisticated la-

1018

bel access rules that a particular implementation
of MAC in an RDBMS may not allow to express

We will now show how the methodology described
earlier in this paper could be extended to allow an
RDBMS to take part in such an end-to-end MAC
scheme by providing the flexibility to integrate with
a label security product.

5.1 Integration Approach

Recall from section 3.6 that we have extended the
CREATE TABLE SQL statement with an optional
clause to specify the label type and the label access
policy. We further extend this SQL statement such
that the LABEL POLICY clause could either specify
the name of a label access policy defined within the
RDBMS, or a label access policy defined externally
to the RDBMS (i.e., within a label security product).
The keyword EXTERNAL is introduced to support
this latter possibility as shown below.

CREATE TABLE T1 (A integer, B integer)
LABEL TYPE some-label-type
LABEL POLICY EXTERNAL

When a data row in such a table is accessed,
the RDBMS needs to supply the ID of the user
making the access together with the data row label
and the table name to the label security product
through a well-defined interface. The label security
product evaluates the label access rules based on the
information received from the RDBMS and returns a
response to the RDBMS through that same interface.
The response could be a Boolean flag indicating
whether or not the access should be allowed.

The SQL compiler will now need to take into
account where the label access rules are defined when
inserting logic into an access plan to enforce MAC on
a labeled table. Thus, a more general description of
the algorithm to be inserted in the access plan for a
labeled table is as follows.

Begin
if (policy defined within RDBMS)
{

Fetch the user’s access label (e.g., from a
system catalog table)

if (SELECT access)
for each row accessed
{
if (policy defined within RDBMS)

if (read access rules do not permit access)

Skip row

}
}
else
{
response = callLabelSecurityProduct(userid,
rowlabel, table-name)
if (response is No)
{

Skip row

// INSERT, UPDATE, or DELETE access
for each row

{
if (INSERT or UPDATE)

{
if (the row label provided is not valid with
respect to the label type associated with
the labeled table)
Reject INSERT or UPDATE
}

if (policy defined within RDBMS)
{
if (write access rules do not permit access)
Reject INSERT, UPDATE or DELETE
}

else
{
response = callLabelSecurityProduct
(userid, rowlabel, table-name)
if (response is No)

{

}
}

Reject INSERT, UPDATE or DELETE

}

}
End

Clearly, the calls to the label security product,
which is external to the RDBMS, would cause a
performance degradation. In the next section, we
will show how this performance degradation could be
minimized.

5.2 Performance Improvement

To minimize the performance degradation that could
result from the calls to the label security product, a
caching technique could be used. Before making the
call to the label security product, the RDBMS would
first check the cache to see if a similar call was made
earlier, and if so fetches the response directly from the
cache. The cache structure could look as follows.

1019

Userid | RowLabel | Table | Access | Resp.
Joe L T Read Yes
Bob L’ T Write No

Table 1: Label security product responses cache

To ensure that the cache entries are always valid,
the label security product must signal to the RDBMS
through a well-defined interface any changes to the la-
bel access rules associated with a database table, or to
the access labels assigned to a database user. When
such a signal is received, the RDBMS invalidates the
cache entries that are affected by the change in la-
bel access rules or user access labels. For example,
if the label access rules associated with table T have
changed, then all cache entries for table T must be in-
validated. Similarly, if the access label for user Joe has
changed or has been revoked, then all cache entries for
user Joe must be invalidated.

6 Conclusion and Future Directions

This paper has introduced a flexible and generic im-
plementation of MAC in RDBMS that can be used to
address the requirements from a variety of application
domains, as well as to allow an RDBMS to efficiently
take part in an end-to-end MAC enterprise solution.
This implementation differs from traditional MAC im-
plementations in RDBMS, which have focused solely
on MLS, and thus cannot be leveraged to serve the
needs of application domains where there is a desire
to control access to objects based on the label asso-
ciated with that object and the label associated with
the subject accessing that object, but where the label
access rules and the label structure do not necessarily
match the MLS two security rules and the MLS label
structure (i.e., a hierarchical component and a set of
unordered compartments). Moreover, such implemen-
tations do not offer the flexibility to integrate with an
external label security product and therefore cannot
take part in an end-to-end MAC enterprise solution.

There are a number of additional problems re-
lated to implementing a generic MAC solution in an
RDBMS that have not been addressed in this paper.
These will be the subject of our future work. For ex-
ample, triggers could cause labeled data rows to flow
from a labeled table to a nonlabeled table if the subject
of a trigger is a labeled table but the target of that trig-
ger is a nonlabeled table. Without proper flow control
measures, triggers could cause unauthorized leakage of
information to occur. Also, there needs to be a mech-
anism to accommodate views based on labeled tables.
For example, if a view is based on a join between two
labeled tables how would the row label of a join re-
sult row be selected. Should the RDBMS make the
decision about how to combine labels? or should the
RDBMS offer the flexibility that would allow database
administrators to provide the rules for combining two
labels from the same label type?

Acknowledgements

Some of the ideas expressed in this paper were gen-
erated when the first author was a Research Staff
Member at the IBM Zurich Research Lab (ZRL). The
first author would like to thank Dr. Michael Waidner,
manager Network Security & Cryptography, for giving
him the opportunity to start up the database security
research activity at ZRL. The first author would also
like to thank his wife Hue Phan Dam for her valuable
comments on an earlier version of this paper and for
her help with the examples.

Trademarks

IBM and Informix are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both. Other com-
pany, product and service names may be trademarks
or service marks of others.

Disclaimer

The views expressed in this paper are those of the
authors and not necessarily of IBM Canada Ltd. or
IBM Corporation.

References

[1] D. E. Denning. The Sea View Security Model. In
Proc. of the IEEE Symposium on Security and Pri-
vacy, Oakland, California, USA, 1988.

[2] S. Jajodia, R. Sandhu. Toward a Multilevel Secure
Relational Data Model. In Proc. of ACM SIGMOD,
Denver, Colorado, USA, 1991.

[3] S. Jajodia, R. Sandhu. Polyinstantiation Integrity in
Multilevel Relations. In Proc. of the IEEE Symposium
on Security and Privacy, Oakland, California, USA,
1988.

[4] K. Smith, M. Winslett. Entity Modeling in the MLS
Relational Model. In Proc. of the 18th VLDB Con-
ference, Vancouver, BC, Canada, 1992.

[5] R. Sandhu, F. Chen. The Multilevel Relational Data
Model. Transactions on Information and System Se-
curity, Vol. 1, No. 1, 1998.

[6] N. Jukic, S. V. Vrbsky. Asserting Beliefs in MLS Re-
lational Models. SIGMOD Record, Vol. 26, No. 3,
1997.

[7] N. Jukic, S. V. Vrbsky, A. Parrish, B. Dixon, B. Jukic.
A Belief-Consistent Multilevel Secure Relational Data
Model. Information Systems, Vol. 24, No. 5, 1999.

[8] Trusted Computer Security Evaluation Criteria, DoD
5200.28-STD. US Department of Defense, 1985.

[9] E. Bell, L. J. LaPadula. Secure computer systems:
Unified exposition and multics interpretation. Tech-
nical Report MTR-2997, The Mitre Corporation,
Burlington Road, Bedford, MA 01730, USA.

1020

[10] M. D. Abrams, S. Jajodia, H. J. Podell. Information
Security An Integrated Collection of Essays. [EEFE
Computer Society Press, Los Alamitos, CA, USA,
1995.

[11] S. Castano, et al. Database Security. ACM Press,
New York, NY, USA, 1995.

[12] V. Atluri, S. Jajodia, T. F. Keefe, C. MaCollum,
R. Mukkamal. Multilevel Secure Transaction Pro-
cessing: Status and Prospects. Database Security,
X: Status and Prospects, Chapman & Hall 1997, eds.
Pierangela Samarati and Ravi Sandhu.

[13] T. F. Keefe, W. T. Tsai, T. F. Keefe, J. Srivastava.
Multilevel Secure Database Concurrency Control. In
Proc. IEEE sizth International Conference on Data
Engineering, Los Angeles, CA, USA, 1990.

[14] L. Lamport. Concurrent Reading and Writing. In
Comm. ACM, Vol. 20, No. 11, 1997.

[15] P. Ammann, S. Jajodia. A Timestamp Order-
ing Algorithm for Secure, Single-Version, Multi-
level Databases. Database Security, V: Status and
Prospects, C.E. Landweher, ed., Amsterdam, Holland,
1992.

[16] Oracle Corporation. Trusted Oracle Administrator’s
Guide. Redwood City, CA, USA, 1992.

[17] Informix. Informix OnLine/Secure Administrator’s
Guide. Menlo Park, CA, USA, 1993.

[18] E. Bertino, S. Jajodia, L. Mancini, I. Ray. Ad-
vanced Transaction Processing in Multilevel Secure
File Stores. IEEFE Transactions on Knowledge and
Data Engineering, Vol. 10, No. 1, 1998.

[19] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Hippo-
cratic Databases. In Proc. of the 28th International
Conference on Very Large Databases, Hong Kong,
China, 2002.

[20] Sybase Inc. Building Applications for Secure SQL
Server, Sybase Secure SQL Server Release 10.0.
Emeryville, CA, USA, 1993.

[21] ISO/IEC 9075:1999. Information-Technology-
Database Languages-SQL-Part 1: Framework
(SQL/Framework), 1999 .

[22] Cryptek. www.cryptek.com.

INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED
XML ACCESS CONTROL IMPLEMENTATION USING GENERIC
SECURITY LABELS

Zheng Zhang
University of Toronto
Toronto, Ontario, Canada
zhzhang@cs .toronto .edu

Walid Rjaibi
IBM Toronto Software Laboratory
Markham, Ontario, Canada
wrjaibi@ca.ibm.com

Keywords:

Abstract:

Authorization-transparent, fine-grained access control, label-based access control, XML relationship labeling.

Most work on XML access control considers XML nodes as the smallest protection unit. This paper shows the

limitation of this approach and introduces an XML access control mechanism that protects inter-node relation-
ships. Our approach provides a finer granularity of access control than the node-based approaches(i.e., more
expressive). Moreover, our approach helps achieve the “need-to-know” security principle and the “choice”
privacy principle. This paper also shows how our approach can be implemented using a generic label in-
frastructure and suggests algorithms to create/check a secure set of labeled relationships in an XML document.

1 INTRODUCTION

XML has rapidly emerged as the standard for the rep-
resentation and interchange of business and other sen-
sitive data on the Web. The current trend of adding
XML support to database systems poses new secu-
rity challenges for an environment in which both re-
lational and XML data coexist. In particular, fine-
grained access control is even more necessary for
XML than for relational data, given the more flexible
and less homogeneous structure of XML data com-
pared to relational tables and rows. The additional
difficulty of controlling access over XML data com-
pared to relational data can be summarized as follows.

o The semi-structured nature of XML data, where a
schema may be absent, or, even if it is present, may
allow much more flexibility and variability in the
structure of the document than what is allowed by
a relational schema.

e The hierarchical structure of XML, which requires
specifying, for example, how access privileges to a
certain node propagate from/to the node’s ancestors
and descendants.

In almost all of the work on XML access con-
trol (Bertino and Ferrari, 2002; Damiani et al., 2002;
Fan et al., 2004), the smallest unit of protection is
the XML node of an XML document, which are
specified by XPath fragments. Access to ancestor-
descendant and sibling relationships among nodes has

not been considered. An access control policy con-
sists of positive (resp. negative) authorization rules
that grant (resp. deny) access to some nodes of
an XML document. The main difference between
XML access control models lies in privilege propa-
gation. Some (Bertino and Ferrari, 2002; Gabillon
and Bruno, 2001) forbid access to the complete sub-
tree rooted at an inaccessible node. Alternatively, if a
node is granted access while one of its ancestor nodes
is inaccessible, the ancestor node would be masked as
an empty node in the XML document (Damiani et al.,
2002). However, this makes visible the literal of the
forbidden ancestor in the path from the root to that au-
thorized node. This can be improved by replacing the
ancestor node literal by a dummy value (Fan et al.,
2004). However, this still does not solve the prob-
lem that different descendant nodes may require their
ancestor’s literal to be visible or invisible differently.
From the differences among the above models, it is
clear that defining a view that precisely describes the
path leading to an authorized node is difficult. The
question that begs to be asked is therefore the fol-
lowing: Is a node the most fine-grained entity within
an XML document upon which a fine-grained access
control model for XML is to be built?

We believe that the answer to this question is
an unequivocal NO. We contend that the path be-
tween nodes is a better alternative upon which a
fine-grained access control model for XML is to be
built (Kanza et al., 2006). In other words, we con-

Online_Seller

17843

20 Price

117539

4508

IPOD
Manufacturer @

Figure 1: A document that contains information on accounts, orders and items for an online seller.

tend that ancestor-descendent relationships and sib-
ling relationships should be considered as legitimate
elements to be protected. The main advantages of our
approach are as follows.

First of all, blocking access to a node can be ad-
dressed by blocking access to all the relationships re-
lating to the node. For example, in Figure 1, if we
want to block all access to the Account Node “202”,
we could simply block access to all the paths from
that node’s ancestors to the node and all the paths
from the node to its sibling and descendants.

Second, blocking access to relationships helps
achieve the “need-to-know” principle, one of the most
fundamental security principles. This principle re-
quires information to be accessed by only those who
strictly need the information to carry out their assign-
ments. The practice of “need-to-know” limits the
damage that can be done by a trusted insider who
betrays our trust. The hierarchical structure of an
XML document often reveals classification informa-
tion. For example, in Figure 1, the root of the left
subtree of the document represents a special account
type “VIP_Accounts”. Knowing an account node, say
Node “201”, belongs to that subtree reveals the ac-
count type. If the smallest protection unit is a node,
once we let the root of the subtree accessible, we
may leak unnecessary information. For example, sup-
pose that the relationship between the Account Node
“202” and the account type “VIP_Accounts” at the
root of the subtree should be protected, knowing the
account type of Node “201” in the subtree reveals
the account type of Node “202”. With relationship
protection, we identify that the ancestor-descendant
relationship between Node “101” and Node “202”,
and the sibling relationship between Node “201”

and Node “202” should be protected while we let
the ancestor-descendant relationship between Node
“101” and Node “201” be accessible.

Third, blocking access to relationships helps
achieve the “choice” principle, one of the most fun-
damental privacy principles. At its simplest, the prin-
ciple means giving clients options as to how any per-
sonal information collected from them may be used.
If the smallest protection element is a node, access
control over one node is propagated to its ances-
tor/descendant nodes (Murata et al., 2003), i.e., when-
ever access is denied to a node, access is denied to its
descendants; whenever access is granted to a node,
access is granted to all its ancestors. Hence, nega-
tive access control policies over ancestor nodes give
a common authorized view of the paths leading to
their descendants. This violates the “choice” princi-
ple: in Figure 1, a client may want to hide the ac-
count type but not the other account information for
the account with AID “A2398”. If the smallest pro-
tection element is a relationship between nodes in an
XML document, we could protect the relationships
between Node “101” and the nodes in the subtree
rooted at Node “201”, and the sibling relationship be-
tween Node “201” and Node “202”. Then all the ac-
count information except the account type is still ac-
cessible from the root of the document tree. More-
over, there is no way to know that the subtree rooted
at Node “201” is a subtree of Node “101”.

Last but not least, protecting relationships between
nodes in an XML document is more expressible in
terms of access control policy translation.
Contributions: The contributions made in this paper
can be summarized as follows:

1. We propose an authorization-transparent fine-

grained access control model that protects the
ancestor-descendant and sibling relationships in an
XML document. Our model distinguishes two lev-
els of access to relationships, namely the existence
access and the value access.

2. We propose a new semantics for concealing rela-
tionships in an XML document where a relation-
ship is defined by a path in the document.

3. We propose a generic and flexible label-based ac-
cess control mechanism to protect relationships.
Our mechanism allows DBAs to define label-based
access control policies.

4. We propose a new query evaluation mechanism to
enforce our access control model.

5. We develop algorithms to check/create a secure set
of labeled relationships of an XML document.

2 RELATED WORK

XML access control has been studied on issues such
as granularity of access, access-control inheritance,
default semantics, overriding, and conflict resolu-
tions (Bertino and Ferrari, 2002; Damiani et al., 2002;
Gabillon and Bruno, 2001; Murata et al., 2003). In
particular, a useful survey of these proposals is given
in (Fundulaki and Marx, 2004), which uses XPath to
give formal semantics to a number of different mod-
els in a uniform way, making it possible to com-
pare and contrast them. Almost all the recent mod-
els (Bertino and Ferrari, 2002; Damiani et al., 2002;
Gabillon and Bruno, 2001) propose to restrict the
user’s view of a document by access control poli-
cies. In particular, authors in (Damiani et al., 2002;
Gabillon and Bruno, 2001) mark each node as “ac-
cessible” or “inaccessible” in an XML document and
apply conflict resolution policies to compute an au-
thorized pruned view of the document. An alter-
native approach (Miklau and Suciu, 2003) defines
access control policies as XQuery expressions. A
user is given a modified document with encrypted
data and queries are posed on this modified docu-
ment. They present a new query semantics that per-
mits a user to see only authorized data. In (Fan et al.,
2004), security is specified by extending the docu-
ment DTD with annotations and publishing a modi-
fied DTD. Similarly, work by Bertino et al. (Bertino
et al., 2001) and Finance et al. (Finance et al., 2005)
provides XML-based specification languages for pub-
lishing secure XML document content, and for spec-
ifying role-based access control on XML data (Bhatti
et al., 2004; Wang and Osborn, 2004). Restricting
access to nodes has also been used in XACL (IBM,
2001) and XACML (Oasis., 2005), two proposed in-
dustrial standards. Kanza et al. propose to restrict

access to ancestor-descendant relationships (Kanza
et al., 2006) and introduce authorization-transparent
access control for XML data under the Non-Truman
model (Rizvi et al., 2004).

3 DATA MODEL AND QUERIES

We consider an XML document as a rooted directed
tree over a finite set of node literals L with a finite
set of values A attached to atomic nodes (i.e., nodes
with no outgoing edges). Formally, a document D is
a 5-tuple (Np, Ep, root p, literal _of p, value_of 1),
where Np is a set of nodes, Ep is a set of directed
edges, root p is the root of a directed tree, literal _of p
is a function that maps each node of Np to a literal
of L, and wvalue_of , is a function that maps each
atomic node to a value of A. In order to simplify the
data model, we do not distinguish between elements
and attributes of an XML document. We also assume
that all the values on atomic nodes are of type PC-
DATA (i.e., String).

Example 3.1 Figure 1 shows a document that con-
tains information on accounts, orders, and items for
an online seller. Nodes are represented by circles with
ID’s for easy reference. Values in A appear below the
atomic nodes and are written in bold font.

In this paper, we use XPath (Clark and DeRose, 1999)
for formulating queries and specifying relationships.
XPath is a simple language for navigation in an XML
document. In XPath, there are thirteen types of axes
that are used for navigation. Our focus is on the
child axis (/), the descendant-or-self axis (//), the
preceding-sibling axis and the following-sibling axis
that are the most commonly used axes in XPath. Our
model, however, can also be applied to queries that
include the other axes.

4 RELATIONSHIP ACCESS

First, we consider what it means to conceal a relation-
ship. In general, a relationship is an undirected path
between two nodes in an XML document. A set of
relationships is represented by two sets of nodes. For
example, the pair (C, N), where C is the set of all
Customer Nodes and N is the set of all Name Nodes
in Figure 1, represents the set of relationships between
customers and their names. Concealing the relation-
ships (C, N) means that for every customer ¢ and
name n in the document, a user will not be able to in-
fer (with certainty), from any query answers, whether
n is the name for c. We want this to be true for all
authorized query results. Note that we are concealing
the presence or absence of relationships, so we are

concealing whether any of the set of pairs in (C, N)
exists in the document.

Definition 4.1 (Concealing a Relationship) Given
an XML document D and a pair of nodes n1 and ns
in D, the relationship (n1,mns) is concealed if there
exists a document D' over the node set of D, such
that the following is true.

1. Exactly one of D and D' has a path from n1 to ns.

2. For any XPath query Q, the authorized answer set
of Q over D is equal to that of Q over D'.

We consider two kinds of relationships in an XML
document, namely the ancestor-descendant relation-
ships and the sibling relationships. Kanza et al. con-
sider ancestor-descendant relationships only (Kanza
et al., 2006). Sibling relationships are inferred by the
ancestor-descendant relationships. Hence, when ac-
cess to an ancestor-descendant relationship is blocked
in their model, access to the related sibling relation-
ships is automatically blocked.

Example 4.2 In Figure 1, suppose the relationship
between VIP_Accounts Node “101” and Account
Node “201” is inaccessible, then the sibling relation-
ship between Node “201” and Node “202” is lost.

It could be necessary to preserve such sibling re-
lationship information. For example, one policy may
want to block access to the ancestor-descendant rela-
tionships between VIP_Accounts Node and Account
Nodes while maintain access to the sibling relation-
ships between the Account Nodes.

On the other hand, it might be desirable to block
access to sibling relationships only. For example, one
policy may want to block access to the sibling rela-
tionship between Customer and his Order.

In order to express such access control policies,
we consider sibling relationships as well as ancestor-
descendant relationships.

We distinguish two levels of access to relationships,
namely the existence access and the value access. In
value access, information about a relationship indi-
cates a node whose ID is “v,” and whose literal is
“A” is related to a node whose ID is “v;” and whose
literal is “B”. For example, the pair (C, N) is a value
access to the relationships between Customer Nodes
and Name Nodes. In existence access, information
about a relationship is basically the same as informa-
tion of value access but lacks at least one of the values
“v,” and “vp”. In other words, existence access to a
relationship returns whether a node of some literal is
related to some node. For example, existence access
could indicate a node whose literal is “A” is related to
a node whose literal is “B”. Obviously, if a relation-
ship is not accessible under existence access, then the
relationship is not accessible under value access.

Example 4.3 Consider the relationship between the
account with AID “A2398” and its customer name in

Figure 1. The value access to this relationship returns
that Node “201” whose literal is “Account” is related
to Node “311” whose literal is “Name” and whose
value is “John”. The typical queries that will return
this information are:

Q1: //Account[AID=“A2398"],

Q3 //Account[AID=“A2398”]/Customer/Name.

Now consider an existence access to this relationship:
a query Q3 wants to return all the accounts’ AID’s
that have a customer name. The fact that “A2398”
is returned tells us that there exists a customer with
name under the account with AID “A2398”, but it
does not tell us what the customer’s name is, nor the
Node ID “311”. In other words, 1 and Q3 reveal
that Node “201” whose literal is “Account” is related
to some node n whose literal is “Name”, where n is
a child of some node whose literal is “Customer” and
which is a child of Node “201”.

Q3: //Account[Customer/Name J/AID.

In the next section, we show how to specify
ancestor-descendant and sibling relationships and at-
tach access labels to them.

S ACCESS CONTROL POLICY
SPECIFICATION

Our access control model uses a generic, flexible la-
bel infrastructure (Rjaibi and Bird, 2004) where a la-
bel has only one component “access level”. The value
of the component can be “EXISTENCE”, “VALUE”,
or “NULL”. The ranks of these values are as fol-
lows: “EXISTENCE” > “VALUE” > “NULL”. We
distinguish two types of labels: Access labels and
Path labels. Access labels are created and assigned
to database users, roles, or groups along with the type
of access for which the access label is granted (i.e.,
Read/Write). For simplicity, we consider only users
in this paper. We call read (resp. write) access label
an access label associated with the Read (resp. Write)
access type. Path labels are created and attached to
paths of an XML document. When a user or a path
is not associated with a label, the “NULL” label is
assumed for that user or path.

Example 5.1 The following statement creates and
grants the “EXISTENCE” access label to a database
user Mike for the Read access type.

GRANT ACCESS LABEL EXISTENCE

TO USER Mike FOR READ ACCESS

The following statement revokes the “EXISTENCE”
read access label from Mike.

REVOKE ACCESS LABEL EXISTENCE
FROM USER Mike FOR READ ACCESS

Access to an XML document is based upon the la-
bels associated with the paths of the XML document
and the label associated with the user accessing the
document via the paths. A label access policy consists
of label access rules that the database system evalu-
ates to determine whether a database user is allowed
access to an XML document. Access rules can be
categorized as Read Access rules and Write Access
rules. The former is applied by the database system
when a user attempts to read a path in an XML doc-
ument; the latter is applied when a user attempts to
insert, update or delete a path in an XML document.
In both cases, a label access rule is as follows:

Access Label (operator) Path Label

where the operator is one of the arithmetic compari-
son operators {=, <, <, >, >, #}.

Example 5.2 The following statement creates a label
access policy that (/) does not allow a user to read a
path unless his read access label is larger than or equal
to the path label, (2) does not allow a user to write a
path unless his write access label is equal to the path
label.

CREATE LABEL POLICY XML-FGAC
READ ACCESS RULE rule

READ ACCESS LABEL > Path LABEL
WRITE ACCESS RULE rule

WRITE ACCESS LABEL = Path LABEL

Recall value access to a relationship returns more
information than existence access. An “EXIS-
TENCE” label protects existence and value access.
A “VALUE” label protects value access only. There-
fore, if a user with a “NULL” read access label wants
to existence access a path with a “VALUE” path label,
access should be allowed since this existence access
does not return the complete relationship information
from value access. We call this the DEFAULT pol-
icy. This policy only applies to Read Access since
any Write Access involves real node ID’s (i.e., exis-
tence access is impossible). This policy could coex-
ist with other policies such as XML-FGAC to give a
more complete authorized answer set of a query.

Example 5.3 Assume the relationship in Exam-
ple 4.3 has a “VALUE” path label. If a user with a
“NULL” read access label asks query (Js, the exis-
tence access to the relationship should be allowed.

Next, we introduce how the labels are attached to
paths in an XML document. First, attaching a label
to ancestor-descendant paths are specified by an SQL
statement in the following form:

ATTACH path_label ANCS path, DESC path,,,

where path, and path, are two XPath expressions.
Notice expression path, is a relative XPath expression
w.r.t. path,. The two expressions specify pairs of an-
cestor nodes (i.e., path;) and descendent nodes (i.e.,
path, [path,). Expression path_label is a label.

Example 54 The following expression attaches
“EXISTENCE” path labels to the relationships be-
tween Account Nodes and their Customers’ Name
Nodes in Figure 1.

ATTACH EXISTENCE ANCS //Account
DESC /Customer/Name

The following expression attaches a “VALUE” path
label to the relationship between the Item Node with
Name “IPOD” and its Cost Node in Figure 1.

ATTACH VALUE ANCS //Item[Name = “IPOD”]
DESC //Cost

For sibling relationships, we consider the preceding-
sibling axis and the following-sibling axis in XPath.
Thus, attaching a label to sibling paths are specified
by XPath expressions in the following form:

ATTACH path_label
NODE path, PRECEDING-SIBLING path,,
FOLLOWING-SIBLING path,

where path,, path, and paths are three XPath ex-
pressions. Notice expressions path, and paths
are two relative XPath expressions w.rt. path,.
The expressions specify relationships between some
nodes (i.e., path,), and their preceding siblings (i.e.,
path, /preceding-sibling :: path,) as well as the rela-
tionships between the nodes and their following sib-
lings (i.e., path, [following-sibling :: paths). No-
tice the PRECEDING-SIBLING expression and the
FOLLOWING-SIBLING expression do not have to
appear at the same time.

Example 5.5 The following expression attaches a
“VALUE” path label to the relationship between the
Account whose Customer has Name “Barbara” and
its preceding sibling.

ATTACH VALUE

NODE //Account[Customer/Name = “Barbara’ |
PRECEDING-SIBLING Account

Note that the SQL statement to detach a label from
an ancestor-descendant path or a sibling path is sim-
ilar to the SQL statement to attach a label to those
paths except that ATTACH is replaced by DETACH.

6 QUERY EVALUATION

In authorization-transparent access control, users for-
mulate their queries against the original database
rather than against authorization views that transform
and hide data (Motro, 1989). In (Rizvi et al., 2004),
authorization transparent access control is categorized
into two basic classes, the Truman model and the Non-
Truman model. In the Truman model, an access con-
trol language (often a view language) is used to spec-
ify what data is accessible to a user. User queries are
modified by the system so that the answer includes

only accessible data. Let) be a user query, D be a
database and D,, be the part of D that the user is per-
mitted to see, then query () is modified to a safe query
Qs such that Q(D) = Q(D,). We call Qs(D) the
authorized answer set of () over D. In contrast, in
the Non-Truman model, a query that violates access
control specifications is rejected, rather than modi-
fied. Only valid queries are answered.

Our model is an authorization-transparent Truman
model. We allow users to pose XPath queries against
the original labeled XML document. The evaluation
of an XPath query over a labeled XML document has
two parts. First, we change the usual XPath query
semantics as follows. If a child axis occurs, the eval-
uation follows a parent-child path; if a descendant-or-
self axis occurs, the evaluation follows an ancestor-
descendant path; if a preceding-sibling axis occurs,
the evaluation follows a preceding-sibling path; if a
following-sibling axis occurs, the evaluation follows
a following-sibling path.

Second, we need to make sure that for each path ac-
cessed, a user is allowed access to that path based on
the path label and the user’s access label. Suppose a
path P has a path label L; and a user Mike has a read
access label Ly. According to the XML-FGAC pol-
icy, (1) if Lo is “EXISTENCE”, Mike could read the
path P regardless of the value of label Lq; (2) if Lo
is “VALUE”, Mike could read the path P if L, is not
“EXISTENCE”; (3) if Lo is “NULL”, Mike can only
access paths with “NULL” labels; if the DEFAULT
policy coexists, Mike could ask queries to existence
access the path P if L is “VALUE”. The discussion
for Write Access is similar. The above logic is in-
serted into the query access plan. When the access
plan is executed, the access rules from the label ac-
cess policy associated with the labeled XML docu-
ment are evaluated for each path accessed in the doc-
ument. This approach allows the cached access plan
to be reused because the access labels of the user who
issued the query are acquired during runtime.

For an XML document, there is an ordering, docu-
ment order (Clark and DeRose, 1999), defined on all
the nodes in the document corresponding to the order
in which the first character of the XML representa-
tion of each node occurs in the XML representation
of the document. This ordering information may leak
information as shown in the following example.

Example 6.1 Let us look at Figure 1 again. Sup-
pose one security policy wants to block public ac-
cess to the sibling relationships between the Customer
Nodes and their Order Nodes. Suppose the following
queries are allowed to return their answers in docu-
ment order: //Customer and //Order. Then the order
of Customer output might match the order of Order
output, hence leaks secret information. The situa-
tion becomes worse if the document has a registered
schema and the schema shows publicly that each cus-

tomer has a fixed number, say 2, of orders. In this
case, the association between a Customer and his Or-
ders is completely leaked.

To prevent an information leak based on document
order, we shuffle the output as follows. Each node
in the output will receive a random number. And the
nodes will be output based on the order of their as-
signed random numbers.

In sum, the processing algorithm to be inserted in
the access plan for a labeled XML document with
XML-FGAC and DEFAULT policies is as follows.

Algorithm: Insert Read and Write Access logic into
a query access plan for a labeled XML document.

1. Fetch the user’s Access Labels for Read and Write
actions (e.g., from a system catalog table).

2. For all paths accessed, do the following.

(a) If it is a Read Access and READ Access rules
do not permit access, skip the path unless (/) the
Read Access Label is “NULL”, (2) the Path La-
bel is “VALUE”, and (3) it is an existence access.

(b) Ifit is a Write Access and Write Access rules do
not permit access, skip the path.

3. Shuffle output.

Example 6.2 Suppose the document in Figure 1 has
two labels attached to its paths as specified in Exam-
ple 5.4 and the label access policies are XML-FGAC
and DEFAULT. Suppose a database user Mike with a
read access label “EXISTENCE” asks the query @Q1:
//Account[Customer/Name]. The query access plan
checks the following paths:

1. the paths P; from the root of the document to Ac-
count Nodes, i.e., //Account,

2. the paths P> from Account Nodes to their descen-
dant Name Nodes via Customer Nodes, i.e.,
ANCS //Account DESC /Customer/Name,

3. the paths P5 from Customer Nodes to their children
Name Nodes, i.e., Customer/Name.

Paths P; and P5; have “NULL” labels, hence, access is
allowed. Paths P, have “EXISTENCE” labels. Mike
could read them since his read access label is “EXIS-
TENCE”. Read access to P is denied for any other
labels and the authorized answer set is empty.

Next, suppose another user John with a read access
label “VALUE” asks the query Qo: //Item//Cost. The
query access plan checks the following paths:

1. the paths P; from the root of the document to the
Item Nodes, i.e., //Item,

2. the paths P, from the Item Nodes to their descen-
dant Cost Nodes, i.e., ANCS //Item DESC //Cost.

Paths P; have “NULL” labels, hence, access is al-
lowed. For P,, one path P5; has a “NULL” la-
bel; the other path Py has a “VALUE” label as it is

ANCS //Item{Name=“IPOD”] DESC //Cost. John
could read P» if his read access label is “VALUE”.
John could read P57 but not Py, if his read access la-
bel is “NULL”. Hence, the authorized answer set is
“450%”. However, even if John’s read access label is
“NULL”, the following query from John will still re-
turn the complete answer to QQ3: //Item[Cost]. This
is because (03 only existence accesses the paths Ps,
i.e., the authorized answer set only indicates there ex-
ist Cost children Nodes for the Item Nodes “203” and
“204”, but no information about the values and node
ID’s of the Cost Nodes is leaked.

7 CREATE A SECURE SET OF
LABELED RELATIONSHIPS

Our goal is to allow users to label node relationships
and let them be sure that what they want to conceal
is truly concealed from the users whose access labels
do not satisfy the label access policy with the path la-
bels. Unfortunately, it is impossible to guarantee con-
cealment for any arbitrary set of relationships. Some-
times, it is possible to infer a concealed relationship
from the relationships that are not concealed.

Let us see an example of four cases where a re-
lationship could be inferred from a pair of non-
concealed relationship.

Example 7.1 In Figure 1, suppose it is known
that Account Node “201” is a descendant of
VIP_Accounts Node “101”” and Customer Node “301”
is a descendant of Account Node “201”. Then, there
is no point to conceal the ancestor-descendant rela-
tionship between VIP_Accounts Node “101” and Cus-
tomer Node “301”.

Suppose it is known that Customer Node “301” is
a descendant of VIP_Accounts Node “101” as well
as Account Node “201”. Since there is only one
path from the root of the document to Account Node
“201”, there is no point to conceal the ancestor-
descendant relationship between VIP_Accounts Node
“101” and Account Node “201”.

Suppose it is known that Account Node “201”
and Account Node “202” are the children of
VIP_Accounts Node “101”, then there is no point
to conceal the sibling relationship between Account
Node “201” and Account Node “202”.

Suppose it is known that VIP_Accounts Node
“101” has a descendant Customer Node “301” and
the customer has a sibling Order Node “302”, then
there is no point to conceal the ancestor-descendant
relationship between VIP_Accounts Node “101” and
Order Node “302”.

We say a set of labeled relationships/paths in an

XML document D is not secure w.r.t. a path label
L if one of the following four cases happens.

1. Case 1: D has three nodes, ni, ny and ng s.t. the
ancestor-descendant path from 7, to no and the
ancestor-descendant path from ny to n3 have labels
L1y < L and Loz < L. The ancestor-descendant
path from n to n3 has a label L3 > L.

2. Case 2: D has three nodes, 11, n and ns s.t. the
ancestor-descendant path from n; to ng and the
ancestor-descendant path from ny to n3 have labels
L3 < L and Loz < L. The ancestor-descendant
path from nq to ny has a label L5 > L.

3. Case 3: D has three nodes, ny, no and n3 s.t. nq is
the parent of ny and ng, the parent-child path from
n1 to ny and the parent-child path from n; to ng
have labels L5 < L and L3 < L. The sibling
path from no to ng has a label Log > L or the
sibling path from ng to ny has a label Lgs > L.

4. Case 4: D has three nodes, 11, ny and n3 s.t. the
ancestor-descendant path from n; to ny has a label
Lys < L, and either the sibling path from ny to ng
has a label Lys < L or the sibling path from n3 to
no has a label L3o < L. The ancestor-descendant
path from n; to ng has a label L3 > L.

There is a simple test to verify that a set of labeled
relationships/paths in an XML document D is not se-
cure w.r.t. a path label L. The test starts by comput-
ing three ternary relations R, Re and R3. The first
two columns store the start/end nodes of paths. The
third column stores the label associated with paths (if
a label is missing, then it is a NULL value). In par-
ticular, R; stores all ancestor-descendant paths in D,
Rs stores all parent-child paths in D, and R3 stores
all sibling paths in D.

1. Case 1 is true for a path label L iff the expression
7g1,85(R1,1 go—g1 Ri,1) — Ry,1 is not empty
where R 1, is og3<1(R1).

2. Case 2 is true for a path label L iff the expression
ms1,54(F1,0 Mgo—g2 R11) — R, is not empty
where Ry 1, iS 0g3< 1 (R1).

3. Case 3 is true for a path label L iff the expression
Ts2,55(R,z Dg1-g1 R21) — R3 r is not empty
where RQTL is 0$3<L(R2) and Rg’L is O’$3<L(R3).

4. Case 4 is true for a path label L iff the expression
mg1,85([1,L sa—g1 Rz 1) — Ri 1 is not empty
where Ry 1, i 0g3<1(R1) and R3 1, is 0g3< 1 (R3).

Furthermore, we give intuitive conditions to con-
struct a secure set of labeled relationships for an XML
document. If we ignore the directions of ancestor-
descendant and sibling paths, all these paths form cy-
cles in an XML document. To assign a path label L
to a relationship between two nodes n; and ny in an
XML document D, we must make sure, for every cy-
cle that includes the path from n4 to no, either there is
another path whose label L' > L, or ny and ny are de-
scendants of some nodes in the cycle and ny, ny are

not children of the same parent. Both cases ensure
there is uncertainty whether a relationship between
two nodes n; and ng exists: the first case by having
another path missing in the cycle, while in the second
case, the fact that nq and ny are descendants of some
nodes in the cycle introduces uncertainty except when
they are children of the same parent, in which case the
sibling relationship between n; and ns is leaked.
There is another possible information leak due to
singleton-source disclosure (Kanza et al., 2006). In
short, a user can infer that two nodes n; and no are
related in a document D when (/) the path from the
root of document D to node ne must go through a
node whose literal is A, (2) the only node with lit-
eral A in document D is node n;. An algorithm
to test singleton-source disclosure has been proposed
in (Kanza et al., 2006) and we will not repeat it here.

8 CONCLUSION

This paper has introduced a fine-grained access con-
trol model for XML data using generic security la-
bels. Our model is based on inter-node relation-
ship labeling and provides finer-grained access con-
trol than traditional node labeling approaches, hence
helps achieve the “need-to-know” security principle
and the “choice” privacy principle. We propose a new
semantics for concealing relationships in an XML
document under the Truman model. To enforce our
model, we provide a new query evaluation algorithm
and suggest algorithms to check/create a set of secure
labeled paths for an XML document.

Our future work includes implementing our model
and validating its effectiveness and performance using
real-life XML access control user cases. An impor-
tant challenge is adapting our mechanism to XQuery,
general XML document graphs and XML schemas.

Acknowledgements: We thank NSERC and IBM
Toronto CAS for their support, and Renée J. Miller
for her careful comments.

Trademark: IBM is a trademark or registered trade-
mark of International Business Machines Corporation
in the United States, other countries, or both.
Disclaimer: The views expressed in this paper are
those of the authors and not necessarily of IBM
Canada Ltd. or IBM Corporation.

REFERENCES

Bertino, E., Castano, S., and Ferrari, E. (2001). On specify-
ing security policies for web documents with an xml-
based language. In SACMAT, pages 57-65.

Bertino, E. and Ferrari, E. (2002). Secure and selective dis-
semination of xml documents. ACM Trans. Inf. Syst.
Secur., 5(3):290-331.

Bhatti, R., Bertino, E., Ghafoor, A., and Joshi, J. (2004).
Xml-based specification for web services document
security. In IEEE Computer, volume 4 of 37, pages
41-49.

Clark, J. and DeRose, S. (1999).
Language (XPath) version 1.0.
http://www.w3.0rg/TR/xpath.

XML Path
Available at

Damiani, E., de C. di Vimercati, S., Paraboschi, S., and
Samarati, P. (2002). A fine-grained access control sys-
tem for xml documents. ACM Trans. Inf. Syst. Secur.,
5(2):169-202.

Fan, W. F., Chan, C. Y., and Garofalakis, M. N. (2004). Se-
cure xml querying with security views. In SIGMOD,
pages 587-598.

Finance, B., Medjdoub, S., and Pucheral, P. (2005). The
case for access control on xml relationships. Tech-
nical report, INRIA. Available from http://www-
smis.inria.fr/dataFiles/FMPO5a.pdf.

Fundulaki, I. and Marx, M. (2004). Specifying access con-
trol policies for xml documents with xpath. In SAC-
MAT, pages 61-69.

Gabillon, A. and Bruno, E. (2001). Regulating access to
xml documents. In Working Conference on Database
and Application Security, pages 311-328.

IBM (2001). Xml access control. http://xml.coverpages.org
/xacl.html.

Kanza, Y., Mendelzon, A., Miller, R., and Zhang, Z. (2006).
Authorization-transparent access control for xml un-
der the non-truman model. In EDBT, pages 222-239.

Miklau, G. and Suciu, D. (2003). Controlling access to pub-
lished data using cryptography. In VLDB, pages 898—
909.

Motro, A. (1989). An access authorization model for re-
lational databases based on algebraic manipulation of
view definitions. In ICDE, pages 339-347.

Murata, M., Tozawa, A., Kudo, M., and Hada, S. (2003).
Xml access control using static analysis. In CCS,
pages 73-84. ACM Press.

Oasis. (2005). Oasis exensible access control markup lan-
guage (xacml 2.0). http://www.oasis-open.org/ com-
mittees/xacml.

Rizvi, S.,Mendelzon, A., Sudarshan, S., and Roy, P. (2004).
Extending query rewriting techniques for fine-grained
access control. In SIGMOD, pages 551-562.

Rjaibi, W. and Bird, P. (2004). A multi-purpose implemen-
tation of mandatory access control in relational data-
base management systems. In VLDB, pages 1010—
1020.

Wang, J. Z. and Osborn, S. L. (2004). A role-based ap-
proach to access control for xml databases. In SAC-
MAT, pages 70-77.

An Introduction to Multilevel Secure Relational Database
Management Systems

Walid Rjaibi

IBM Toronto Software Laboratory
Markham, Ontario, Canada
wrjaibi@ca.ibm.com

Abstract

Multilevel Security (MLS) is a capability that
allows information with different classifications
to be available in an information system, with
users having different security clearances and
authorizations, while preventing users from ac-
cessing information for which they are not
cleared or authorized. It is a security policy
that has grown out of research and develop-
ment efforts funded mostly by the U.S. Depart-
ment of Defense (DoD) to address some of the
drawbacks of the single level mode of opera-
tion that was used at the DoD. The goal was
to build and deploy an MLS-compliant envi-
ronment (e.g., Networks, Operating Systems,
Database Systems) that would provide a much
needed efficiency in processing and distribut-
ing classified information by providing security
through computer security, communications se-
curity, and trusted system techniques instead
of using physical controls, administrative pro-
cedures, and personnel security. As Relational
Database Management Systems (RDBMS) are
at the heart of the DoD’s information sys-
tem, significant research and development ef-
forts have been put into building multilevel se-
cure RDBMS, which have led to the emergence

Copyright © 2004 IBM Canada Ltd., 2004. Per-
mission to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

of a number of multilevel secure RDBMS so-
lutions, including commercial ones. Over the
past few years and with the increase of secu-
rity concerns, MLS compliance has become a
major requirement from a number U.S. Fed-
eral Government agencies that appear to have
grown beyond the traditional agencies that re-
quire such type and level of security. This
paper introduces MLS, and outlines the chal-
lenges and complexities of building a multilevel
secure RDBMS. The paper also gives concrete
examples of both research and commercial mul-
tilevel secure RDBMS and describes how they
met the above challenges and complexities.

1 Introduction

Multilevel Security (MLS) is a capability that
allows information with different classifications
to be available in an information system, with
users having different security clearances and
authorizations, while preventing users from ac-
cessing information for which they are not
cleared or authorized[2]. It is a security pol-
icy that has been developed primarily for the
U.S. military and intelligence communities, but
has also been adopted by some civilian organi-
zations that store, process and distribute clas-
sified information (e.g., major aircraft manu-
facturers) as well as by a number of defense
departments around the world.

Given the extremely high value of the infor-
mation that could be stored in a military or
intelligence database, and the potential dam-
age that could result from the unauthorized dis-
closure, alteration or loss of such information,
preventing users from accessing information for
which they are not cleared or authorized re-
quires much more than just implementing an
access control policy. In particular, security
guards must be put in place to prevent users
from gaining access to information for which
they are not cleared or authorized through in-
direct means.

Covert channels[5] are examples of such in-
direct means. A covert channel can easily
be established with conventional database con-
currency control algorithms such as two-phase
locking (2PL) and timestamp ordering (TO)]6].
In both 2PL and TO algorithms, whenever
there is contention for the same data item by
transactions executing at different security lev-
els, a lower level transaction may be either de-
layed or suspended to ensure correct execution.
In such a scenario, two colluding transactions
executing at high and low security levels can
establish an information flow channel from a
high security level to a low security level by ac-
cessing selected data items according to some
agreed-upon code[4].

Inference[7] is another indirect means by
which users can gain knowledge about infor-
mation for which they are not cleared or au-
thorized. For example, enforcing a primary key
constraint[6] across data from different security
levels could allow a non sufficiently cleared user
to gain knowledge about the existence of a data
row at a higher security level from the duplicate
key error message that is returned to that user
when he or she attempts to insert a data row
at a low security level but having the same pri-
mary key as the data row at the higher security
level.

Building a multilevel secure RDBMS has
thus posed significant challenges to the
database research community. For instance,
secure database transaction protocols had to
be developed, and a solution to reconcile the
conflicting requirements between data integrity
and confidentiality had to be found. MLS has
also posed significant challenges to database
vendors as building a multilevel secure RDBMS

often requires rebuilding major portions of an
existing commercial RDBMS.

There has been an abundance of research
within the last two decades or so in the
area of multilevel secure RDBMS. Such re-
search has addressed specific aspects of build-
ing a multilevel secure RDBMS such as secure
transaction protocols, system architectures, or
polyinstantiation[8], and there is a rich set of
publications about those specific aspects[8, 4,
9, 10]. However, the multilevel secure RDBMS
research literature surprisingly lacks the kind
of publication that would allow someone to get
a good understanding about what it takes to
build a multilevel secure RDBMS as a whole,
as well as to serve as a quick guide for those
who might be thinking about building such
RDBMS.

Moreover, the term multilevel security is
heavily overloaded across the Information
Technology (IT) industry and often means dif-
ferent things to people from different back-
grounds as there are not only multilevel secure
RDBMS, but also multilevel secure operating
systems, multilevel secure networks, multilevel
secure webservers, etc. In addition to being
heavily overloaded, MLS is often incorrectly
used interchangeably with emerging market-
ing terms such as Label-Based Access Control
(LBAC), Row-Level Security, and others. All
of this makes it extremely difficult for those
who have not been directly involved in design-
ing or building a multilevel secure RDBMS to
get a good understanding about what it really
takes to build a multilevel secure RDBMS.

In this paper, the author wishes to share
his expertize in database security and privacy
to try to clarify the mystery of multilevel se-
curity, as well as to outline the challenges
and complexities of building a multilevel secure
RDBMS.

1.1 Synopsis

The rest of this paper is organized as follows.
Section 2 introduces MLS and describes the
MLS certification and evaluation process. Sec-
tion 3 presents and compares Multilevel Se-
cure RDBMS architectures. Section 4 de-
scribes the issue of polyinstantiation. Section
5 presents multilevel secure transaction pro-

cessing. Section 6 gives concrete examples of
both research and commercial multilevel secure
RDBMS. Lastly, section 7 summarizes the con-
cepts introduced in this paper.

2 What is Multilevel Secu-
rity?

A good understanding of MLS would not be
complete without understanding its origins,
and what problems it was meant to solve.
The U.S. military and intelligence communities
have historically segregated data based upon
its security classification. Classified data must
reside and be processed on dedicated systems
that do not provide access to users outside of
the immediate community of interest and are
often separated by an air gap and connected
only by a sneaker net[2]. The main drawbacks
of such operational scheme can be summarized
as follows:

e Redundant databases: To store data with
different security levels (e.g., Top Secret
data and Unclassified data), a separate
database must be created and maintained
for each security level.

e Redundant workstations: A user who is re-
quired to access data with different secu-
rity levels (e.g., Top Secret data and Un-
classified data) would be required to use
a different workstation to access each type
of data.

e High cost of IT infrastructure: It is not
possible to share the computer and com-
munication system infrastructures, such
as cabling, network components, printers,
and workstations without risking to com-
promise security.

e Inefficiency: Staff members need to access
several systems to perform their duties.

The U.S. DoD has therefore funded signifi-
cant research and development projects across
various organizations to come up with a so-
lution that would allow classified information
to be stored, processed and distributed in a
secure way, but without the drawbacks listed
above. MLS was that solution[2]. MLS allows

information with different classifications to be
available in an information system, with users
having different security clearances and autho-
rizations, while preventing users from accessing
information for which they are not cleared or
authorized[2]. For example, an MLS system
might process both Secret and Top Secret col-
lateral data and have some users whose maxi-
mum clearance is Secret and others whose max-
imum clearance is Top Secret. Another MLS
system might have all its users cleared at the
Top Secret level, but have the ability to release
information classified as Secret to a network
consisting of only Secret users and systems. In
each of these instances, the system must im-
plement mechanisms to provide assurance that
the system’s security policy is strictly enforced.
MLS has resulted in a shift from providing se-
curity through physical controls, administra-
tive procedures, and personnel security to pro-
viding security using computer and communi-
cation security.

2.1 The Bell-LaPadula Multilevel
Security Model

The Basic model of MLS was first introduced
by Bell and LaPadula[11]. The model is stated
in terms of objects and subjects. An object is
a passive entity such as a data file, a record,
or a field within a record. A subject is an ac-
tive process that can request access to objects.
Every object is assigned a classification, and
every subject a clearance. Classifications and
clearances are collectively referred to as labels.
A label is a piece of information that consists
of two components: A hierarchical component
and a set of unordered compartments. The hi-
erarchical component specifies the sensitivity
of the data. For example, a military organi-
zation might define levels Top Secret, Secret,
Confidential and Unclassified. The compart-
ments component is nonhierarchical. Compart-
ments are used to identify areas that describe
the sensitivity or category of the labeled data.
For example, a military organization might de-
fine compartments NATO, Nuclear and Army.
Labels are partially ordered in a lattice as fol-
lows: Given two labels Ly and Ly, L1 >= Lo if
and only if the hierarchical component of L,
is greater than or equal to that of Ly, and

the compartment component of L1 includes the
compartment component of L. L; is said to
dominate Lo. MLS imposes the following two
restrictions on all data accesses:

e The Simple Security Property or “No Read
Up”: A subject is allowed a read access to
an object if and only if the subject’s label
dominates the object’s label.

e The *-Property (pronounced the star
property) or “No Write Down”: A sub-
ject is allowed a write access to an object
if and only if the object’s label dominates
the subject’s label.

2.2 Evaluation and Certification

Multilevel secure systems must complete an ex-
tensive evaluation and certification process be-
fore they can be used in military applications.
The evaluation and certification of a multilevel
secure system is usually conducted by an inde-
pendent testing laboratory and is based upon
a clearly defined set of criterion. One set of
criteria is called common criteria, which has
recently been adopted as an ISO standard|3].
Another set of evaluation criteria used by the
U.S. DoD is the Trusted Computer System
Evaluation Criteria (TCSEC)[5]. Most multi-
level secure RDBMS have been developed be-
fore common criteria was adopted. TCSEC has
been the norm for evaluating such RDBMS.

TCSEC is divided into four divisions: D,
C, B, and A ordered in a hierarchical manner
with the highest division (A) reserved for sys-
tems providing the most comprehensive secu-
rity. Each division represents a major increase
in the overall confidence, or trust, that one can
place in the system. Successive levels of trust
build upon and incorporate the criteria of the
previous lower level of trust.

Within Divisions C and B there are a number
of subdivisions known as classes. The classes
are also ordered in a hierarchical manner with
systems representative of Divisions C and B
characterized by the set of computer security
mechanisms that they possess. For Division C,
Discretionary Access Control (DAC)[6] is pro-
vided, whereby users can grant or deny access
by other users and groups of users to the system
resources that the users control. For Division

B, Mandatory Access Control (MAC)[1] is pro-
vided. MAC employs the simple security prop-
erty and the *-property of the Bell-LaPadula
MLS model to protect data of different secu-
rity levels. Division A also provides the MAC
features.

Systems representative of the higher classes
in Division B and Division A derive their se-
curity attributes more from their design and
implementation structure than merely security
features or functionality. Increased assurance
that the required features are operative, cor-
rect, and tamperproof under all circumstances
is gained through progressively more rigorous
design, implementation, and analysis during
the development process. Division A requires
formal (e.g., mathematical) design and verifica-
tion techniques to provide increased assurances
over Division B.

Multilevel secure systems are associated with
TCSEC divisions B and A[2].

3 Multilevel Secure
RDBMS Architectures

Multilevel secure RDBMS architectures can be
divided into two general types, depending on
whether mandatory access control is enforced
by the RDBMS itself or delegated to a trusted
operating system. These two general types are
the Woods Hole Architecture and the Trusted
Subjects Architecture[9, 10].

3.1 Woods Hole Architectures

The Woods Hole architectures are the outcome
of a three-week study on trusted data manage-
ment sponsored by the U.S. Air Force at Woods
Hole, Massachusetts, USA in 1982[9, 10]. The
subject of this study was the following: Can we
build a multilevel secure RDBMS using existing
untrusted off-the-shelf RDBMS, with minimal
change?

The Woods Hole architectures assume that
an untrusted off-the-shelf RDBMS is used to
access data and that trusted code is developed
around that RDBMS to provide an overall se-
cure RDBMS. They can be divided into two
main categories: The kernelized architectures
and the distributed architectures[9, 10].

3.1.1 Kernelized Architectures

The kernelized architecture[9, 10] uses a
trusted operating system and multiple copies
of an off-the-shelf RDBMS, where each copy is
associated with some trusted front-end. Each
pair (trusted front-end, RDBMS) is associated
with a particular security level. The trusted
operating system enforces its full access control
policy on all accesses by the RDBMS to the
RDBMS objects. It ensures that data at dif-
ferent security levels is stored separately, and
that each copy of the RDBMS gets access to
data that is authorized for its associated secu-
rity level. The latter is possible because the
multilevel database is decomposed into mul-
tiple single-level databases, where each repre-
sents a fragment of the conceptual multilevel
database. Each fragment is stored in a single-
level operating system object (e.g., a file) which
is labeled by the operating system at the cor-
responding security level, and thus can only be
accessed according to the MAC policy of the
operating system.

Figure 1 illustrates a kernelized architec-
ture where one RDBMS is associated with
the security level “High” and another RDBMS
is associated with the security level “Low”.
The RDBMS associated with the security level
“High” has access to both the fragment of the
database at the high security level and the frag-
ment of the database at the low security level.
But the RDBMS associated with the security
level “Low” has access only to the fragment of
the database at the low security level.

A benefit of this architecture is that data
at different security levels is isolated in the
database, which allows for higher level assur-
ance. Another benefit is that, assuming an al-
ready evaluated operating system, this archi-
tecture should minimize the amount of time
and effort to evaluate the RDBMS. However,
this architecture results in an additional over-
head as the trusted operating system needs to
separate data at different security levels when it
is added to the database and might also need
to combine data from different security levels
when data is retrieved by an RDBMS copy that
is associated with a high security level.

High User Low User

|

High Trusted Low Trusted
Front End Front End
High RDBMS Low RDBMS

Trusted Operating System

L

< > High Data Low Data < >

Figure 1: Multilevel secure kernelized RDBMS
architecture.

3.1.2 Distributed Architectures

The distributed (or replicated) architecturel9,
10] is a variation of the kernelized architec-
ture. It uses multiple copies of the trusted
front-end and RDBMS, each associated with
its own database storage. In this architecture
scheme, an RDBMS at security level [contains
a replica of every data item that a subject
at level [can access. Thus, when data is re-
trieved, the RDBMS retrieves it only from its
own database. Another benefit of this archi-
tecture is that data is physically separated into
separate hardware databases. However, this
scheme results in an additional overhead when
data is updated as the various replicas need to
be kept in sync.

3.2 Trusted Subjects Architec-
tures

The trusted subject architecture[9] is a scheme
that contains a trusted RDBMS and a trusted
operating system. According to this architec-
ture, the mandatory access control policy is
enforced by the RDBMS itself. Database ob-
jects (e.g., a table) are stored in operating sys-
tem objects (e.g., a file) labeled at the high-
est security level. A database table can con-

tain rows with different security levels. Such
rows are distinguished based on their security
level which is explicitly stored with each row.
This architecture is called “trusted subject” be-
cause the RDBMS is privileged to violate the
operating system’s MAC policy when access-
ing database objects. For example, when a user
with a low security level queries a database ta-
ble, the operating system’s object where that
table is stored ends up being accessed, which
is a violation of the operating system’s MAC
policy. But the RDBMS is trusted to return
to the users only those rows for which he or
she is authorized according to the MAC policy.
Figure 2 illustrates a multilevel secure trusted
subject RDBMS Architecture.

High User Low User
Untrusted Untrusted
Front End Front End

Trusted RDBMS

|

Trusted Operating System

Figure 2: Multilevel secure trusted subject
RDBMS architecture.

A benefit of this architecture is that the
RDBMS has access to all levels of data at the
same time, which minimizes retrieval and up-
date processing. However, this architecture re-
sults in a special purpose RDBMS that requires
a large amount of trusted code to be developed
and verified along with the normal RDBMS fea-
tures. It also lacks the potential to be evalu-
ated to high TCSEC evaluation classes because
meeting higher levels of assurance requires the
ability to provide separation of mandatory ob-
jects by some form of hardware isolation. It is

also difficult to prove that the trusted software
used to isolate mandatory objects (e.g., data
rows with different security levels) is working
correctly without allowing for the flow of data
with high security level to users with low secu-
rity level.

4 Polyinstantiation

Multilevel secure RDBMS utilize mandatory
access control to prevent the unauthorized dis-
closure of high-level data to low-level users. It
is also necessary to guard against the threat
to confidentiality that can arise from enforcing
database integrity constraints[6] across data
from multiple security levels. To illustrate this
threat to confidentiality, consider the following
database table where the attribute “starship”
is the primary key, and the attribute “label”
represents the data row security level.

Starship | Destination | Label
Enterprise | Mars High

Suppose that a user with a low security level
wishes to insert the tuple (Enterprise, Talos,
Low). From a purely database perspective, this
insert must be rejected because it violates the
primary key constraint. However, rejecting this
insert could be sufficient to compromise secu-
rity as the user with low security level could
infer that the starship Enterprise is on a mis-
sion with a higher security level.

Polyinstantiation[8] is a solution to this
problem. It expands the notion of primary key
to include the security level so that more than
one tuple may possess the same apparent pri-
mary key if they are at different security lev-
els. To continue with our example, a new row
with the same apparent primary key (i.e., En-
terprise) is added to the table.

Starship | Destination | Label
Enterprise | Mars High
Enterprise | Talos Low

From a security perspective, the newly added
row is simply a cover story for the real mission
of the starship enterprise.

In addition to protecting against inference,
polyinstantiation is also useful to prevent de-
nial of service to legitimate users as well as
to protect against storage covert channels[5].
Covert channels use system variables and at-
tributes to signal information. To illustrate
this type of threat to confidentiality, consider
the following database table where the at-
tribute “starship” is the primary key, and the
attribute “label” represents the data row secu-
rity level.

Starship | Destination | Label
Enterprise | Talos Low

Now, suppose that a user with a high secu-
rity level wishes to update the destination to
be “Mars”. If the RDBMS rejects this update,
then the user may have been denied legitimate
privileges. If the update is allowed by changing
the row’s security level to “High” then a user
with a low security level will notice that the
data row has disappeared and will infer that its
security level has been increased. If the update
is allowed without changing the row’s security
level, then a storage covert channel will be cre-
ated. That is, the data row itself could be used
as a storage object for passing high level infor-
mation to users with low security level. Polyin-
stantiation allows the RDBMS to insert a new
data row with the same apparent primary key
(i.e., Enterprise) but with a high security level
as a result of such update.

Starship | Destination | Label
Enterprise | Talos Low
Enterprise | Mars High

From a security perspective, the old data row
is simply a cover story for the real mission of
the starship enterprise.

5 Multilevel Secure Trans-
action Processing

Multilevel secure RDBMS utilize mandatory
access control to prevent the unauthorized dis-
closure of high-level data to low-level users. It
is also necessary to guard against the threat

to confidentiality that can arise from employ-
ing conventional transaction protocols such as
two-phase locking (2PL)[4]. The 2PL transac-
tion protocol delays the execution of conflict-
ing operations by setting locks on data items
for read and write operations[6]. A transaction
must acquire a shared-lock (S-lock) on a data
item before reading it and an exclusive lock
(X-lock) before writing it. The 2PL transac-
tion protocol is inherently vulnerable to timing
covet channels which could be established to
leak confidential information. A timing covert
channel [5] varies the amount of time to com-
plete a task to signal information. To illustrate
this threat to confidentiality, consider the fol-
lowing example.

Let T; denote a high security level transac-
tion, which is reading a low security level data
item A. Let T; denote a low security level
transaction, which is trying to write to data
item A. If the 2PL transaction protocol is em-
ployed, then T must wait to acquire an X-lock
on data item A (i.e., wait until T; releases its
S-lock on data item A). Suppose that Tj can
measure the time quantum ¢ it has to wait to
acquire the lock on data item A: A quantum
of waiting time greater than a certain amount
represents '1’, and a quantum of waiting time
less than that a certain amount represents '0’.
Transaction 7; can exploit this knowledge to
send one bit of high security level information
to Tj, and by repeating this protocol, any in-
formation can be sent, creating a timing covert
channel.

2PL, and in general conventional transaction
protocols in RDBMS, are not secure against
timing covert channels.

6 Commercial and Re-

search Multilevel Secure
RDBMS

The research and development efforts in the
area of multilevel secure RDBMS have re-
sulted in a number of commercial and research
systems. The most noticeable of these sys-
tems are the following: Trusted Oracle[12],
Informix OnLine/Secure[13], Sybase Secure
SQL Server[14], DB2 for z/OS[15], Trusted

Rubix[16], SEAVIEW][8], and Unisys Secure
Distributed DBMS[17].

Trusted Oracle can be configured to run in
one of two modes: DBMS MAC and OS MAC.
The former is an architecture where mandatory
access control is enforced by the RDBMS it-
self, and thus is a trusted subject architecture.
The latter is a kernelized architecture (i.e.,
mandatory access control is delegated to the
operating system). Informix OnLine/Secure,
Sybase Secure SQL Server, DB2 for z/0S, and
Trusted Rubix are examples of a trusted sub-
ject architecture. The SEAVIEW research sys-
tem is an example of a kernelized architecture
whereas the Unisys Secure Distributed research
RDBMS is an example of a distributed archi-
tecture.

Informix OnLine/Secure, Sybase Secure SQL
Server, Trusted Oracle, and Trusted Rubix all
support polyinstantiation. The key for a tu-
ple in Informix OnLine/Secure automatically
includes the tuple security label. Thus, polyin-
stantiation is always possible and cannot be
suppressed by the RDBMS.

The tuple security label in the Sybase Secure
SQL Server is part of all keys. Thus, polyin-
stantiation is always possible and cannot be
suppressed by the RDBMS.

Trusted Oracle can be configured to run in
one of two modes. When run in DBMS MAC
mode, a single Trusted Oracle database can
store information at multiple security levels. In
this mode, Trusted Oracle can turn polyinstan-
tiation on and off at the table level by requiring
key integrity which does not include the tuple
security label. When on, the primary key in-
cludes the tuple label, which allows polyinstan-
tiation to occur. When off, the key does not in-
clude the tuple security label, thus preventing
polyinstantiation.

When run in OS MAC mode, Trusted Oracle
is capable of storing data at only a single secu-
rity label, and the RDBMS is constrained by
the underlying operating system MAC policy.
Without any MAC privilege, the RDBMS can-
not suppress polyinstantiation because a low
RDBMS will not be aware of any tuple with
the same primary key at a higher security level,
and a high RDBMS cannot be trusted to mod-
ify data at a low security level. As such, polyin-
stantiation cannot be prevented when Trusted

Oracle is running in OS MAC mode.

Informix OnLine/Secure and Trusted Ora-
cle provide secure transaction processing pro-
tocols. Informix OnLine/Secure uses an ap-
proach by which a transaction at a low security
level can acquire a write lock on a low data item
even if a transaction at a high security level
holds a read lock on that data item. Thus, a
transaction at a low security level is never de-
layed by a transaction at a high security level.
The transaction at the high security level sim-
ply receives a warning that a lock on a low data
item has been “broken”. Trusted Oracle uses
a combination of locking and multiversioning
techniques.

7 Conclusion

This paper has given an overview of multilevel
security, the MLS evaluation and certification
process, and multilevel secure RDBMS. Build-
ing a multilevel secure RDBMS can be a chal-
lenging task. Depending on the architecture
followed, this might require rebuilding major
portions of an existing commercial RDBMS. It
also requires significant effort to evaluate and
certify, particularly if a high level of assurance
is sought. We are not aware of any commercial
RDBMS that has been evaluated higher than
B1 according to the Trusted Computer Secu-
rity Evaluation Criteria.

Mandatory access control, polyinstantiation,
and secure transaction processing are the key
aspects of a multilevel secure RDBMS. How-
ever, these are not sufficient to ensure that se-
curity cannot be compromised. Depending on
how stringent the requirements of the organi-
zation that wishes to deploy a multilevel secure
RDBMS, the RDBMS might have to imple-
ment additional security guards. For example,
SQL compilers have traditionally been guided
by performance reasons in selecting the order
in which the predicates contained in a query
are evaluated (i.e., more selective predicates
are often evaluated first to narrow down the
set of rows to be passed on to a subsequent
join because join operations are costly). If the
method chosen to enforce MAC when access-
ing a table is based on query modification to
incorporate the MLS two security properties in

the form of regular predicates, then special care
must be taken in selecting the order in which
the predicates on that table are evaluated to
avoid unauthorized leakage of data rows. To il-
lustrate how leakage could occur, suppose that
a query has a predicate on a table that involves
a User-Defined Function (UDF). Further sup-
pose that this UDF takes the whole data row as
an input parameter and that the UDF source
code makes a copy of the data row outside the
database (or sends it as an e-mail to some des-
tination). Now, assume that some data row R
cannot be returned to the user who issued the
query because this would violate the MLS se-
curity properties. If the predicate involving the
UDF is evaluated prior to evaluating the pred-
icates that implement the MLS security prop-
erties then data row R will be consumed by the
UDF and consequently leaked to an unautho-
rized user.

Database triggers[6] are another example
where additional security guards could be nec-
essary. A trigger could cause labeled data row
to flow from a table on which mandatory ac-
cess control is enforced to another table on
which mandatory access control is not enforced.
Without proper flow control measures, triggers
could cause unauthorized leakage of informa-
tion to occur.

Acknowledgements

The author wishes to thank Calisto Zuzarte
and Kelly Lyons from the IBM Toronto Labo-
ratory for their suggestion to write a CASCON
paper about multilevel secure RDBMS.

Trademarks

IBM and Informix are registered trademarks
of International Business Machines Corpora-
tion in the United States, other countries, or
both. Other company, product and service
names may be trademarks or service marks of
others.

Disclaimer
The views expressed in this paper are those of

the authors and not necessarily of IBM Canada
Ltd. or IBM Corporation.

About the Author

Walid Rjaibi joined IBM in 1996. He ini-
tially worked at the IBM Toronto Lab within
the DB2 UDB query optimization team for five
years. In this role, Walid was the architect
and author of several innovative solutions in-
cluding the extensions made to the DB2 statis-
tics model to support parallel database envi-
ronments and the query performance simula-
tor. Walid then joined IBM Research in Zurich,
Switzerland (ZRL) where he worked as a Re-
search Staff Member in Network Security and
Cryptography for two years. At ZRL, he was
an active member of the IBM Privacy Technol-
ogy Institute (PTT) where he developed innova-
tive solutions for enabling RDBMS to automat-
ically enforce privacy policies. Walid returned
to the IBM Toronto Lab in March 2003 where
he joined the newly formed DB2 UDB security
development team. He has authored several
research and technical papers on database se-
curity and privacy, and holds a patents portfo-
lio of eleven filed or granted patents. Walid
holds a Computer Engineer degree from the
University of Tunis (Tunisia), and a Masters
degree in Computer Science from Laval Uni-
versity (Canada).

References

[1] W. Rjaibi, P. Bird. A Multi-Purpose Im-
plementation of Mandatory Access Control
in Relational Database Management Systems.
In Proc. of the 30th International Conference
on Very Large Databases, Toronto, Canada,
2004.

[2] Department of Defense. Multilevel Security
in the Department Of Defense: The Basics.
http://nsi.org/Library/Compsec/sec0.html.

[3] The official website of the Common Criteria
Project
http://www.commoncriteriaportal.org/

[4] V. Atluri, S. Jajodia, T. F. Keefe, C. MaCol-
lum, R. Mukkamal. Multilevel Secure Trans-
action Processing: Status and Prospects.
Database Security, X: Status and Prospects,
Chapman & Hall 1997, eds. Pierangela Sama-
rati and Ravi Sandhu.

[5] Trusted Computer Security Evaluation Crite-
ria, DoD 5200.28-STD. U.S. Department of
Defense, 1985.

(6]

[7]

(10]

(11]

(17]

R. Elmasri, S. Navathe. Fundamentals of
Database Systems. ISBN 0-201-54263-3,
Addison-Wesley, 2000.

S. Jajodia, R. Sandhu. Toward a Multi-
level Secure Relational Data Model. In Proc.
of ACM SIGMOD, Denver, Colorado, USA,
1991.

D. E. Denning. The Sea View Security Model.
In Proc. of the IEEE Symposium on Security
and Privacy, Oakland, California, USA, 1988.
M. D. Abrams, S. Jajodia, H. J. Podell. In-
formation Security An Integrated Collection
of Essays. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1995.

S. Castano, et al. Database Security. ACM
Press, New York, NY, USA, 1995.

E. Bell, L. J. LaPadula. Secure computer sys-
tems: Unified exposition and multics inter-
pretation. Technical Report MTR-~2997, The
Mitre Corporation, Burlington Road, Bed-
ford, MA 01730, USA.

Oracle Corporation. Trusted Oracle Admin-
istrator’s Guide. Redwood City, CA, USA,
1992.

Informix. Informix OnLine/Secure Adminis-
trator’s Guide. Menlo Park, CA, USA, 1993.
Sybase Inc. Building Applications for Secure
SQL Server, Sybase Secure SQL Server Re-
lease 10.0. Emeryville, CA, USA, 1993.

IBM Corporation. DB2 UDB for z/OS V8
Administration Guide. 2004.

National Computer Security Center. Polyin-
stantaition Issues in Multilevel Secure Rela-
tional Database Management Systems. NCSC
Technical Report - 005, Volume 3/5, Library
No. S-243,039, May 1996.

LouAnna Notargiacomo. Architectures for
MLS Database Management Systems. Infor-
mation Security:An Integrated Collection of
Essays, IEEE Computer Society Press, Los
Alamitos, California, USA.

10

Table C.2 — Granted Patents

Access Control Model

US Patent US2009/0063951A1

ID Publication Key Contributions

1 Controlling Data Access Using | This patent is the foundation for the security label
Security Label Components concepts discussed in the core publication #1 in table C.1
US Patent US7,568,235B82 above.

2 Method for Modifying a Query by | This patent is the foundation for the enterprise integration
Use of an External System for | methodology discussed in the core publication #1 in table
Managing Assignments of User C.1 above
and Data Classifications
US Patent US7,860,875B2

3 Fine-Grained, Label-Based, XML | This patent is the foundation for the inter-node

relationship labelling concept discussed in the

publication #2 in table C.1 above.

102

US007568235B2

a2 United States Patent
Bird et al.

US 7,568,235 B2
Jul. 28, 2009

(10) Patent No.:
(45) Date of Patent:

(54) CONTROLLING DATA ACCESS USING (58) Field of Classification Search 726/6,
SECURITY LABEL COMPONENTS 726/27,28; 713/182
See application file for complete search history.
(75) Inventors: Paul Miller Bird, Markham (CA); .
’ ’ 56 Ref Cited
Walid Rjaibi, Markham (CA) (56) clerences Lot
) U.S. PATENT DOCUMENTS
(73) Assignee: International Business Machines 6,185,551 Bl 22001 Birrelletal. ..o..oocrreneee.. 707/3
Corporation, Armonk, NY (US) 6,526,398 B2 2/2003 Wolffetal.ooorrrrr.... 707/1
.)) o) 6,606,681 Bl 82003 Uztn ..o........ .. 711/108
(*) Notice: Subject to any disclaimer, the term of this 6,981,265 B1* 12/2005 Reesetal. 719313
patent is extended or adjusted under 35 2001/0013096 Al 82001 Luckenbaugh etal. 713/154
U.S.C. 154(b) by 828 days. 2004/0015701 Al* 1/2004 FIyntz .ooovvevvvereeneen. 713/182
% o .
(21) Appl. No.: 11/036,839 cited by examiner
) Primary Examiner—Kambiz Zand
(22) Filed: Jan. 15, 2005 Assistant Examiner—Aubrey H Wyszynski
(74) Attorney, Agent, or Firm—Patterson & Sheridan, LLP
(65) Prior Publication Data
US 2006/0059567 Al Mar. 16, 2006 (57 ABSTRACT
. L L. A method that controls user access to the stored data elements
(30) Foreign Application Priority Data using security label components is disclosed. Each stored
Feb. 20,2004 (CA) oo, 2459004 data element is associated with a set of data security label
components, and each user is associated with a set of user
(51) Imt.Cl security label components. The method receives a user
HO4L 9/32 (2006.01) request to access the stored data elements, compares the set of
HO4L 9/00 (2006.01) user security label components to the set of data security label
GO6F 17/30 (2006.01) components associated with the users, and based on the com-
GO6F 7/04 (2006.01) parison result, determines whether or not to permit access to
HO04K 1/00 (2006.01) the stored data.
(52) US.CL .ot 726/27, 726/6; 726/28;
713/182 19 Claims, 14 Drawing Sheets
600
606
/)
GENERATE
ACCESS
PARAMETER
TYPES AND TESTS
810
SET UP YES GENERATE
CLASSIFIED CLASSIFIED
TABLE? TABLE
614
)
ASSIGN YES ASSIGN USER
SECURITY ACCESS ACCESS
LABELS TO PARAMETERS
USERS?

US 7,568,235 B2

Sheet 1 of 14

Jul. 28, 2009

U.S. Patent

AHOML3IN
601 -
0910 |-

LEL

¢l AHOW3IN

(3002 31gvLNO3X3)
GL1 SOV ONIGNTONI
yL1 SWEQ

QAUVOaAIN 1 ol

Ot S0l
AVIdSIa Sng

801 vol

Ndd

} "Old

2ol

SHOLVOIANI ALIIEY]
S$S300V ¥3sn| Al ¥3sn

¢zl 318Vv.L SS3JJV u3sN

SINIW3HIND3IY
$S300V INIW313 [LN3IWIT3
viva viva

021 319v.L @34ISSV1O

S1ivi3d
1831

A3I4ILN3IAI
1s3l

vel

S1831

SH3I1INVHVd
SS300V 40 S3dAL

8L1

9Ll 3Svavivd

00l

W3LSAS ONISS3I00Ud V1vd

US 7,568,235 B2

Sheet 2 of 14

Jul. 28, 2009

U.S. Patent

20¢ SININOdWOI 138v1 40
SINIWT13 40 ST TdNVX3

9027 MOY \4 JONVNILNIVIN AWSY 13403sS 4oL
¥02Z SANVYN
ININOdWOd Taav1 — 1 YINMO INIWLHVANOD 13ATT
€ 3dAl g 3dAL L "3dAL
H¥313INVHvd N3 LTNYEYd M3 LT

20¢Z SININOdWOD 138Vl

(SYILIANVHYC SSIDIV 40 SAdAL)
gLl 13S 139V

¢ Old

US 7,568,235 B2

Sheet 3 of 14

Jul. 28, 2009

U.S. Patent

- 81E
AdvVHEIT ASSvan3 a3alLdIssv1oaa a Nv1d . | e
JONVNILNIVIN 30404 Hiv @3i4ISsv1o 9 Nv1d ¢ \\w e
HOYV3asS3H]
OHv3S3 VSVN 13M03S g Nv1d . k\Sm
SANIIYIN AN 13403S dO1 v Nvid] %\NS
(Y3INMO) (LNIWLYVdNOD) (73A37)
€73dAL 2 3dAL LT3dAL
INIWIYINOIY INIWIHINOIY ANINOIWOD
SS3DDV SS3IDIV SS3DJV
INIWITT viva | INIWIT3 viva | LN3IW3I13 viva
OLE S13gv1 MOY | 80€ S138V1 MOY | 90€ S13av1 MOd IWNEIVERER AN (€] H3IIHIAN3AI
SHOLVDIANI om_u_m_w,mwio INIWI13 viva
ALITISISSIOOV ¥3SN LSNIVOY AIHVdNOD coe
38 O1 SINIWIHINODIY SS3D0V INIWT1T V1va
$0€

(SLNIW313 V.LVA aJIAISSYTO ONINIVINOD 021 318vL) 021

3719v.1 d314ISSV10

€Old

US 7,568,235 B2

Sheet 4 of 14

Jul. 28, 2009

U.S. Patent

axig
HOYV3S3Y VSYN aaidISsv1o
SIANINYIN VSVYN ‘ANNY 13493S 4Ol arvm

(43INMO) (LNIWLHVYINOD) (13A3)

€~ 3IdAL 2 3dAl I~ 3dAL
HOLVOIANI ALINEY | ¥OLVDIaNI ALIIEY | HOLVYDIANI ALNigY

SS3IDOV HASN SSIDIV {3SN SS3DOV HASN
OL¥ LNINOAWOD 80% LNINOAWOD | 90t ININOJWOD w3I4LLNIal
SINIWIHINOTY SSIDDV INIWIT3 V.IVA d3sn
20% NWN10D

1SNIVOV d34vdWNOD

39 O1 SHOLVIIANI ALNigy SS300V ¥3SN A3NIWE3L303dd

14014

¢l 319Vl SS3D0V H3iSN

¥ Old

1424

34

US 7,568,235 B2

Sheet 5 of 14

Jul. 28, 2009

U.S. Patent

¢ 3dAL \\ ¥15
1NIWIHINOIY SSFOOV LNINI 13 V.LVA HLIM HOLYIN SS300V v 1S3l
Z ddAL HOLVIIANI ALITIGY SS3DOV ¥3Sn S30a JLEm
rARe
(I "3ALMOLVOIONI | comnoy -
ALY SS3O0V ¥3ISN OL TVNDT HO NVHL YILYRIO 21 IHM e71saL
I 3dAL INTFNIHINDIYH SSIODV LNIWI13 v.ivad SI
¢Z 3dAL HOLVOIONI ALMIGY SSFOOV HIASN HLM HOLYW | SS3JJV _ L —0s
Z 3dAL INIWIHINDIY SSIDOV ININI13 V.LVa S30A avay ¢ 1&3dl
&l AdAL INTWIHINODIY
SSIOOV INIWI T3 VLVA OL WNOI HO NVHL HILVIAHO mwwwwm 11S31 fa— 805
1 3dAL ¥OLVIIANI ALITIEY SSIDIY H3ASN SI
STIv13a 1S3t IdAL 1S3l [¥AIILN3Al 1S31
905 05 205

0Z1 319V.L OL SSIOJV ILRIM HO AV3Y SFHISIA YASN ¥ NIHM SHOLVOIIANI ALITIEY SS30JV
H3ASN LSNIVOY SLINIWIHINDIY SSIOIV LNIWI13 VLVA ONIHVAWOD HO4 S1S3L 40 13S

vl S1S3lL

¢ 'Old

U.S. Patent Jul. 28, 2009 Sheet 6 of 14

GENERATE
ACCESS
PARAMETER TYPES
AND
TESTS?

602

YES

SET UP
CLASSIFIED
TABLE?

YES

ASSIGN
SECURITY ACCESS
LABELS TO
USERS?

YES

US 7,568,235 B2
600
606
GENERATE ’)
ACCESS
PARAMETER
TYPES AND TESTS
(FIG. 7)
:?o
GENERATE
CLASSIFIED
TABLE
(FIG. 8)
614
ASSIGN USER J
ACCESS
PARAMETERS
(FIG. 9)

FIG. 6A

U.S. Patent Jul. 28, 2009 Sheet 7 of 14 US 7,568,235 B2

600
618
WRITE DATA YES WRITE DATA TO
TO CLASSIFIED CLASSIFIED TABLE
TABLE? (FIG. 10)
622
READ READ DATA FROM
DATA FROM
CLASSIFIED TABLE
CLASSIFIED (FIG. 11)
TABLE? -
626
ANY MORE
ACCESS TYPE

DUTIES?

FIG. 6B

U.S. Patent Jul. 28, 2009 Sheet 8 of 14 US 7,568,235 B2

606
702
TRANSFER CONTROL FROM J
DECISION STEP 604
(FIG. 6)

'

DEFINE TYPES OF ACCESS PARAMETERS TO BE
USED AS DATA ELEMENT ACCESS PARAMETERS
AND AS USER ACCESS ABILITY INDICATORS

704

'

706

DEFINE TESTS FOR COMPARING DATA ELEMENT
ACCESS REQUIREMENTS AGAINST USER ACCESS
ABILITY INDICATORS

;

TRANSFER CONTROL TO v,
DECISION STEP 608
(FIG. 6)

FIG. 7

U.S. Patent Jul. 28, 2009 Sheet 9 of 14 US 7,568,235 B2

610
802

)

TRANSFER CONTROL FROM DECISION
STEP 608 (FIG. 6)

l 804

SET UP CLASSIFIED TABLE

l 806

GENERATE COLUMN TO CONTAIN DATA
ELEMENT IDENTIFIERS

'

GENERATE COLUMN TO CONTAIN DATA
ELEMENTS

l 810

GENERATE A COLUMN FOR EACH TYPE OF DATA
ELEMENT ACCESS REQUIREMENT

l 812

TRANSFER CONTROL TO v
DECISION STEP 612
(FIG. 6)

FIG. 8

U.S. Patent Jul. 28, 2009 Sheet 10 of 14 US 7,568,235 B2

614
902
TRANSFER CONTROL
FROM DECISION
STEP 612 (FIG. 6)
906
y SGSSIE\F(;@EZS YES GENERATE USER
TABLES ACCESS TABLE
910
RECEIVED J
REQUEST TO ASSIGN USER
ASSIGN ACCESS
USER ACCESS PARAMETERS
PARAMETERS?
l j12
UPDATE USER
ACCESS TABLE
j14

TRANSFER CONTROL
TO DECISION
STEP 616 (FIG. 6)

FIG. 9

U.S. Patent Jul. 28, 2009 Sheet 11 of 14 US 7,568,235 B2

618
1001
TRANSFER J

CONTROL FROM
DECISION STEP 616
(FIG. 6)

REQUEST
FOR WRITING?

TRANSFER
CONTROL TO
DECISION STEP 620
(FIG. 6)

FIG. 10A

U.S. Patent Jul. 28, 2009 Sheet 12 of 14 US 7,568,235 B2

(o]
=
(o]

1004

A RECEIVE ROW |=

1008
NO ROwW EVALUATE LABEL J
LABEL SET WRITE
VALID? ACCESS RULES
1014

ACCESS
ALLOWED?

WRITE ROW

»{ RETURN ERROR J

TRANSFER CONTROL TO
DECISION STEP 620

(FIG. 6)

FIG. 10B

U.S. Patent Jul. 28, 2009 Sheet 13 of 14

622
1101

TRANSFER
CONTROL FROM
DECISION STEP 620
(FIG. 6)

REQUEST

FOR READING?

TRANSFER
CONTROL TO
DECISION STEP 624
(FIG. 6)

FIG. 11A

US 7,568,235 B2

U.S. Patent Jul. 28, 2009 Sheet 14 of 14 US 7,568,235 B2

O
N
N

1104

@—> FETCH ROW a
l 1106

EVALUATE LABEL
SET READ
ACCESS RULES

1110

ACCESS

ALLOWED? RETURN ROW

E— SKIP ROW J

1116

TRANSFER CONTROL TO
DECISION STEP 624 <
(FIG. 6)

FIG. 11B

US 7,568,235 B2

1

CONTROLLING DATA ACCESS USING
SECURITY LABEL COMPONENTS

PRIORITY CLAIM

The present application claims the priority of Canadian
patent application, Serial No. 2,459,004, titled “Method and
System to Control Data Access Using Security Label Com-
ponents,” which was filed on Feb. 20, 2004, and which is
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to access control of stored
data, and more specifically to a method, a system, and a
computer program product to control data access using secu-
rity label components.

BACKGROUND OF THE INVENTION

In general, access control mechanisms based on labels do
notaddress the requirements from application domains where
the label structure and the label access rules do not necessarily
match those specific to Multilevel Security (MLS).

Access control regulates the reading, changing, and delet-
ing of objects stored on a computer system. Access control
further prevents the accidental or malicious disclosure, modi-
fication, or destruction of such objects. Fundamental types of
access control comprise discretionary access control (DAC),
role-based access control (RBAC), and mandatory access
control (MAC). DAC permits the granting and revoking of
access privileges to be left to the discretion of the individual
users. RBAC does not allow users to have discretionary
access to objects. Instead, access permissions are associated
with roles; users are made members of appropriate roles.
MAC, as defined in the Trusted Computer Security Evalua-
tion Criteria (TCSEC) is “a means of restricting access to
objects based on the sensitivity (as represented by a label) of
the information contained in the objects and the formal autho-
rization (i.e., clearance) of subjects to access information of
such sensitivity”

One implementation of MAC is Multilevel Security (MLS)
that has typically been available primarily on computer and
software systems deployed at sensitive government organiza-
tions such as the intelligence services or the military.

An MLS model is stated in terms of objects and subjects.
An object is a passive entity such as a data file, a record, or a
field within a record. A subject is an active process that can
request access to objects. The object is assigned a classifica-
tion, and the subject is assigned a clearance. Classifications
and clearances are collectively referred to as access classes or
labels. A label is a piece of information that comprises a
hierarchical component and a set of unordered compart-
ments.

The hierarchical component specifies the sensitivity of the
data. For example, a military organization might define levels
top secret, secret, confidential, and unclassified. The com-
partments component is non-hierarchical and is used to iden-
tify areas that describe the sensitivity or category of the
labeled data. For example, a military organization might
define compartments NATO, nuclear, and army. Labels are
partially ordered in a lattice as follows: given two labels L1
and [.2, L1>=[.2 if and only if the hierarchical component of
L1 is greater than or equal to that of .2, and the compartment
component of L1 includes the compartment component of
L2. L1 is said to “dominate” L.2.

20

25

30

45

50

55

60

65

2

MLS restricts data accesses through a simple security
property and a *-property (pronounce “the star property”).
The simple security property allows a subject read access to
an object if and only if the subject’s label dominates the
object’s label. The *-property allows a subject write access to
an object if and only if the object’s label dominates the sub-
ject’s label. The *-property prevents subjects from declassi-
fying information.

Even though MLS has traditionally been a requirement of
some sensitive government organizations, such as the intelli-
gence services or the military, the ever-increasing customer
demand for higher security has made MLS attractive for
commercial software products. For example, in certain imple-
mentations, the DBMS controls access to database table rows
based on a label contained in the row and the label associated
with the database user attempting the access. The drawbacks
of'such implementations comprise a fixed label structure and
fixed access rules.

MLS fixes the label structure of a hierarchal component
and a set of unordered compartments. Thus, the labels cannot
be used for other types of applications to provide fine-grained
access control to database table rows. For example, in certain
banking applications, a label represents a geographical loca-
tion, which is a single component and is not hierarchal. MLS
further fixes access rules. Access to database table rows is
governed by the simple security property and the *-property.
Thus, this form of access control based on labels cannot be
used for other purposes. For example, banking applications
have different requirements for the label structure and for the
label access rules.

Although this technology has proven to be useful, it would
be desirable to present additional improvements. Existing
access control systems based on labels strictly implement the
MLS semantics. These conventional access control systems
fail to address the label requirements from application
domains where the label structure and the label access rules
do not necessarily match those described in MLS. Moreover,
these existing solutions cannot be used to enforce privacy
policies. Generally, a privacy policy indicates for which pur-
poses an information is collected, whether or not the collected
information will be communicated to others, and for how
long the collected information is retained before it is dis-
carded.

For example, a user should not be able to access a customer
record for the purpose of sending that customer marketing
information if that customer did not agree to receipt of such
information. Access to privacy-sensitive data can be regarded
as analogous to access to labeled data. In both cases, a tag is
associated with the object being accessed and the subject
accessing that object. The tag is a “purpose” in the case of the
accessing privacy-sensitive data and a “label” in the case of
the accessing labeled data.

However, existing access control solutions based on labels
strictly implement the MLS semantics, and thus cannot be
used to enforce privacy policies for the following reasons.
Labels include a hierarchal component that is not applicable
in the case of privacy. Furthermore, the MLS security prop-
erties do not apply in the context of privacy.

What is therefore needed is a system, a computer program
product, and an associated method for a label-based access
control (LBAC) solution that is capable of implementing the
MLS semantics and of addressing the requirements from a

US 7,568,235 B2

3

variety of application domains, including MLS requirements.
The need for such a solution has heretofore remained unsat-
isfied.

SUMMARY OF THE INVENTION

The present invention satisfies this need, and presents a
system, a service, a computer program product, and an asso-
ciated method (collectively referred to herein as “the system”
or “the present system”) for controlling data access using
security label components. The present system provides, fora
data processing system having memory for storing data ele-
ments, a method for directing the data processing system to
control user access to the stored data elements.

Each stored data element is associated with a set of data
security label components. Each user is associated with a set
of user security label components. The present system com-
prises receiving a user request to access the stored data ele-
ments, comparing the set of user security label components
against the set of data security label components associated
with the users, and determining whether to permit access to
the stored data responsive to the received user request based
on results of the comparison.

The present system comprises a computer program product
for directing a data processing system to control user access to
data elements stored in memory of the data processing sys-
tem. Each stored data element is associated with a set of data
security label components. Each user is associated with a set
of user security label components. The computer program
product comprises a computer readable transport medium for
transporting computer executable code to the data processing
system. The computer executable code comprises computer
executable code for receiving a user request to access the
stored data elements, computer executable code for compar-
ing the set of user security label components against the set of
data security label components associated with the users, and
computer executable code for determining whether to permit
access to the stored data responsive to the received user
request based on results of the comparison.

The present system comprises an access control system to
be operatively coupled to a data processing system having
memory for storing data elements. The access control system
directs the data processing system to control user access to the
stored data elements. Each stored data element is associated
with a set of data security label components. Each user is
associated with a set of user security label components. The
access control system comprises means for receiving a user
request to access the stored data elements, means for com-
paring the set of user security label components against the set
of data security label components associated with the users,
and means for determining whether to permit access to the
stored data responsive to the received user request based on
results of the comparison.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features of the present invention and the man-
ner of attaining them will be described in greater detail with
reference to the following description, claims, and drawings,
wherein reference numerals are reused, where appropriate, to
indicate a correspondence between the referenced items, and
wherein:

FIG. 1 is a schematic illustration of an exemplary database
management system installed on a data processing system
having memory storing a database in which an access control
system (ACS) of the present invention can be used;

20

30

35

40

45

50

55

60

65

4

FIG. 2 is a table illustrating types of access parameters
implemented by the access control system of FIG. 1;

FIG. 3 is a table illustrating data and table access param-
eters of the access control system of FIG. 1 for the database of
FIG. 1,

FIG. 4 is a table illustrating a user access table in which
user access parameters are associated by the access control
system of FIG. 1 with users of the database of FIG. 1;

FIG. 5 is a table illustrating tests used by the access control
system of FIG. 1 in comparing table access parameters
against user access parameters for access to the database of
FIG. 1,

FIG. 6 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises determining user requirements;

FIG. 7 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises defining access parameter types and
associated tests;

FIG. 8 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises creating a table contained in the database
of FIG. 1;

FIG. 9 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises assigning user access parameters;

FIG. 10 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises writing data to a table contained in the
database of FIG. 1; and

FIG. 11 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises reading data from a table contained in
the database of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following detailed description of the embodiments of
the present invention does not limit the implementation of the
embodiments to any particular computer programming lan-
guage. The computer program product may be implemented
in any computer programming language provided that the OS
(Operating System) provides the facilities that may support
the requirements of the computer program product. A pre-
ferred embodiment is implemented in the C or C++ computer
programming language (or may be implemented in other
computer programming languages in conjunction with
C/C++). Any limitations presented would be a result of a
particular type of operating system, computer programming
language, or data processing system and would not be a
limitation of the embodiments described herein.

FIG. 1 portrays an exemplary overall environment in which
a system and associated method for controlling data access
using security label components (an access control system
115) according to the present invention may be used. The
access control system 115 comprises a software program-
ming code or a computer program product that is typically
embedded within, or installed on a memory 112. Alterna-
tively, system 10 can be saved on a suitable storage medium
such as a diskette, a CD, a hard drive, or like devices.

A data processing system (DPS) 100 comprises a Central
Processing Unit (CPU) 102 operatively coupled to a bus 104.
Bus 104 is operatively coupled to /O (Input/Output Interface
Unit) 105 and coupled to memory 112. I/O 105 operatively
couples bus 104 to a display unit 108, a keyboard/mouse
(keyboard 110), a disc 111, and a network 109. Memory 112

US 7,568,235 B2

5

may comprises a combination of many types of memory, such
as RAM (Random Access Memory), ROM (Read Only
Memory), and hard disk (not illustrated).

The memory 112 stores a database 116 and a database
management system (DBMS) 114. The DBMS 114 com-
prises the access control system 115. However, the access
control system 115 may operate independently of the DBMS
114 and there may be system calls transferred between the
DBMS 114 and the access control system 115. The DBMS
114 and the access control system 115 comprise computer
executable code that is executed by the CPU 102. The com-
puter executable code is compiled from computer pro-
grammed instructions written in a high-level computer pro-
gramming language (such as, for example, C++ or Java). The
computer executable code is loaded to memory 112 by trans-
ferring the computer executable code from disc 111.

Disc 111 is a computer program product comprising a
computer readable medium that is used to transport the com-
puter executable code to the DPS 100 via /O 105. Alterna-
tively, the computer readable medium comprises a computer
readable transport signal carried by network 109, the signal
being used to transport the computer executable code to the
DPS 100 via I/O 105. It will be appreciated that the computer
executable code configures the DPS 100 (which is a general
purpose machine) into a specifically configured machine that
may be treated as comprising modules or mechanisms that
achieve specific functions (these functions to be described
below in more detail).

Generally, the computer executable code included in the
access control system 115 directs CPU 102 to define security
labels for data and users. Data security label components are
found in types of access parameters 118. The data security
label components are associated with each data element
stored in a classified table 120. The access control system 115
also defines user security label components that are stored in
auser access table 122. Each user security label component is
associated with a user. The access control system 115 directs
CPU 102 to determine whether the user, who submitted a
request to access a data element, is granted access or is denied
access to the data element based upon a comparison made
between the user security label components and the data
security label components. Tests 124 comprise these tests or
rules for allowing user access to the data element.

The access control system 115 is used to control user
access to stored data shown in classified table 120. Associated
with the stored data are security label components. Associ-
ated with the users are user security label components. The
access control system 115 configures a configurable security
label structure that describes the security label components
associated with the stored data and the users (the security
label structure is described below in greater detail). The
access control system 115 also defines label access rules to be
associated with the configurable security label structure. The
access control system 115 executes the defined label access
rules to compare the security label components associated
with the stored data against the security label components
associated with the users. The access control system 115
determines whether to permit and to not permit user access to
the stored data based on the outcome of the executed defined
label access rules.

FIG. 2 is a table illustrating the types of access parameters
used by the access control system 115 of FIG. 1, access
parameters 118. These types of access parameters are a col-
lection of security access parameters further referenced
herein as a security label set label set 118 or label set 118. The
label set 118 is a security label structure that comprises types

10

20

25

30

35

40

50

55

60

6

of security access components (label components) 202, each
associated with security access parameters such as label com-
ponent names 204.

The label components label components 202 is a set of
security access label components that are organized as a
schema; the schema is the label set 118. As a table schema
defines the set of columns that make up a data row, so the label
set 118 represents a schema that defines a set of label com-
ponents 202 that make up a security access label. The security
access label is either associated with a data element stored in
classified table 120 or associated with a user—as indicated in
user access table 122. The label set 118 comprises security
access rules that the access control system 115 uses to deter-
mine whether a user who is associated with a label, [._1, may
be granted or may be denied access to a data element associ-
ated with a label, [._2. Further description for the access rules
or tests is provided below. The security access rules (or tests)
may be stored in a test table, tests 124 of FIG. 1.

A type of access parameter may be treated as one of the
label components 202, each of which is associated with one of
the label component names 204. The set of label components
202 is an entity that may be created, dropped, and altered by
the access control system 115. The security label set 118 (to
be associated with a data element or with a user) may include
one or more of the label components 202. There may be types
of'the label components 202, such as for example a “set” type
of the label components 202 and a “tree” type of the label
components 202. There may be an ordered set type of the
label components 202 and there may be an unordered set type
of the label components 202.

In an ordered set type of the label components 202, the
order in which element in a component appears is important:
for example, the rank of a first element is higher than a rank of
a second element, a rank of a second element is higher than a
rank of a third element and so on (for one of the label com-
ponents 202). An example of the types of components is
indicated in row 206 of the label set 118, examples of ele-
ments of the label component 202.

A tree type of the label components 202 represents a hier-
archy of an organization (such as a company for example).
The tree type of the label components 202 may be used to
represent organizational charts and/or to identify departments
within an organization that owns the data stored in the clas-
sified table 120. The label components 202 are stored in the
label set 118, for example, or stored in a database system
catalog if the access control system 115 is to be implemented
in DBMS 114.

FIG. 3 shows the classified table 120 of FIG. 1. A classified
table is a database table that comprises labeled data rows.
When a database administrator marks the classified table 120
as classified, the database administrator specifies the label set
118 to be used or associated with the classified table 120. The
label set 118 determines the structure ofthe label components
202 to be used to label the data rows of the classified table 120.
The label set 118 further determines the label access rules
(tests 124) to be used for enforcing access to the classified
table 120.

The classified table 120 comprises one or more classified
data elements 303. The classified table 120 further comprises
one or more row labels 306, one or more row labels 308, and
one or more row labels 310. Each of the row labels 306, row
labels 308, and row labels 310 are associated with a data
element PLAN_A, PLAN_B, PLAN_C, and PLAN_D,
respectively, and are indicated in respective table row 312,
table row 314, table row 316, and table row 318. The access
control system 115 generates and assigns security access
labels; i.e., access labels and row labels

US 7,568,235 B2

7

A row label is assigned to each data element stored in the
classified table 120. The data element may be a picture, a test
document, or combination thereof. It is understood that each
row has its own row label (there cannot be duplicate row
labels). It is possible that two rows in the classified table 120
may have two row labels that are identical.

The classified table 120 is a convenient organized storage
of a plurality of data elements used to illustrate one embodi-
ment. The row label contains components that are used to
express or indicate the access requirements of a data element.
For example, row label of PLAN_A (see table row 312)
comprises security label components LEVEL=TOP
SECRET, COMPARTMENT=ARMY,
OWNER=MARINES.

For example, for PLAN_A of table row 312, if a user is a
member of MARINES division of ARMY and that user has a
classification clearance of at least TOP SECRET or better,
that user may have read and/or write access to PLAN_A.
However, if that user is not a member of MARINES division
but is instead a member of any other division of ARMY and
that user also has a classification level of at least TOP
SECRET or better, then that user may have only read access
to PLAN_A. For any other condition, that user may not have
read or write access to PLAN_A.

For example, for PLAN_B of table row 314, if a user is a
member of RESEARCH division of NASA and that user also
has a classification clearance of at least SECRET or better,
that user may have read and write access to PLAN_B. How-
ever, if that user is not a member of RESEARCH division of
NASA but that user is a member of some other NASA divi-
sionand that user has a classification level of at least SECRET
or better, that user may have only read access to PLAN_B. For
any other condition, that user may not have read or write
access to PLAN_B.

DBMS 114 may comprise a function that allows database
users to refer to the security label associated with a row in a
classified table in SQL statements. This function may, for
example, be called “ROWLABEL”. ROWLABEL can be
referenced in an SQL statement. ROWLABEL allows users
to reference a row label in SQL statements for manipulating
data contained in the rows of the classified table 120.

For SELECT statements and WHERE clauses (to be
included in an SQL statement), individual label components
are referenced by providing the component name as a param-
eter to the ROWLABEL function. For example, a user who
wishes to select only the level component of a label can issue
the following SQL. statement:

SELECT ROWLABEL(level), . .., FROM T1

Ifthe user wishes to express a predicate, the following SQL
statement can be issued:

SELECT ROWLABEL(level), . . . , FROM T1 WHERE
ROWLABEL(level)=*Secret’

For INSERT and UPDATE SQL statements, ROWLABEL
is a means of providing the label value of a data row. For
example, a user who wishes to insert a row into a classified
table can issue the following SQL statement:

INSERT INTO T1 VALUES (ROWLABEL(‘SECRET’,
‘NATO’), . ..)

A user who wishes to update the level component in the
label of some data row can issue the following SQL state-
ment:

UPDATE T1 SET ROWLABEL(level S ROWLABEL
(‘SECRET’) WHERE C1=5

FIG. 4 shows the user access table 122 of FIG. 1. The user
access table 122 comprises security access labels (having
component 406, component 408, and component 410) asso-
ciated with user identifiers (column 402). An access label is

20

25

30

35

40

45

50

55

60

65

8

assigned to each user. It is possible that users may have
identical access labels. Access labels may be granted and
revoked by the database administrator (that is, an executive
level user of the access control system 115) or by another
database user who has sufficient authority to act as an admin-
istrator. Access labels may be stored, for example, in a data-
base catalog. The access label comprises components that
express or indicate user ability to access data elements stored
in the classified table 120 as predetermined by the adminis-
trator.

For example, user WALID (row 412) has a LEVEL=TOP
SECRET (that is, Walid has top secret classification clear-
ance). For WALID, COMPARTMENT=ARMY and NASA
(that is, user Walid is a member of the ARMY and a member
of NASA). Also, user Walid is indicated as an owner of
documents that belong to the MARINES (a division of
ARMY). These values indicate that user Walid may have only
read and/or write access to data elements associated with a
security label component MARINES provided that user
Walid has the proper security clearance level (in this case, the
security clearance of user Walid is TOP SECRET). Further-
more, user Walid may have only read access to any data
element associated with a security label component ARMY
or NASA, provided that user Walid has the proper security
clearance level (in this case, the security clearance of user
Walid is TOP SECRET).

For example, if a data element is associated with a clear-
ance LEVEL that is greater than TOP SECRET (and associ-
ated with ARMY or NASA), user Walid may not have read
access to that data element because the classification LEVEL
of user Walid is not sufficient.

User BIRD (row 414) may have read and/or write access to
any data elements that are associated with RESEARCH divi-
sion of NASA provided the LEVEL classification of user Bird
is sufficient to permit user BIRD access to those data element.

User BIRD may have only read access to data elements
associated with NASA that do not belong with the
RESEARCH division of NASA (provided that the LEVEL
classification of user Bird is sufficient to permit user BIRD
read access to those sorts of data elements).

FIG. 5 shows the tests 124 of FIG. 1. The tests 124 are to be
selected and the label set 118 may also specify the access
rules or tests that the access control system 115 uses to deter-
mine whether a user who is associated with an access label
(i.e., access label_1) may have access to a data element asso-
ciated with a row label (i.e., row label_1).

Label access rules may be divided categories such as read
access rules and write access rules. The read access rules are
used by the access control system 115 when a user attempts to
read a data element from the classified table 120 (for example,
when the user submits a SELECT statement to the DBMS
114). The access control system 115 uses the write access
rules when a user attempts to write (such as, performing an
insert, an update or a delete command) a data element. A label
access rule may be a predicate that combines the same label
components contained in an access label and a row label by
using an operator as follows (for example):

Access Label Component_A <operator> Row Label Com-
ponent_A

Thetype of operator to be used in the label access rules may
depend on the type of label component. For ordered sets of
label components, the operator may be any of the following
relational operators {=, <=, <, >, >=, 1=} For non-ordered sets
of'label components, the operator may be, for example, any
one of the set operators {IN, INTERSECT. For trees of label
components, the operator may be, for example, the INTER-
SECT set operator. The label set 118 and label access rules

US 7,568,235 B2

9

may be stored in a database system catalogs when the access
control system 115 is integrated with the DBMS 114.

Exceptions to the label access rules here provide a flexibil-
ity to bypass one or more label access rules. For example, in
an MLS context, it is often the case that some special users are
allowed to write information to data elements associated with
lower security levels even though this is in contradiction with
the *-security property. Thus, exceptions are introduced to
allow the database administrator to grant a database user an
exception to bypass one or more rules associated with a
particular label set.

FIG. 6 illustrates a method 600 of operation of the access
control system 115 of FIG. 1, in which the method 600 com-
prises determining user commands and requirements. The
access control system 115 of FIG. 1 begins operation at step
602.

The access control system 115 determines whether the user
desires to create the label set 118 of FIG. 2 or create the tests
124 of FIG. 5 (decision step 604). If the user desires to create
label set 118 or tests 124, the access control system 115
creates access parameter types and tests (step 606). If the user
does not desire to create label set 118 or tests 124, operation
continues to decision step 608.

The access control system 115 determines whether the user
desires to create the classified table 120 of FIG. 3 (decision
step 608). If the user desires to create the classified table 120,
the access control system 115 creates the classified table 120
(step 610). If the user does not desire to create the classified
table 120, operation continues to decision step 612.

The access control system 115 determines whether the user
desires to assign security access labels to users as shown in
user access table 122 of FIG. 4 (decision step 612). If the user
desires to assign security access labels, the access control
system 115 assigns user access parameters (step 614). If the
user does not desire to assign security access labels, operation
continues to decision step 616.

The access control system 115 determines whether the user
desires to write data to classified table 120 of FIG. 3 (decision
step 616). If the user desires to write data to classified table
120, the access control system 115 writes data to the classified
table 120 (step 618). If the user does not desire to write data
to classified table 120, operation continues to decision step
620.

The access control system 115 determines whether the user
desires read data (that is, data elements 303) from the classi-
fied table 120 of FIG. 3 (decision step 620). If the user desires
to read data from the classified table 120, the access control
system reads data from the classified table (step 622). If the
user does not desire to read data from the classified table 120,
operation continues to decision step 624.

The access control system 115 determines whether the user
desires to re-perform any of operations of decision step 604,
decision step 608, decision step 612, decision step 616, or
decision step 620 (decision step 624). If the user desires to
re-perform any of these operations, the access control system
115 returns to decision step 604 and repeats steps 604 through
622 as required. If the user does not desire to perform these
operations, access control system 115 halts any further opera-
tions (step 626).

FIG. 7 illustrates a method of operation of step 606 of the
method 600 of the access control system 115 of FIG. 1. Step
606 comprises defining the label set 118 of FIG. 2. The label
set 118 is a set of types of access components. Step 606
further comprises defining the label access rules (tests 124 of
FIG. 5) to be associated with the label set 118.

The access control system 115 helps the database admin-
istrator (an executive user of the access control system 115) to

20

25

30

35

40

45

50

55

60

65

10

define the security label components (indicated in row 202 of
label set 118) and their types. For example, the access control
system 115 permits the database administrator to define secu-
rity alabel component referenced as LEVEL (of type integer)
and a label component referenced as COMPARTMENT (of
type string).

The access control system 115 permits the database admin-
istrator to define the label set that comprises the security label
component 202. The relationship between the security label
component 202 and the label set 118 is analogous to the
relationship between a data row of a table and a table schema.
As the table schema defines the set of columns that make up
a data row, so the label set 118 set defines the set of security
label components that make up the label set 118. The label set
118 may also be associated with a test table, tests 124 of FIG.
5. The test table, tests 124, comprises a set of access rules that
the access control system 115 uses to determine whether a
user who is associated with a security access label, [_1, may
or may not access a data row associated with a security label,
L_2. The label access rules may be divided into categories
such as read access rules and write access rules.

The access control system 115 transfers control from deci-
sion step 606 of FIG. 6 because a user has indicated a desire
to define the components to be included in the label set 118 of
FIG. 2 and the tests 124 of FIG. 5 (step 702).

The access control system 115 defines the components of
label set 118 of FIG. 2 (step 704). The components 202 of
label set 118 indicate the types of access parameters 306, 208,
310 to be associated with data elements 303 of FIG. 3.

The access control system 115 defines the tests 124 of FIG.
5 to be associated with the components 202 of label set 118
(step 706). The access control system transfers control back
to decision step 608 of FIG. 6.

FIG. 8 illustrates a method of operation of step 610 of the
method 600 of the access control system 115 of FIG. 1. Step
610 comprises creating the classified table 120 of FIG. 1.

A database administrator (an executive user of the access
control system 115) attaches the label set 118 to the classified
table 120. When the label set 118 is attached to the classified
table 120, the table 120 is considered classified; i.e., the data
elements may only be accessed depending on the execution
outcome of the tests 124 of FIG. 5.

When the user desires to access data elements contained in
the classified table 120, the access control system 115 applies
the access rules defined and associated with the label set 118
of FIG. 2. The label set 118 is attached to the classified table
120 to determine whether or not a user may have or may not
have access to a row containing a data element within the
classified table 120.

The access control system 115 transfers control from deci-
sion step 610 of FIG. 6 because a user has indicated a desire
to create the classified table 120 of FIG. 3 (step 802). The
access control system 115 sets up the classified table 120 (step
804).

The access control system 115 generates a column 302 to
contain the data element identifiers (step 806). Each of these
identifiers identifies a specific data element contained in table
120. The access control system 115 generates a column 303 to
contain the data elements (step 808).

The access control system 115 generates a column for each
row label component 306, 308 and 310 (that is, each user
Access Label component 306,108, 310) (step 810). Each
component 306, 308, 310 indicates the data element access
requirements to be compared against user access label com-
ponents at a later time (the comparison is further described
below). The access control system transfers control back to
decision step 612 of FIG. 6 (step 812).

US 7,568,235 B2

11

FIG. 9 illustrates a method of operation of step 614 of the
method 600 of the access control system 115 of FIG. 1. Step
614 comprises assigning user access labels to users. Each
access label (security Access Label) comprises user access
components, each component indicating an ability ofauserto
access data elements stored in the classified table 120 of FIG.
3.

The access control system 115 permits a database admin-
istrator (who is an executive level user of the access control
system 115) to grant access labels (security Access Labels) to
specific database users. The access control system 115 uses
the access labels in conjunction with the label set access rules
to determine user access rights with respect to rows (that is,
data elements associated with a row) contained in the classi-
fied table 120. The access control system 115 may permit the
database administrator to choose to grant one or more excep-
tions to a database user to allow them to bypass one or more
access rules associated with the label set 118.

The access control system 115 may be integrated into an
SQL (Structured Query Language) compiler component (not
illustrated) of the DBMS 114 such that when an SQL query
references the classified table 120, the SQL compiler incor-
porates the access rules of the label set associated with the
classified table 120 in an access plan. The SQL compiler
generates the access plan). The access plan is used to execute
the compiled user SQL query. When the access plan is
executed, the access rules may be evaluated for each row (that
contains the data element) in the classified table 120 to deter-
mine whether access to a specific row should be allowed or
disallowed.

The access control system 115 transfers control from deci-
sion step 614 of FIG. 6 because a database administrator
indicated a desire to assign user access parameters to a user
(step 902).

The access control system 115 determines whether the user
request is a request to generate the user access table 122
(decision step 904). If the user request indicates a desire to
generate the user access table 122, the user access table 122 is
generated (step 906) and processing continues to decision
step 908. If the user request indicates no desire to generate the
user access table 122, processing continues to operation deci-
sion step 908.

The access control system 115 determines whether the
received user request indicates a desire to assign access labels
(security Access Labels) to a specific user (decision step 908).
If it is determined that the user wishes to assign an access
label to the specific user, the access control system assigns an
access label to a user (step 910) and components of the access
label are selected or filled in for the access label assigned to
the specific user (step 912). If it is determined that the user
does not wish to assign an access label to the specific user, the
access control system 115 transfers control to decision step
616 of FIG. 6.

FIG. 10 illustrates a method of operation of step 618 of the
method 600 of the access control system 115 of FIG. 1. Step
618 comprises writing data elements to the classified table
120 of FIG. 1. The access control system transfers control
from decision step 618 of FIG. 6 step 1001).

The access control system 115 determines whether the
access control system 115 received a user request for writing
(that is, a write access command) data to a data element stored
in the classified table 120 (decision step 1002). If the user
request is not a write request, the access control system
returns to step 616 of FIG. 6. If the user request indicates a
write access request, the access control system 115 proceeds
to step 1004. The access control system 115 receives a row to
be written (step 1004).

20

25

30

35

40

45

50

55

60

65

12

The access control system 115 validates row security label
components associated with the row (that is, the data element)
to be written to the classified table 120 (decision step 1006).
If the row security label components are not valid the access
control system returns an error to the user (step 1012) and
then transfers control to decision step 620 of FIG. 6 (step
1018). The row security label components are not valid if the
row security label components are not composed of the exact
same components defined in the label set associated with the
classified table 120 or if the values of each row security label
component are not valid with respect to their type.

If the row security label components are valid (decision
step 1006), the access control system evaluates write access
rules associated with the label set of the classified table 120
(step 1008).

The access control system 115 determines whether the
access may be allowed (decision step 1010). If it is deter-
mined that access may be allowed, the access control system
115 writes the row into the classified table 120 (step 1014). If
it is determined that access may not be granted or not be
allowed, the access control system 115 returns an error indi-
cation to the user (step 1012) and returns to decision step 620
of FIG. 6 (step 1018).

The access control system 115 determines whether there
are more rows to process (decision step 1016). If it is deter-
mined that more rows are to be processed, the access control
system returns to step 1004 and repeats step 1004 through
step 1010 for the next row received. If it is determined that
there are no more rows to be written to the classified table 120,
the access control system returns to decision step 620 of F1G.
6 (step 1018).

FIG. 11 illustrates a method of operation of step 622 of
method 600 of the access control system 115 of FIG. 1. Step
622 comprises reading one or more rows that were written
into the classified table 120 of FIG. 1. The access control
system 115 transfers control from decision step 622 of FIG. 6
(step 1101)

The access control system 115 determines the type of
access request requested by a user (decision step 1102). If the
type of user access being requested is a read access, the access
control system 115 proceeds to step 1104. If the type of user
access being requested is not a read access, operation is
transferred to decision step 624 of FIG. 6.

The access control system 115 fetches the next row in the
classified table 120 (step 1104). The access control system
115 evaluates the read access rules associated with the label
set 118 (step 1106).

The access control system 115 determines whether user
access may be granted or allowed (decision step 1108). If the
determination is made that user access may be allowed, the
access control system 115 returns the fetched row to the user
(step 110). If the determination is made that the user may not
be allowed or may not be granted access, the access control
system 115 skips the fetched row (i.e., the fetched row is not
returned to the user) (step 1112).

The access control system 115 determines whether there
are any more rows in the classified table 120 to be fetched. If
there are no more rows to be fetched, the access control
system 115 returns to decision step 624 of FIG. 6. If there are
more rows to be fetched, the access control system 115
returns to step 1104 in which case the next row in the classi-
fied table 120 is fetched and step 1104 to step 1114 may be
repeated as needed.

In one embodiment, the access control system 115 uses
security access labels to provide fine-grained access control
inthe DBMS of FIG. 1. Generally, fine-grained access control
refers to a method of providing row-level security for a table

US 7,568,235 B2

13

as known to those skilled in the art. In private banking, coun-
try laws and regulations often require limitation of the amount
of data that can be viewed by a bank employee. For example,
Swiss banking laws do not allow a Swiss bank employee
located in Toronto to access account information for custom-
ers based in Switzerland. A bank employee can only access
account information for customers who are based in the same
location as the bank employee.

Typically, the bank addresses this access control problem
as follows. When a bank employee is authenticated, a security
context is assigned to him/her based on the authentication
type, location, geography, etc. When that bank employee
issues a request, the request goes through a number of sys-
tems up to a mainframe system where an application picks it
up and adds an appropriate predicate based on the employee
location (e.g., WHERE location="Toronto”) before it is sub-
mitted to the DBMS. This solution is error prone and exposes
security policies directly to the application programmers. It
also requires many code reviews to ensure correctness.

The problem stated above can be easily solved using the
control access system 115 by associating a label with each
customer account that specifies its location and by associating
a label with each bank employee that specifies where that
employee is located. The DBMS can then ensure that bank
employees can only access account information for the cus-
tomers located in their geographical location.

Referring to FIG. 7, the following SQL. statement creates a
label component called location:

CREATE LABEL COMPONENT location OF TYPE var-

char(15)

USING SET (“Zurich”, “Toronto”, “London”, “Paris”)

The following SQL statement creates a label set based on
the component defined above:

CREATE LABEL SET setl COMPONENTS location

READ ACCESS RULE rulel ACCESS LABEL location

IN ROW LABEL location
WRITE ACCESS RULE rule2 ROW LABEL location IN
ACCESS LABEL location

Referring to FIG. 8, the following SQL. statement creates a
classified table T1 to store customer account information and
associates this table with label set setl:

CREATE Table T1 (CustomerID int, CustomerName char

(30), CustomerBalance)

LABEL SET setl

Referring to FIG. 9, the following SQL statements create
two access labels and grant them to bank employee empA and
empB:

CREATE ACCESS LABEL labell IN LABEL SET setl

Location “Toronto”
CREATE ACCESS LABEL label2 IN LABEL SET setl
Location “Zurich”

GRANT LABEL labell FOR USER empA FOR ALL

GRANT LABEL label2 FOR USER empB FOR ALL

Referring to FIG. 10, when a user issues an SQL statement
against the classified table T1 that reads or modifies a data
row, the label access rules defined above are evaluated to
determine whether or not the user can read/modify the data
row. Below are exemplary INSERT SQL statement examples
for user empA.

SQL Command Status

INSERT INTO T1 VALUES (1,
‘Hans’,100, ROWLABEL
(‘Zurich”))

This command is rejected because
user empA is not allowed to write
account information for customers
located in Zurich (rule2).

20

25

30

35

40

45

50

55

60

65

14

-continued

SQL Command Status

INSERT INTO T1 VALUES (2,
‘PBIRD’,100,ROWLABEL
(“Toronto”))

This command is accepted because
rule? is satisfied.

INSERT INTO T1 VALUES This command is accepted because
(3,"WRIJAIBT’,10,ROWLABEL rule2 is satisfied.
(“Toronto”)

Below are exemplary INSERT SQL statement examples
for user empB:

SQL Command Status

INSERT INTO T1 VALUES This command is accepted because
(1,"Hans’,100, ROWLABEL rule2 is satisfied.

(‘Zurich”))

INSERT INTO T1 VALUES This command is accepted because
(4,°Urs’,100, ROWLABEL rule2 is satisfied.

(‘Zurich”))

Referring to FIG. 11, the following are exemplary
SELECT SQL statement examples for user empA.

SQL Command Status

SELECT * FROM T1 This command returns only rows
PBIRD and WRIJAIBI. The other 2 rows
are not returned because rule 1 is not

satisfied.

The following are exemplary SELECT SQL statement
examples for user empB.

SQL Command Status

SELECT * FROM T1 This command returns only rows Hans
and Urs. The other 2 rows are not

returned because rule 1 is not satisfied.

In the example described above, Urs is a first name com-
monly used in the German part of Switzerland. In this case,
the access control system 115 is inserting a record for the
customer called Urs.

In a further example, a bank executive (execl) located in
Zurich holds access label labell and is permitted read access
to account information for customers located in Toronto. The
administrator can grant a label exception to this executive to
bypass rule 1 as follows:

GRANT LABEL EXCEPTION ON RULE rulel IN setl
TO USER execl

If the executive issues the SELECT * FROM T1 query,
he/she will be able to see all the rows above.

In a further embodiment, the access control system 115
uses security access labels for providing MLS capability in
the DBMS 114 of FIG. 1. An application wishes the DBMS
114 to provide MLS semantics. In MLS, a label comprises
two components: a hierarchical component a set of unordered
compartments. The hierarchical component is referenced as a
level. In an example, the valid values a level comprises are

US 7,568,235 B2

15

Top Secret, Secret, Classified, and Unclassified. Similarly, a
compartment can take any of the following values: NATO,
Nuclear and Army.
Referring to FIG. 7, the following two SQL statements can
be used to create the two components.
CREATE LABEL COMPONENT level OF TYPE varchar
(15)

USING ORDERED SET (“TOP SECRET”, “SECRET”,
“CLASSIFIED”, “UNCLASSIFIED”)

CREATE LABEL COMPONENT compartments OF
TYPE varchar(15)

USING SET (“NATO”, “Nuclear”, “Army”)

The keyword ORDERED in the definition of the first com-
ponent indicates that the order in which the elements appear
in the set is significant.

Referring to FIG. 7, the access control system 115 uses the
following SQL statement to create a label set 118 where each
label is composed of the two components defined above. The
statement also permits the access control system 115 to
specify the label access rules. These label access rules imple-
ment the simple security property and the *-property previ-
ously described.

CREATE LABEL SET setl COMPONENTS level, com-

partments

READ ACCESS RULE rulel ACCESS LABEL

level>=ROW LABEL level

READ ACCESS RULE rule2 ROW LABEL compart-

ments IN ACCESS LABEL compartments

WRITE ACCESS RULE rule3 ROW LABEL

level>=ACCESS LABEL level

WRITE ACCESS RULE rule4 ACCESS LABEL compart-

ments IN ROW LABEL compartments

Referring to FIG. 8, the application wishes to create a table
where each data row is to be labeled using a label from setl
above. The access control system can use the following SQL
statement can be used to generate such a table.

CREATE Table T1 (C1 char(3), C2 int)

LABEL SET setl

Referring to FIG. 9, the access control system 115 gener-
ates the access labels and assigns the access labels to database
users using the following SQL statements:

CREATE ACCESS LABEL labell IN LABEL SET setl

Level “TOP SECRET”, compartments “Nuclear”

CREATE ACCESS LABEL label2 IN LABEL SET setl

Level “CLASSIFIED”, compartments “Army”

GRANT LABEL labell FOR USER walid FOR ALL

GRANT LABEL label2 FOR USER paul FOR ALL

Referring to FIG. 10, when a user issues an SQL statement
against the classified table T1 that reads or modifies a data
row, the label access rules defined above are evaluated to
determine whether or not the user can read/modify the data
row. Below are exemplary INSERT SQL statements for user
walid.

SQL Command Status

INSERT INTO T1 VALUES
(*abc’,1, ROWLABEL(*TOP
SECRET’, “NATO"))

This command is rejected because the
compartment of user walid (Nuclear) is
not included in the compartments of the
row being inserted (rule4).

This command is accepted because
both rule3 and rule4 are satisfied.

INSERT INTO T1 VALUES
(*def’,2, ROWLABEL(*TOP
SECRET’, ‘Nuclear’))
INSERT INTO T1 VALUES
(*ghi’,3,ROWLABEL
(‘UNCLASSIFIED’,‘Nuclear’))

This command is rejected because
user walid is attempting to write a row
at a lower security level (level 3).

20

25

30

35

40

45

50

55

60

16

Below are exemplary INSERT SQL statements for user
paul.

SQL Command Status

INSERT INTO T1 VALUES
(‘jkl’ 4 ROWLABEL
(‘*CLASSIFIED’,‘Army"))
INSERT INTO T1 VALUES
(‘mno’,5,ROWLABEL
(*SECRET’,*Army”))

This command is accepted because
both rule3 and rule4 are satisfied.

This command is accepted because
both rule3 and rule4 are satisfied

Referring to FIG. 11, the following are exemplary
SELECT SQL statements for user walid.

SQL Command Status

SELECT * FROM T1 This command returns only row:

y
(“def”,2,{*TOP SECRET’, ‘Nuclear’}).
The other 2 rows are not returned

because rule 2 is not satisfied.

The following are exemplary SELECT SQL statements for
user paul.

SQL Command Status

SELECT * FROM T1 This command returns only row:
(“jk1’,4,{*CLASSIFIED’, ‘Army’}).
The other 2 rows are not returned
because rule 1 is not satisfied.

The access control system 115 may be included in a data-
base management system (DBMS) 114 or information
retrieval system (IRS). Further, the access control system may
be included in many types of software applications, such as,
for example (the following represents a non-exhaustive list of
such applications):

a DBMS adapted to provide fine-grained access control to
database table rows;

a DBMS adapted to provide MLS;

a DBMS adapted to enforce privacy policies;

an operating system (OS) stored in the memory of a DPS, the
OS being adapted to implement a policy where access to
systems files is based on security labels and label access
rules;

a Publish/Subscribe system adapted to implement a policy
where the matching process also take into account the
security labels associated with a subscription and an event
as well as the label access rules; and

an XML system adapted to control access to the nodes in an
XML document based on the security labels and label
access rules.

The access control system 115 is an improvement over
known LBAC solutions in the sense that the access control
system 115 is not restricted to MLS semantics. The access
control system 115 may be used in various application
domains and for various purposes. The access control system
115 may also be used to provide.

Itis to be understood that while specific embodiments have
been described to illustrate certain applications of the prin-
ciple of the present invention. Other modifications are pos-
sible without departing from the spirit and scope of the
present invention.

US 7,568,235 B2

17

What is claimed is:

1. A computer-implemented method of controlling user
access to stored data elements, comprising configuring one or
more computer processors to perform an operation compris-
ing:

defining, based on user input, an ordered plurality of secu-

rity levels that describe sensitivity of the stored data
elements;

defining, based on user input, a plurality of categories that

categorize the stored data elements;

associating each user with a security level from the ordered

plurality of security levels and a category from the plu-
rality of categories, thereby defining a security clearance
for each respective user; and

defining, based on user input and for each of the stored data

elements, a read access rule for the respective stored data
element, wherein the read access rule comprises a con-
dition for granting read access to the respective stored
data element, the condition specifying a security level of
the plurality of security levels and a category from the
plurality of categories.

2. The computer-implemented method of claim 1, wherein
the operation further comprises:

receiving a user request to access a stored data element;

evaluating, by operation of the one or more computer pro-

cessors, the read access rule for the stored data element
to which access is requested; and

selectively permitting read access to the stored data ele-

ment in response to the access request, based on the
evaluation result for the read access rule.

3. The computer-implemented method of claim 2, wherein
the operation further comprises:

defining, based on user input and for each of the stored data

elements, a write access rule for the respective stored
data element, wherein the write access rule comprises a
condition for granting write access to the respective
stored data element, the condition specifying a security
level of the plurality of security levels and a category
from the plurality of categories; wherein the condition
for granting write access to one of the stored data ele-
ments differs from the condition for granting read access
to the one of the stored data elements;

evaluating, by operation of the one or more computer pro-

cessors, the write access rule for the stored data element
to which access is requested; and

selectively permitting write access to the stored data ele-

ment in response to the access request, based on the
evaluation result for the write access rule.

4. The computer-implemented method of claim 3, wherein
the condition for granting write access further specifies an
exception for a user, whereby the exception allows write
access to be granted to the user even if the condition is not
satisfied.

5. The computer-implemented method of claim 3, wherein
the condition of the write access rule is satisfied only if (i) the
security level of the user meets the security level specified by
the write access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
write access rule for the stored data element.

6. The computer-implemented method of claim 1, wherein
the condition for granting read access further specifies an
exception for a user, whereby the exception allows read
access to be granted to the user even if the condition is not
satisfied.

7. The computer-implemented method of claim 1, wherein
the condition of the read access rule is satisfied only if (i) the
security level of the user meets the security level specified by

20

25

30

35

40

50

55

60

65

18

the read access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
read access rule for the stored data element.

8. A computer program product for controlling user access
to stored data elements, the computer program product com-
prising a computer usable medium having computer usable
program code configured to:

define, based on user input, an ordered plurality of security

levels that describe sensitivity of the stored data ele-
ments;

define, based on user input, a plurality of categories that

categorize the stored data elements;

associate each user with a security level from the ordered

plurality of security levels and a category from the plu-
rality of categories, thereby defining a security clearance
for each respective user;

define, based on user input and for each of the stored data

elements, a read access rule for the respective stored data
element, wherein the read access rule comprises a con-
dition for granting read access to the respective stored
data element, the condition specifying a security level of
the plurality of security levels and a category from the
plurality of categories;

receive a user request to access a stored data element;

evaluate the read access rule for the stored data element to

which access is requested; and

selectively permit read access to the stored data element in

response to the access request, based on the evaluation
result for the read access rule.

9. The computer program product of claim 8, wherein the
computer usable program code is further configured to:

define, based on user input and for each of the stored data

elements, a write access rule for the respective stored
data element, wherein the write access rule comprises a
condition for granting write access to the respective
stored data element, the condition specifying a security
level of the plurality of security levels and a category
from the plurality of categories; wherein the condition
for granting write access to one of the stored data ele-
ments differs from the condition for granting read access
to the one of the stored data elements;

evaluate the write access rule for the stored data element to

which access is requested; and

selectively permit write access to the stored data element in

response to the access request, based on the evaluation
result for the write access rule.

10. The computer program product of claim 9, wherein the
condition for granting write access further specifies an excep-
tion for a user, whereby the exception allows write access to
be granted to the user even if the condition is not satisfied.

11. The computer program product of claim 9, wherein the
condition of the write access rule is satisfied only if (i) the
security level of the user meets the security level specified by
the write access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
write access rule for the stored data element.

12. The computer program product of claim 8, wherein the
condition for granting read access further specifies an excep-
tion for a user, whereby the exception allows read access to be
granted to the user even if the condition is not satisfied.

13. The computer program product of claim 8, wherein the
condition of the read access rule is satisfied only if (i) the
security level of the user meets the security level specified by
the read access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
read access rule for the stored data element.

US 7,568,235 B2

19
14. A system, comprising:
a processor; and
a memory containing an access control program, which
when executed by the processor is configured to perform
an operation for controlling user access to stored data
elements, comprising:
defining, based on user input, an ordered plurality of
security levels that describe sensitivity of the stored
data elements;
defining, based on user input, a plurality of categories
that categorize the stored data elements;
associating each user with a security level from the
ordered plurality of security levels and a category
from the plurality of categories, thereby defining a
security clearance for each respective user;
defining, based on user input and for each of the stored
data elements, a read access rule for the respective
stored data element, wherein the read access rule
comprises a condition for granting read access to the
respective stored data element, the condition specify-
ing a security level of the plurality of security levels
and a category from the plurality of categories;
receiving a user request to access a stored data element;
evaluating the read access rule for the stored data ele-
ment to which access is requested; and
selectively permitting read access to the stored data ele-
ment in response to the access request, based on the
evaluation result for the read access rule.
15. The system of claim 14, wherein the operation further
comprises:
defining, based on user input and for each of the stored data
elements, a write access rule for the respective stored
data element, wherein the write access rule comprises a

20

25

30

20

condition for granting write access to the respective
stored data element, the condition specifying a security
level of the plurality of security levels and a category
from the plurality of categories; wherein the condition
for granting write access to one of the stored data ele-
ments differs from the condition for granting read access
to the one of the stored data elements;

evaluating the write access rule for the stored data element

to which access is requested; and

selectively permitting write access to the stored data ele-

ment in response to the access request, based on the
evaluation result for the write access rule.

16. The system of claim 15, wherein the condition for
granting write access further specifies an exception for a user,
whereby the exception allows write access to be granted to the
user even if the condition is not satisfied.

17. The system of claim 15, wherein the condition of the
write access rule is satisfied only if () the security level of the
user meets the security level specified by the write access rule
for the stored data element, and (ii) the category of the user
matches the category specified by the write access rule for the
stored data element.

18. The system of claim 14, wherein the condition for
granting read access further specifies an exception for a user,
whereby the exception allows read access to be granted to the
user even if the condition is not satisfied.

19. The system of claim 14, wherein the condition of the
read access rule is satisfied only if (i) the security level of the
user meets the security level specified by the read access rule
for the stored data element, and (ii) the category of the user
matches the category specified by the read access rule for the
stored data element.

a2 United States Patent
Bird et al.

US007860875B2

US 7,860,875 B2
Dec. 28, 2010

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR MODIFYING A QUERY BY
USE OF AN EXTERNAL SYSTEM FOR
MANAGING ASSIGNMENT OF USER AND
DATA CLASSIFICATIONS

(75) Inventors:

(73) Assignee:

Paul Miller Bird, Markham (CA);
Walid Rjaibi, Markham (CA)

International Business Machines
Corporation, Armonk, NY (US)

OTHER PUBLICATIONS

Karjoth, G., Access Control with IBM Tivoli Access Manager, ACM
Transactions on Information and System Security, vol. 6, No. 2, May
2003, pp. 232-257.

DeFazio, S., et al., Integrating IR and RDBMS Using Cooperative
Indexing, SIGIR 95 Seattle WA, 1995 ACM 0-89791-714-6/95, pp.
84-92.

Winslett, et al., Formal Query Languages for Secure Relational
Databases, ACM Transactions on Database Systems, vol. 19, No. 4.,
Dec. 1994, pp. 626-662.

Sandhu, R., Access Control: Principles and Practice, IEEE Commu-

(*) Notice: Subject to any disclaimer, the term of this ~ nications Magazine, Sep. 1994, pp. 40-48.
patent is extended or adjusted under 35 ¥ cited b .
U.S.C. 154(b) by 971 days. clied by exatnet
Primary Examiner—Tim T. Vo

Assistant Examiner—Sangwoo Ahn

(74) Attorney, Agent, or Firm—Sughrue Mion, PLLC

(21) Appl. No.: 10/855,106

(22) Filed: May 26, 2004
57 ABSTRACT
(65) Prior Publication Data
US 2005/0267865 A1 Dec. 1. 2005 Disclosed is a data processing-implemented method, a data
’ processing system, and an article of manufacture for modify-
(51) Int.CL ing a query during compilation of the query. The query
GO6F 17/30 (2006.01) includes a request for an element of data from a table in a
GOGF 21/24 (2006.01) database and parameters identifying the requested element.
(52) US.CL oo 707/759; 707/769; 707/783 ~ Lhe data processing-implemented method includes deter-
(53) Field of Classification Search 707/1-10, ~ Mnining available information from parameters for locating a

classification of the requested element and a classification
associated with the query, the requested data classification
controlling access to the requested element according to the

707/100-104.1
See application file for complete search history.

(56) References Cited query associated classification, requesting a suggested action

from an external system for obtaining a comparison of the

U.S. PATENT DOCUMENTS requested data classification and the query associated classi-

5787428 A 7/1998 Hart .ocoooooverivvvvevreennnnnns 707/9 fication based on the available information, receiving the

6.487,552 B1* 11/2002 Leietal. wooovrorevvevreon, 707/4 suggested action from the external system responsive to the

6,578,037 BL* 6/2003 Wongetal. 707/10 sent request, and incorporating the suggested action into the

6,581,060 Bl 6/2003 ChOY .oveoveeeeeeerererrenen. 707/9 query, the suggested action effecting comparison of the

2003/0154401 Al 8/2003 Hartman et al. . . 713/201 requested data classification with the query associated clas-
2003/0236782 Al* 12/2003 Wongetal. ..ovveveveeenen.. 707/5 sification.

2004/0139043 Al* 7/2004 Leietal. ...ccocoveeeeeeeeenn. 707/1

2005/0165799 AL1* 7/2005 WONZ .ceeovreeurenneeneenne 707/100 14 Claims, 3 Drawing Sheets

READ GUERY Y

ANALYZE EACH REQUEST IN THE QUERY TO EXTRACT 204
PARAMETERS AND A TARGET

DETERMINE A TYPE FOR EACH OF THE PARAMETERS I—’ 206

| DETERMINE A TYPE OF INFORMATION REQUESTED FROM 208

THE TARGET

DETERMINE UNKNOWN CLASSIFICATION INFORMATION 210
FOR THE REQUESTER AND THE TARGET

GENERATE A REQUEST FOR A STRATECY TO OBTAIN THE

UNKNOWN CLASSIFICATION INFORMATION BASEDON |/ 212
THE DETERMINED PARAMETER TYPES AND THE

DE REQUESTED INFORMATION TYPES

RECEIVE SUGGESTED COURSE(S) OF ACTION FOR 214
OBTAINING THE UNKNOWN CLASSIFICATION
INFORMATION

18 THERE
MORE THAN ONE COURSE OF ACTION
SUGGESTED?

216

DETERMINE AN ORDER FOR IMPLEMENTATION OF THE ng
COURSES OF ACTION

IMPLEMENT THE SUGGESTED C OF ACTION | 220

200 /

U.S. Patent Dec. 28, 2010 Sheet 1 of 3 US 7,860,875 B2
112 N
114 ~N
INPUT/OUTPUT
QUERY [UNIT
102———\\ 104~~~
MEMORY
INPUT/OUTPUT
cPU INTERFACE
106 /
BUS

108/

{

122

\

DATABASE MANAGEMENT SYSTEM

DATABASE

TABLE
N~ 116

124 [o TERNAL

INTERFACE

118 i

| COMPILER

| SYSTEM |a—]

/120

—

EXTERNAL
SYSTEM

100 /

FIG. 1

U.S. Patent

Dec. 28, 2010 Sheet 2 of 3

READ QUERY

Y

ANALYZE EACH REQUEST IN THE QUERY TO EXTRACT
PARAMETERS AND A TARGET

A 4

DETERMINE A TYPE FOR EACH OF THE PARAMETERS

I/

A

DETERMINE A TYPE OF INFORMATION REQUESTED FROM
THE TARGET

hJ

DETERMINE UNKNOWN CLASSIFICATION INFORMATION
FOR THE REQUESTER AND THE TARGET

Y

GENERATE A REQUEST FOR A STRATEGY TO OBTAIN THE
UNKNOWN CLASSIFICATION INFORMATION BASED ON
THE DETERMINED PARAMETER TYPES AND THE
DETERMINED REQUESTED INFORMATION TYPES

y

RECEIVE SUGGESTED COURSE(S) OF ACTION FOR
OBTAINING THE UNKNOWN CLASSIFICATION
INFORMATION

1S THERE
MORE THAN ONE COURSE OF ACTION
SUGGESTED?

YES

¥

DETERMINE AN ORDER FOR IMPLEMENTATION OF THE
COURSES OF ACTION

-
) J

IMPLEMENT THE SUGGESTED COURSE(S) OF ACTION

200 /

FIG.2

US 7,860,875 B2

202

204

206

208

210

212

214

216

218

220

U.S. Patent Dec. 28, 2010 Sheet 3 of 3 US 7,860,875 B2
120 ~
302 \ EXTERNAL SYSTEM - 300
REQUEST REQUEST
PROCESSING || oot
l MECHANISM
118 ~_
COMPILER
308 \
306 EXTERNAL
QUERY SYSTEM 30
ANALYSIS INTERFACE QUERY
MECHANISM CLASSIFICATION
304 I MECHANISM
TARGET TYPE 04N
MECHANISM | le 5! CONTROLLER
316 ~ 318
7 REQUEST
PARAMETER FORMATION
TYPE INFORMATION MECHANISM
MECHANISM
3147

FIG. 3

US 7,860,875 B2

1

METHOD FOR MODIFYING A QUERY BY
USE OF AN EXTERNAL SYSTEM FOR
MANAGING ASSIGNMENT OF USER AND
DATA CLASSIFICATIONS

FIELD OF THE INVENTION

The present invention relates to the field of database man-
agement systems, and more specifically, to a system, method
and a computer program product for modifying a query by use
of an external system for managing assignment of user and
data classifications.

BACKGROUND

Information can be obtained from tables in a database
using queries expressed in a database query language, such as
Structured Query Language (SQL). The query is translated
into an internal representation by a compiler of a database
management system. This internal representation is inter-
preted by a runtime processor of the database management
system to execute the query. Access to information in the
database may be controlled according to a classification of
both the tables and the user attempting to access the tables.
For example, a user can only gain access to a specific table if
the user’s classification is such that access to the specific table
is permitted based on the table’s classification. The table’s
classification may be based on the entire table or on individual
elements in each table (e.g. rows) with elements being clas-
sified to provide access to elements and not the entire table.
The additional classifications produce complexities in classi-
fication management and tracking which may be governed by
a system external to the database management system.

Compilers use various optimization techniques to mini-
mize the time and computer resources used for execution of
the internal representation of the query. The compiler deter-
mines an efficient access plan to satisty the query by exam-
ining table information and related statistics. Controlling
access to elements based on user and table classifications may
involve integrating with an external system. Such integration
during execution of the query often increases execution time,
especially if such information is not readily available.

SUMMARY

In accordance with one aspect there is provided a data
processing-implemented method for directing a data process-
ing system to modify a query during compilation ofthe query,
the query including a request for an element of data from a
table in a database and parameters identitying the requested
element, the data processing-implemented method including
determining available information from parameters for locat-
ing a classification of the requested element and a classifica-
tion associated with the query, the requested data classifica-
tion controlling access to the requested element according to
the query associated classification, requesting a suggested
action from an external system for obtaining a comparison of
the requested data classification and the query associated
classification based on the available information, receiving
the suggested action from the external system responsive to
the sent request, and incorporating the suggested action into
the query, the suggested action effecting comparison of the
requested data classification with the query associated clas-
sification.

In accordance with another aspect there is provided a data
processing system for modifying a query during compilation
of the query, the query including a request for an element of

20

25

30

35

40

45

50

55

60

65

2

data from a table in a database and parameters identifying the
requested element, the data processing system including a
query analysis mechanism for determining available infor-
mation from parameters for locating a classification of the
requested element and a classification associated with the
query, the requested data classification controlling access to
the requested element according to the query associated clas-
sification, a request mechanism for preparing a request to the
external system, the request asking the external system to
provide a suggested action for obtaining a comparison of the
requested data classification and the query associated classi-
fication, the request comprising the available information, an
external system interface for requesting a suggested action
from an external system for obtaining a comparison of the
requested data classification and the query associated classi-
fication based on the available information, and receiving the
suggested action from the external system responsive to the
sent request, and a modification mechanism for incorporating
the suggested action into the query to effect comparison of the
requested data classification with the query associated clas-
sification.

In accordance with a further aspect there is provided an
article of manufacture for directing a data processing system
to modify a query during compilation of the query, the query
including a request for an element of data from a table in a
database and parameters identifying the requested element,
the article of manufacture including a program usable
medium embodying one or more executable data processing
system instructions, the executable data processing system
instructions including executable data processing system
instructions for determining available information from
parameters for locating a classification of the requested ele-
ment and a classification associated with the query, the
requested data classification controlling access to the
requested element according to the query associated classifi-
cation, executable data processing system instructions for
requesting a suggested action from an external system for
obtaining a comparison of the requested data classifications
and the query associated classification based on the available
information, executable data processing system instructions
for receiving the suggested action from the external system
responsive to the sent request, and executable data processing
system instructions for incorporating the suggested action
into the query, the suggested action effecting comparison of
the requested data classification with the query associated
classification.

Other aspects and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in conjunction with
the drawings in which:

FIG. 1 is an exemplary computing environment in which a
database management system (DBMS) may be actualized;

FIG. 2 illustrates operations of a compiler of the DBMS of
FIG. 1 for modifying a query based on information from an
external system; and

US 7,860,875 B2

3

FIG. 3 illustrates functional components of the compiler in
the DBMS of FIG. 1 for modifying a query based on infor-
mation from the external system.

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description of the embodiments do
not limit the implementation of the embodiments to any par-
ticular computer programming language. The computer pro-
gram product may be implemented in any computer program-
ming language provided that the operating system provides
the facilities that support the requirements of the computer
program product. A preferred embodiment is implemented in
the C or C++ computer programming language (or may be
implemented in other computer programming languages in
conjunction with C/C++). Any limitations presented would
be a result of a particular type of operating system, computer
programming language, or data processing system and would
not be a limitation of the embodiments described herein.

FIG. 1 illustrates a configuration of a computing environ-
ment 100 comprising a data processing system 126 in which
an embodiment of a database management system 122 may
be implemented.

The data processing system 126 includes a central process-
ing unit (CPU) 102, a memory 104, an input/output interface
106 and a bus 108. The CPU 102, the memory 104 and the
input/output interface 106 are connected with one another via
the bus 108. The input/output interface 106 is configured so
that it can be connected to an input/output unit 112 in the
computing environment 100.

The CPU 102 can be a commercially available CPU or a
customized CPU suitable for operations described herein.
Other variations of the CPU 102 can include a plurality of
CPUs interconnected to coordinate various operations and
functions. The data processing system 126 serves as an appa-
ratus for performing the present method by the CPU 102
executing the present invention.

Data and instructions that are to be executed by the CPU
102 reside in the memory 104. The memory 104 contains a
database management system (DBMS) 122 and a database
110 with multiple tables 116 (only one table is shown for
illustration purposes) that hold information. The instructions
are internal representations of programs that run on the data
processing system 126, such as the database management
system 122. The programs operate on the data. For example,
if the program is the database management system 122, the
data can be rows in the table 116. The database management
system 122 comprises a compiler 118 and an external system
interface 124. The database management system 122 retains
an indication of operating conditions, such as an identifier for
the user who submitted the query 114, when compiling and
executing the query 114.

The information in the tables 116 may be accessed by a
query 114 that is received by the input/output unit 112 and is
retained in the memory 104. The query 114 may be presented
in an SQL format that is compiled by the compiler 118 to form
an internal representation that is interpreted for execution.
The present invention may be embodied in the compiler 118.
Alternatively, the present invention may be provided as an
extension of the functionality of the compiler 118. The
present invention may be embodied ina program stored in, for
example, the memory 104. Alternatively, the present inven-
tion may be recorded on any type of recording medium such
as a magnetic disk or an optical disk. The present invention
recorded on such a recording medium is loaded to the
memory 104 of the data processing system 126 via the input/
output unit 112 (e.g. a disk drive).

20

25

30

35

40

45

50

55

60

65

4

The compiler 118 recognizes statements in the query 114
including keywords that represent commands and relevant
arguments. During the formation of the internal representa-
tion from the query 114, the compiler 118 modifies the query
114 to improve performance during execution.

The external system interface 124 is in communication
with an external system 120 while modifying the query 114 to
improve performance. The external system 120 may be a
system external to the database management system 122 but
residing in the data processing system 126 or it may be exter-
nal to the data processing system 126. In the latercase the
external system 120 may communicate with the data process-
ing system 126 via a direct link or through a communications
network.

The external system 120 manages the assignment of clas-
sifications to users and sections of data in the tables 116. For
example, given a user identification and a table name, the
external system 120 knows how to obtain the classification of
that user. The external system 120 contains a classification
that is associated with the query 114 which may be a classi-
fication for a user identification from which the query 114 was
submitted, a classification of the location from which the
query 114 was submitted or some other such similar classifi-
cation basis. The external system 120 may also contain access
rules that govern when a user with a particular classification
can access an element from the table 116. An interface in the
external system 120 accepts questions from the compiler 118
providing available information and desired information.
Through this interface the external system 120 is able to either
provide the information requested by the compiler 118 or
provide a course of action for obtaining the information.

As a result, the query 114 may be modified to include
information on a user’s classification or table classification or
a comparison of the two classifications. Such information
might be determined by interfacing with the external system
120 during execution or such interfacing may be performed in
advance by the compiler 118 and the results incorporated into
the query 114.

FIG. 2 illustrates operations of the compiler 118 that
modify the query 114 based on information from the external
system 120. The query 114, containing at least one request for
information, is read in step 202. Each request is analyzed in
step 204 to extract parameters of the request and a target of the
request. The type of information of each of the parameters is
determined in step 206. The parameters may also include an
identification associated with the query 114 such as a user
who submitted the query 114 or a location of the submission.
The type of information requested from the target is deter-
mined in step 208.

The table 116 in the database 110 contains information that
is classified. In order for a user who submitted the query 114
to obtain the requested information from the table 116, access
rules for the table 116 in the external system 120 might
indicate that the user have a classification that corresponds to
the classification of the requested information. Based on the
types of parameters included in the request, the user’s iden-
tification (as contained in the database management system
122) and the type of information requested, step 210 deter-
mines what information regarding the user’s classification
and the information’s classification is unknown.

Since this unknown classification information is deter-
mined prior to completing execution of the query 114, the
compiler 118 determines how the classification information
can be determined in conjunction with the external system
120. A request for a strategy to obtain the unknown classifi-
cation information is generated in step 212. This request is

US 7,860,875 B2

5

based on the determined types of the parameters and the
determined type of the requested information.

Suggested course(s) of action for obtaining the unknown
classification information are received in step 214 from the
external system 120. If there are multiple types of unknown
classification information then there may be multiple courses
ofaction that will be received. Each course of action received
may be directed to obtaining one of the types of unknown
classification information.

If there is more than one course of action received, as
determined in step 216, then an order for the courses of action
is determined in step 218. This order may depend on infor-
mation required by each course of action. For example, if one
course of action uses information dependent on a second
course of action then the second course of action is imple-
mented first. The order for implementation of the courses of
action may optionally be supplied with the suggested courses
of action

The course(s) of action are inserted into the query in step
220 such that they can be easily implemented during execu-
tion.

FIG. 3 illustrates functional components of the compiler
118 in the DBMS 122 for modifying the query 114 based on
information from the external system 120. The external sys-
tem 120 includes a request interface 300 and a request pro-
cessing mechanism 302. The compiler 118 includes a con-
troller 304 in communication with a query analysis
mechanism 306, a management interface 308, an information
analysis mechanism 314, a query classification mechanism
310 and a request formation mechanism 312.

The controller 304 in the compiler 118 manages compiling
the query 114 in order to form an internal representation
thereof. During compiling, the controller 304 coordinates
modification of the query 114 to improve execution perfor-
mance. When the controller 304 detects a request in the query
114 that requires a check of a user’s classification with the
classification of requested information, the request is pro-
vided to the query analysis mechanism 306.

The query analysis mechanism 306 includes a target type
mechanism 316 and a parameter type mechanism 318 that
collectively function to determine the information defining
the request and the information sought from the request. The
parameter type mechanism 318 extracts the type of informa-
tion of the parameters that define the request. The target type
mechanism 316 determines the type of information that has
been requested. The query analysis mechanism 306 provides
the parameters and target types to the controller 304 where it
is passed to the information analysis mechanism 314 and the
request formation mechanism 312.

The information analysis mechanism 314 receives the
parameters and target types and assesses what information is
available for determining the requested information classifi-
cation and user’s classification. Based on the available infor-
mation, the information analysis mechanism 314 determines
the information that is unknown that is to be used for com-
pleting data access qualification for the user. The determined
unknown information is provided to the controller 314 from
which it is passed to the request formation mechanism 312.

The request formation mechanism 312 receives the param-
eters and target types as well as an indication of the unknown
information to be used in determining the requested informa-
tion classification and user’s classification. The request for-
mation mechanism 312 formulates a request on how to obtain
the unknown information based on the parameters and target
types. This request is provided to the controller 304 to be
passed to the management interface 308. The external system
interface 308 provides the request to the external system

20

25

30

35

40

45

50

55

60

65

6

interface 124 in the database management system 122 so that
the request can be submitted to the external system 120.

The request from the request formation mechanism 312
may be one or a combination of, for example:

Q1: Given an user identification and a table name, how can

the user classification be obtained?

Q2: Given a set of data values and a table name, how canthe
element classification be obtained?

Q3: Given a user classification and an element classifica-
tion, how can the two be compared?

The request interface 300 of the external system 120
receives the request from the compiler 118. The request is
provided to the request processing mechanism 302 where a
knowledge base may be drawn upon to produce suggestions
regarding the manner in which the unknown information can
be obtained. If there are multiple courses of action then the
suggestion may involve multiple courses of action, each per-
taining to obtaining a different piece of unknown informa-
tion. The suggestions from the request processing mechanism
302 are provided to the controller 304 via the request interface
300 and the management interface 308 through the external
system interface 124.

Based on the above exemplary requests, the suggested
course(s) of action form the request processing mechanism
302 may be one or a combination of, for example:

Al: A subquery which can be used to select a user classi-
fication or element classification from a table in the
database 110 known to the external system 120.

A2: A predicate which can be used to filter out the table’s
elements (rows or columns) that have a classification
that do not match the user’s classification.

A3: A set of values presented directly or indirectly via a
session variable or special register. These values can
represent a set of user classification or a set or element
classifications.

A4: A query which can be used to generate an internal
mapping table for use by the executable form of the
query 114. For a given table, the mapping table enables
identification of the classification of an element in the
table. For example, the mapping table may consist of
(n+1) columns where the first n columns represent the
table columns from which to derive the element classi-
fications and the last columns represents a classification
level. When such a mapping table was not previously
created, an internal mapping table for use by the execut-
able form of the query 114 can be generated for this
purpose.

AS: A request to call the external system at execution time
of the query 114 for classification information.

The above requests may produce the suggested course(s) of

action as indicated below:

Action on Q1:

Al: A subquery that can be used to select the user classi-
fication for the user identification from a database table
known to the external system 120.

A3: A data value(s) that indicates the user classification for
the user identification.

AS: An indication that the external system 120 should be
asked for this information at execution time.

Action on Q2:

Al: A subquery that can be used to select the element
classification for the current element from a mapping
table known to the external system 120.

A4: A query that can be used to generate an internal map-
ping table for use by the executable form of the query
114.

US 7,860,875 B2

7

AS: An indication that the external system 120 should be
asked for this information at execution time.

Action on Q3:

A2: A predicate that the compiler 118 can add to the query
114 to filter out the table’s elements that do not match the
user’s classification. The general form of predicates
returned will be an IN predicate but inequality predi-
cates are also possible, particularly if the element clas-
sification or user’s classification represent a hierarchy.
This type of advice is most likely to be returned when the
element classification is stored within the table itself or
when a mapping table has been created. If the element
classification is stored within the element then the predi-
cate will refer to the table’s column where the element
classification level is stored, otherwise, the predicate
will refer to the mapping table’s column where the clas-
sification level is stored.

A3: A set of values representing the element classification
allowed for the given user’s classification. Element level
access control may then be enforced by, for example:
1. The compiler 118 altering the query 114 to add a

predicate using the set of values received. This choice
is possible if the element classification is stored
within the table itself or a mapping table has been
created.

2. If the element classification is not stored within the
table and a mapping table has not been created then a
predicate cannot be used. In this case, interaction
between the DBMS 122 and the external system 120
is used during execution of the query 114 to enforce
element access control. For each element accessed,
the data in the set of columns defining the element
classification and the full table is submitted to the
external system 120 with the result being the element
classification. The result is compared against the set
of'values for the given user classification to determine
ifthe element can be viewed or altered by that user. To
reduce the number of times the DBMS 122 makes a
call to the external system 120 to obtain the element
classification a caching technique may be used. For
example, the information that could be stored in the
cache may be the full table name, the data defining the
element classification and the element classification
as returned by the external system 120.

AS: An indication that the external system 120 should be
asked for this information at execution time.

The request provided by the request processing mechanism
302 may also provide an indication of whether or not the
suggested course(s) of action can be used of all users or only
for a provided user identification.

The controller 304 provides the suggested course(s) of
action to the query classification mechanism 310 where an
order is determined for the course(s) of action based on
dependence of the results of each course of action. Alterna-
tively, this order may be specified by the external system 120
and received with the suggested course(s) of action. After the
order has been determined, the query classification mecha-
nism 310 modifies the query 114 to include the course(s) of
action.

The following are examples of modifying an SQL query to
include obtaining classification information.

Atable T1 (C1, C2,C3, ..., Cn) represents a table where
the classification level of an element and the user classifica-
tion is an element of the ordered set S={TOP SECRET,
SECRET, CONFIDENTIAL, CLASSIFIED, UNCLASSI-
FIED}. The element level access control policy for this
example states that an element with a classification r can be

20

25

30

35

40

45

50

55

60

65

8
viewed by a user with a classification u only if u>=r. Suppose
that a user with a classification level ‘CONFIDENTIAL’
issues a query SELECT * FROM T1.

Scenario 1

The compiler 118 sends a request corresponding with Q1
from above to the external system 120 to obtain the user’s
classification. Suppose the external system 120 provides a
suggested course of action corresponding with A3 from
above; that is, a data value representing the user’s classifica-
tion. The compiler 118 then submits a second request to the
external system 120 based on Q3 above by submitting the
table name (T1) and the user’s classification (CONFIDEN-
TIAL). Suppose the external system 120 returns a suggested
course of action corresponding with A2 from above. That is,
in response to the second request the external system 120
returned a predicate in, for example, “C1 IN (‘CONFIDEN-
TIAL’, ‘CLASSIFIED’, ‘UNCLASSIFIED’)”. Based on the
received courses of action the compiler 118 modifies the
query 114 to incorporate the predicate providing a query such
as

SELECT * FROM T1 WHERE C1 IN (‘CONFIDEN-
TIAL’, *CLASSIFIED’, ‘UNCLASSIFIED’).

Given that the set is ordered and represents a hierarchy, the
predicate returned could also be “C1>*CONFIDENTIAL”.

Scenario 2
Suppose an element classification is determined based on
the values in columns C1 and C2 as follows:

Cl1 C2 Element Classification
1 1 TOP SECRET

2 2 SECRET

3 3 CONFIDENTIAL

4 4 CLASSIFIED

5 5 UNCLASSIFIED

The compiler 118 sends the external system 120 a request
corresponding with request Q1 to obtain the user’s classifi-
cation. Suppose the suggest course of action is A3; that is, a
data value represent the user’s classification. The compiler
118 submits a second request based on the table name (T1)
and the set of column names defined in the classification
mapping shown above (Cl and C2). The suggested course of
action in response to the second request depends on whether
a mapping table exists.

Response 1: A Mapping Table Exists

A database table (T1MAP) storing mapping information
has been created and is known to the external system 120.
TIMAP consists of three columns, namely, C1, C2 and
LEVEL. For each pair of values (C1, C2), the LEVEL column
indicates an element classification. Based on this informa-
tion, the external system 120 can return A1 as the suggested
course of action; that is, a subquery to select an element
classification from TIMAP. The subquery would be as fol-
lows:

SELECT LEVEL FROM TIMAP WHERE
TIMAP.C1=T1.C1 AND TIMAP.2=T1.C1.

The compiler 118 then sends a request to the external
system 120 corresponding with request Q3 by submitting the
table name (T1) and the user’s classification (CONFIDEN-
TIAL). If the external system 120 returns suggested action
A2, then the predicate returned would Dbe:
“TIMAPLEVEL>CONFIDENTIAL’”. Based on the sug-

US 7,860,875 B2

9

gested course of action the compiler 118 modifies the query
114 to incorporate the predicate and subquery. The modified
query would be:

SELECT * FROM T1, TIMAP WHERE
(T1.C1=T1MAP.C1 AND T1.C2=T1MAP.C2)
AND (TIMAP.LEVEL> ‘CONFIDENTIAL’).

Response 2: A Mapping Table Does Not Exist

If a mapping table does not exist then the suggested course
of'action provided to the compiler 118 might be action AS, an
indication to submit the same request during execution. The
second request submitted by the compiler 118 corresponds
with request Q3 and submits the table name (T1) and the
user’s classification (CONFIDENTIAL). The external sys-
tem may provide action A3, a set of data values representing
the element classifications allowed for the user (i.e. all ele-
ments having ‘CONFIDENTIAL’, ‘CLASSIFIED’, and
‘UNCLASSIFIED’). Based on the suggestion course of
action the compiler 118 does not modify the query 114 but
inserts logic into the internal representation to perform the
following tasks:

For each element obtained, call the external system 120 by

submitting the table name (T1) and the values (C1,C2).

Obtain the element classification from the call to the exter-
nal system 120.

Ifthe element classification is an element of the set {*‘CON-
FIDENTIAL’, ‘CLASSIFIED’, ‘UNCLASSIFIED’}
then include the element in the result set; otherwise,
discard the element.

Although the classification of the user is used as the basis
for obtaining the requested element of data, any classification
associated with the query 114 may be used. Such other asso-
ciated classifications may include a classification of the loca-
tion from which the query 114 was submitted.

The elements of data that are accessed may be the rows of
the tables 116 or the columns of the tables 116 or some other
delineation of portions of the tables 116.

It will be appreciated that the elements described above
may be adapted for specific conditions or functions. The
concepts of the present invention can be further extended to a
variety of other applications that are clearly within the scope
of'this invention. Having thus described the present invention
with respect to preferred embodiments as implemented, it
will be apparent to those skilled in the art that many modifi-
cations and enhancements are possible to the present inven-
tion without departing from the basic concepts as described in
the preferred embodiment of the present invention. There-
fore, what is intended to be protected by way of letters patent
should be limited only by the scope of the following claims.

The invention claimed is:

1. A data processing-implemented method for directing a
data processing system to modify a query during compilation
of'the query, the query comprising a request for an element of
data from a table in a database and parameters identifying the
requested element, the data processing-implemented method
comprising:

determining, by a computer, available information from

parameters for locating a classification of the requested
element and a classification associated with the query,
the requested data classification controlling access to the
requested element according to the query associated
classification;

requesting a suggested action from an external system for

obtaining a comparison of the requested data classifica-
tion and the query associated classification based on the
available information;

20

25

30

35

40

45

50

55

60

65

10

receiving the suggested action from the external system

responsive to the sent request; and
incorporating the suggested action into the query, the sug-
gested action effecting comparison of the requested data
classification with the query associated classification,

wherein if the external system knows the requested data
classification and the query associated classification, the
suggested action is provided prior to execution of the
query, and comprises at least one of the requested data
classification, the query associated classification, a
course of action for obtaining the requested data classi-
fication, a course of action for obtaining the query asso-
ciated classification, and a comparison of the requested
data classification and the query associated classifica-
tion, and

wherein if the external system does not know the requested

data classification and the query associated classifica-
tion, the suggested action comprises a request to call the
external system at execution time of the query.

2. The data processing-implemented method according to
claim 1 wherein the requesting the suggested action com-
prises:

determining unknown information used to obtain a com-

parison of the requested data classification with the
query associated classification; and

sending a request to the external system for the suggested

action, the suggested action pertaining to obtaining the
unknown information.

3. The data processing-implemented method according to
claim 1 wherein the requesting the suggested action com-
prises:

selecting a request from one of a plurality of formulated

requests based on the available information; and
sending the selected request to the external system to
obtain the suggested action.

4. The method according to claim 3 wherein the selecting
comprises:

selecting the request from the plurality of formulated

requests consisting of:

arequest for the query associated classification based on
providing an identifier for the table and an identifier
associated with the query, and

a request for the requested data classification based on
providing an identifier for the requested element and
the table identifier, and a request for a comparison of
the requested data classification with the query asso-
ciated classification.

5. The data processing-implemented method according to
claim 2 wherein the incorporating the suggested action com-
prises:

incorporating a subquery into the query to obtain unknown

information from a table.

6. The method according to claim 1 wherein the incorpo-
rating the suggested action comprises:

incorporating a predicate into the query to delimit sections

of the table that can be obtained by the query according
to the requested data classification and the query asso-
ciated classification.

7. The data processing-implemented method according to
claim 1 wherein the incorporating the suggested action com-
prises any one of:

incorporating a set of values into the query representing the

unknown information;

incorporating a second query into the query to generate a

mapping table mapping classifications to elements of
data in the table; and

US 7,860,875 B2

11

incorporating a request to the external system to be sent

during execution of the query.

8. The data processing-implemented method according to
claim 1 wherein the comparison comprises:

comparing the data classification with the query associated

classification comprising the suggested action and deter-
mining if the query associated classification is equal to
or greater than the data classification.

9. The data processing-implemented method for directing a
data processing system according to claim 1, wherein the
external system is external to and functions independently
from the data processing system, and communicates with the
data processing system through a communications network.

10. The data processing-implemented method for directing
a data processing system according to claim 1,

wherein the external system contains classification infor-

mation and access rules that govern access to data
according to a particular classification, and

wherein the external system is separate of the data process-

ing system.

11. The data processing-implemented method according to
claim 1, wherein the query associated classification is based
on a classification of a user submitting the query, and the

20

12

requested data classification is based on a permission level of
a user authorized to view the requested data.

12. The data processing-implemented method according to
claim 11, wherein the suggested action includes at least one of
instructions for obtaining the requested data classification
when the requested data classification cannot be obtained
with information in the query, and instructions for obtaining
the query associated classification when the query associated
classification cannot be obtained with information in the
query.

13. The data processing-implemented method according to
claim 12, wherein the requested data classification is obtained
using the instructions for obtaining the requested data classi-
fication, and the query associated classification is obtained
using the instructions for obtaining the query associated clas-
sification and are provided for the comparison of the obtained
requested data classification with the obtained query associ-
ated classification.

14. The data processing-implemented method according to
claim 1, wherein when the external system is called at the
execution time of the query, the query is modified during
execution of the query.

#* #* #* #* #*

US 20090063951A1

a9y United States

a12) Patent Application Publication o) Pub. No.: US 2009/0063951 A1l

Rjaibi et al. 43) Pub. Date: Mar. 5, 2009
(54) FINE-GRAINED, LABEL-BASED, XML Publication Classification
ACCESS CONTROL MODEL (51) Int.CL
GO6F 15/00 (2006.01)
(75) Inventors: Walid Rjaibi, Markham (CA); (52) US.ClL oo 715/234
Zheng (Alex) Zhang, Toronto (CA) (57) ABSTRACT
A method for controlling access to an XML document
Correspondence Address: includes referencing a schema definition comprising a path
Kunzler & McKenzie security label definition associated with a sibling-to-sibling
8 EAST BROADWAY, SUITE 600 path of an XML document. An XML document may then be
SALT LAKE CITY. UT 84111 (US validated by comparing it with the schema definition. This
’ Us) validation may include verifying that the XML document has
a path security label associated with a sibling-to-sibling path
(73) Assignee: International Business Machines that is at least as restrictive as that specified by the path
Corporation, Armonk, NY (US) security label definition. An access security label may be
’ ’ assigned to a user seeking to access the sibling-to-sibling
path. The path security label and the access security label may
(21) Appl. No.: 11/849,267 then be compared, using pre-determined access rules, to
determine whether the user is authorized to access the sibling-
to-sibling path. Access to the sibling-to-sibling path may then
led: ep. 1, e granted or denied according to the access rules.
22) Filed Sep. 1, 2007 b d or denied di h 1
100
Online Seller @
104 104
VIP Accounts ltems @
104
-.“‘ ‘.\
.‘.\' l"-.'?-
-
Account Account ltem ltem
............................. »
@ @ ()
104
104 104 106b 104
Account Customer Arocount Customer
(12) @~ @
A2398 A3784
Name Name
John Barbara

Patent Application Publication Mar. 5, 2009 US 2009/0063951 A1

Online Seller @

104 104

VIP Accounts @ \.. 104 ltems @

s’ 106a
104
Account Account &~ ltem Item
2 "' 104
104 104 105p 104
Account Account Customer
D Customer D
@) " () @ @
A2398 A3784
Name w Name
John Barbara
Fig. 1
ATTACH path-label ATTACH path-label
ANCS path1 NODE path1
DESC path? PRECEDING-SIBLING path2
P FOLLOWING-SIBLING path3

Fig. 2 Fig. 3

US 2009/0063951 Al

FINE-GRAINED, LABEL-BASED, XML
ACCESS CONTROL MODEL

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to XML access control and
more particular to fine-grained, label-based, XML access
control models.

[0003] 2. Description of the Related Art

[0004] XML has rapidly emerged as the prevalent standard
for representing and exchanging business and other sensitive
data over the Internet. The current trend to add XML support
to database systems, however, poses new security challenges
in an environment where both relational and XML data coex-
ist. In particular, fine-grained access control methodologies
may be even more important for XML data than for relational
data, given the more flexible and less homogeneous structure
of XML data compared to relational tables and rows.

[0005] Controlling access to XML data may be more diffi-
cult than controlling access to relational data for several rea-
sons. First, the semi-structured nature of XML data, where a
schema may be absent, or, even if present, may allow signifi-
cantly more flexibility and variability in the structure of the
document than is allowed by a relational schema. Second, the
hierarchical structure of XML may require specifying how
access privileges to certain nodes propagate to and from the
nodes’ ancestors and descendants.

[0006] Inalmostall models for controlling access to XML,
the smallest unit of protection is a node of an XML document,
which is typically specified using an XPath fragment. Access
to ancestor/descendant and sibling relationships among
nodes has typically not been considered. In general, an access
control policy consists of positive or negative authorization
rules that grant or deny access to selected nodes of an XML
document. The main difference between most XML access
control models lies in privilege propagation. For example,
some models forbid access to entire sub-trees that are rooted
at inaccessible nodes.

[0007] In other models, an ancestor node for which access
is denied may be masked as an empty node if access is granted
to a descendant node. However, this model may make the
literal of the forbidden ancestor visible in the path from the
root node to the authorized node. In some cases, this situation
may be improved by replacing the literal of an ancestor node
literal with a dummy value. However, this still does not solve
the problem that different descendant nodes may require their
ancestor’s literal to be visible or invisible in a different man-
ner. Accordingly, each of the above models makes it difficult
to define a view that precisely describes the path leading to an
authorized node.

[0008] Inview of the foregoing, what is needed is an access
control model for XML that provides a more fine-grained
level of control. Ideally, such amodel would be able to protect
relationships between nodes as opposed to the nodes them-
selves. Further needed is a model that utilizes security labels
to protect these relationships.

SUMMARY OF THE INVENTION

[0009] The present invention has been developed in
response to the present state of the art, and in particular, in
response to the problems and needs in the art that have not yet
been fully solved by currently available methods for control-
ling access to information in XML documents. Accordingly,

Mar. 5, 2009

the present invention has been developed to provide a fine-
grained, label-based model for controlling access to XML
documents that remedies various problems in the art.

[0010] Consistent with the foregoing and in accordance
with the invention as embodied and broadly described herein,
a method for controlling access to an XML document
includes referencing a schema definition comprising a path
security label definition associated with a path of an XML
document. As used herein the term “path” in an XML docu-
ment refers to an ancestor-to-descendent path, a sibling-to-
sibling path such paths, edges, and relationships between
nodes of an XML document. An XML document with secu-
rity labels may then be validated by comparing it with the
schema definition. This validation may include verifying that
the XML document has a path security label associated with
apath that is at least as restrictive as that specified by the path
security label definition. Similarly, an access security label
may be defined for a user seeking to access a sibling-to-
sibling path. In one embodiment, the security administrator
may define the access security label for a user. The path
security label and the access security label may be compared,
using pre-determined access rules, to determine whether the
user is authorized to access the sibling-to-sibling path. Access
to the sibling-to-sibling path may then be granted or denied
according to the access rules.

[0011] In a second aspect of the invention, a computer
program product may be provided to control access to an
XML document comprising a plurality of nodes and a plural-
ity of paths, or relationships, between the nodes. The com-
puter program product may include a computer-readable
medium storing a program of computer-readable instruc-
tions. When executed, these instructions may cause a com-
puter to generate a schema definition comprising a path secu-
rity label definition associated with a sibling-to-sibling path
of'an XML document. The instructions may further enable an
XML document to be validated by comparing it with the
schema definition. This validation may include verifying that
the XML document has a path security label associated with
a sibling-to-sibling path that is at least as restrictive as that
specified by the path security label definition. These instruc-
tions may further cause the computer to reference an access
security label to a user seeking to access the sibling-to-sibling
path of the XML document and compare, using pre-deter-
mined access rules, the path security label to the access secu-
rity label to determine whether the user is authorized to access
the sibling-to-sibling path. In one embodiment, these instruc-
tions may cause the computer to assign an access security
label to an XML document that fails to comply with a given
Document Type Definition (DTD) or XML Schema Defini-
tion (XSD). The access security label assigned may be at least
as restrictive as a path security label designated in the DTD or
XSD. Finally, the instructions may cause the computer to
grant or deny access to the sibling-to-sibling path according
to the access rules. The present invention provides novel
methods for controlling access to XML documents. The fea-
tures and advantages of the present invention will become
more fully apparent from the following description and
appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] In order that the advantages of the invention will be
readily understood, a more particular description of the inven-
tion briefly described above will be rendered by reference to

US 2009/0063951 Al

specific embodiments illustrated in the appended drawings.
Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and detail
through use of the accompanying drawings, in which:
[0013] FIG.1 illustrates one embodiment of an XML docu-
ment tree structure that includes multiple nodes and paths
between the nodes;

[0014] FIG.2 illustrates one embodiment of an SQL/XPath
extension, or statement, to attach a path security label to a
parent-to-child path; and

[0015] FIG. 3 illustrates one embodiment of an SQL/XPath
extension, or statement, to attach a path security label to a
sibling-to-sibling path.

DETAILED DESCRIPTION OF THE INVENTION

[0016] It will be readily understood that the components of
the present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of systems and
methods in accordance with the present invention, as repre-
sented in the Figures, is not intended to limit the scope of the
invention, as claimed, but is merely representative of certain
examples of presently contemplated embodiments in accor-
dance with the invention. The presently described embodi-
ments will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through-
out.

[0017] Referring to FIG. 1, one embodiment of an XML
document tree structure 100 is illustrated to provide a basic
understanding of the invention. Here, the document tree
structure 100 stores account and item information associated
with an online seller. As shown, the document tree structure
100 includes a plurality of nodes 102 arranged in a hierarchi-
cal tree structure. The relationship between the nodes 102
may be represented by a plurality of paths 104 traveling
between each of the nodes 102. As mentioned previously, the
smallest unit of protection in most conventional XML access
control models has been the node 102. This method of pro-
tection, however, may violate various security principles such
as the “need-to-know” and “choice” security principles by
leaking unnecessary or confidential information.

[0018] For example, consider the sub-tree rooted at node
102a and represented by the literal “VIP Accounts.” Suppose
that the security policy is such that access to node 1025 is
authorized while access to node 102¢ is unauthorized. Using
anode-based security approach, granting access to node 1025
will normally require granting access to the root node 102a.
Once access is granted to the root node 102a, access will
normally be automatically granted to the child node 102c.
Thus, it may be very difficult to implement a node-based
security approach that can grant access to node 1026 while
simultaneously denying access to node 102¢. As a result,
many node-based security approaches violate the “need-to-
know” or “choice” security principles because they leak
information about the node 102¢.

[0019] In selected embodiments in accordance with the
invention, a path- or relationship-based security approach
may be used to provide a more fine-grained, expressive, and
effective access control model to protect information in the
XML document 100. In such a model, ancestor/descendant
and sibling relationships 104, or paths 104, may be consid-

Mar. 5, 2009

ered legitimate elements to be protected. Such a model may
also better comply with security principles such as the “need-
to-know” and “choice” security principles.

[0020] In certain embodiments, one or more of the paths
104 may be protected with a “security label” associated with
alabel-based access control (LBAC) implementation. In such
an implementation, the path security label may be compared
to an access security label granted to a subject (e.g., a user)
attempting to access or traverse the path. Whether access is
authorized may be determined based on pre-determined set of
label access rules. Access to the path may then be denied or
granted based on the label access rules.

[0021] For example, consider again the sub-tree rooted at
node 102a. If the security policy is such that access to node
1025 is authorized while access to node 102¢ is unauthorized,
a security label 106a may be attached to the parent-to-child
path between the root node 1024 and the child node 102¢. A
second security label 1065 may be attached to the sibling-to-
sibling relationship between node 102¢ and node 1025. As a
result, access may be granted to the path between the root
node 102a and the child node 1025 while simultaneously
denying access to all paths leading to the child node 102c.
[0022] In selected embodiments, an SQL extension, also
referred to herein as a command or statement, may be pro-
vided to enable an access security label to be granted to a user.
Such an extension may already be available in various data-
base management systems, such as IBM’s DB2 version 9. For
example, one embodiment of an extension may be imple-
mented using the following SQL statement:

GRANT ACCESS LABEL label-name
TO USER user-name FOR READ ACCESS

Here, label-name designates the name of the access security
label and user-name designates the name of the user who is
granted the access security label. Similarly, the phrase “FOR
READ ACCESS” may be replaced with the phrase “FOR
WRITE ACCESS” or “FOR ALL ACCESS” to grant either
read access, write access, or both types of access to the user.
[0023] Referring to FIGS. 2 and 3, various SQL/XPath
extensions may also be provided to enable security labels to
be attached to paths 104 between nodes 102. For example,
FIG. 2 shows one embodiment of an SQL statement that may
be used to attach a security label to an ancestor/descendant
path (including a parent-to-child path) of an XML document.
In this embodiment, pathl and path2 are XPath expressions
designating the nodes at each end of the path, with path2
being an XPath expression relative to pathl. Path-label may
be used to designate the name of the security label that is
attached to the path.

[0024] For example, the following statement may be used
to attach a path security label having the name “EXIST-
ENCE” to the relationship between the node 102a¢ and the
node 102¢ of FIG. 1:

ATTACH EXISTENCE
ANCS //VIP Accounts
DESC /Account[Customer/Name = “Barbara”]

[0025] FIG. 3 shows one embodiment of an SQL statement
that may be used to attach a security label to a sibling-to-

US 2009/0063951 Al

sibling path of an XML document. In this embodiment, pathl,
path2, and path3 are XPath expressions, with path2 and path3
being XPath expressions relative to pathl. Path2 and path3
specify relationships between the node specified by pathl,
and the node’s preceding and following siblings. If the node
does not have preceding siblings, the PRECEDING-SIB-
LING expression may be deleted from the statement. Simi-
larly, if the node does not have following siblings, the FOL-
LOWING-SIBLING expression may be deleted from the
statement. Like the extension illustrated in FI1G. 2, path-label
may designate the name of the security label attached to the
sibling-to-sibling path.

[0026] For example, the following statement may be used
to attach a path security label with the name “VALUE” to the
sibling-to-sibling relationship between the node 10256 and the
node 102¢ of FIG. 1:

ATTACH VALUE
NODE //Account[Customer/Name = “Barbara”]
PRECEDING SIBLING /Account

[0027] Inaddition to providing support for the above SQL/
XPath statements, an extension may be provided to the SQL
compiler. This extension may ensure that the access plan
generated to fetch a column of type XML in a database table
also includes the access rules for evaluating a user’s access
rights with respect to the content of the XML column. The
goal is to allow users to label node relationships and let them
be sure that what they want to conceal is truly concealed from
the users whose access labels do not satisfy the label access
policy with the path labels. Unfortunately, it is impossible to
guarantee concealment for any arbitrary set of relationships.
Sometimes, it is possible to infer a concealed relationship
from the relationships that are not concealed.

[0028] Let us consider an example of four cases where a
relationship could be inferred from a pair of non-concealed
relationship. Referring to FIG. 1, suppose it is known that
Account Node 1025 is a descendant of VIP Accounts Node
1024 and Customer Node 1024 is a descendant of Account
Node 1025. Then, there is no point to conceal the ancestor-
descendant relationship between VIP Accounts Node 102a
and Customer Node 102d. Suppose it is known that Customer
Node 1024 is a descendant of VIP Accounts Node 1024 as
well as Account Node 1025. Since there is only one path from
the root of the document to Account Node 1025, there is no
point to conceal the ancestor-descendant relationship
between VIP Accounts Node 102a and Account Node 10265.
[0029] Suppose it is known that Account Node 1025 and
Account Node 102¢ are the children of VIP Accounts Node
102a, then there is no point to conceal the sibling relationship
between Account Node 1025 and Account Node 102¢. Sup-
pose it is known that VIP Accounts Node 102a has a descen-
dant Customer Node 1024 and the customer has a sibling
Account ID 102e, then there is no point to conceal the ances-
tor-descendant relationship between VIP Accounts Node
102a and Account ID 102¢. We say a set of labeled relation-
ships/paths in an XML document D is not secure with respect
to a path label L if one of the following four cases occurs.
[0030] 1. Case 1: D has three nodes, n,, n, and n; s.t. the
ancestor-descendant path from n, to n, and the ancestor-
descendant path from n, to n; have labels L, ,<[. and [.,5<L.
The ancestor-descendant path from n, to n; has a label
L,;=L.

Mar. 5, 2009

[0031] 2. Case 2: D has three nodes, n,, n, and n; s.t. the
ancestor-descendant path from n, to n; and the ancestor-
descendant path from n, to n; have labels L., ;<L and L,5<L..
The ancestor-descendant path from n; to n, has a label
L,,=L.

[0032] 3. Case 3: D has three nodes, n,, n, and n, s.t. n, is
the parent of n, and n,, the parent-child path fromn, ton, and
the parent-child path from n, to n; have labels L,,<I. and
L,;<L. Thesibling path from n, to n, has alabel L,;=L or the
sibling path from n, to n, has a label L;,=L.

[0033] 4. Case 4: D has three nodes, n,, n, and n; s.t. the
ancestor-descendant path fromn, ton, hasalabel L,,<L, and
either the sibling path from n, to n; has a label L,;<L or the
sibling path from n; to n, has a label L;,<L.. The ancestor-
descendant path from n, to n, has a label L, ;=L.

[0034] There is a simple test to verify that a set of labeled
relationships/paths in an XML document D is not secure with
respect to a path label L. The test starts by computing three
ternary relations R, R, and R;. The first two columns store
the start/end nodes of paths. The third column stores the label
associated with paths (if a label is missing, then it is a NULL
value). In particular, R, stores all ancestor-descendant paths
in D, R, stores all parent-child paths in D, and R stores all
sibling paths in D.

[0035] 1.Case 1 is true for a path label L if and only if the
expression g, ¢s(R, ;*$2=81R, ;)-R, ; is not empty where
R, is0g3 L (R)).

[0036] 2. Case 2 is true for a path label L if and only if the
expression 7y, ¢4(z; ;*$2=$2 R, ;)-R, ; is not empty where
R, ;s Og3 (Ry).

[0037] 3. Case 3 is true for a path label L if and only if the
expression g, ¢s(R,;*$1=81R, ;)-R; ; is not empty where
R, 18 Ogaey (Rp) and Ry 7 18 Ogzp (R3).

[0038] 4. Case 4 is true for a path label L if and only if the
expression g, ¢s(R, ;*$2=81R; ;)-R, ; is not empty where
Ry 18 Ogagy (Ry)and Ry 7 18 Ogzp (R3).

[0039] Furthermore, we give intuitive conditions to con-
struct a secure set of labeled relationships for an XML docu-
ment. If we ignore the directions of ancestor-descendant and
sibling paths, all these paths form cycles in an XML docu-
ment. To assign a path label L to a relationship between two
nodes 1, and n, in an XML document D, we must make sure,
forevery cycle that includes the path from n, to n,, either there
is another path whose label L, ZL, or n, and n, are descen-
dants of some nodes in the cycle and n,, n, are not children of
the same parent. Both cases ensure there is uncertainty
whether arelationship between two nodes n, and n, exists: the
first case by having another path missing in the cycle, while in
the second case, the fact that n, and n, are descendants of
some nodes in the cycle introduces uncertainty except when
they are children of the same parent, in which case the sibling
relationship between n, and n, is leaked.

[0040] In certain embodiments, a DTD may be used to
verify that certain security labels are assigned to paths of an
XML document 100. In the event one or more paths of an
XML document 100 do not include the security labels speci-
fied in the DTD, these security labels may be added to the
XML document 100 to make it conform to the DTD. This
feature may be provided to ensure that protected information
in an XML document 100 is truly concealed from users lack-
ing the required authority. This feature may also reduce the
chance that users will infer the existence of a concealed
relationship from other relationships that are not concealed.

US 2009/0063951 Al

[0041] For example, in certain embodiments, security
labels may be validated in an XML document 100 using an
attribute declaration in a DTD having the following form:

<!ATTLIST N SecurityLabel (Pathl Labell | Path2 Label2 | .. .),
#REQUIRED/#IMPLIED>

[0042] Here, N can be instantiated to be a set of nodes in an
XML document 100 (e.g., VIP Accounts), Pathl, Path2, etc.
identify instantiated paths relative to each of the nodes to be
protected by a security label, and Labell, Label2, etc. identify
security labels to be attached to the instantiated paths of
Pathl, Path2, etc., respectively. In selected embodiments, N,
Pathl, Path2, etc. may be identified using XPath expressions.
Similarly, Path1, Path2, etc. may designate ancestor/descen-
dant, sibling-to-sibling, or other desired paths in the XML
document 100. The #REQUIRED/#IMPLIED syntax may be
used to designate whether the security labels identified in the
attribute declaration are required (e.g., #REQUIRED) or are
merely optional (e.g., #IMPLIED).

[0043] In operation, when validating an XML document
100 with the DTD, the above-identified attribute declaration
may be checked against the attributes in the XML document
100. This may be performed to verity that the XML document
100 has path security labels at least as restrictive as those
designated in the DTD. If the XML document 100 does not
include path security labels that are at least as restrictive as
those designated in the DTD, path security labels may be
inserted into the XML document 100 to make it conform to
the DTD. Conversely, path security labels of the XML docu-
ment 100 that are more restrictive than those designated in the
DTD may be left alone. Thus,

the DTD may be used to impose a set of minimum security
requirements on paths of the XML document 100.

[0044] In certain embodiments, when attempting to access
an XML document 100, a user’s security label may be com-
pared to the path security labels designated in the DTD as
opposed to comparing it with the path security labels of the
XML document 100. This may improve efficiency because a
DTD is typically much smaller than the XML document 100
it is associated with. If the user is not authorized to access the
paths specified in the DTD, the user will not be authorized to
access the corresponding instantiated paths in the XML docu-
ment 100. This is because the XML document 100 will have
security labels that are at least as restrictive as those specified
in the DTD.

[0045] On the other hand, if the user is authorized to access
paths designated in the DTD, the user is not necessarily
authorized to access the corresponding paths in the XML
document 100. This is because the XML document 100 may
have security labels that are more restrictive than those speci-
fied in the DTD. If this is the case, the user’s security label
may also be compared to the path security labels of the XML
document 100 to determine whether the user is authorized to
access the paths.

[0046] It should be recognized that the features and advan-
tages discussed above with respect to a DTD may also be
applied to other languages for describing the schemas of
XML documents, such as the XSD language.

[0047] The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid-

Mar. 5, 2009

ered in all respects only as illustrative and not restrictive. The
scope ofthe invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

1. A computer program product comprising a computer
readable medium having: computer usable program code
executable to perform operations to control access to an XML
document comprising a plurality of nodes and a plurality of
paths between each of the nodes, the operations of the com-
puter program product comprising:

referencing a schema definition comprising a path security

label definition associated with a sibling-to-sibling path
of an XML document;

receiving an XML document to be validated by compari-

son with the schema definition;

comparing the XML document to the schema definition;

verifying that the XML document has a path security label

associated with a sibling-to-sibling path that is at least as
restrictive as that specified by the path security label
definition of the schema definition for the nodes associ-
ated with the sibling-to-sibling path;

determining an access security label assigned to a user

seeking to access the sibling-to-sibling path protected by
the path security label;

comparing, using pre-determined access rules, the path

security label to the access security label to determine
whether the user is authorized to access the sibling-to-
sibling path; and

controlling access to the sibling-to-sibling path in accor-

dance with the access rules.

2. The computer program product of claim 1, wherein the
sibling-to-sibling path is specified in the schema definition
using at least one XPath expression.

3. The computer program product of claim 1, wherein the
schema definition is selected from the group consisting of a
document type definition (DTD) and an XML schema defi-
nition (XSD).

4. The computer program product of claim 1, wherein the
access security label assigned to a user is assigned by a user
issuing an SQL command utilizing an SQL extension to
assign the access security label.

5. A computer program product to control access to an
XML document comprising a plurality of nodes and a plural-
ity of paths between each of the nodes, the computer program
product comprising a computer-readable medium storing a
program of computer-readable instruction that when
executed on a computer causes the computer to:

generate a schema definition comprising a path security

label definition associated with a sibling-to-sibling path
of an XML document;

receive an XML document to be validated by comparison

with the schema definition;

compare the XML document to the schema definition;

verify that the XML document has a path security label

associated with a sibling-to-sibling path that is at least as
restrictive as that specified by the path security label
definition;

assign an access security label to a user seeking to access

the sibling-to-sibling path protected by the path security
label;

US 2009/0063951 Al

compare, using pre-determined access rules, the path secu-
rity label to the access security label to determine
whether the user is authorized to access the sibling-to-
sibling path; and
control access to the sibling-to-sibling path in accordance
with the access rules.
6. The computer program product of claim 5, wherein the
sibling-to-sibling path is specified in the schema definition
using at least one XPath expression.

Mar. 5, 2009

7. The computer program product of claim 5, wherein the
schema definition is selected from the group consisting of a
document type definition (DTD) and an XML schema defi-
nition (XSD).

8. The computer program product of claim 5, wherein
assigning an access security label comprises utilizing an SQL
extension to assign the access security label.

sk sk sk sk sk

