
Rjaibi, Walid (2020)‘Enhanced Encryption and Fine-GrainedAuthorization for
Database Systems. Doctoral thesis (PhD), Manchester Metropolitan Univer-
sity.

Downloaded from: http://e-space.mmu.ac.uk/626253/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Rjaibi=3AWalid=3A=3A.html
http://e-space.mmu.ac.uk/626253/
https://e-space.mmu.ac.uk

Enhanced Encryption and Fine-Grained
Authorization for Database Systems

Walid Rjaibi

PhD 2020

Enhanced Encryption and Fine-Grained
Authorization for Database Systems

Walid Rjaibi

A thesis submitted to Manchester Metropolitan University in
partial fulfilment for the degree of

Doctor of Philosophy

Faculty of Science and Engineering

Department of Computing and Mathematics

MANCHESTER METROPOLITAN UNIVERSITY

2020

 i

Abstract
The aim of this research is to enhance fine-grained authorization and encryption

so that database systems are equipped with the controls necessary to help

enterprises adhere to zero-trust security more effectively. For fine-grained

authorization, this thesis has extended database systems with three new

concepts: Row permissions, column masks and trusted contexts. Row

permissions and column masks provide data-centric security so the security

policy cannot be bypassed as with database views, for example. They also

coexist in harmony with the rest of the database core tenets so that enterprises

are not forced to compromise neither security nor database functionality. Trusted

contexts provide applications in multitiered environments with a secure and

controlled manner to propagate user identities to the database and therefore

enable such applications to delegate the security policy to the database system

where it is enforced more effectively. Trusted contexts also protect against

application bypass so the application credentials cannot be abused to make

database changes outside the scope of the application’s business logic. For

encryption, this thesis has introduced a holistic database encryption solution to

address the limitations of traditional database encryption methods. It too coexists

in harmony with the rest of the database core tenets so that enterprises are not

forced to choose between security and performance as with column encryption,

for example. Lastly, row permissions, column masks, trusted contexts and holistic

database encryption have all been implemented IBM DB2, where they are relied

upon by thousands of organizations from around the world to protect critical data

and adhere to zero-trust security more effectively.

 ii

Acknowledgements
This thesis would not have been possible without the help, guidance and support

from many people. First, I would like to thank my Director of Studies, Dr

Mohammad Hammoudeh, for all his help, guidance and support throughout this

thesis.

 I also want to express my deepest gratitude to my friend and colleague Paul

Bird, IBM Senior Technical Staff Member, for the opportunity to drive the

database security research in his team as well as for all the guidance, help and

support he kindly provided to me throughout this research and during the

preparation of this thesis.

 I am also grateful to my friends and IBM colleagues Calisto Zuzarte and

Mokhtar Kandil for all the time they have spent reviewing and validating design

documents, research papers, patent applications and for their kind and valuable

feedback throughout the research and during the preparation of this thesis.

 My most sincere thanks also go to my IBM colleagues Irene Liu, Greg Stager,

Mihai Iacob, Mihai Nicolai, Alex Zhang, Hamdi Roumani, Eric Alton, Harley

Boughton, Jerry Kiernan, Tyrone Grandison, Scott Logan and Quentin Presley

for all their help and input during the implementation of the concepts introduced

by this research.

 Last but not least, I want to thank my family for their love, support and for

having brought so much joy to my life. And a very special thanks to my children

Saif, Safa and Haytham who have filled my life with so much happiness and have

given me all the energy I needed to write this thesis.

 iii

Table of contents

Abstract .. i

Acknowledgements ... ii

Table of contents .. iii

List of figures ... vii

List of tables .. viii

List of abbreviations .. ix

Chapter 1: Introduction ... 1

1.1 Background ... 2

1.1.1 Fine-Grained Authorization .. 3

1.1.2 Data Encryption ... 3

1.1.3 Mandatory Access Control ... 4

1.2 Motivation .. 4

1.3 Aims and Objectives .. 6

1.4 Contributions ... 6

1.5 Thesis Organization ... 7

Chapter 2: Research Portfolio Overview ... 8

2.1 Introduction .. 9

2.2 Fine-Grained Authorization ... 11

2.3 Data Encryption .. 14

2.4 Mandatory Access Control .. 15

2.5 Conclusion ... 17

Chapter 3: Enhanced Fine-Grained Authorization ... 18

3.1 Introduction .. 19

3.2 Related Work ... 21

3.3 Fine-Grained Database Authorization Model ... 24

 iv

3.3.1 Row Permissions Enforcement ... 27

3.3.2 Column Masks Enforcement .. 28

3.4 User Identity Propagation in Multitiered Environments 29

3.4.1 Trusted Contexts ... 30

3.4.2 Trusted Context-Based Authorization .. 32

3.5 Safe Coexistence with Fundamental Database Tenets 33

3.5.1 User Defined Functions .. 33

3.5.2 Materialized Query Tables ... 34

3.5.3 Database Triggers ... 36

3.6 Performance Evaluation .. 37

3.6.1 Delegating Fine-Grained Authorization to the Database System ... 38

3.6.2 Scalability of Column Masks .. 41

3.6.3 Independence of Column Masks .. 42

3.6.4 Row Permissions Impact .. 44

3.7 Use Case Scenario .. 45

3.8 Conclusion ... 49

Chapter 4: Enhanced Data Encryption ... 51

4.1 Introduction .. 52

4.2 Related Work ... 52

4.3 Holistic Database Encryption .. 55

4.3.1 Encryption Run-Time Placement .. 55

4.3.2 Encryption Run-Time Processing ... 56

4.3.3 Encryption Key Management .. 57

4.4 Implementation ... 58

4.4.1 Enabling Encryption for a Database ... 58

4.4.2 Rotating the Database Master Key ... 58

4.4.3 Taking an Encrypted Database Backup ... 59

 v

4.4.4 Performance Considerations ... 60

4.5 Conclusion ... 60

Chapter 5: Enhanced Mandatory Access Control .. 61

5.1 Introduction .. 62

5.2 Related Work ... 62

5.3 A Multi-Purpose MAC Implementation for Database Systems 63

5.3.1 SQL Extensions ... 64

5.3.2 Access Enforcement ... 65

5.3.3 Enterprise integration .. 66

5.4 Applying Multi-Purpose MAC for XML Fine-Grained Authorization 67

5.4.1 Methodology ... 69

5.4.2 Access Enforcement ... 70

5.5 Conclusion ... 71

Chapter 6: Towards Zero-Trust Database Security .. 72

6.1 Introduction .. 73

6.2 Database Threat Model ... 74

6.3 Addressing Direct Data Access Challenges ... 76

6.3.1 Privilege Abuse .. 76

6.3.2 Application Bypass .. 77

6.3.3 Loss of User Identity ... 78

6.4 Addressing Indirect Data Access Challenges .. 78

6.5 Separation of Duties ... 80

6.6 Example Scenario .. 81

6.7 Conclusion ... 84

Chapter 7: Conclusion and Future Work ... 86

7.1 Introduction .. 87

7.2 Key Contributions ... 87

 vi

7.3 Future Directions .. 88

7.3.1 Data Classification .. 88

7.3.2 Machine Learning .. 89

7.3.3 Homomorphic Encryption ... 90

7.4 Conclusion ... 90

References .. 92

Appendix A: Fine-Grained Authorization Portfolio .. 98

Appendix B: Data Encryption Portfolio .. 100

Appendix C: Mandatory Access Control Portfolio 101

 vii

List of figures

Figure 1.1– Typical database system deployment and usage 2

Figure 2.1– Database security pillars and focus of the thesis 11

Figure 3.1– Classical 3-tier application architecture .. 19

Figure 3.2– Fine-grained authorization as an extension of the SQL Compiler .. 25

Figure 3.3– Ratio of database vs application enforcement for TPC-H queries .. 39

Figure 3.4– Scalability of Column Masks .. 42

Figure 3.5– Independence of Column Masks ... 44

Figure 3.6– Row Permissions Impact (1,000,000 rows) .. 45

Figure 3.7– Row Permissions Impact (10,000,000 rows) 45

Figure 4.1– Holistic Database Encryption Architecture ... 57

Figure 5.1– Example XML Document .. 68

Figure 6.1– Database threat model. ... 75

Figure 6.2– Fine-grained database authorization. ... 77

Figure 6.3– Database encryption. .. 80

 viii

List of tables
Table 2.1 – Fine-grained authorization publications .. 13

Table 2.2 – Data encryption publications .. 14

Table 2.3 – Mandatory access control publications ... 16

Table 3.1 – Application vs Database Enforcement for TPC-H Queries 39

Table 3.2 – Time Elapsed (in seconds) ... 41

Table 3.3 – Time Elapsed (in seconds) ... 43

Table 3.4 – Difference with the Baseline ... 43

Table 3.5 – Time Elapsed (in seconds) ... 44

Table 3.6 – CUSTOMER Table .. 46

Table 3.7 – EMPLOYEE_INFO Table .. 46

Table 3.8 – Outputs for Users Amy, Haytham and Pat ... 49

Table 5.1 – Access-Decision Cache .. 67

Table 6.1 – Zero-trust database security challenges ... 75

Table 6.2 – Zero-trust database security challenges and solutions. 80

Table 6.3 – Banking application security policy. .. 82

Table A.1 – Research Papers .. 98

Table A.2 – Granted Patents .. 99

Table B.1 – Research Papers .. 100

Table C.1 – Research Papers .. 101

Table C.2 – Granted Patents .. 102

 ix

List of abbreviations
DBA Database Administrator

SA System Administrator

DBMS Database Management System

RDBMS Relational Database Management System

SQL Structured Query Language

UDF User Defined Function

MQT Materialized Query Table

MAC Mandatory Access Control

LBAC Label-Based Access Control

MLS Multilevel Security

VPD Virtual Private Database

FGAC Fine-Grained Access Control

AES Advanced Encryption Standard

CBC Cipher Block Chaining

IV Initialization Vector

RSA Rivest-Shamir-Adleman

DES Data Encryption Standard

3DES Triple DES

SHA Secure Hash Algorithms

EFS Encrypted File System

SED Self-Encrypting Disk

SSL Secure Socket Layer

TLS Transport Layer Security

HSM Hardware Security Module

 x

LDAP Lightweight Directory Access Protocol

SIEM Security Information and Event Management

KDC Key Distribution Center

XML eXtensible Markup Language

PCI DSS Payment Card Industry Data Security Standard

HIPAA Health Insurance Portability and Accountability Act

GDPR General Data Protection Regulation

 1

Chapter 1: Introduction
This thesis is a PhD by publication. It represents a research journey in database

security that has resulted in a portfolio of 8 research papers in peer reviewed

journals and conferences, and 7 peer reviewed patents. The thesis highlights the

contributions made during the last three years (including the PhD registration

period), but also builds upon the author’s previous research.

 This first chapter briefly introduces database systems, their typical deployment

and usage. Next, the key challenges in fine-grained authorization and encryption

for database systems are discussed. Then, the chapter presents the motivation,

aim and objectives of the research. Lastly, the chapter summarizes the key

contributions made in this thesis and gives the outline for the next chapters.

Chapter 2 reviews the key tenets of database security, positions the research

portfolio in that field and summarizes the key contributions for each. Chapter 3

gives the details of this thesis’s contributions to the fine-grained database

authorization area. Chapter 4 describes the details of this thesis’s contributions

to the database encryption area. Chapter 5 describes the details of this thesis’s

contributions to the mandatory access control area. Chapter 6 shows how the

contributions made in this thesis come together to help organizations effectively

adhere to zero-trust database security. Chapter 7 summarizes the thesis and

explores future directions for database security research.

 2

1.1 Background
Database systems are at the core of an organization’s information system. They

store critical data such as employee personal data, client transaction data, patient

medical records and intellectual property information. Organizations rely upon

database systems to ensure the integrity, availability and security of their critical

data. They also trust database systems to meet the stringent performance

expectations of mission critical applications such as financial transactions and

retail sales. Database systems are also relied upon for their compression

capabilities to optimize storage costs.

 Database systems are usually accessed by two types of personas: A Database

Administrator (DBA) and an application user. DBAs are responsible for the

installation and ongoing maintenance of the database system software as well as

the daily operations such as database backups, restores, configurations and

security. Application users access the database through an application, resulting

in a multitiered environment where the user’s browser is the first tier, the

application server is the middle tier and the database server is the third tier.

Typically, users log on to the application and the application issues queries to the

database to serve the needs of those users. Figure 1.1 depicts a typical database

system deployment and usage.

Figure 1.1– Typical database system deployment and usage

 A set of fine-grained authorization and data encryption techniques have been

proposed to equip database systems with the controls necessary to protect the

File System

Storage

Media

Database

System
Interactive access

 Application Application access
User 1

User 2

DBA

 3

critical data entrusted with them. In the next sub-sections, we briefly review these

techniques and highlight key challenges.

1.1.1 Fine-Grained Authorization
Fine-grained authorization has originally been tackled through the concept of

database views (Elmasri et al., 2010). A DBA would create the desired views over

the tables containing the sensitive data and grant access to those views based

on “need-to-know”. This approach has two major drawbacks. First, it is not data-

centric as the security policy is only enforced when the data is accessed through

the views. Users with the right privileges can bypass the security policy by

accessing the base tables directly. Secondly, views can very quickly become

complex to manage as their number grows in order to satisfy the needs of

different user groups. Subsequent work around fine-grained database

authorization has addressed these two shortcomings to some degree. However,

there are still two major issues. First, the loss of user identity in multitiered

environments which renders the fine- grained authorization policies defined in the

database almost of no value since the identity of the end user is not known. The

application server is then forced to compensate by implementing the fine-grained

authorization logic in the application itself. This in turn renders the application

more complex, error prone, and prevents it from benefiting from delegating the

security policy to the database system where it can be enforced more efficiently.

The second major issue is the coexistence of fine-grained authorization with

important database tenets such as integrity and performance. How do we balance

integrity and security when both a trigger and fine-grained authorization policy

are defined on the same table? Similarly, how do we balance performance and

security when a Materialized Query Table (MQT) is defined on one or more tables

protected with a fine-grained authorization policy? In both cases, enforcing the

fine-grained authorization policy blindly can compromise database integrity

and/or disrupt the accuracy of a query results set.

1.1.2 Data Encryption
For database encryption, the solutions available in this space can be grouped

into four categories: Column encryption, tablespace encryption, file system

encryption, and self-encrypting disks. Column encryption negatively affects

database performance as queries with range predicates cannot benefit from

index-based access plans to limit the data to read from the table. Instead, the

 4

database system is forced to read the entire table to evaluate the query.

Tablespace encryption may leave certain data vulnerable to attacks when, for

example, a DBA inadvertently takes an action that moves data from an encrypted

tablespace to an unencrypted one. File system encryption and self-encrypted

disks provide no protection against privileged users on the operating system. As

long as the file permissions allow access, such users can easily view the content

of the database by browsing the underlying files on the operating system.

1.1.3 Mandatory Access Control
Within the intelligence and defense communities, Mandatory Access Control

(MAC) (Rjaibi et al., 2004) is actually the mechanism relied upon for database

fine-grained authorization. Under this model, each row in a table is assigned a

classification. Similarly, each database user is assigned a clearance. The

combination of the MAC rules, the row’s classification and the user’s clearance

determine whether or not a given user can access a given row. MAC solutions

for database systems have solely focused on Multilevel Security (MLS) (Rjaibi,

2004). MLS is a very specific MAC model which came out of the US defense

community and has rigid classification, clearance and MAC rules. This meant that

MLS database systems could not be used to meet the needs of the defense and

intelligence communities from other countries where the classification, clearance,

and MAC rules may not necessarily match those of the US government.

Additionally, the issues around the loss of end user identity in multitiered

environments discussed earlier still apply when MAC models are enforced by the

database systems.

1.2 Motivation
The rise of data breaches has driven many organizations nowadays to implement

zero-trust security in order to reduce the risk of incurring a data breach. Like

identity systems and networks (Gilman et al., 2017), database systems also need

to evolve to help organizations effectively adhere to zero-trust security for at least

three main reasons.

 First, database systems store the organization’s most critical data (e.g.,

employee personal data, client transaction data, patient medical records,

intellectual property information) and are often the primary target of attacks by

malicious entities such as disgruntled employees or external hackers. Second,

database systems are the subject of numerous regulations and standards such

 5

as the European General Data Protection Regulation (GDPR) (Voigt et al., 2017)

and the Payment Card Industry Data Security Standard (PCI DSS) (Chuvakin et

al., 2009) which impose severe financial penalties on any organization that fails

to adequately protect critical data. Last but not least, traditional encryption and

fine-grained authorization solutions for database systems are not adequate to

address the challenges posed by security threats and compliance requirements.

As pointed out in Section 1.1, traditional database encryption methods either

negatively affect performance (column encryption) or create attack opportunities

for malicious users (tablespace encryption, file system encryption, disk

encryption). Similarly, traditional fine-grained database authorization methods

can be bypassed (e.g. views) and do not address the loss of user identity

problem, rendering them unusable in multitiered environments. They additionally

do not coexist in harmony with fundamental database tenets such as triggers and

MQT, thus creating potential for data leakage. Also, the loss of user identity in

multitiered environments diminishes user accountability as auditing at the

database level will not be able to show who actually performed which action.

 Clearly, traditional database encryption and fine-grained authorization

methods are creating a dilemma for enterprises when it comes to meeting their

security needs. Some traditional encryption methods provide good security, but

that security comes at the expense of database performance. Other encryption

methods do not affect database performance, but that advantage comes at the

expense of database security. Additionally, traditional fine-grained authorization

methods do not apply in multitiered environments, forcing enterprises to build that

security in the application. But this renders applications more complex and

prevents them from delegating fine-grained authorization to the database where

it can be enforced more effectively. The three key research questions are

therefore the following:

1. How can database systems be extended to build an encryption solution

that meets the security needs but does not come at the expense of core

database tenets such as performance and compression?

2. What extensions can be made to database systems to develop a fine-

grained authorization solution that enables applications in multitiered

environments to delegate the security policy to the database and improves

overall database security?

 6

3. How can database systems be extended to build a mandatory access

control solution that addresses the limitations of traditional Multilevel

Security (MLS) which imposes a rigid security label structure and access

rules?

1.3 Aims and Objectives
The aim of this research is to enhance encryption and fine-grained authorization

for database systems to help organizations meet their security and compliance

needs, without having to compromise any core database tenets such as

performance, integrity, compression and without requiring any changes to

database applications.

In order to achieve this aim, this research will:

1. Develop a holistic database encryption solution that meets the security

needs while coexisting in harmony with core database tenets such as

performance and compression.

2. Build a fine-grained authorization solution that enables applications in

multitiered environments to delegate the security policy to the database

while coexisting in harmony with performance, triggers, User-Defined

Functions (UDF) and Materialized Query Tables.

3. Enhance Mandatory Access Control (MAC) in database systems to

broaden its applicability to additional use cases such as fine-grained

authorization for XML documents stored database tables.

4. Measure the impact of the enhancements introduced on database

performance.

1.4 Contributions
This thesis has advanced the areas of database encryption, fine-grained

database authorization and mandatory access control. The key contributions can

be summarized as follows:

1. A holistic database encryption solution which allows organizations to meet

their security and compliance requirements without having to make

compromises either on the security side or on the database side

 7

2. A fine-grained database authorization solution which allows organizations

to reduce the complexity of their applications and improve overall

database security

3. A solution which extends database systems to automatically and

transparently enforce privacy policies

4. A multi-purpose mandatory access control solution which addresses the

limitations of traditional Multilevel Security (MLS)

5. A fine-grained authorization solution for XML which improves over

traditional node-based XML access control approaches, by considering

inter-node relationships as the control granularity, and by using the multi-

purpose mandatory access control above for controlling access to such

inter-node relationships

6. The implementation of the enhancements above in several commercial

database systems including IBM DB2 and Informix, where they are relied

upon by thousands of clients around the world to protect their critical data

and meet their compliance mandates.

1.5 Thesis Organization
The rest of the thesis is organised as follows. Chapter 2 reviews the key tenets

of database security, positions the research portfolio in that field and summarizes

the key contributions for each. Chapter 3 gives the details of this thesis’s

contributions to the fine-grained database authorization area. Chapter 4

describes the details of this thesis’s contributions to the database encryption

area. Chapter 5 describes the details of this thesis’s contributions to the

mandatory access control area as well as to XML fine-grained authorization.

Chapter 6 shows how the contributions above come together to help

organizations effectively adhere to zero-trust database security. Chapter 7

summarizes the thesis and explores future directions for database security

research. Appendix A, Appendix B and Appendix C list the research portfolio for

fine-grained authorization, data encryption and mandatory access control

respectively.

 8

Chapter 2: Research Portfolio Overview
This chapter briefly summarizes database security and positions the research

portfolio within this field. It then gives a high-level overview of the publications in

the portfolio and shows where each fit with respect to the fine-grained

authorization, data encryption and mandatory access control areas. Each of

these portfolio areas are then discussed in full details in Chapter 3, Chapter 4

and Chapter 5 respectively. The primary focus of this thesis is the portfolio

developed during the last 3 years (including the PhD registration period), namely

chapters 3, 4 and 6.

 9

2.1 Introduction
Database security is the set of capabilities organizations depend upon to ensure

the security of the data they store in databases. It can be broadly divided into five

main pillars:

1. Authentication: This is the first protection measure where the database

system challenges the user to prove who they claim they are. Database

systems typically support various options for doing this validation such as

verifying the credentials submitted within the database system itself or

integrating with an external system to do so. Typical options for an external

system include the host operating system, an LDAP server or a Kerberos

KDC (MIT, 2019).

2. Coarse-grained authorization: This is the next level of protection where

the database system verifies that the authenticated user has the privilege

to execute a particular action. For example, when a user issues an SQL

SELECT statement on given table, the database system must first verify

that the user has been granted SELECT privilege on that table. DBAs use

the GRANT and REVOKE SQL statements to grant or revoke a particular

privilege to/from a user (Elmasri et al., 2010). These privilege assignments

are stored in the database system catalog tables and are consulted during

authorization checking. Users can acquire a privilege directly or indirectly

through membership in a role or group. Memberships in roles and groups

are also stored in the database system catalog tables and are consulted

during authorization checking.

3. Fine-grained authorization: While coarse-grained authorization dictates

whether or not a user has the privilege to access a table, fine-grained

authorization goes a level deeper. It controls what specific rows, columns

or cells of that table the user is allowed to access. Traditionally, database

views have been used to enforce fine-grained authorization (Elmasri et al.,

2010). A database view represents a dynamically computed set of rows

from one or more tables. Typically, the DBA creates the desired views and

grants access on those views to the appropriate users. Mandatory Access

Control (MAC) is another option some database systems offer for

enforcing fine-grained authorization (Rjaibi et al., 2004). It is an option that

is typically used by the defense and intelligence communities. In MAC,

each data row in a table is assigned a classification representing the

 10

sensitivity of that row (e.g., SECRET). Similarly, users are assigned

clearances, defining their access level (e.g., TOP SECRET). The

combination of row classification and user clearance determines whether

or not the user can access the given row.

4. Data encryption: Data encryption can be divided into two categories:

Encryption for data in transit and encryption for data at rest. Encryption for

data in transit protects the confidentiality of the data exchange between

the database system and an application. Most database systems

implement Transport Layer Security (TLS) to provide this protection. The

goal of encryption for data at rest is to safeguard the data when it is in

storage. Different implementations exist ranging from column encryption,

to tablespace encryption, to file system encryption, to self-encryption

disks.

5. Auditing: This is the mechanism database systems provide so

enterprises can hold users accountable for their actions. It is also a

requirement for complying with various mandates such as the European

General Data Protection Regulation (GDPR) or the Payment Card Industry

Data Security Standard (PCI DSS). Most database systems provide the

flexibility to decide what type of activity to audit such as auditing a specific

user, a specific role, a specific table, all users, all tables, and so on.

Similarly, most database systems offer several options as to where the

audit records are sent. Options include storing them locally on the host

operating system or sending them to a Security Information and Event

Management (SIEM) system where they are aggregated and correlated

with audit data from other applications.

 Figure 2.1 highlights the specific database security pillars that are the subject

of the research portfolio upon which this thesis is based. The portfolio specifically

focuses on fine-grained authorization and data encryption. The rest of this

chapter is organized as follows. Section 2.2 summarizes the portfolio of

publications related to fine-grained authorization. Section 2.3 highlights the

portfolio of publications in the data encryption area. Section 2.4 gives an overview

of the portfolio of publications in the area of mandatory access control. Lastly,

Section 2.5 concludes this chapter.

 11

Figure 2.1– Database security pillars and focus of the thesis

2.2 Fine-Grained Authorization
The core element of the research portfolio in this area is the publication

“Enhancing and Simplifying Data Security and Privacy for Multitiered

Applications”. This publication was fully developed during the course of this thesis

and is given in Chapter 3. It builds upon the ideas expressed in the following

patents1:

• US Patent US8,234.299B2: “Method and System for Using Fine-Grained

Access Control (FGAC) to Control Access to Data in a Database”. This

patent is the foundation for the row permission and column mask

concepts discussed in the core publication above.

• US Patent US 7,647,626B2: “Method for Establishing a Trusted

Relationship Between a Data Server and a Middleware Server”. This

patent is the foundation for the trusted context concept discussed in the

core publication above.

 The research portfolio includes additional contributions to fine-grained

authorization. Publication “Extending Relational Database Systems to

1 Walid was directly involved in the naming of all 7 patents referred to in this thesis.

Authentication

Coarse-grained authorization

Fine-grained authorization (Thesis focus)

(Thesis focus)

Data encryption (Thesis focus)

(Thesis focus)

Auditing

 12

Automatically Enforce Privacy Policies” describes a model where privacy policies

such as P3P (Agrawal et al., 2005) can be automatically enforced by the

database system. This publication builds upon the ideas expressed in the

following patents:

• US Patent US7,865,521B2: “Access Control for Elements in a Database

Object”. This patent is the foundation for the table restriction concept

discussed in the publication above.

• US Patent US 7,243,097 B1: “Extending Relational Database Systems to

Automatically Enforce Privacy Policies”. This patent is the foundation for

the method to translate privacy policies into table restrictions discussed in

the publication above.

 Table 2.1 summarizes the fine-grained authorization publications and their key

contributions.

 13

Table 2.1 – Fine-grained authorization publications

ID Publication Key Contributions

1 Rjaibi, W., Hammoudeh, M. (2020).

‘Enhancing and Simplifying Data
Security and Privacy for Multitiered
Applications’. Journal of Parallel and

Distributed Computing, Special Issue on

Enabling Technologies for Energy Cloud.

(Also, Chapter 3 of this thesis)

Walid’s % contribution: 75.

- Design of a holistic fine-grained database authorization solution

which allows organizations to reduce the complexity of their

applications and improve overall database security.

- Enable organizations to adhere to zero-trust security.

- Implementation of the solution in IBM DB2 for Linux, Unix and

Windows, IBM DB2 for z/OS and IBM for DB2 for iSeries.

2 Method and System for Using
Fine-Grained Access Control (FGAC) to
Control Access to Data in a Database

US Patent US8,234.299B2

Walid’s % contribution: 50.

This patent is the foundation for the row permission and column

mask concepts discussed in the core publication #1 above.

3 Method for Establishing a Trusted
Relationship Between a Data Server and
a Middleware Server

US Patent US 7,647,626B2

Walid’s % contribution: 50.

This patent is the foundation for the trusted context concept

discussed in the core publication #1 above.

4 Agrawal, R., Bird, P., Grandison, T.,

Kiernan, J., Logan S., Rjaibi, W. (2005).

‘Extending relational database systems to

automatically enforce privacy policies’. In

Proceedings of the International

Conference on Data Engineering (ICDE).

Walid’s % contribution: 50.

- Design of a solution which extends database systems to be able

to automatically enforce privacy policies.

- Enable organizations to meet privacy requirements for data

stored in database systems.

5 Access Control for Elements in a
Database Object

US Patent US7,865,521B2

Walid’s % contribution: 50.

This patent is the foundation for the table restriction concept

discussed in publication #4 above.

6 Extending Relational Database Systems
to Automatically Enforce
Privacy Policies

US Patent US 7,243,097 B1

Walid’s % contribution: 50.

This patent is the foundation for the method to translate privacy

policies into table restrictions discussed in publication #4 above.

 14

2.3 Data Encryption
The core element of the research portfolio in this area is the publication “Holistic

Database Encryption”. A summary of this publication is given in Chapter 4 and

the publication itself is given in Appendix B.

 Publications “Towards Zero-Trust Database Security – Part 1” and “Towards

Zero-Trust Database Security – Part 2” show how the solution discussed in

publication “Holistic Database Encryption” contributes to implementing zero-trust

security for database systems. These two additional publications have been fully

developed during the course of this thesis and are the foundation for Chapter 6

(Towards Zero-Trust Database Security). The publications themselves are given

in Appendix B.

 Table 2.2 summarizes the data encryption publications and their key

contributions.

Table 2.2 – Data encryption publications

ID Publication Key Contributions

1 Rjaibi, W. (2018). ‘Holistic Database
Encryption’. In Proceedings of the

International Conference on Security and

Cryptography (SECRYPT).

Walid’s % contribution: 100.

- Design of a holistic database encryption solution which allows

organizations to meet their security and compliance

requirements without having to make compromises either on the

security side or on the database side.

- Enable organizations to adhere to zero-trust security.

- Implementation of the solution in IBM DB2 for Linux, Unix and

Windows.

2 Rjaibi, W., Hammoudeh, M. (2019).

‘Towards Zero-Trust Database Security
Part 1’. IEEE Future Directions Newsletter:

Technology Policy & Ethics, Issue

(September 2019).

Walid’s % contribution: 80.

- Introduces a database threat model and raises awareness of

the direct and indirect means through which the same data in a

database can be accessed.

3 Rjaibi, W., Hammoudeh, M. (2019).

‘Towards Zero-Trust Database Security
Part 2’. IEEE Future Directions Newsletter:

Technology Policy & Ethics, Issue

(December 2019).

Walid’s % contribution: 80.

- Outlines solutions (including encryption) to address the direct

and indirect access challenges and to enable zero-trust database

security.

 15

2.4 Mandatory Access Control
The core element of the research portfolio in this area is the publication “A Multi-

Purpose Implementation of Mandatory Access Control in Relational Database

Management Systems”. A summary of this publication is given in Chapter 5 and

the publication itself is given in Appendix C. It builds upon the ideas expressed

in the following patents:

• US Patent US7,568,235B2: “Controlling Data Access Using Security Label

Components”. This patent is the foundation for the security label concept

discussed in the core publication above.

• US Patent US7,860,875B2: “Method for Modifying a Query by Use of an

External System for Managing Assignments of User and Data

Classifications”. This patent is the foundation for the enterprise integration

methodology discussed in the core publication above.

 Publication “Inter-Node Relationship Labelling: A Fine-Grained XML Access

Control Implementation Using Generic Security Labels” shows an application of

the multi-purpose MAC solution discussed in the core publication. The fine-

grained XML access control solution devised improves over traditional node-

based XML access control approaches, by considering inter-node relationships

as the control granularity, and by using security labels to control access to such

inter-node relationships. A summary of this publication is given in Chapter 5 and

the publication itself is given in Appendix C. This publication builds upon the ideas

expressed in the following patents:

• US Patent US2009/0063951A1: “Fine-Grained, Label-Based, XML

Access Control Model”. This patent is the foundation for the inter-node

relationship labelling concept discussed in the publication above.

 Lastly, publication “An Introduction to Multilevel Secure Relational Database

Management Systems” surveys and critiques traditional implementation of

mandatory access control in database systems (i.e., MLS). This publication is

also given in Appendix C.

 Table 2.3 summarizes the mandatory access control publications and their key

contributions.

 16

Table 2.3 – Mandatory access control publications

ID Publication Key Contributions

1 Rjaibi, W., Bird, P. (2004). ‘A Multi-
Purpose Implementation of Mandatory
Access Control in Relational Database
Management Systems’. In Proceedings of

the International Conference on Very

Large Data Bases (VLDB).

Walid’s % contribution: 75.

- Design of a mandatory access control solution for database

systems which addresses the limitations of traditional Multilevel

Security (MLS).

- Enable organizations to adhere to zero-trust security.

- Implementation of the solution in IBM DB2 for Linux, Unix and

Windows, and Informix.

2 Controlling Data Access Using Security
Label Components

US Patent US7,568,235B2

Walid’s % contribution: 75.

This patent is the foundation for the security label concepts

discussed in the core publication #1 above.

3 Method for Modifying a Query by Use of
an External System for Managing
Assignments of User and Data
Classifications

US Patent US7,860,875B2

Walid’s % contribution: 50.

This patent is the foundation for the enterprise integration

methodology discussed in the core publication #1 above.

4 Zhang, Z., Rjaibi, W. (2006). ‘Inter-node

Relationship Labelling: A Fine-Grained
XML Access Control Implementation
Using Generic Security Labels’. In

Proceedings of the International

Conference on Security and Cryptography

(SECRYPT).

Walid’s % contribution: 50.

- Design of a solution which improves over traditional node-based

XML access control approaches, by considering inter-node

relationships as the control granularity.

- Enable databases to extend fine-grained authorizations to XML

columns in database tables.

- Enable organizations to meet privacy requirements and adhere

to zero-trust security.

5 Fine-Grained, Label-Based, XML
Access Control Model

US Patent US2009/0063951A1

Walid’s % contribution: 50.

This patent is the foundation for the inter-node relationship

labelling concept discussed in the publication #4 above.

6 Rjaibi, W. (2004). ‘An introduction to
multilevel secure relational database
management systems’. In Proceedings of

the conference of the Centre for Advanced

Studies on Collaborative research

(CASCON).

Walid’s % contribution: 100.

Survey and critique of traditional implementations of mandatory

access control in database systems (i.e., MLS).

 17

2.5 Conclusion
This chapter has positioned the research portfolio within the database security

field. It has also given a high-level overview of the publications in this portfolio

and shows where each fit with respect to the fine-grained authorization, data

encryption and mandatory access control areas. The next three chapters will

discuss this research portfolio in full details. The publications themselves are

given in Appendixes A, B and C.

 18

Chapter 3: Enhanced Fine-Grained Authorization
This chapter highlights the shortcomings of traditional fine-grained authorization

approaches in database systems, in particular the loss of user identity in

multitiered application environments which prevents such applications from

delegating the security policy to the database where it can be enforced more

effectively. Next, the chapter introduces the row permission, column mask and

trusted context concepts to extend database systems so that applications can

safely delegate the security policy to the database as opposed to building such

policy in the application logic itself. The implementation of such concepts in IBM

DB2 is then discussed and a performance evaluation is presented. The

evaluation shows that enforcing the fine-grained database authorization policy by

the database has not resulted in any significant performance drawbacks for the

application. This means that the gains in security and the reduction in application

complexity do not come at the expense of database performance. This chapter

appears in the research portfolio as publication “Enhancing and Simplifying Data

Security and Privacy for Multitiered Applications”, which was fully developed

during the course of the PhD registration. It is a synthesis of the entire research

portfolio in fine-grained authorization for database systems.

 19

3.1 Introduction
Classical 3-tier applications have become quite complex partly due to the cost of

implementing data security and privacy rules within the application logic itself.

Figure 3.1 shows the architecture of a classical 3-tier application, where the end

user browsers, the application server and the database server represent the first,

second and third tier respectively.

Figure 3.1– Classical 3-tier application architecture

 Under this model, end users access the application to perform tasks related to

their job. The application authenticates such users to ensure they are authorized

to use the application. To meet the needs of the end users, the application makes

a connection to the database using a generic user ID identifying that application

to the database. To ensure that the right content of the database is returned to

the right users, the application logic typically includes a fine-grained authorization

layer to do the appropriate level of data filtering. This layer is usually implemented

in one or a combination of these two options:

• The application builds the SQL queries in such a way that they include the

appropriate predicates and functions to filter out and mask the table data

as appropriate.

• The application builds a set of database views which perform the

appropriate level of data filtering and routes the SQL queries to the

appropriate views based on user identities.

 Besides burdening the application with the task of implementing fine-grained

authorization, this model also suffers from other security drawbacks including:

User 1

User 2 Application Database

System

User devices Data

Application Server

Database Server

User N

Application bypass

 20

• The approach is not data-centric. This means that the intended security

policy is not enforced when the application is bypassed. An example of

such bypass is when the application administrator chooses to abuse the

application’s database user ID to access the database directly. This is

particularly important in today's world where internal threats are as

concerning as external threats (Zaytsev et al., 2017), (Ghafir et al., 2018).

• Over granting of database privileges. The application’s database user ID

is typically granted the privileges of a database administrator so that it can

be used to do all things on behalf of all users. This means that when such

user ID is abused, the consequences to the organization can be severe.

• Loss of end user identity at the database level. This is a consequence of

the application doing all database accesses on behalf of all users using a

single user ID. This makes it impossible to leverage database auditing to

hold end users accountable for their actions. It also prevents the

application from delegating the fine-grained authorization policy to the

database as the user ID is lost at that level.

• Unnecessary exposure of the security policy to application developers.

 We contend that applications complexity can be reduced by delegating the

fine-grained authorization task to the database system. We also contend that this

delegation will additionally address the security concerns raised above and

enable applications to better adhere to compliance mandates such as the

European General Data Protection Regulation (GDPR) (Voigt et al., 2017) and

the Payment Card Industry Data Security Standard (PCI DSS) (Chuvakin et al.,

2009).

 The crux of our contribution is the design of a holistic fine-grained database

authorization approach which allows organizations to reduce the complexity of

their applications and improve overall database security. We have also

implemented the solution in a commercial database system (IBM DB2 for Linux,

Unix, and Windows). Our approach improves over the state of the art as follows:

• Fine-grained authorization coexists in harmony with fundamental

database tenets such as performance and integrity so that organizations

are not forced to make compromises either on the security side or on the

database side.

 21

• Applications can safely delegate the security policy to the database

system by leveraging the trusted context concept to propagate user

identities to the database system, thus extending the value of fine-grained

database authorization to multitiered applications.

• Organizations can leverage the trusted context concept to ensure that the

application’s database user ID cannot be abused by malicious entities who

may want to leverage that user ID for accessing the database outside the

scope of the application (i.e., application bypass).

 The rest of this chapter is organized as follows. Section 3.2 reviews the related

work. Section 3.3 describes our fine-grained database authorization model.

Section 3.4 introduces our trusted context concept which addresses the loss of

user identity problem in multitiered environments. In section 3.5, we discuss how

the new concepts introduced safely coexist with core database tenets. Section

3.6 describes the performance evaluation of our fine-grained database

authorization model. In Section 3.7, we discuss a banking use case and show

how our solution meets its requirements. Lastly, Section 3.8 summarizes this

chapter.

3.2 Related Work
Traditionally, fine-grained authorization in database systems has been

implemented using the concept of database views (Elmasri et al., 2010). Like

database views, our approach is an extension to SQL and is declarative in nature.

Administrators are not expected to write any code to implement the fine-grained

authorization rules. However, our solution improves over database views in two

main ways. First, our approach defines the row and column controls directly on

the database tables themselves. This means that the row and column

authorization is always enforced regardless of whether the table is accessed

directly or indirectly through a database view. In contrast, when implementing

fine-grained authorization using views, the row and column authorization is

enforced only when the access is made through those views. In other words,

views do not provide any protection when the underlying tables are accessed

directly. Additionally, our approach introduced the notion of trusted context to

enable user identity propagation in multitiered environments so that applications

can safely delegate fine-grained authorization to the database system.

 22

 Oracle Virtual Private Database (VPD) was, to the best of our knowledge, the

first database system to introduce a fine-grained authorization model that

improves over traditional database views (Gaetjen et al., 2015) and is the closest

to our work. There are however some important differences between Oracle VPD

and our approach. First, the Oracle VPD approach is not declarative. It requires

the administrator to code a PL/SQL program which computes a predicate string

that is appended to any SQL statement accessing the table with which the

PL/SQL program was associated. This also limits the benefits of SQL statements

caching only to situations where the PL/SQL program is guaranteed to return the

same results for all users. Our approach does not limit the benefits of SQL

statements caching because it does not change the SQL statement text itself.

Oracle VPD also includes the notion of an Application Context which can be used

by applications to pass information to the database system such as a user ID in

a multitiered environment. An Application Context is a set of name-value pairs

the Oracle database systems stores in memory. Our trusted context concept

provides a more robust framework for propagating user identities in multitiered

environments as it first requires the establishment of a trusted relationship

between the database system and the application before propagating a user ID

is allowed. It also provides more control on which specific user IDs are allowed

for propagation as well as the ability to associate the application’s privileges with

the trusted context only so they cannot be abused elsewhere.

 The Row Level Security (RLS) and Dynamic Data Masking (DDM) capabilities

in Microsoft SQL Server are conceptually similar to our row permission and

column mask concepts (Carter, 2018). But there are some important differences

between the two approaches. First, the SQL Server DDM is static in the sense

that the user either has access to the actual value in the column or a masked

value thereof. The column mask concept in our approach is dynamic in the sense

that the decision of whether the user sees the actual value, or a masked value is

determined dynamically based on the conditions expressed in the column mask

definition. Additionally, the SQL Server RLS requires the administrator to go

through a two-step process: They first need to create a function which returns a

filtering predicate, and then create a policy on the table to apply that predicate. In

our approach, this is all done in a single step using the row permission concept.

The user identity propagation in multitiered environments is supported through

an application context concept similar to the Oracle VPD one discussed above.

 23

 The Vertica Row Access Policy and Column Access Policy concepts enable

administrators to enforce access to table data at the row and column level

respectively (Vertica, 2019). The Vertica SQL syntax is very similar to ours.

However, and to the best of our knowledge, the Vertica solution does not discuss

how it enables user identity propagation in multitiered environments. Additionally,

the Vertica solution does not show any performance evaluation to contrast

implementing the fine-grained authorization rules within the database versus

within the application.

 The Sybase Row Level Access Control (RLAC) enables administrators to

restrict access to data rows in a table by defining an access rule and binding it to

a specific column of the table (Garbus, 2015). When a table is accessed, the

access rules in place are automatically enforced by incorporating them into the

query at compilation time. Our approach differs from the Sybase RLAC capability

in several ways. First, RLAC is limited to row level access control only while our

approach covers both the row and column level. Also, to the best our knowledge,

the Sybase RLAC does not discuss how it enables user identity propagation in

multitiered environments.

 The fine-grained authorization model presented in (Chaudhuri et al., 2007) is

also a declarative SQL model like ours. But there are some differences between

the two approaches. The first difference is fairly minor. They have extended the

GRANT SQL statement to give administrators the tools to define row and column

authorization rules while our approach introduced these constructs independently

of the GRANT statement. However, the work presented in (Chaudhuri et al.,

2007) did not cover user identity propagation in multitiered environments. It

assumed it was taken care of through a method similar to the application context

concept in Oracle VPD. Lastly, their work did not include any performance

evaluation to contrast implementing the fine-grained authorization rules within the

database versus within the application.

 The fine-grained authorization approach discussed in (Agrawal et al., 2005) is

also a declarative SQL model but there are some key differences with our

approach. First, the focus of the work in (Agrawal et al., 2005) is on privacy

policies. They introduced row and column restriction concepts for the purpose of

being able to map privacy policies to them so the database system can

automatically enforce privacy policies. It did not cover user identity propagation

 24

in multitiered environment. Also, the model described in (Agrawal et al., 2005) did

not include any performance evaluation to contrast enforcing the privacy policy

within the database versus within the application.

 The model described in (Rjaibi et al., 2004) can be regarded as a special form

of fine-grained authorization. The focus of this work is more around introducing a

flexible mandatory access control model which addresses some of the

shortcoming of classical Multilevel Security (Rjaibi, 2004). It is a declarative SQL

model and also ensures the security predicates are executed before any

potentially unsafe predicates to prevent data leakage. However, it did not

introduce the concept of secure functions as we did in this chapter, so security

predicates are always executed first even if that does not make sense from a

performance perspective. Lastly, the approach discussed in (Rjaibi et al., 2004)

did not cover user identity propagation in multitiered environments.

 Besides security built into database systems themselves, the importance of

protecting databases has also led to the emergence of external database security

tools. The leading tools in this context are Guardium (Chen et al., 2014) and

Imperva (Imperva, 2019). These tools can be thought of as complementary to our

solution as they focus more on database auditing, compliance reporting and

analytics on auditing data as opposed to fine-grained database authorization.

3.3 Fine-Grained Database Authorization Model
We extend the SQL table privileges model with two new concepts: Row

permissions and column masks. Row permissions and column masks implement

a second layer of security on top of table privileges. When a table is accessed,

the privileges layer determines whether or not the table can be accessed. Next,

row permissions are applied to decide what specific set of the table rows the user

is authorized to access. Lastly, column masks are applied to figure out whether

the user is allowed to see the actual value in a column or a masked value thereof.

For example, row permissions ensure that when a doctor queries the patients

table, they only see rows that represent patients under their care. On the other

hand, a column mask on the phone number column ensures that the doctor sees

only phone numbers for patients who consented to share their phone numbers

with them. Figure 3.2 shows our model as an extension to the SQL compiler.

 25

Figure 3.2– Fine-grained authorization as an extension of the SQL Compiler

 An SQL statement first goes through the parser component where it is

analyzed for syntactic correctness and a query graph is generated. Next, it goes

into the query rewrite component where the graph is modified to inject additional

objects such as integrity constraints and triggers. We have modified this

component to inject the new row permission and column mask concepts we have

introduced. The modified graph then goes into the query optimizer component

where several execution options are examined, and the optimal plan is selected

based on a cost function. We have also modified this component to protect

against potential data leakage should an unsafe predicate be evaluated before

the security rules expressed by the row permissions are evaluated.

 Unlike database views (Elmasri et al., 2010) where the security policy is

enforced only when the views themselves are accessed, row permissions and

column masks are table centric. This ensures that the security policy is enforced

consistently regardless of how the table is accessed. Row permissions and

column masks are also applied uniformly across all users, including DBAs, which

helps organizations better adhere to zero-trust security (Gilman et al., 2017),

(Walker-Roberts et al., 2018), (Hammoudeh et al., 2018) and in particular

ensuring that access control is based on “need-to-know”. Additionally, row

System Catalogs

- Row
permissions

- Column
masks

- Integrity
constraints

- …

Parser

Query

Rewrite

Query

Optimizer

 Query Execution Plan
(Security rules embedded)

 SQL Query

 26

permissions and column masks are application transparent. Database

applications can immediately benefit from these concepts without having to incur

any code changes. The SQL syntax for row permissions and column masks is

given below.

create permission permission-name on table-x
 for rows where predicate-clause

 enforced for all access [disable | enable]

create mask mask-name on table-x

 for column column-name

 return case-expression [disable | enable]

Example 1

 The following row permission creates a rule that grants access to rows in the

PAYROLL table only to users who are members of the HR role.

create permission rpayroll on payroll
 for rows where verify_role_for_user (USER, ‘HR’) = 1

 enforced for all access enable;

Example 2

 The following column mask creates a rule that grants access to the salary

column in the PAYROLL table only to users who are members of the SM role.

Other users will see NULL when they query the salary column.

create mask msalary on payroll

 for column salary

 return case when verify_role_for_user (USER, ‘SM’) = 1

 then salary

 else null

 end
 enable;

 Some applications may not desire receiving a NULL value. Instead, they may

want to receive an alternate and format preserving data value (Goldsteen et al.,

2015). Our model can easily support this use case. All that is needed is to register

a User Defined Function (UDF) in the database and modify the CREATE MASK

 27

SQL statement above such that instead of returning NULL, call the UDF to return

the desired output.

 A table can have zero or more row permissions. When more than a single row

permission is defined on a table, the predicates from each one of them are

combined together by applying the logical OR operator. In other words, if a row

permission R1 gives user U1 access to a set of rows S1, and another row

permission R2 on the same table gives that same user access to another set of

rows S2, then both row permissions would give that user access to the union of

S1 and S2. A column can have zero or one mask. We extended the SQL compiler

so that during query compilation, row permissions and column masks are

dynamically injected into the query graph. This ensures that the query execution

plan generated automatically enforces the rules expressed by the row

permissions and column masks.

3.3.1 Row Permissions Enforcement
Row permissions defined on a given table are automatically applied when that

table is accessed through any table level SQL statements: SELECT, INSERT,

UPDATE, DELETE, and MERGE.

 For SELECT statements, the predicates from all the row permissions defined

on the table are combined together through the logical OR operator to derive a

master predicate. This master predicate acts as a filter to limit the set of rows

returned. We extended the query optimizer component of the SQL compiler to

ensure that this master predicate is evaluated before any other unsafe user

predicates. This is important to guard against potential data leakage through such

unsafe user predicates. For example, suppose there is a UDF which emails the

table rows retrieved to some external party. If such UDF appears in a user

predicate and that predicate is executed before the master predicate, then by the

time the master predicate is applied it will already be too late as the row would

have already been sent out.

 For INSERT statements, the rules specified in the row permissions defined on

that table are used to determine whether or not the row can be inserted into the

table. To qualify, the user attempting to insert the row must be able to retrieve it

back through a SELECT statement. This semantic is analogous to how symmetric

 28

database views behave. More specifically, a user is not allowed to insert a row

they cannot retrieve back.

 For UPDATE statements, the rules specified in the row permissions defined on

that table are used to determine whether or not the row can be updated. This is

a two-step process. First, the row permissions are used to filter out the set of rows

that can be updated. In other words, a user cannot update rows they are not

allowed to see. Next, the updated rows (if any) must conform to the same

semantic as for INSERT processing to ensure that the user does not inject rows

they cannot retrieve back.

 For DELETE statements, the rules specified in the row permissions defined on

that table are used to filter the set of rows that can be deleted in order to ensure

that the user can only delete rows they can see.

 A MERGE statement can be thought of as a combination of an INSERT and

an UPDATE statements. Therefore, a MERGE statement is processed as an

INSERT when dealing with new rows and as an UPDATE when dealing with

existing rows in the table.

3.3.2 Column Masks Enforcement
The goal of a column mask defined on a given column C1 is to ensure that when

C1 appears in the final results set of a query, C1 values are masked out if the

user is not authorized to see them. This has two important implications. First, the

SQL compiler will enforce the column mask for SELECT statements only.

INSERT, UPDATE, DELETE, and MERGE statements do not return a result set

to the user, so the column mask does not apply in these cases. Secondly, the

SQL compiler must ensure that the enforcement of a column mask does not break

database applications as this can have severe business impact. For example,

suppose that a column mask is applied when the column appears in a predicate.

This may totally change the final results set and the database application may

end up processing a different set of rows (e.g. giving a raise to the wrong

employees). Consequently, we have extended the SQL compiler such that

column masks do not interfere with the computation of the final results set and

the order or grouping thereof. More specifically, column masks are not applied

when the column appears in any of these situations: WHERE clauses, GROUP

BY clauses, HAVING clauses, SELECT DISTINCT, and ORDER BY clauses.

 29

One consequence of this approach is that it may create opportunities for

inferences. But as discussed in Section 1, we focus on application access as

opposed to free direct SQL access to the database. Furthermore, the trusted

context concept introduced later in this chapter enables establishing a trusted

relationship between the application and the database server as well as

protecting against abuse of the application’s database user ID.

3.4 User Identity Propagation in Multitiered Environments
In multitiered environments, the middle tier application serves the needs of

several users over a pooled database connection. Under this model, the

database server only sees a generic user ID which identifies the middle tier

application, not the actual users of that application. Despite being a very popular

application model, the fact that the database server only sees a generic user ID

for all accesses poses several challenges.

 First, the middle tier application cannot benefit from fine-grained database

authorization because the database server does not see the identity of the

application user. Thus, instead of delegating the authorization burden to the

database server where it can be enforced more effectively, the middle tier

application is forced to implement that fine-grained authorization in the

application itself. This renders the application more complex, exposes the

security policy to application programmers, and forces unnecessary patching of

the application each time the security policy needs to be updated.

 Additionally, using a single user ID for all database accesses diminishes user

accountability. For example, one of the very first tasks in a forensic investigation

is to check the database audit logs for gaining insight into user activities.

However, if all accesses by all users are made using a single user ID, the

database audit log would unfortunately provide little to no value.

 The naïve approach to address this issue is to have the middle tier application

establish a separate database connection for each user. Unfortunately, this

approach may not be always feasible as the middle tier application may not have

access to the end user database credentials. Additionally, even if this were

feasible, this approach would not be desirable as establishing a large set of

database connections would introduce a database performance overhead. This

 30

is the overhead associated with user authentication and the setting of the actual

connection structures on the database server side.

 Clearly, a better approach is needed for relieving the middle tier application

from the burden of enforcing fine-grained authorization, and for holding users

accountable for their actions.

3.4.1 Trusted Contexts
We extend database systems by introducing a new concept called trusted

context. A trusted context is a database object which defines a trust relationship

between the database server and an external entity such as a middle tier

application server. The trust relationship allows the database security

administrator (DBSECADM) to specify a set of conditions which, when satisfied

by a database connection request, instructs the database server to internally

mark that database connection as trusted. A trusted connection gives the entity

that established such connection a set of privileges that are not available outside

the scope of that trusted connection. One example of such privileges is the ability

to reuse an existing database connection for a different user without having to re-

authenticate that user at the database server. Reusing an existing database

connection avoids incurring a performance overhead by eliminating the need to

establish a new database connection. Therefore, a middle tier application server

can take advantage of the trusted context concept to establish an initial trusted

connection, and then reuse that trusted connection to propagate an end user

identity to the database server before submitting database requests on behalf of

that end user.

 The DBSECADM can choose from a variety of attributes to set the conditions

for a trusted relationship such as a user ID, an IP address, a domain name, a

digital certificate, and the type of encryption used to protect the communication

channel between the database server and the middle tier application (e.g., SSL).

The SQL language syntax for our trusted context concept is given below.

create trusted context context-name

 based upon connection using system authid authorization-id

 attributes key-value-pair-list
 default role role-name

 with use for user | role | group name [without authentication |
 with authentication] [role role-name]

 [disable | enable]

 31

Example 3

 The following trusted context establishes a trusted relationship between the

database server and a middle tier application. The attributes upon which this

trusted relationship is based are the user ID identifying the middle tier application

itself, the IP address of the server where that application is hosted, and the type

of communication encryption used to protect the communication channel

between the database server and the middle tier application.

create trusted context ctx1
 based upon connection using system authid midtierApp1

 attributes (address ‘174.94.142.56’ encryption ‘SSL’)

 with use for role midtierApp1Users

 without authentication
 enable;

 In our implementation of trusted contexts in IBM DB2, we have extended the

database server connection processing as follows. When a database connection

request is received, we go through the authentication process as usual, but we

also compare the attributes of that request with the attributes of the trusted

context objects defined at that database server. If there is a match, we mark that

connection as trusted. We have also extended the DB2 Command Level Interface

(CLI) with a new command to give applications the option to request switching

the current user ID on a trusted database connection. On the database server

side, when such request is received, we first verify this is within the scope of a

trusted connection, and then ensure that the user ID to switch to is authorized as

per the trusted context object definition. For example, the trusted context

definition above states that it is only permitted to switch to users who are

members of the role midtierApp1Users. Lastly, we also check whether the trusted

context definition authorizes switching users without authentication or requires

authentication. If authentication is not required as in Example 3 above, then no

further processing is required. Otherwise, the switch user request must provide a

valid authentication credential. Once the checks above are completed and the

switch user request is authorized, we reset the user environment over the current

physical connection to match the new user, and the application is now ready to

start sending database commands under the scope of this new user.

 32

 Also, in order to ensure database integrity is not compromised, we extended

the database server processing such that switching users over a trusted

connection is permitted only on transaction boundary. If such a request is made

outside of a transaction boundary, the current transaction is rolled back, and the

connection is put in an unconnected state, thus giving the middle tier application

the opportunity to recover.

3.4.2 Trusted Context-Based Authorization
Traditionally, database security models are such that the privileges granted to a

user are universally applicable irrespective of any context. For example, if a user

is granted SELECT privilege on the payroll database table, that user could

exercise that privilege regardless of how they gain access to the database. The

lack of control on when a privilege is available to a user can weaken overall

security since the privilege may be abused. For example, an application

administrator may choose to use the application’s database credentials to

connect to the database directly and make changes that are contrary to the

application business logic.

 To provide control over when privileges may be exercised, we extend the

trusted context concept so that a DBSECADM can associate one or more roles

with a trusted context. Roles that are associated with a trusted context are only

exercisable when the user is acting within the scope of a trusted connection

based upon that trusted context. This enables organizations to better adhere to

zero-trust security, and in particular the “verify and never trust” tenet as the

database system verifies more security attributes before granting a role to user

(Gilman et al., 2017), (Walker-Roberts et al., 2018).

Example 4

 The definition of the following trusted context is similar to Example 3, but it

specifies two database roles. The first role is DBCONNECT which the

DBSECADM decided not to grant to the user ID midtierApp1. Instead, they

assigned it to this trusted context. This means that if the application administrator

were to abuse this user ID by attempting to connect to the database from a server

other than what is stated in the trusted context definition, that connection will be

refused by the database server. The second role is HR, which is the role that

grants access to the content of the payroll table as per the row authorization in

 33

Example 1. This in turn means that members of the HR role will have access to

the payroll table only within the scope of the trusted connection based upon this

trusted context. In other words, they will only have access when they are using

the application and not otherwise.

create trusted context ctx1
 based upon connection using system authid midtierApp1

 attributes (address ‘srv.dep.org.com’ encryption ‘SSL’)

 default role DBCONNECT

 with use for role midtierApp1Users

 without authentication HR

 enable;

 In our implementation of trusted context-based authorization in IBM DB2, we

have extended the database server authorization model as follows. When a

database connection request is matched with a trusted context object, we check

if there are any default roles assigned to that trusted context and add them to the

user’s roles list so they are used when deciding whether or not the user is

authorized to connect to the database. Similarly, when a request to switch the

current user on a trusted connection is received, we check if the trusted context

definition grants any roles to the user to switch to and add any such roles to the

new user’s roles list accordingly.

3.5 Safe Coexistence with Fundamental Database Tenets
Database security needs to safely coexist with fundamental database tenets.

Failure to do so may create database vulnerabilities and limit adoption of the

solution.

3.5.1 User Defined Functions
A User Defined Function (UDF) is an important database concept which

applications depend upon to delegate certain tasks to the database system. We

extended the database system such that, by default, the row permission

predicates are evaluated first to avoid potential data leakage through UDFs that

may also appear in the set of predicates to apply on the table. The following

experiment illustrates this extension and can be consistently repeated on any

recent IBM DB2 system. The experiment creates a table T1 with 2 integer

columns A and B. It inserts 3 rows into this table (1,1), (2,2) and (3,3). Then, we

create a UDF which replaces any value in column A that is greater than 1 by 1.

 34

When we run the simple SQL query SELECT A, B FROM T1 WHERE F1(A) = 1,

we expectedly obtain 3 rows because the values 2 and 3 in column A are changed

to 1 by the UDF F1. Then we create a row permission with the predicate “A = 1”.

Now, when we run the SELECT query above any number of times, we

consistently get back a single row. This is because our design ensures that the

row permission predicates are executed before any unsafe UDF predicate. This

is how data leakage is prevented because the UDF could have done anything

with the data rows such as modifying them to alter the results set (as F1 does).

But our design ensures that the UDF only sees the rows which are authorized for

the user running the SELECT query. Below are the exact steps.

create table T1 (A int, B int);

insert into T1 values (1,1), (2,2), (3,3);

create function F1 (A int) returns int

 language SQL contains SQL no external action deterministic
 return (case when A > 1 then 1 else A end);

select A, B from T1 where F1(A) = 1;

create permission P1 on T1

 for rows where A = 1

 enforced for all access
enable;

 select A, B from T1 where F1(A) = 1;

 While executing the UDF predicate last is good from a security perspective, it

may not be necessarily good from a performance perspective, particularly if the

UDF is a trusted function. Therefore, we extended the database system with the

concept of secure UDF. By default, a UDF is not secure, but the administrator

can alter the definition of a UDF to mark it secure. This means that the

administrator confirms that the UDF is trusted. When a UDF is secure, the

database system can order the evaluation of predicates based on such UDF

anywhere the SQL compiler sees fit. Secure UDF enable performance and

database security to coexist in harmony.

3.5.2 Materialized Query Tables
A Materialized Query Table (MQT) is a special type of database table which

contains the results set of an SQL query. It is a critical database concept DBAs

depend upon to maintain high performance for complex SQL queries. So, why

 35

does the design of database security need to pay attention to MQT? Suppose

that the DBA creates an MQT M1 based on an SQL query affecting two tables T1

and T2. Further, suppose that table T1 is protected through a set of row

permissions and column masks. If such row permissions and column masks are

applied during the creation of MQT M1, the content of that MQT becomes

dependent on what its creator can or cannot see in base table T1. This would

negatively affect the accuracy of the database system’s answers. For example, if

the database system decides to use M1 to answer a query from a user U1, that

user may get more data or less data than what they are authorized depending on

whether they have access to more data or less data in base table T1 than the

creator of MQT M1. A better approach is therefore to not enforce the row

permissions and column masks on T1 during the creation of MQT M1 (or

subsequent automatic refresh of its content). But we need to make sure that

security is not compromised when doing so. In this context, we have extended

the database system such that:

• Upon the creation of an MQT, the database system automatically

generates and applies a default row permission with the false predicate “1

= 0”. This ensures that direct SQL access to the MQT is blocked (i.e., “1 =

0” always evaluates to false). If certain users have a business need to

access the MQT directly, the administrator can create the appropriate row

permissions on the MQT to give them access. Any such row permissions

or column masks are enforced only during direct access to the MQT.

• When the database system decides to answer a user query from an MQT,

it always ensures that any row permissions and column masks on any

base table upon which the MQT is defined are automatically carried over

and applied on the MQT itself. This ensures that users do not inadvertently

get access to data in the base tables for which they are not authorized.

The following experiment illustrates how direct access to an MQT is automatically

blocked when its underlying base table is protected by a row permission. This

experiment can be consistently repeated on any recent IBM DB2 system. First,

we create a table T1 with 2 integer columns A and B. We then insert 3 rows into

this table, namely (1,1), (2,2) and (3,3). Next, we create an MQT M1 based on

table T1. When we run the statement SELECT A FROM M1, we get the exact

same data in base table T1. On the other hand, if we protect T1 with a row

 36

permission and retry that exact same statement, we now get zero rows returned.

This is because our design automatically protects the MQT M1 to guard against

data leakage. Below are the exact steps.

create table T1 (A int, B int);

insert into T1 values (1,1), (2,2), (3,3);

create table M1 (a, b) as (select A, avg(B) from T1 group by A)

 data initially deferred refresh deferred maintained by system;

refresh table M1;

select A from M1;

create permission P1 on T1
 for rows where A = 1

 enforced for all access
enable;

select A from M1;

3.5.3 Database Triggers
A database trigger is a critical database concept which applications depend upon

to preserve data integrity. For example, a banking application may decide to use

a trigger to ensure that each time a client’s balance is updated in the clients table,

a row is inserted into the statements table to record that particular withdrawal or

deposit transaction. So, why does the design of database security need to pay

attention to database triggers? Consider the banking application example above.

Suppose that the clients table is protected with a set of row permissions and

column masks. If such row permissions and column masks are blindly applied,

then it may not be possible to update the statements table as the required input

data could have been filtered out or masked. Clearly, this approach would

negatively impact data integrity.

 A better approach is therefore to not enforce the row permissions or column

masks on the clients table. However, not doing so may affect security as the data

in the clients table now becomes visible to any triggers defined on such table and

may be abused. In this context, we have extended the database system by

introducing the notion of a secure trigger. By default, a database trigger is not

secure, but the administrator can alter the trigger’s definition to mark it secure.

This means that the administrator vouches for the trigger as trusted and can be

applied on a table protected with row permission or column mask constructs.

Secure triggers enable database security and triggers to coexist in harmony.

 37

3.6 Performance Evaluation
We have conducted 4 different assessments during our performance evaluation.

The assessments were conducted using IBM DB2, extended with our fine-

grained authorization model, deployed on a dedicated AIX system with 8

processors @ 1452 GHz and 32GB of RAM. This is a fully dedicated system

(CPU, memory, networking and storage) running only our experiment to ensure

performance data stability. The time elapsed for a given query is measured from

the time the query is submitted to the time the results are returned. Before a query

is run, the database system is activated to ensure a fresh database set up. The

query is run several times. The first run is discarded from the statistics as the

database bufferpool (i.e., database cache) is cold.

• Assessment 1: The goal of this assessment is to measure the impact to

performance when an application chooses to delegate fine-grained

authorization to the database. One of the key advantages of our fine-

grained authorization model is that it relieves applications from the burden

of enforcing fine-grained authorization by delegating such task to the

database. But it is important that this reduction in application complexity

does not result in any significant performance drawbacks for the

application. This assessment confirmed that applications can safely

delegate the enforcement of fine-grained database authorization to the

database with no performance concerns.

• Assessment 2: The objective of this assessment is to measure the

scalability of column masks. Linear scalability has been confirmed by this

assessment.

• Assessment 3: The goal of this assessment is to verify the independence

of column masks. This assessment has shown that the impact of all

column masks defined on a table is never higher than the sum of the

impact of each column mask defined individually.

• Assessment 4: The objective of this assessment is to measure the impact

of row permissions. This test confirmed that the impact of row permissions

is minimum.

 38

3.6.1 Delegating Fine-Grained Authorization to the Database System

Methodology

 We have selected TPC-H (Thanopoulou et al., 2012) as the application with

which to conduct our assessment. TPC-H is an industry standard benchmark for

measuring database performance. It consists of 22 queries representative of

decision support systems that examine large volumes of data. The performance

metric reported by TPC-H is called the TPC-H Composite Query-per-Hour

Performance Metric (QphH) and reflects multiple aspects of the capability of the

database system to process queries.

 We focused on two scenarios in our assessment. In the first scenario, we

created a set of column masks and row permissions on the TPC-H database

schema to specify a fine-grained authorization policy. Then, we ran the TPC-H

benchmark and measured the QphH. In the second scenario, we created no

column masks or row permissions in the database. Instead, we modified the SQL

queries, so the same fine-grained authorization is enforced by the application.

 Table 3.1 summarizes our findings. The ratio column represents the QphH of

the fine-grained authorization policy delegated to the database divided by the

QphH when that policy is enforced by the application itself and is plotted in Figure

3.3. The numbers on the x-axis of this figure represent the 22 TPC-H queries

referred to in Table 1. That is, 1 represents query Q1, 2 represents query Q2 and

so on.

Discussion

 Figure 3.3 shows that almost all the TPC-H queries perform the same or better

when the policy is enforced by the database than by the application. More

specifically, 13 queries performed fairly the same in both scenarios. 8 queries

performed better when the fine-grained authorization policy is enforced by the

database system (i.e., the ones where the ratio column is coloured in green in

Table 3.1). The improvement observed ranges from 8 to 68%. Lastly, for query

Q19, we observed a performance degradation of 15% when the fine-grained

authorization policy is enforced by the database.

 39

Table 3.1 – Application vs Database Enforcement for TPC-H Queries

TPC-

H Query

QphH Application

Enforcement (a)

QphH Database

Enforcement (b)

Ratio

(b/a)

Q1 1158.8 370 0.3193

Q2 19.7 12 0.6091

Q3 2350.6 2321.6 0.9877

Q4 6105.6 6103.4 0.9996

Q5 7352.6 6371.5 0.8666

Q6 27.8 25.6 0.9209

Q7 16654.1 16657.5 1.0002

Q8 884.2 882.5 0.9981

Q9 9653.8 9475.7 0.9816

Q10 8376.5 8367.3 0.9989

Q11 138.7 127.5 0.9193

Q12 112.6 113.6 1.0089

Q13 103.5 105.7 1.0213

Q14 22.8 14.4 0.6316

Q15 26.7 18.3 0.6854

Q16 24.3 24 0.9877

Q17 336.3 336.2 0.9997

Q18 288.5 291.9 1.0118

Q19 93.6 107.6 1.1496

Q20 73.9 70.8 0.9581

Q21 9655.1 9644.6 0.9989

Q22 90.9 32.9 0.3619

Figure 3.3– Ratio of database vs application enforcement for TPC-H queries

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10111213141516171819202122

 40

 There are two main reasons for the results observed. First, the order in which

predicates are evaluated is important, particularly for table joins. For example,

consider the following query where tables T1 and T2 are joined on column C1:

“SELECT * FROM T1 INNER JOIN T2 on T1.C1 = T2.C1”. When a row

permission is enforced by an application, the application will modify the query

above by adding the row permission predicates to the SQL text directly as follows:

“SELECT * FROM T1 INNER JOIN T2 on T1.C1 = T2.C1 AND <row permission

predicate>”. Recall from section 3 that we extended the SQL compiler so that, by

default, the row permissions predicates are evaluated first on the table to guard

against potential data leakage by any unsafe predicates in the query. So, when

the database enforces the fine-grained authorization policy, the query would

actually look as follows within the SQL compiler “SELECT * FROM (SELECT *

FROM T1 WHERE <row permission predicate>) INNER JOIN T1 on T1.C1 =

T2.C1”. However, when there are no unsafe predicates in the query, we do not

restrict the SQL compiler optimizer component from moving the row permission

predicates higher or lower in the query graph if it leads to a better query execution

plan. This was the case in our testing as we had no unsafe predicates. The only

situation where the SQL compiler optimizer component did not move the

predicate was for query Q19. This is because the row permission defined on the

table did not refer to any data in the table itself as it was a simple rule to check

whether or not the user issuing the query were a member of a given role.

Consequently, the optimizer selected a merge-join instead of a hash-join (Bruno

et al., 2014) (Balkesen et al., 2013). Normally, the merge-join would have

performed better but because the row permission did not actually filter any rows,

the merge-join ended up being more expensive, thus the observed degradation

in query Q19.

 The second reason for the results observed is how column masks are

processed. When the database system enforces a column mask, it does so

internally within the actual query graph built by the SQL compiler. So, when the

same column appears multiple times within a query the SQL compiler does not

need to duplicate the column masks. However, when the fine-grained

authorization policy is enforced by the application, the rules representing the

column mask end up being duplicated in the SQL query text as the application

can only work with SQL. This explains the performance gain observed when the

fine-grained authorization policy is enforced by the database.

 41

 Our tests have shown that enforcing the fine-grained database authorization

policy by the database has not resulted in any significant performance drawbacks

for the application. This means that the gains in security and the reduction in

application complexity do not come at the expense of application SQL workload

performance.

3.6.2 Scalability of Column Masks

Methodology

 We have created a table T1 with 10 columns, all of the same type. We have

populated the table with random data. No indices of any type were created on

this table. We have run a “SELECT * FROM T1” as our baseline. Then, we

created a column mask on the first column, ran the same query above and

measured its performance. We have repeated this process for each of the

remaining columns. The column mask created is exactly the same for each

column. We have run the experiment twice: One where T1 contains one million

rows and another one where it contains ten million rows. Table 3.2 summarizes

our findings.

Table 3.2 – Time Elapsed (in seconds)

Test 1,000,000 rows 10,000,000 rows

Baseline (No Masks) 4.58 44.26

1 Mask 4.73 45.97

2 Masks 4.74 46.45

3 Masks 4.83 46.85

4 Masks 4.82 47.06

5 Masks 4.87 47.48

6 Masks 5 48.28

7 Masks 4.97 48.8

8 Masks 5.02 49.01

9 Masks 5.08 49.96

10 Masks 5.10 50

Discussion

 Figure 3.4 shows that for both the one million and ten million rows cases, the

execution time of our query scales almost in a linear manner as the number of

 42

masks increases. This confirms our expectation as our design and

implementation of column masks did not introduce any additional logic for

coordinating the execution of multiple masks when they are present on a given

table. Essentially, the overhead introduced is only the one associated with the

execution of the actual rule expressed in the column mask definition itself. In our

experimentation, the rule was checking user membership in a role to decide

whether they see the actual column value or a masked version thereof. It used

the built-in SQL function VERIFY_ROLE_FOR_USER. This function is highly

optimized. It keeps an in-memory list of users to roles mappings, making it very

fast to decide whether or not a user is a member in a given role. We introduced

this function to support the adoption of our row permissions and column masks

as security best practices advocate for simplifying the management of

authorization by assigning privileges to roles and assigning users to roles.

Authorization then simply becomes checking user membership in roles.

Figure 3.4– Scalability of Column Masks

3.6.3 Independence of Column Masks

Methodology

 We have created three column masks on the CUSTOMER table in the TPC-H

database schema: A simple column mask, an intermediate column mask, and

complex column mask. The simple column mask is similar to the column mask

shown in Example 2. It makes use of a single call to function

VERIFY_ROLE_FOR_USER to check whether the user is a member of the given

role. The intermediate column mask has four calls to the

VERIFY_ROLE_FOR_USER function. Lastly, the complex column mask is

similar to the intermediate one but has a sub-select statement on top of that.

0
10
20
30
40
50
60

1 2 3 4 5 6 7 8 9 10 11

1,000,000 Rows 10,000,000 Rows

 43

 Our base line is a “SELECT * FROM CUSTOMER” query with no column

masks defined on the CUSTOMER table. We ran this query, measured the

elapsed time, and then performed the following tests:

• Run the same query with only the simple column mask enabled.

• Run the same query with only the intermediate column mask enabled.

• Run the same query with only the complex column mask enabled.

• Run the same query with all three column masks enabled.

 Table 3.3 shows the time elapsed for each test when the CUSTOMER table

contains one million rows, and ten million rows respectively. Table 3.4 shows the

difference compared to the baseline for each of the tests conducted.

Table 3.3 – Time Elapsed (in seconds)

Test 1,000,000 rows 10,000,000 rows

Baseline (No Masks) 37.464 371.791

Simple Mask 38.812 387.457

Intermediate Mask 40.356 404.619

Complex Mask 58.592 556.439

All Masks 61.855 589.25

Table 3.4 – Difference with the Baseline

Test 1,000,000 rows 10,000,000 rows

Simple Mask 1.348 15.666

Intermediate Mask 2.892 32.828

Complex Mask 21.128 184.648

Sum of all Masks 25.368 233.142

All Masks 24.391 217.459

Discussion

 Figure 3.5 contrasts the sum of the differences to the baseline for each of the

simple, intermediate, and complex mask tests with the difference to the baseline

for the test where all masks are enabled at the same time for both the one million

rows and ten million rows cases. For both cases, we can observe that the

difference with the baseline when all masks are enabled at the same time is never

higher than the sum of the differences to the baseline for each individual mask.

 44

This confirms our expectation as our column masks design and implementation

did not require introducing any coordination when multiple masks are enabled at

the same time. The masks are in fact totally independent from each other.

Figure 3.5– Independence of Column Masks

3.6.4 Row Permissions Impact

Methodology

 We have created three row permissions on the CUSTOMER table in the TPC-

H database schema: One row permission that returns zero rows, one permission

that returns 50% of the rows, and another row permission that returns all rows.

We have run “SELECT * FROM CUSTOMERS” as our baseline. Then, we run

the same query with each of the row permissions above enabled individually (i.e.

one row permission at a time). Table 3.5 shows the time elapsed for each test

when the CUSTOMER table contains one million rows and ten million rows

respectively.

Table 3.5 – Time Elapsed (in seconds)

Test 1,000,000 rows 10,000,000 rows

Baseline (No Permissions) 38.163 380.118

Permission (0 rows) 0.11 3.173

Permission (50% rows) 19.679 169.154

Permission (All rows) 38.679 383.93

Discussion

Figure 3.6 and Figure 3.7 contrast the performance for each of the 3 tests with

our baseline for the one million rows and ten million rows respectively. The results

0

50

100

150

200

250

1,000,000 Rows 10,000,000 Rows

Sum of All Masks All Masks

 45

are similar for each case and show that the overhead of row permissions is very

minimal. For instance, when the row permission returns all rows, the performance

is almost identical to the baseline. This is expected as the rule expressed in the

row permission is internally implemented as a predicate. In our case, the

predicate includes the built-in VERIFY_ROLE_FOR_USER SQL function. If a

DBA decides to deploy their own UDF for use in a row permission definition, the

performance implications may be different depending on several factors such as

how optimized that UDF is and whether or not it is declared as trusted.

Figure 3.6– Row Permissions Impact (1,000,000 rows)

Figure 3.7– Row Permissions Impact (10,000,000 rows)

3.7 Use Case Scenario
We describe how our row permissions and column masks can be applied to meet

the needs of a banking application. All the SQL statements and outputs below

have been fully verified with our implementation on IBM DB2. These requirements

can be summarized as follows:

• Customer service representatives and telemarketers can see all data.

• Tellers can see only the data for their own branch customers.

0
5

10
15
20
25
30
35
40
45

Baseline Permission (0
rows

returned)

Permission
(50% rows
returned)

Permission
(All rows
returned)

0
50

100
150
200
250
300
350
400
450

Baseline Permission (0
rows

returned)

Permission
(50% rows
returned)

Permission
(All rows
returned)

 46

• The customer account number is accessible only by customer service

representatives. All other users can only see the last 4 digits.

 Customer information is stored in a table called CUSTOMER and bank

employee information is stored in a table called EMPLOYEE_INFO. The SQL

statements for creating these two tables are given below.

create table customer (account varchar (9),

 name varchar (20),

 income int,

 branch char (1));

create table employee_info (branch char (1),

 emp_id varchar (10));

 We assume that tables CUSTOMER and EMPLOYEE_INFO are already

populated. Their content is given by tables 3.6 and 3.7 respectively.

Table 3.6 – CUSTOMER Table

ACCOUNT NAME INCOME BRANCH

1234-5678 Alice 22,000 A

2345-6754 Bob 71,000 B

3456-1298 Carl 123,000 B

4672-8901 David 172,000 C

Table 3.7 – EMPLOYEE_INFO Table

EMP_ID BRANCH

Amy A

Pat B

Haytham C

 Tellers, customer service representatives, and telemarketers are members of

database roles TELLER, CSR, and TELEMARKETER respectively. SELECT

privilege to the CUSTOMER table is granted to these three roles. Users Amy, Pat

and Haytham are a teller, a customer service representative and a telemarketer

respectively. The SQL statements for setting up these roles are given below.

 47

create role teller;

grant select on customer to role teller;

grant role teller to user amy;

create role csr;

grant select on customer to role csr;

grant role csr to user pat;
create role telemarketer;

grant select on customer to role telemarketer;
grant role telemarketer to user haytham;

 To implement the first rule which states that customer service representatives

and telemarketers can see all customers, the following row permission must be

created.

create permission csr_row_access on customer

 for rows where verify_role_for_user (USER, ‘csr’) = 1 or
 verify_role_for_user (USER, ‘telemarketer’) = 1

 enforced for all access
 enable;

 To implement the second rule which states that tellers can only see customers

of their own branch, the following row permissions must be created. The sub-

select in the permission definition ensures that the customer’s branch and the

teller’s branch match.

create permission teller_row_access on customer

 for rows where verify_role_for_user (USER, ‘teller’) = 1 and

 branch = (select branch from employee_info

 where emp_id = USER)
 enforced for all access
 enable;

To implement the third rule, the following column mask is created. The mask

ensures that when the user is not a member of the CSR role, they see only the

last 4 digits of the account number. The rest of the digits are replaced by “X”s for

them (masked out).

 48

create mask csr_column_access on customer

 for column account

 return case when verify_role_for_user (USER, ‘csr’) = 1

 then account

 else 'XXXX-‘ || SUBSTR(ACCOUNT,5,4)

 end
 enable;

 Now that the row permissions and column masks have been defined, any

future access to the CUSTOMER table will see the database system

automatically enforce the security policy. Table 3.8 contrasts the output when the

application issues the query “SELECT * FROM CUSTOMER” for users Amy,

Haytham and Pat respectively.

 When the application issues that query on behalf of user Amy, the database

only returns the rows for customers from branch A, which is where Amy works.

Note that the account number is masked out because Amy is not a member of

the CSR role.

 On the other hand, when the application issues the exact same query on behalf

of user Haytham, the database returns all the rows in the table which is in

accordance with the first rule because Haytham is a telemarketer. Note that the

account number is still masked out because Haytham is not a member of the

CSR role.

 Lastly, when the same query is issued on behalf of user Pat, all the rows in the

table are returned and the account number is not masked out because Pat is a

member of the CSR role.

 49

Table 3.8 – Outputs for Users Amy, Haytham and Pat

USER ACCOUNT NAME INCOME BRANCH

Amy XXXX-5678 Alice 22,000 A

Haytham XXXX-5678 Alice 22,000 A

 XXXX-6754 Bob 71,000 B

 XXXX-1298 Carl 123,000 B

 XXXX-8901 David 172,000 C

Pat 1234-5678 Alice 22,000 A

 2345-6754 Bob 71,000 B

 3456-1298 Carl 123,000 B

 4672-8901 David 172,000 C

 This example has shown how the application logic can remain very simple. In

all 3 user situations, the application simply issues the simple “SELECT * FROM

CUSTOMERS” SQL query. The database system automatically applies the fine-

grained authorization rules, relieving the application from this burden, which in

turn contributes to reducing the complexity of the application.

3.8 Conclusion
We have introduced a fine-grained database authorization model which allows

applications to safely delegate the burden of fine-grained authorization to the

database system, where it is enforced more effectively. In particular, we have

shown how the trusted context mechanism introduced allows applications to

propagate user identities to the database system in a controlled manner in

multitiered environments, strengthening overall database security. We have also

shown how the trusted context mechanism can be used to provide control on

when the application privileges can be exercised which helps protect against

potential abuse of the application user ID (application bypass).

 The row permission, column mask, and trusted context concepts introduced

also enable organizations to implement zero-trust security for database systems.

Row permissions and column masks allow such organizations to ensure that data

is accessed based on “need-to-know”, which is a key tenet of zero-trust security.

Additionally, trusted contexts help organizations implement the “verify and never

trust” zero-trust security tenet, by having the database system verify additional

attributes before granting access to a user or application.

 50

 In our future work, we plan to focus on facilitating the adoption of our fine-

grained database authorization model. For example, defining a column mask is

a very easy task once you know which column to define it on. But in some

situations, this knowledge may not be available (e.g., a database inherited

through a merger or an acquisition). This is where data classification would be

useful. The main challenges in this context would be to investigate how to do the

data classification on the database efficiently and accurately. Additionally, we

want to explore machine learning for automatically generating the appropriate

row permissions and column masks. Machine learning has been explored for

detecting threats (Alloghani et al., 2020), (Aljawarneh et al., 2018), (Aldwairi et

al., 2012), but here we would like to explore it for fine-grained authorization policy

recommendation.

 51

Chapter 4: Enhanced Data Encryption
This chapter provides a summary of the research portfolio in database encryption. It is

based primarily on a research publication “Holistic Database Encryption” that is given in

Appendix B. The chapter first reviews traditional data encryption methods in database

systems and contrasts them with holistic database encryption. Then, it introduces

holistic database encryption and discuss its implementation in a commercial database

system.

 52

4.1 Introduction
Data encryption is a powerful control for protecting sensitive data. For database

systems, traditional data encryption approaches come in many shapes and

forms, but each with a set of challenges forcing organizations to make

compromises either on the security side or on the database side when adopting

such approaches. Clearly, a better approach was needed so that data encryption

coexists in harmony with fundamental database tenets such as performance and

compression, thus eliminating the need for organizations to make any such

compromises. In this thesis, this better approach is referred to as “holistic

database encryption”. Section 4.2 reviews the traditional approaches and

contrasts them with holistic database encryption. Section 4.3 introduces holistic

database encryption while Section 4.4 discusses its implementation in IBM DB2.

Lastly, Section 4.5 concludes this chapter.

4.2 Related Work
Traditional database encryption solutions can be divided into four main

categories: Column encryption, tablespace encryption, file system encryption and

self-encrypting disks.

 Column encryption allows an application to encrypt data at the column level in

a database table (Benfield et al., 2001). Typically, the database system provides

a set of built-in UDFs to give applications the tools to encrypt and decrypt data

stored in database table columns. The main advantage of column encryption is

security as the column data remains encrypted from the point of entry in the

application all the way down to the storage and vice versa. However, this gain in

security comes at a cost. For example, because standard encryption is not order

preserving, queries with range predicates cannot benefit from index-based

access plans to limit the data to read from the table. Instead, the database system

is forced to read the entire table to evaluate the query. Additionally, encrypting

data in the application limits the value of database compression as compression

will be left to operate on encrypted data which typically does not include patterns.

Last but not least, column encryption complicates adoption of the solution for pre-

packaged applications where the organization does not own the source code for

the application. Holistic database encryption improves over column encryption. It

does not interfere at all with query execution and therefore does not negatively

impact the performance of range queries. It takes place within the database

 53

kernel itself, after compression has occurred, thus allowing organization to benefit

from both database encryption and compression. Also, holistic database

encryption is totally transparent to applications. Lastly, while holistic database

encryption does not protect data in transmission, this can be easily mitigated by

ensuring TLS is turned on to secure the channel between the database system

and applications.

 Tablespace encryption provides the DBA with the option to indicate that data

in given tablespace must be automatically encrypted by the database system

itself (Boobal, 2018). It improves over column encryption in the same way holistic

database encryption does. However, tablespace encryption can leave data

vulnerable to attacks. For example, DBAs often create materialized query tables

(MQT) to speed up the execution of data warehousing queries (Zilio et al., 2004).

In doing so, data from an encrypted tablespace may find itself in another

tablespace which the DBA omitted to specify it must be encrypted upon creation.

This would leave the data in the MQT vulnerable to attacks. Additionally, data in

the system-defined tablespaces is not encrypted. For example, the system

catalogues typically include statistics information which the database system

relies upon to generate optimal access plans for executing queries. Some of

these statistics include actual data values such as the most frequent values in a

column, and the highest and lowest values in that column. This would

unfortunately leave such data vulnerable to attacks. Holistic database encryption

improves over tablespace encryption because it automatically encrypts the

database as a whole including any system-defined or temporary tablespaces. It

simplifies database administration for the DBA and avoids the risk of creating

vulnerabilities when inadvertently moving data to an unencrypted tablespace,

such as when creating an MQT for boosting query performance purposes.

 File system encryption is an indirect mechanism to encrypt the database

objects by encrypting their underlying physical files. Examples of file system

encryption solutions include the Encrypted File System (EFS) on the IBM AIX

systems (IBM, 2018), the EFS on the Microsoft Windows systems (Microsoft,

2018), and eCryptfs on Linux systems (Halcrow, 2007). File system encryption

can also be provided using add-on tools such as Vormetric Transparent Data

Encryption (Vormetric, 2018) and Gemalto Protect File (Gemalto, 2018). These

tools deploy an agent on the operating system where data encryption is needed.

 54

The agent is a kernel module which extends that operating system to enable file

encryption. Compared to the native file system encryption above, these tools

allow an organization to manage file system encryption uniformly across a

heterogeneous operating systems environment. File system encryption also

improves over column encryption and shares the same benefits as tablespace

encryption. However, it is not supported on all file systems. For example, the IBM

EFS solution for AIX systems is only available on JFS2 file systems. This limits

the set of database deployments which can benefit from this solution.

Additionally, some database deployments choose to write their data directly to

raw devices bypassing the file system altogether. In this case, a file system

encryption solution cannot be used to encrypt the database objects. Also, native

file system encryption provides no protection against privileged users on the

operating system. As long as the file permissions allow access, such users can

easily browse the content of the encrypted files. Lastly, the division of

responsibilities between the DBA who is responsible for database administration

and the SA who is responsible for system administration may introduce security

vulnerabilities. For example, if a DBA creates a new tablespace and places it on

an unencrypted file system, the content of that tablespace will not be encrypted

and would be left open to attacks. Holistic database encryption addresses the file

system encryption challenges above. It is built in the database kernel itself, so it

is available anywhere the database is deployed. Also, being part of the database

kernel means that database can choose to write to raw devices directly and still

ensure data is encrypted. Additionally, the database content is not vulnerable to

users browsing the file systems since that content can only be decrypted by the

database itself. Last but not least, the division of responsibilities between the DBA

and SA does not create any vulnerabilities as the database is automatically and

fully encrypted by the database kernel itself.

 Self-Encrypting Disks (SED) is another indirect mechanism for encrypting the

database objects by relying on the circuitry built into the hard drive itself to encrypt

the data (Dufrasne et al., 2016). Examples of SED include IBM DS8000, Seagate

SED, and Hitachi SED. They too improve over column encryption, share the

same benefits with tablespace, file system and holistic database encryption. They

provide the broadest coverage as the full disk is encrypted. With respect to

performance, SED actually add no overhead to the CPU as the encryption is done

by the hard drive itself. SED do have certain drawbacks, however. Firstly, they

 55

are a disruptive and expensive approach as an organization would need to

purchase these new devices and replace existing hard drives. Secondly, SED

provide no protection against privileged users on the operating system. As long

as the file permissions allow access, such users can easily browse the content of

the encrypted files. Holistic database encryption addresses these challenges

because it is part of the database itself, so it creates no disruptions to the

organization’s IT infrastructure. It also ensures that the content of the database

is not vulnerable to users browsing the file system as that content can only be

decrypted by the database itself.

4.3 Holistic Database Encryption
The first objective of holistic database encryption is to ensure that the full

database content is automatically encrypted by the database system itself. This

needs to include not only user-defined tablespaces, system-defined tablespaces

and temporary tablespaces, but also data in transaction logs and database

backups. This is to ensure that no vulnerability is inadvertently introduced as with

the traditional methods discussed earlier. The second objective is to ensure that

the first objective is met without negatively impacting core database tenets such

as application transparency, schema transparency, performance, compression or

availability. It is achieving both of these objectives together that allows

organizations to adopt the solution without having to make any compromise either

on the security side or the database side, as with the traditional methods. In order

to achieve these two objectives, three requirements need to be carefully

considered: Encryption run-time placement, encryption run-time processing and

encryption key management. The design considerations for each of these

requirements is discussed below.

4.3.1 Encryption Run-Time Placement
Holistic database encryption places the run-time processing of encryption right

above the I/O layer inside the database kernel. This ensures that all data is

encrypted regardless of whether it is tablespace data, transaction logs data or

backups data. Additionally, injecting encryption processing this deep inside the

kernel renders encryption totally transparent to database schemas and

applications. Recall that the lack of transparency to applications and database

schemas was one of the major drawbacks of column encryption. Also, being right

above the I/O layer ensures that encryption does not interfere at all with query

 56

execution so the SQL query compiler does not need to impose any restrictions

on itself when selecting an efficient execution plan for a query as it does in the

case of queries with range predicates when using column encryption. Last but

not least, this encryption run-time placement means that encryption comes after

compression which is the right order to ensure that organizations benefit from

both database compression and encryption. Recall that with column encryption,

the order is reversed which limits the value of database compression.

4.3.2 Encryption Run-Time Processing
Encryption run-time processing refers to the encryption and decryption functions.

Data is encrypted when it is pushed out to storage and decrypted when it is

retrieved from storage. These two functions take place right above the I/O layer

as indicated above. Encryption and decryption require carefully considering three

choices: The choice of the encryption algorithm, the choice of the encryption

algorithm key size and the choice of the encryption granularity.

 Since database encryption is bulk encryption, symmetric algorithms are the

natural choice. While holistic database encryption can support any block cipher,

AES (Chandra et al., 2014) was selected as the default block cipher as it is the

standard algorithm. Holistic database encryption chose 256 bits as the default

key size to ensure that the solution is safe against potential future attacks by

quantum computers (Shor, 1997). In fact, a quantum computer running Grover’s

algorithm (Grover, 1996) renders AES 256 bits security equivalent to AES 128

bits so choosing 128 bits AES Keys would not be a good practice as that reduces

to 64 bits security. AES supports several modes. Holistic database encryption

uses Cipher Block Chaining (CBC) as that is more secure than Electronic Code

Book (ECB) for example. However, CBC requires maintaining an Initialization

Vector (IV) and this affects the choice the encryption granularity. Holistic

database encryption uses the “page” as the encryption granularity. A page is a

32KB of data containing the rows of a database table. A database table may

consist of several such pages. The choice of the page as the encryption

granularity versus the data row is evident as calling the encryption function for

each row in the page would result in a higher performance overhead. The choice

of a “chunk” of pages would in theory have been better. In fact, the database

kernel I/O layer writes a chunk of pages at a time for performance reasons.

However, given the chaining nature of CBC, this meant that if the database kernel

 57

needs to decrypt page 4, it will first need to decrypt pages 1, 2 and 3. Thus, the

page level granularity was chosen for performance reasons.

4.3.3 Encryption Key Management
Figure 4.1 shows the architecture of holistic database encryption as implemented

in IBM DB2. It uses two levels of keys: A Data Encryption Key (DEK) and a Master

Key (MK). The DEK is the key used to actually encrypt the database content and

is fully managed within the database system. For tablespace data, the DEK is

stored together with the rest of the database configuration. However, this would

not be sufficient for transaction logs as these are typically needed when the

database is offline and need to be recovered. Consequently, transaction logs

have their own DEK that is stored within the transaction logs themselves. This is

also true for database backups which may need to be restored by a totally

different database instance.

Figure 4.1– Holistic Database Encryption Architecture

 The MK is a Key Encrypting Key (KEK). It is used to protect the DEK and is

stored externally such as in a Hardware Security Module (HSM). There are three

reasons for this choice: Security, performance and availability. Storing the MK

externally ensures a better security in case the database system itself is

compromised (i.e., the attacker will not have access to both the data and the MK).

The two levels of keys also ensure availability and performance in key rotation

 58

scenarios. In fact, rotating the MK is straightforward as it only means decrypting

the DEK with the old MK and re-encrypting it with the new MK. On the other hand,

a single level of keys would have meant re-encrypting the entire database with

the new key. This would affect availability if it is done offline or performance if it

is done while the database is online serving the needs of its applications.

4.4 Implementation
This section discusses the implementation of holistic database encryption in IBM

DB2 and shows the actual interfaces for adopting the solution.

4.4.1 Enabling Encryption for a Database
The DB2 CREATE DATABASE command was extended so that DBAs can

choose to enable encryption when creating a new database. For example, the

DB2 command below creates a database called test which will be encrypted

using AES as the encryption algorithm, 256 bits as the encryption key size, and

a master key whose unique identification is db-mk.

create database test

encrypt cipher AES key length 256

 master key label db-mk

 When processing the command above, the database system internally

generates a random 256 bits DEK and call out to the key management system

that has been set up for this database to encrypt the DEK before safely storing it

within the database configuration structures. Later on, when the database is

started to serve applications, the database system internally calls out to the key

management system to decrypt the DEK with the MK, and then uses the DEK for

transparently encrypting and decrypting data as it is written to and read from the

storage system.

4.4.2 Rotating the Database Master Key
Like user passwords, encryption keys need to be changed periodically in order to

minimize the risks when a key is compromised. This process is called key

rotation. The key rotation frequency is dictated by compliance requirements,

corporate requirements or both.

 Holistic database encryption extended the IBM DB2 interfaces by introducing

a new stored procedure which DBAs can use to rotate the database MK as

 59

required. For example, the DB2 stored procedure call below instructs the

database system to rotate the MK.

CALL admin_rotate_master_key (‘new-db-mk’);

 When processing the stored procedure above, the database system performs

the following actions:

• Decrypt the DEK with the current MK.

• Re-encrypt the DEK with the new MK as identified by it is unique label

new-db-mk.

• Update the database configuration structures to reflect the changes

above.

 If a new MK unique identifier has not been provided when calling the stored

procedure above, the database system will automatically generate a new MK and

assigns a unique identifier to it.

4.4.3 Taking an Encrypted Database Backup
Holistic database encryption extended the DB2 BACKUP DATABASE command

so that DBAs can choose to enable encryption when backing up a database.

Encryption for the backup is actually automatically enabled when the underlying

database is encrypted. But the explicit option in the BACKUP DATABASE

command itself gives DBAs the option to still encrypt a backup even when the

underlying database is not encrypted. For example, the DB2 command below

encrypts a backup for a database called test2 using AES as the encryption

algorithm, 256 bits as the encryption key size, and a master key whose unique

identification is db-mk2.

backup database test2

encrypt encrlib db2backupencrlib

encropts ‘Cipher=AES:Key LENGTH=256:Master Key Label=db-mk2’

 When processing the command above, the database system internally

generates a random 256 bits DEK, uses that DEK to encrypt the payload piece

of the backup, call out to the key management system to encrypt the DEK with

the MK identified with unique identifier db-mk2, and safely store the encrypted

DEK and related meta-data in the header piece of the backup.

 60

4.4.4 Performance Considerations
The performance evaluation shows that two factors affect the impact of holistic

database encryption. The first factor is the availability of hardware acceleration in

the CPUs where the database system is deployed. Holistic database encryption

automatically detects and exploits a number of hardware acceleration for

cryptographic operations built into modern CPUs such as the Intel Advanced

Encryption Standard New Instructions (AES-NI) and the IBM Power8 in-core

support for AES. The second factor is how insulated the database workload from

an increase in the latency of physical I/O requests. Database workloads can be

insulated for this purpose through standard database tuning. For example, a DBA

can increase the buffer pool size so that database queries do not have to wait on

physical I/O. Enabling page prefetchers is another tuning option a DBA can

perform to avoid having queries wait on physical I/O. Following standard

database tuning, the encryption overhead observed is typically in the single digits

for data warehouse workloads on systems with exploitable hardware acceleration

for cryptographic operations. It is therefore recommended that enterprises deploy

the solution on systems where such hardware acceleration for cryptographic

operations is available.

4.5 Conclusion
This chapter has provided a summary of the research portfolio in database

encryption. It has reviewed the traditional approaches for database encryption

and showed how the holistic database encryption proposed improves over such

approaches. Holistic database encryption has been implemented in IBM DB2 and

is relied upon by several organizations from across the world to protect their

sensitive data without having to make compromises either on the security side or

the database side as the solution coexists in harmony with fundamental database

tenets as described in this chapter. The research portfolio publication “Holistic

Database Encryption” is given in Appendix B.

 61

Chapter 5: Enhanced Mandatory Access Control
This chapter provides a summary of the research portfolio in mandatory access

control for database systems. It is a synthesis of the research publications given

in Appendix C. The chapter introduces a new multi-purpose implementation of

mandatory access control for database systems which improves over traditional

implementations. This new solution is not limited to the pure Multilevel Security

(MLS) semantics as the traditional approaches and can be used more broadly.

The chapter also shows how the multi-purpose implementation of mandatory

access control introduced can be used to enforce fine-grained authorization to

XML documents such as those stored in XML columns in database tables.

 62

5.1 Introduction
For database tables, Mandatory Access Control (MAC) can be thought of as a

special form of fine-grained authorization where each row is tagged with a

security label representing its classification (e.g., TOP SECRET), each user is

assigned a security label representing their authorization (e.g., SECERT) and the

access rules are the standard Multilevel Security (MLS) “No Read Up” and “No

Write Down” rules. While this model is suitable for the US intelligence and

defense use cases, it remains a very rigid implementation that is rarely applicable

elsewhere. Clearly, a better approach is needed to broaden the applicability of

MAC implementations in database systems. This better approach is referred to

as “A Multi-Purpose MAC Implementation for Database Systems”. It extends

the traditional MAC implementations for database systems with the required

flexibility in order to broaden its applicability. Section 5.2 reviews traditional MAC

implementations and contrasts them with the multi-purpose MAC implementation.

Section 5.3 introduces and discusses the multi-purpose MAC implementation in

IBM DB2. Section 5.4 shows how the multi-purpose MAC implementation can be

used for fine-grained authorization in XML documents. Lastly, Section 5.5

concludes this chapter.

5.2 Related Work
Traditional MAC implementations for database systems have focused on MLS.

The MLS model was originally introduced by Bell and LaPadula (Rjaibi et al.,

2004). It is defined in terms of objects and subjects. For database tables, an

object is a row in that table and a subject is a user requesting access to such row.

Both objects and subjects are assigned a security label representing their

classifications and authorizations respectively. A security label consists of two

components (Rjaibi et al., 2004): A hierarchical component, usually referred to as

level and a non-hierarchical component, usually referred to as compartments.

The level specifies the sensitivity of the data. For example, a military organization

might define the following levels: Top Secret, Secret and Confidential.

Compartments are used to categorize the data. For example, a military

organization might define the following compartments: Navy, Army and Marines.

 A security label L1 is said to dominate a security label L2 if and only if the

following two conditions are true:

1. The level component of L1 is greater than or equal to that of L2.

 63

2. The compartments component of L1 includes the compartments

component of L2.

 For all data access, the MLS model enforces the following two rules:

1. No Read Up: A subject is allowed a read access to an object if and only if

the subject’s security label dominates the object’s security label.

2. No Write Down: A subject is allowed a write access to an object if and only

if the object’s security label dominates the subject’s security label.

 The most noticeable implementations of MLS in database systems include:

Trusted Oracle (Oracle, 1992), Oracle Label Security (which replaced Trusted

Oracle) (Oracle, 2019), Informix OnLine/Secure (Informix, 1993) and IBM DB2

for z/OS MLS (Rayns et al., 2007). The research portfolio publications “An

Introduction to Multilevel Secure Database Systems” and “A Multi-Purpose

Implementation of Mandatory Access Control in Database Systems”

(Appendix C) cover the traditional MLS implementation in more details. But the

common theme across all these traditional implementations is that they are all a

rigid implementation and are rarely applicable in scenarios where the pure MLS

semantics is not desired. The multi-purpose MAC implementation introduced in

this thesis is a flexible implementation that is not limited to pure MLS semantics

and can be used more broadly as illustrated in Section 5.4.

5.3 A Multi-Purpose MAC Implementation for Database Systems
The first objective of the multi-purpose MAC implementation is to give DBAs the

tools to define the types of security labels and access rules that best suit their

needs as opposed to forcing the pure MLS semantics on them. This objective is

achieved through the SQL extensions discussed in section 5.3.1. The second

objective is to ensure that access to labelled data is enforced transparently,

securely and in accordance with the access rules specified. This is achieved

through the extensions made to the SQL Compiler discussed in section 5.3.2.

Lastly, the third objective is to enable the database system to integrate with an

external MAC system, if so desired, to centralize security labels and access rules

management. This is analogous to integrating with an LDAP server for user

authentication. This objective is achieved through the SQL and SQL Compiler

extensions discussed in section 5.3.3.

 64

5.3.1 SQL Extensions
The multi-purpose MAC implementation extended SQL with the following new

concepts to give DBAs the tools to specify security label types and access rules:

• Security Label Component: This is the building block for security labels.

It is essentially a set of elements which can be either ordered or un-

ordered. In an ordered set, the order in which the elements appear is

important. The rank of the first element is higher than that of the second

element, and so on.

• Security Label Type: As a table schema defines the set of columns for

rows in that table, a security label type defines the set of security label

components that make up a security label. For example, the classical MLS

security label can be obtained by creating a security label type that

consists of two security label components, one that is ordered

representing the level component and one that is un-ordered representing

the compartments. On the other hand, if a DBAs wishes to use security

labels as data tags, they can simply create a security label type that

consists of a single un-ordered security label component, where each

element represents the desired tag.

• Security Label Access Policy: This is where the access rules are

defined. The access rules bring together an access label and a row label.

An access label is a security label that is granted to a database user. A

row label is a label that is assigned to a row in a table. The general form

of an access rule is “access label component-name <operator> row label

component-name”. The <operator> varies depending on whether the

component-name is an ordered set or an un-ordered set. For ordered set,

it can be anyone of the relational {=, <=, <, >, >=, !=}. For un-ordered sets,

it can be anyone of the set operators {INCLUDE, INTERSECT}.

• Exception: In some situations, a user may need to be granted an

exception from a certain access rule in a security label access policy. For

example, to allow the user to do a bulk load of data in a table.

• Labelled Table: A labelled table is a table that is associated with a security

label policy. Such table will be automatically augmented with a new column

to hold the security label for each row. The security label is internally

transformed into a binary representation for efficient comparisons during

access enforcement.

 65

Example

 The following example shows how a DBA can specify security label and access

rules definitions to match the pure MLS semantics.

 // create security label components

create security label component LEVEL
 using ordered set {‘TOP SECRET’, ‘SECRET’, ‘CLASSIFIED’};

create security label component COMPARTMENTS

 using unordered set {‘MARINES’, ‘ARMY’, ‘NATO’};

 // create security label type

create security label type MLS

 components LEVEL, COMPARTMENTS;

 // create security label access policy

create security label access policy MLS-POLICY

 security label type MLS

 read access rule rule 1
 access label level >= row label level

 read access rule rule 2
 access label compartments INCLUDE row label compartments
 write access rule rule 1
 row label level >= access label level

 write access rule rule 2
 row label compartments INCLUDE access label compartments;

 // create a labelled table

create table T1 (A INT, B INT)
security label access policy MLS-POLICY;

5.3.2 Access Enforcement
The multi-purpose MAC implementation extended the SQL compiler to ensure

that when a labelled table is accessed, the access rules specified in the security

label access policy are observed. The extensions made are similar to the ones

done for row permissions and column masks (Figure 3.2 in Chapter 3) with a

couple of additional considerations. The first consideration is with respect to how

the user access label and potential exceptions are acquired. If these are acquired

at query compilation time, it will affect the caching of query execution plans. Some

database systems such as IBM DB2 cache the execution plan for an SQL query

 66

so that the next time it is submitted it does not need to go through the SQL

compilation process again and performance is better. Imagine that the security

label and exceptions are acquired during compilation time, this means that logic

will need to be added to always check that the security label and exceptions of

the user submitting the query are the same as the ones recorded during query

compilation time. Otherwise, this could result in a security issue such as a user

getting more data than what their security label and exceptions permit. For this

reason, the execution plan generated by the SQL Compiler includes a new logic

to always acquire security labels and exceptions during run-time. This ensures

security as well as performance as the cached query execution plan can be

reused without having to worry about any potential differences between the

credentials of the user ID under which the query was compiled and the user ID

that is running the query.

 The second consideration is index-only query execution plans. To access a

database table, the SQL compiler typically chooses between three options: (1)

Accessing the table directly and fetch the desired rows, (2) accessing an index to

first identify the IDs of the rows that need to be fetched and then access only the

pages containing such rows, or (3) accessing only an index on the table. The

latter is possible when all the desired columns are part of the index key. For large

tables, this is usually an advantageous option as indexes are usually smaller than

the table on which they are defined. For labelled tables, the row label is required

to decide whether or not the user should be given access to the row. Therefore,

to ensure that index only plans still work, we extended the database system so

that each time an index is created, the row label column is automatically included

in the index key.

5.3.3 Enterprise integration
Some tools such as IBM’s Resource Access Control Facility (RACF) (Winnard et

al., 2015) provide an MLS implementation where user security labels can be

centrally managed much like an LDAP server allows user authentication to be

managed centrally. RACF can also be used for access decisions. That is, given

a row label and a user ID, it can return true or false indicating whether or not the

given user can have access to that row according to the MLS rules. To enable

integration with such enterprise solutions, the multi-purpose MAC was further

extended as follows:

 67

• The labelled table SQL syntax was extended to allow DBAs to indicate that

the security label access policy is managed by an external system and

provide the connection details to such system so it can be called for access

decision responses during access enforcement.

• The SQL compiler was extended to recognize this special case and inject

logic to query the external system for an access decision, passing on the

row label and the ID of the user attempting the access.

 To minimize the overhead of calling out to the external system, the multi-

purpose MAC implementation introduced an access-decision cache. This cache

records the responses from the external system for each pair of user ID and row

label. The SQL compiler was then modified so that it consults this cache before

making a call to the external system. Table 5.1 illustrates the access-decision

cache. For example, user Amy is allowed read access to rows labelled with

security label L1, but not user Pat.

Table 5.1 – Access-Decision Cache

 USER ID ROW LABEL TABLE ACCESS TYPE RESPONSE

Amy L1 T1 READ YES

Pat L1 T1 READ NO

Haytham L2 T1 WRITE YES

5.4 Applying Multi-Purpose MAC for XML Fine-Grained
Authorization

While the row permission, column mask and security label concepts introduced

so far in this thesis permit enforcing fine-grained authorization at the database

table row and column levels, they do not extend to enforcing fine-grained

authorization for XML documents stored within a column in such database tables.

For example, suppose the XML document in Figure 5.1 is stored in some

database table column. A user who is authorized to access that column will see

the entire XML document as opposed to the subset of such document they are

authorized to see.

 68

Figure 5.1– Example XML Document

XML fine-grained authorization can be divided into two main categories. The first

category considers an XML node as the smallest unit of protection (Bertino et al.,

2001) (Bertino et al., 2002) (Bhatti et al., 2004). The approaches in this category

differs in terms of how privileges are propagated. Some methods block access to

the entire subtree rooted at a forbidden node while others would allow access to

nodes in the subtree but mask out the forbidden ancestor node. The second

category considers the ancestor-descendent and sibling relationships between

XML nodes as the smallest unit of protection (Zhang et al., 2006). For example,

blocking access to the account node “202” in Figure 1 can be achieved by

blocking the relationship to its ancestor node, the relationship to its descendant

nodes and the relationship to its sibling nodes. In both categories, the smallest

unit of protection (i.e., a node or a relationship) is specified through an XPath

expression (Clark et al., 2006). The Multi-Purpose MAC solution introduced

earlier could be used with either node-based or relationship-based fine-grained

authorization approaches. The research portfolio publication “Inter-Node

Relationship Labelling: A Fine-Grained XML Access Control

Implementation Using Generic Security Labels” shows that relationship-

based approaches improve over node-based approaches from a security

perspective. For example, the subtree rooted at node “101” represents VIP

 69

account types. Therefore, knowing that an account (e.g., “201”) belongs to that

subtree reveals that this is a VIP account. Suppose that the relationship between

nodes “101” and “202” needs to be protected. With node-based approaches,

access to node “201” would reveal that node “202” is a VIP account since it is a

sibling to node “201”. This issue can be addressed using a relationship-based

approach by protecting the ancestor-descendant relationship between nodes

“101” and “202” as well as the sibling relationship between nodes “201” and “202”

while allowing the ancestor-descendant relationship between nodes “101” and

“201”. The rest of this section discusses the methodology for using the Multi-

Purpose MAC solution to enforce fine-grained authorization to XML documents

using the relationship-based approach.

5.4.1 Methodology
The methodology is analogous to how security labels are used to control access

to rows in a labelled table. In the same way a row label protects a row in a labelled

table, a path label protects a specific path in an XML document. The path label

consists of a single security label component which can take anyone of the

following three values:

• Existence: Attaching a path label with this value to a relationship between

two nodes permits users to know that such two nodes are related but does

not reveal any other details. For example, suppose an existence path label

is attached to the relationship between the account with AID A2398 and

its customer name in Figure 5.1. A query that wants to return all the

accounts’ AIDs that have a customer name would return AID A2398 but

will not reveal that the customer name is “John”. An example of such query

in XPath is: //Account[Customer/Name]/AID.

• Value: Attaching a path label with this value to a relationship between two

nodes permits users to know that such two nodes are related including the

actual details of such nodes. For example, suppose a value path label is

attached to the relationship between the account with AID A2398 and its

customer name in Figure 5.1. An XPath query such as

//Account[AID=”A2398”]/Customer/Name would reveal that “John” is the

customer associated with that account. Evidently, if a relationship is not

accessible under an existence path label, then it is not accessible under a

value path label either.

 70

• Null: Attaching a path label with value to a relationship between two nodes

means that this relationship is fully accessible. This is the default.

 The proposed ATTACH SQL statement allows DBAs to attach a path label to

the desired relationships in an XML document. This can be either an ancestor-

descendant relationship or a sibling relationship. For example, the following SQL

statement attaches an existence path label to the relationships between account

nodes (i.e., ancestor) and their customer name nodes (i.e., descendants).

 attach existence ancs //Account desc /Customer/Name

 The following example shows how to associate a security label access policy

with a table T1 which includes a column B of type XML.

 // create security label components

create security label component level

 using ordered set {‘EXISTENCE’, ‘VALUE’, ‘NULL’};

 // create security label type

create security label type XML

 components level;

 // create security label access policy

create security label access policy XML-POLICY

 security label type XML

 read access rule rule 1
 access label level >= path label level

 write access rule rule 1
 access label level = path label level;

 // create a labelled table

create table T1 (A INT, B XML)

security label access policy XML-POLICY;

5.4.2 Access Enforcement
As discussed in section 5.3.2, access enforcement is implemented within the SQL

compiler. To handle queries on XML document, the following additional

considerations are observed by the SQL compiler. First, the XPath query

 71

semantics is internally changed as follows to take into account any path labels

attached (Zhang et al., 2006).

1. If a child axis occurs, the evaluation follows a parent-child path.

2. If a descendant-or-self axis occurs, the evaluation follows an ancestor-

descendant path.

3. If a preceding-sibling axis occurs, the evaluation follows a preceding-

sibling path.

4. If a following-sibling axis occurs, the evaluation follows a following-sibling

path.

 As with access to labelled tables, the user access labels are acquired at

runtime (as opposed to compilation time) to ensure that queries on XML

documents also benefit from caching of query execution plans. The general

access enforcement algorithm can be summarized as follows.

1. Fetch the user access labels and exceptions from the system catalogues.

2. For all paths accessed

a. If it is a read access and the read access rules do not allow the

access, skip the path.

b. If it is a write access and the write access rules do not allow the

access, skip the path.

5.5 Conclusion
This chapter has provided a summary of the research portfolio in mandatory

access control for database systems. It has introduced a new multi-purpose

implementation of mandatory access control for database systems which

improves over traditional implementations. This new solution is not limited to the

pure MLS semantics as the traditional approaches and can be used more

broadly. The chapter has also shown how the multi-purpose implementation of

mandatory access control can be used to enforce fine-grained authorization to

XML documents such as those stored in XML columns in database tables. The

multi-purpose mandatory access control solution has been implemented in both

IBM DB2 and Informix.

 72

Chapter 6: Towards Zero-Trust Database Security
Zero-trust security is an information security framework which states that

organizations should not trust any entity inside or outside of their perimeter at any

time. This chapter explores both the direct and indirect means through which the

same data in a database system can be accessed and the challenges they pose

to adhering to the basic tenets of zero-trust security. It is based primarily on the

research publications “Towards Zero-Trust Database Security Part 1” and

“Towards Zero-Trust Database Security Part 2” which were fully developed during

the PhD registration period (Appendix B). The chapter then shows how the

concepts introduced earlier in this thesis such as row permissions, column

masks, trusted contexts and holistic database encryption come together to equip

database systems with the controls necessary to enable enterprises to effectively

implement zero-trust security for their database installations.

 73

6.1 Introduction
Gartner estimates that the worldwide spending on Cybersecurity in 2018 was

around 114 billion US dollars, which represents an increase of 12.4% compared

to 2017 (Gartner, 2019). Unfortunately, despite this significant spending, data

breaches continue to occur and are becoming more and more costly. For

example, the Ponemon Institute’s 2018 Cost of a Data Breach Study found that

the global average cost of a data breach was 3.86 million US dollars, an increase

of 6.4% compared to 2017 (The Ponemon Institute, 2019). The study also found

that the average number of records lost or stolen following a data breach grew

2.2% from 2017. As a result of these alarming statistics, organizations are now

turning to zero-trust security to better protect their assets and reduce risk.

 Zero-trust security is an information security framework which states that

organizations should not trust any entity inside or outside of their perimeter at any

time (Gilman et al., 2017). It assumes that untrusted entities exist both outside

and inside the enterprise network. The main tenets of zero-trust security can be

summarized as follows:

1. Tenet 1: Ensure all requests to access resources are always verified,

regardless of where they originated from.

2. Tenet 2: Grant access to resources based on “need-to-know” and

strictly enforce access control.

3. Tenet 3: Monitor and audit all user activities.

 While zero-trust security for networks and identity management systems has

received a great deal of attention (Gilman et al., 2017), (Centrify, 2019), very little

focus has been devoted to zero-trust security for database systems (Rjaibi et al.,

2019). This is concerning as database systems contain an enterprise’s most

critical data and are often the primary subject of attacks by both internal and

external threats. The rest of this chapter is organized as follows. Section 6.2

introduces the database threat model and explores both the direct and indirect

means through which the same data in a database can be accessed. Next,

Section 6.3 shows how the concepts introduced earlier in this thesis equip

database systems with the tools necessary to effectively address the challenges

posed by the direct and indirect means through which data can be accessed.

Section 6.4 explores the notion of separation of duties as another critical

 74

foundation to fully enable zero-trust database security. Lastly, Section 6.5 shows

a concrete example to illustrate how the row permission, column mask and

trusted context concepts introduced in this thesis come together to meet an

enterprise’s zero-trust database security requirements.

6.2 Database Threat Model
This threat model focuses on the direct and indirect means for accessing data in

a database and the challenges they pose to adhering to the basic tenets of zero-

trust security discussed above. The model assumes that enterprises are adhering

to basic database security hygiene such as user authentication, auditing and TLS,

which are standard features on all major database systems. The model also

assumes that standard operational policies such as operating system and

database system software vulnerability patching are in place.

 The same data in a database can be accessed in two different ways: Directly

or indirectly. Direct access occurs using standard database interfaces such as

Structured Query Language (SQL). This can be divided into two scenarios:

1. Interactive database access: This access is typically performed by

database administrators using an interactive interface offered by the

database system such as SQL. It is usually used to carry out administrative

tasks such as granting database privileges.

2. Application database access: This is the most common database access

scenario. It involves end users interacting with an application which in turn

interacts with the database system to execute requests on behalf of those

end users.

 The key issue with interactive database access is privilege abuse. For

example, a DBA might abuse their privileges to access sensitive employee data

such as salary and bonus information. The application database access poses

two key issues. The first one is application bypass where, for example, the

application administrator abuses the application’s database credentials to make

changes to the database that are contrary to the application’s business logic. The

second issue is the loss of user identity which diminishes the value of database

auditing to demonstrate compliance and to hold users accountable for their

actions. This issue stems from the fact that applications use a generic user ID to

access the database on behalf of all users as opposed to the actual user identity.

 75

 Indirect access takes place when a user bypasses the database system

altogether. This is the most dangerous type of access as it completely bypasses

all database access control and auditing. This can be divided into two scenarios:

1. File system access: This access occurs when a user chooses to access

the data directly on the file system using operating system commands.

2. Storage media access: This access occurs when a user recovers the

data from the actual storage media such as a stolen or lost hard drive.

 Table 6.1 summarizes the challenges direct and indirect access to data pose

to adhering to the basic tenets of zero-trust security. Figure 6.1 summarizes the

database threat model.

Table 6.1 – Zero-trust database security challenges

Issue Type of data access Zero-trust security tenet
affected

Privilege abuse Direct access Tenets 1 and 2

Application bypass Direct access Tenets 1 and 2

Loss of user identity Direct access Tenet 3

File system access Indirect access Tenets 1 and 2

Storage media access Indirect access Tenets 1 and 2

Figure 6.1– Database threat model.

 76

6.3 Addressing Direct Data Access Challenges
As discussed in section 6.2, privilege abuse, application bypass and the loss of

user identity are the key challenges to adhering to the basic tenets of zero-trust

security when it comes to the direct data access use case. This section describes

how the concepts introduced in this thesis address these challenges.

6.3.1 Privilege Abuse
Historically, database systems have been designed such that the DBA had

access to all data in all tables in the database. Clearly, this model does not

prevent privilege abuse. Intuitively, fine-grained database authorization can be

thought of as the ideal solution for preventing privilege abuse as it controls access

at the row, column or cell level, thus ensuring that users have access to only the

subset of the data for which they are authorized. However, fine-grained database

authorization comes in many forms and not all such forms adequately protect

against privilege abuse.

 Chapter 3 introduced row permissions and column masks. It also showed how

these concepts improve over traditional database views and application-based

security. In particular, row permissions and column masks are data-centric and

cannot be bypassed like database views and application-based security.

Similarly, Chapter 5 introduced the multi-purpose MAC implementation and

showed how it improved over traditional MLS implementations by providing more

flexibility around the specification of security label types and access policies. Both

row permissions and column masks, and the multi-purpose MAC implementation

effectively address the privilege abuse challenge. Figure 6.2 contrasts all the fine-

grained authorization options. Row permissions and column masks are ranked

slightly higher than the multi-purpose MAC because it is more flexible. In fact,

their authorization rules are expressed in SQL, thus provide more flexibility than

rules that only manipulate security labels. Therefore, row permissions and

column masks are most suitable for addressing the privilege abuse challenge.

 77

Figure 6.2– Fine-grained database authorization.

6.3.2 Application Bypass
A key drawback to application-based security is that applications can be

bypassed. For example, a malicious application administrator can choose to

abuse the application’s database credentials in order to access the database

directly, thus bypassing the application altogether. The malicious application

administrator can then gain access to sensitive data or make modifications to the

database that are contrary to the application’s business logic.

 This application bypass is made possible because traditional database

authorization does not provide control around when a particular privilege can be

exercised. Section 3.4 in Chapter 3 introduced the concept of trusted context.

One of the benefits of this new concept is the ability to address application bypass

by linking database privileges to a trusted context. When a privilege is linked to a

trusted context, a user can exercise that privilege only when they are interacting

with the database system within the confines of a trust relationship. Application

bypass can be addressed in this manner by requiring the database system to

authorize the application’s user ID only and only if additional attributes have been

verified such as the IP address of the application server and the application’s

digital certificate. Therefore, an application administrator who wishes to abuse

the application credentials by connecting to the database outside the scope of

the application will find it much harder to do so.

 78

6.3.3 Loss of User Identity
In multitiered database environments, the application interacts with the database

system using a generic user ID identifying the application itself, and not the actual

end users. One major implication of this is diminished user accountability.

Typically, database users are held accountable for their actions through auditing.

Unfortunately, when the application uses a generic user ID for all database

accesses, the database audit log will only show that user ID with no references

to the actual end user behind the application.

 The trusted context concept introduced in Chapter 3 is a formal mechanism for

defining a trust relationship between the database system and an external

application based on a series of attributes such as the application’s user ID, the

IP address of the application server and the application’s digital certificate. One

of the capabilities that an application gains once it is working within the confines

of that trust relationship is the ability to switch the current user on a given

database connection. This enables the application to propagate the user identity

to the database where it is used for access control and auditing purposes, and

thus addressing the loss of user identity problem. The high-level steps for

leveraging the trusted context concept to address the loss of user identity problem

can be summarized as follows:

1. The database security administrator creates a trusted context object to

define a trust relationship between the application and the database.

2. The application establishes a trusted connection with the database.

3. Before issuing any request to the database on behalf of an end user, the

application switches the current user of the connection to the new user.

This automatically propagates the end user identity to the database where

it is used for all access control and auditing till the application switches

user again.

6.4 Addressing Indirect Data Access Challenges
As discussed in section 6.2, file system access and storage media access are

the key challenges to adhering to the basic tenets of zero-trust security when it

comes to the indirect data access use case. A powerful countermeasure to

protect against indirect access is data encryption as encrypted data is of no value

to an attacker. However, data encryption for database systems comes in many

forms and not all such forms of encryption effectively protect against indirect data

 79

access. There are also performance implications that need to be taken into

account when selecting an encryption solution for a database.

 Chapter 4 contrasted the traditional database encryption methods with the new

solution proposed in this thesis: Holistic database encryption. Figure 6.3 provides

a different perspective for contrasting these approaches. SEDs and file system

encryption provide the broadest coverage (i.e., they encrypt entire disks or file

systems), but they only protect against storage media access. In other words,

these methods do not stop a user from browsing the database files using

operating system commands. Tablespace encryption, holistic database

encryption and column encryption protect against both storage media access and

file system access. When these methods are employed, a user browsing the

database files using operating system commands will only see encrypted data,

which is of no value to them. Column encryption, however, is intrusive to

application and negatively affects performance. Tablespace encryption may

create a vulnerability when a DBA inadvertently moves data from an encrypted

tablespace to an unencrypted one, or when data is held in temporary

tablespaces. Therefore, holistic database encryption is most suitable for

protecting against indirect access and in turn adhering to the basic tenets of zero-

trust security.

 Table 6.2 summarizes the issues around the direct data access and indirect

data access use cases. It also shows how the concepts introduced in this thesis

solve these issues. Row permissions and column masks address the privilege

abuse issue. Trusted contexts and in particular the conditional authorization

aspect of it solve the application bypass issue. The user identity propagation

aspect of trusted contexts solves the loss of user identity issue in multitiered

database environments. Finally, holistic database encryption addresses the

issues around file system access and storage media access.

 80

Figure 6.3– Database encryption.

Table 6.2 – Zero-trust database security challenges and solutions.

Issue Type of data access Zero-trust
security tenet
affected

Solution

Privilege abuse Direct access Tenets 1 and 2 - Row permissions
- Column masks

Application bypass Direct access Tenets 1 and 2 Trusted contexts

- Conditional authorization

Loss of user identity Direct access Tenet 3 Trusted contexts

- User identity propagation

File system access Indirect access Tenets 1 and 2 Holistic database encryption

Storage media
access

Indirect access Tenets 1 and 2 Holistic database encryption

The performance evaluations for row permissions/column masks and holistic

database encryption have been covered in Chapter 3 and Chapter 4 respectively.

For trusted contexts, the performance evaluation (Bruni et al., 2007) has shown

that the overhead is in the low single digits regardless of whether or not user

authentication is required during the switch user processing. Intuitively, this is

expected as the database system reuses the existing database connection as

opposed to creating a new one to process requests on behalf of a new user.

6.5 Separation of Duties
Historically, database systems have been designed such that DBAs manage all

aspects of the database including security and auditing. Additionally, DBAs have

 81

had implicit access to all data in all tables in the database. With the rise of internal

threats as a security concern equally important to external threats (Verizon,

2017), this traditional model makes it difficult for organizations to fully adhere to

zero-trust database security. It is therefore critical that database systems be

extended to provide the capabilities to allow organizations to vest security

administration and database administration into two non-overlapping roles so

separation of duties can be enforced.

 Consequently, during the research, design and implementation of row

permissions, column masks, trusted contexts and holistic database encryption, I

have also made the following corollary enhancements:

1. Redesigned the role of the DBA to remove the implicit ability to access all

data in all tables as well as the ability to manage database security and

auditing.

2. Vested the ability to manage database security and auditing into a new

and independent database role, called Security Administrator (SECADM)

(Chen et al., 2008). In this context, row permissions, column masks,

trusted contexts and holistic database encryption are solely managed by

the SECDAM.

3. Implemented the new SECADM role and also ensured that such role

cannot make any privilege grants to itself either directly or indirectly

through membership in a role or a group. This automatically covers row

permissions and column masks as they are an additional level of control

on top the required table level privileges.

 With this enhancement in place, organizations can now vest database security

and database administration into two separate roles, enabling them to remove

any notion of inherent trust in DBAs and consequently fully adhere to zero-trust

security for their database systems. It is paramount that organizations consider

separation of duties as they choose the type of database system to adopt

because not all database systems necessarily provide the required capabilities

to enforce separation of duties.

6.6 Example Scenario
The goal of this example is to show in great detail how the concepts introduced

in this thesis enable organizations to implement zero-trust database security. The

 82

example will cover all the enhancements made, namely holistic database

encryption, trusted contexts (both the conditional authorization and the user

identity propagation aspects), row permissions and column masks. It builds upon

the example shown in Section 3.7 of Chapter 3. All SQL statements shown here

are the actual interfaces for the contributions made in this thesis as they have

been fully implemented in IBM DB2.

 The example represents a banking application which stores and manages

customer sensitive data. It is a classical 3-tier application. The first tier is the set

of bank employees using the application through a standard web browser. The

second tier is the application server running the actual application logic. We

assume that the application server’s IP address is 72.137.255.114. Lastly, the

third tier is the database where the application stores and manages customer

data. Table 6.3 summarizes the bank’s security policy which must be

implemented by the application.

Table 6.3 – Banking application security policy.

Requirement Rationale

1 All customer data must be protected against

online threats.

Protect against users browsing the database files

on the operating system – file system access.

2 All customer data must be protected against

offline threats.

Protect against loss or theft of storage media –

storage media access.

3 All customer data must be accessed through
the application only.

Protect against customer data changes outside
the application business logic – Application

bypass.

4 All application user activities must be tracked. Ensure application users are held accountable for
their actions – Loss of user identity.

5 All customer data must be accessed on a need-

to-know basis.

Protect against DBAs abusing their privileges –

Privilege abuse.

6 Customer service representatives and
telemarketers can see the data about all

customers.

Ensure customer data is accessed on a need-to-
know basis.

7 Tellers can see only the data for their own
branch customers.

Ensure customer data is accessed on a need-to-
know basis.

8 The customer account number is accessible

only by customer service representatives. All

other users can only see the last 4 digits. The
rest of the account number digits are masked

out for such users.

Ensure customer data is accessed on a need-to-

know basis.

 83

 As discussed earlier in this chapter, requirements 1 and 2 (file system access

and storage media access) are addressed through holistic database encryption.

Below is the actual SQL statement to create the banking application’s database:

 create database AppDB

 encrypt cipher AES key length 256

 master key label AppDB-MK;

 The SQL statement above instructs the database system to create a new

database called AppDB and ensure that data stored within that database is

automatically encrypted using AES with a key that is 256 bits in size. The master

key label AppDB-MK is a unique identifier for a key wrapping key that is stored

outside the database such as a Hardware Security Module (HSM). This master

key is used to protect the Data Encryption Key (DEK) that is stored inside the

database. The DEK is the key that is actually used to encrypt and decrypt the

data stored in the database. The database system automatically interacts with

the HSM each time it needs to encrypt or decrypt the DEK with the master key.

 To address requirements 3 and 4, we need to create a trusted context object

in the database to define a trust relationship between the database and the

application. Below is the actual SQL statement to create such trusted context.

 create trusted context AppCtx
 based upon connection using system authid AppUserID

 attributes (address ‘72.137.255.114’

 encryption ‘SSL’)

 default role DBCONNECT

 with use for Amy without authentication,

 Pat without authentication,

 Haytham without authentication

 enable;

 There are two parts to the SQL statement above. The first one is the definition

of a trust relationship between the database and an application that is identified

by a series of attributes, namely the application’s user ID (AppUserID), the IP

address from which the application initiates database connections

(72.137.255.114) as well as the nature of the protection over the communication

channel between the application and the database (SSL). Each time a database

 84

connection is attempted using AppUserID, the database system automatically

assesses the additional attributes of that incoming database connection. If the

incoming connection attributes fully match the attributes specified in the definition

of trusted context AppCtx, then that incoming connection automatically gains two

key capabilities that are not available to it otherwise. More specifically:

1. The incoming connection inherits the role DBCONNECT. This is the role

that actually authorizes the database connection to take place. In other

words, if the application administrator chooses to abuse the application

credentials to access the database directly, the database system will not

allow that database connection to take place. This is how requirement 3 is

addressed.

2. The incoming connection inherits the ability to switch user IDs on the

database connection established. In this specific example, the application

will be allowed to switch the current user on the established database

connection to users Amy, Pat and Haytham. So, each time the application

needs to issue database requests on behalf of any of these users, it will

first switch the current user on the connection to the desired user ID. This

is how requirement 4 is addressed.

 Requirements 5, 6, 7 and 8 are about direct data access. This is where row

permissions and column masks come into play. Once these are in place,

customer data will be accessed based on the bank’s application security policy

(requirements 6, 7 and 8). Additionally, DBAs cannot abuse their privileges to

access such customer data because row permissions and column masks are

enforced uniformly across all users regardless of their privilege or authority

(requirement 5). The row permissions and column masks SQL to implement

requirements 6, 7 and 8 has already been given in Section 3.7 in Chapter 3 and

will not be repeated here.

6.7 Conclusion
This chapter explored both the direct and indirect means through which the same

data in a database system can be accessed and the challenges they pose to

adhering to the basic tenets of zero-trust security. Privilege abuse, application

bypass and the loss of user identity in multitiered database environments

represent the key challenges for the direct access scenarios while file system

access and storage media access represent those for the indirect access use

 85

cases. The chapter then showed how the concepts introduced in this thesis

around holistic database encryption, trusted context’s conditional authorization,

trusted context’s user identity propagation, row permissions and column masks

come together to equip database systems with the controls necessary to help

enterprises effectively implement zero-trust security for their database

installations. Lastly, the chapter provided a concrete example showing the actual

interfaces for the concepts introduced in this thesis as implemented in a

commercial database system.

 86

Chapter 7: Conclusion and Future Work
This chapter summarizes the thesis and outlines potential future research

directions in database security. Row permissions, column masks, trusted

contexts and holistic database encryption are the key contributions made in this

thesis. They equip database systems with the controls necessary to help

enterprises effectively implement zero-trust database security. Data

classification, machine learning and homomorphic encryption are three potential

research directions for database security. Data classification would help facilitate

the adoption of concepts such as row permissions and column masks. Machine

learning can be used to detect unknown threats such as SQL injections.

Homomorphic encryption would remove any privacy concerns when adopting

cloud database services.

 87

7.1 Introduction
Database systems are at the core of an organization’s information system. They

store the organization’s most critical assets such as client personal data, patient

healthcare records, employee personal data, financial transactions, intellectual

property and are consequently the primary target of attacks by both insiders and

outsiders. They are also the subject of numerous compliance mandates such as

the European General Data Protection Regulation (GDPR), the US Health

Insurance Portability and Accountability Act (HIPAA) and the Payment Card

Industry Data Security Standard (PCI DSS). These compliance mandates

combined with the continuous increase in data breaches and the rise of internal

threats as a security concern equally important to external threats (Verizon, 2017)

have driven organizations towards zero-trust security to better protect their assets

and reduce risk.

7.2 Key Contributions
This thesis enhanced database systems to equip them with the necessary

controls to help enterprises effectively implement zero-trust database security.

The most noticeable contributions in this regard can be summarized as follows:

1. Holistic database encryption: This solution enables organizations to

effectively protect their data including the file system access and storage

media access challenges discussed in Chapter 6. Unlike other database

encryption methods (Rjaibi, 2018), this solution does not force

organizations to make any compromises on either the data side or the

security side. For example, unlike column encryption, holistic database

encryption does not negatively affect database performance because it

does interfere at all with query processing.

2. Row permissions and column masks: This solution enables enterprises to

ensure that data is accessed solely on a need-to-know basis. Unlike

previous methods (Rjaibi et al., 2020), this solution ensures that the

security policy is enforced uniformly across all users regardless of their

privilege or authority. This also addresses the privilege abuse challenge

discussed in Chapter 6. It also integrates thoughtfully with the rest of the

database tenets, so organizations do not have to make any compromises

when adopting the solution. For example, the solution harmonically

integrates with Materialized Query Tables (MQT) so organizations can still

 88

benefit from the MQTs performance boost without having to compromise

database security.

3. Trusted contexts: This solution provides two key benefits. First, it extends

database systems with the required controls to address the application

bypass and the loss of user identity challenges outlined in Chapter 6. Next,

it enables applications to safely delegate the fine-grained authorization

policy to the database system where it can be enforced more effectively.

Without trusted contexts, fine-grained authorization solutions such as row

permissions and column masks are of little value in a multitiered database

environments because the database system only sees a generic user ID

representing the application itself and not its end users.

 Throughout the research, emphasis has been on both innovation and

practicality. This is paramount for database systems as security innovations that

come at the expense of core database tenets such as performance, integrity,

compression or require changes to database applications are unlikely to be

adopted by a commercial database system, and even more unlikely to be used

in practice by clients. For example, a bank is unlikely to adopt a column masking

solution if that requires changing hundreds of applications. Similarly, the bank is

unlikely to enable database encryption if that causes a significant performance

degradation to a mission critical application or if encryption nullifies the benefits

of compression and forces the bank to purchase more storage hardware. In this

regard, the enhancements proposed in this thesis have been fully implemented

in several commercial database systems such as IBM DB2 and Informix, where

they are relied upon by thousands of banking, insurance, retail, government and

other types of organizations from around the world to protect their critical data

and meet their compliance mandates.

7.3 Future Directions
Database security needs to continue to evolve to facilitate the adoption of security

capabilities and address emerging challenges and use cases. In this context, data

classification, machine learning and homomorphic encryption are key future

directions for database security.

7.3.1 Data Classification
Data classification would facilitate the adoption of fine-grained authorization

solutions such as the row permission and column mask concepts introduced in

 89

this thesis. The concepts themselves are very easy to implement once the data

to protect is known. But in some cases, the nature of this data may not be known.

For example, consider a database inherited from another department or perhaps

from an acquisition. The data needs to be analyzed and classified so the sensitive

tables and sensitive columns are identified. While data classification tools exist

(IBM, 2019), they either take a long time to classify a large database or they are

forced to sample the data and create room for false negatives. Building data

classification in the database system itself and enable the database to do this

automatically and transparently as the data is ingested would help solve this

problem. Besides the expected challenges around how to perform data

classification in a way that minimizes both false positives and false negatives, it

is critical that this data classification does not compromise other key tenets such

as database performance.

7.3.2 Machine Learning
Machine learning would enable the database system to address another class of

external threats. For example, consider a classical 3-tier application. Suppose

that it is an internet facing application and that an external attacker exploits an

SQL injection vulnerability in the application. While an SQL injection is an

application problem (as opposed to a database problem), the attacker can still

compromise the database by fooling the application into executing unintended

SQL statements such as retrieving the content of the application’s users table or

dropping actual database tables. In this case, the database system cannot figure

out that it is being attacked since the requests are coming from a legitimate

application which holds all the proper privileges to execute the requests it issued.

Machine learning can be used to enable the database system to build a model of

the database and user activities so that deviations from such model can be

detected. For example, if the application suddenly starts downloading massive

amounts of data, that may be a sign of an SQL injection attack. Besides the

expected challenges around what type of machine or deep learning models are

more effective for a database system, the solution must not compromise

database performance during model creation or subsequent online updates of

such model. While anomaly detection tools based on machine learning exist (Adir

et al., 2017), they often lack visibility into full database activities. Therefore,

implementing such capability in the database system itself would be more

effective as the database system has full visibility into all the user activities it

 90

processes.

7.3.3 Homomorphic Encryption
Homomorphic encryption would allow enterprises to take full advantage of cloud

computing. For example, cloud database services relieve enterprises from the

burden of deploying, configuring, patching, upgrading, scaling, backing up and

recovering database systems. However, despite these significant gains

enterprises are still reluctant to adopt these database services. This is due to

security concerns around storing sensitive data in the cloud. While virtually all

cloud vendors provide encryption solutions for their database services, the mere

fact that data is encrypted on the cloud vendor premises means that there is a

time at which that sensitive data exists in clear text and may be abused by a

malicious entity. The ultimate solution would be to ensure that data is encrypted

on premises with keys managed by the client also on premises before it is

ingested into the cloud database service. The challenge would then be to enable

the database system to perform queries over the data without having to decrypt

it first. This is where homomorphic encryption may be able to help. The idea

would be to encrypt the data in such a way that the database system can evaluate

queries over the encrypted data directly and still return the same results as if the

evaluation were done over clear text data. While some research solutions exist

(Popa et al., 2011), they tend to restrict the type of SQL that can be executed

over the encrypted data. Clearly more research is needed here to ensure that the

benefits of homomorphic encryption does not come at the expense of key

database tenets such as functionality and performance.

7.4 Conclusion
This chapter summarized the thesis and discussed potential future research

directions in database security. Row permissions, column masks, trusted

contexts and holistic database encryption are the key contributions to the

database security field made in this thesis. These enhancements equip database

systems with the controls necessary to help enterprises effectively implement

zero-trust database security and meet security and privacy compliance

mandates. Data classification, machine learning and homomorphic encryption

are three potential research directions for database security. Data classification

would help facilitate the adoption of concepts such as row permissions and

column masks by automatically identifying where sensitive data resides so those

 91

constructs can be applied to the appropriate tables and columns. Machine

learning can be used to detect unknown threats such as SQL injections and would

equip database systems with an additional layer of defense. Homomorphic

encryption would remove any privacy concerns when adopting cloud database

services and permit organizations to fully benefit from cloud computing.

 92

References
Elmasri, R., Navathe, S. (2010). Fundamentals of Database Systems. 6th edition,

Addison-Wesley.

Rjaibi, W., Bird, P. (2004). ‘A Multi-Purpose Implementation of Mandatory Access

Control in Relational Database Management Systems’. In Proceedings of the

International Conference on Very Large Data Bases (VLDB).

Rjaibi, W. (2004). ‘An introduction to multilevel secure relational database

management systems’. In Proceedings of the conference of the Centre for

Advanced Studies on Collaborative research (CASCON).

Gilman, E., Barth, D. (2017). Zero Trust Networks: Building Secure Systems in

Untrusted Networks. O’Reilly Media.

Voigt, P., von dem Bussche, A. (2017). The EU General Data Protection

Regulation (GDPR): A Practical Guide. Springer.

Chuvakin, A., Williams, B. (2009). PCI Compliance: Understand and Implement

Effective PCI Data Security Standard Compliance. Elsevier.

Massachusetts Institute of Technology (MIT) (2019). Kerberos: The Network

Authentication Protocol. https://web.mit.edu/kerberos/. [Online; accessed 04-

January-2020].

Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan S., Rjaibi, W. (2005).

‘Extending relational database systems to automatically enforce privacy policies’.

In Proceedings of the International Conference on Data Engineering (ICDE).

Zaytsev, A., Malyuk, A., Miloslavskaya, N. (2017). ‘Critical Analysis in the

Research Area of Insider Threats’. In Proceedings of the IEEE 5th International

Conference on Future Internet of Things and Cloud (FiCloud).

Ghafir, I., Saleem, J., Hammoudeh, M., Faour, H., Prenosil, V., Jaf, S., Jabbar,

S., Baker, T. (2018). ‘Security threats to critical infrastructure: the human factor’.

The Journal of Supercomputing, Volume 74, Issue 10, Springer.

Gaetjen, S., Knox, D., Maroulis, W. (2015). Oracle Database 12c Security.

McGraw-Hill Education.

Carter, P. (2018). Securing SQL Server: DBAs defending the database. Apress.

 93

Vertica (2019). https://www.vertica.com/documentation/vertica/. [Online;

accessed 04-January-2020].

Garbus, J. (2015). SAP ASE 16 / Sybase ASE Administration. SAP Press.

Chaudhuri, S., Dutta, T., Sudarshan, S. (2007). ‘Fine Grained Authorization

Through Predicated Grants’. In Proceedings of the International Conference on

Data Engineering (ICDE).

Chen, W., Barkai, B., DiPietro, J., Langman, V., Perlov, D., Riah, R., Rozenblit,

Y., Santos, A. (2014). Deployment Guide for Infosphere Guardium. IBM

Redbooks.

Imperva (2019). https://www.imperva.com/. [Online; accessed 04-January-2020].

Walker-Roberts, S., Hammoudeh, M., Dehghantanha, A. (2018). ‘A Systematic

Review of the Availability and Efficacy of Countermeasures to Internal Threats in

Healthcare Critical Infrastructure’. IEEE Access, 6, pp.25167-25177.

Walker-Roberts, S., Hammoudeh, M. (2018). ‘Artificial Intelligent Agents as

Mediators of Trustless Security Systems and Distributed Computing Application’.

In: Parkinson S., Crampton A., Hill R. (eds) Guide to Vulnerability Analysis for

Computer Networks and Systems. Computer Communications and Networks.

Springer, Cham.

Goldsteen, A., Kveler, K., Domany, T., Gokhman, I., Rozenberg, B., Farkash, A.

(2015). ‘Application-Screen Masking: A Hybrid Approach’. IEEE Software,

Volume 32, Issue 4.

Thanopoulou, A., Carreira, P., Galhardas, H. (2012). ‘Benchmarking with TPC-H

on Off-the-Shelf Hardware: An Experiments Report’. In Proceedings of the

International Conference on Enterprise Information Systems.

Alloghani, M., Al-Jumeily, D., Hussain, A., Mustafina, J., Baker, T., Aljaaf, A.

(2020). ‘Implementation of Machine Learning and Data Mining to Improve

Cybersecurity and Limit Vulnerability to Cyber Attacks’. In: Nature-Inspired

Computation in Data Mining and Machine Learning. Springer, Cham.

Aljawarneh, S., Aldwairi, M., Bani Yassein, M. (2018). ‘Anomaly-based intrusion

detection system through feature selection analysis and building hybrid efficient

model’. Journal of Computational Science, Volume 25, Elsevier.

 94

Aldwairi, M., Alsalman, R. (2012). ‘Malurls: a lightweight malicious website

classification based on url features’. Journal of Emerging Technologies in Web

Intelligence, Volume, Issue 2, Academy Publisher.

Benfield, B., Swagerman, R. (2001). ‘Encrypting Data Values in DB2 Universal

Database’. IBM DeveloperWorks.

Boobal G. (2018). ‘TDE Tablespace Encryption’. http://www.dba-

oracle.com/t_adv_plsql_tde_tablespace.htm. [Online; accessed 04-January-

2020].

Zilio, D., Rao, J., Lightstone, S., Lohman G. (2004). ‘DB2 Design Advisor:

Integrated Automated Physical Database Design’. In Proceedings of the

International Conference on Very Large Data Bases (VLDB).

IBM (2018). AIX Encrypted File System (EFS).

https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/devicemanagem

ent/encrypted_file_system.html. [Online; accessed 04-January-2020].

Microsoft (2018). Encrypted File System (EFS). https://docs.microsoft.com/en-

us/windows/win32/fileio/file-encryption. [Online; accessed 04-January-2020].

Gemalto (A Thales Company) (2018). Online Product Documentation.

https://safenet.gemalto.com/data-encryption/data-center-security/protect-file-

encryption-software/. [Online; accessed 04-January-2020].

Dufrasne, B., Brunson, S., Reinhart, A., Tondini, R., Wolf, R. (2016). IBM DS8880

Data-at-rest Encryption. IBM Redbooks.

Grover, L. (1996). ‘A fast quantum mechanical algorithm for database search’. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing,

Oracle (1992). Trusted Oracle Administrator’s Guide. Oracle Product

Documentation.

Oracle (2019). Online Product Documentation,

https://docs.oracle.com/cd/B19306_01/network.102/b14267/intro.htm. [Online;

accessed 04-January-2020].

Informix (1993). Informix OnLine/Secure Administrator’s Guide. Informix Product

Documentation.

 95

Rayns, C., Behrends, D., Butler, R., Larsen, K., Lin, M., Yuki, G. (2007). Securing

DB2 and Implementing MLS on z/OS. IBM Redbooks.

Winnard, K., Biondo, J., Figueiredo, W., Hering, P. (2015). IBM z/OS V2R2

Security. IBM Redbooks.

Bertino, E., Castano, S., Ferrari, E. (2001). ‘On specifying security policies for

web documents with an xml-based language’. In SACMAT, pages 57–65.

Bertino, E., Ferrari, E. (2002). ‘Secure and selective dissemination of xml

documents’. ACM Trans. Inf. Syst. Secure., 5(3):290–331.

Halcrow, M. (2007). ‘eCryptfs: A Stacked Cryptographic File System’.

https://www.linuxjournal.com/article/9400. [Online; accessed 04-January-2020].

Vormetric (A Thales Company) (2018). Online Product Documentation.

https://www.thalesesecurity.com/products/data-encryption/vormetric-

transparent-encryption. [Online; accessed 04-January-2020].

Bhatti, R., Bertino, E., Ghafoor, A., Joshi, J. (2004). ‘Xml-based specification for

web services document security’. In IEEE Computer, volume 4 of 37, pages 41–

49.

Zhang, Z., Rjaibi, W. (2006). ‘Inter-node Relationship Labelling: A Fine-Grained

XML Access Control Implementation Using Generic Security Labels’. In

Proceedings of the International Conference on Security and Cryptography

(SECRYPT).

Clark, J., DeRose, S. (2006). Language (XPath) version 1.0.

http://www.w3.org/TR/xpath. [Online; accessed 04-January-2020].

Gartner (2019). https://www.gartner.com/en/newsroom/press-releases/2018-08-

15-gartner-forecasts-worldwide-information-security-spending-to-exceed-124-

billion-in-2019. [Online; accessed 04-January-2020].

Centrify (2019). Online Product Documentation.

https://www.centrify.com/education/what-is-zero-trust-privilege. [Online;

accessed 04-January-2020].

Rjaibi, W., Hammoudeh, M. (2019). ‘Towards Zero-Trust Database Security Part

1’. IEEE Future Directions Newsletter: Technology Policy & Ethics, Issue

(September 2019).

 96

Rjaibi, W., Hammoudeh, M. (2019). ‘Towards Zero-Trust Database Security Part

2’. IEEE Future Directions Newsletter: Technology Policy & Ethics, Issue

(December 2019).

Verizon (2017). Data Breach Investigations Report.

https://www.knowbe4.com/hubfs/rp_DBIR_2017_Report_execsummary_en_xg.

pdf. [Online; accessed 04-January-2020].

Chen, W., Rytir, I., Read, P., Odeh, R. (2008). DB2 Security and Compliance

Solutions for Linux, UNIX, and Windows. IBM Redbooks.

Rjaibi, W. (2018). ‘Holistic Database Encryption’. In Proceedings of the

International Conference on Security and Cryptography (SECRYPT).

The Ponemon Institute (2019). https://www.ibm.com/security/data-breach.

[Online; accessed 04-January-2020].

Rjaibi, W., Hammoudeh, M. (2020). ‘Enhancing and Simplifying Data Security

and Privacy for Multitiered Applications’. Journal of Parallel and Distributed

Computing, Special Issue on Enabling Technologies for Energy Cloud.

IBM (2019). IBM Security Guardium Analyzer Online Product Documentation.

https://www.ibm.com/ca-en/marketplace/guardium-analyzer. [Online; accessed

04-January-2020].

Adir, A., Aharoni, E., Greenberg, L., Miroshnikov, R., Rozenberg, B. Sofer, O.

(2017). ‘Cyber Security Event Detection’. US Patent 10397259.

Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H. (2011). ‘CryptDB:

Protecting Confidentiality with Encrypted Query Processing’. In Proceedings of

the ACM Symposium on Operating Systems Principles (SOSP).

Chandra, S., Paira, S., Alam, S., Sanyal, G. (2014). ‘A comparative survey of

Symmetric and Asymmetric Key Cryptography’. In Proceedings of the

International Conference on Electronics, Communication and Computational

Engineering.

Shor, P. (1997). ‘Polynomial time algorithms for prime factorization and discrete

logarithms on a quantum’. In SIAM J. Sci. Statist. 26 (1997).

Bruno N., Kwon, Y., Wu, M. (2014). ‘Advanced Join Strategies for Large-Scale

Distributed Computation’. In Proceedings of the Very Large Data Bases (VLDB)

 97

Endowment, Vol. 7, No. 13.

Balkesen, C., Alonso, G., Teubner, J., Ozsu, M. (2013). ‘Multi-Core, Main-

Memory Joins: Sort vs. Hash Revisited’. In Proceedings of the Very Large Data

Bases (VLDB) Endowment, Vol. 7, No. 1.

Bruni, P., Harrison, K., Oldham, G., Pedersen, L., Tino, G. (2007). DB2 9 for z/OS

Performance Topics. IBM Redbooks.

 98

Appendix A: Fine-Grained Authorization Portfolio

Table A.1 – Research Papers

ID Publication Key Contributions

1 Enhancing and Simplifying Data
Security and Privacy for Multitiered
Applications

Journal of Parallel and Distributed

Systems, Special issue on Enabling

Technologies for Energy Cloud

(Also, Chapter 3 of this thesis)

- Design of a holistic fine-grained database authorization

solution which allows organizations to reduce the

complexity of their applications and improve overall
database security.

- Enable organizations to adhere to zero-trust security.

- Implementation of the solution in IBM DB2 for Linux,
Unix and Windows, IBM DB2 for z/OS and IBM for DB2

for iSeries.

2 Extending Relational Database
Systems to Automatically Enforce
Privacy Policies

International conference on Data

Engineering (ICDE)

- Design of a solution which extends database systems to

be able to automatically enforce privacy policies.

- Enable organizations to meet privacy requirements for
data stored in database systems.

Extending Relational Database Systems to Automatically Enforce Privacy
Policies

Rakesh Agrawal† Paul Bird‡ Tyrone Grandison† Jerry Kiernan† Scott Logan‡ Walid Rjaibi‡

† IBM Almaden Research Center ‡ IBM Toronto Lab
650 Harry Road, San Jose, CA, USA 8200 Warden Ave.,Markham, ON, Canada

{ragrawal, tyroneg, jkiernan}@us.ibm.com {pbird, silogan, wrjaibi}@ca.ibm.com

Abstract

Databases are at the core of successful businesses. Due
to the voluminous stores of personal data being held by
companies today, preserving privacy has become a crucial
requirement for operating a business. This paper proposes
how current relational database management systems can
be transformed into their privacy-preserving equivalents.
Specifically, we present language constructs and implemen-
tation design for fine-grained access control to realize this
goal.

1. Introduction

The pervasive use of computing technology and the in-
creased reliance on information systems have created a
heightened awareness and concern about the storage and use
of private information. This worldwide phenomenon has
ushered in a plethora of privacy-related guidelines and leg-
islations, e.g. the OECD Privacy Guidelines in Europe, the
Canadian Privacy Act, the Australian Privacy Amendment
Act, the Japanese Privacy Code, the Health Insurance Porta-
bility and Accountability Act (HIPAA), and Gramm-Leach-
Bliley Consumer Privacy Rule. Compliance with these leg-
islation has become an important corporate concern. The
current methods employed to address the disclosure com-
pliance problem involve training individuals to be cognizant
of the various regulations and changing organizational pro-
cesses and procedures. However, these approaches are only
a partial solution and need to be augmented with technology
support.
We present constructs for imbuing relational database

systems with fine grained access control (FGAC) and show
how they can be used to enforce disclosure control enun-
ciated in the vision for Hippocratic databases [1]. These
constructs have been designed to be integrated with the rest

of the infrastructure of a relational database system. We
also discuss the implementation of the proposed FGAC con-
structs, building upon the ideas from [6]. Finally, we show
how privacy policies written in a higher-level specification
language such as P3P [3] can be algorithmically translated
into the proposed constructs.
The users of relational databases are requiring that an

FGAC implementation meets the following desiderata:

• The implementation must solve the problem within the
database itself without application changes or applica-
tion awareness of the implementation.

• The implementation must ensure that all users of the
data are covered, regardless of how the data is ac-
cessed.

• The implementation must minimize the complexity
and maintenance of the FGAC policies.

• The implementation must provide the ability to control
access to rows, columns, or cells as desired.

Traditional methods of database access control have re-
lied upon the use of statically defined views, which are logi-
cal constructs imposed over database tables that can alter or
restrict the data seen by a user. Using predefined views as
the method for FGAC works well only when the number of
different restrictions is few or the granularity of the restric-
tions is such that it affects large, easily identified groups of
users. When these conditions are not true, view definitions
may become complex in an effort to accommodate all the
restrictions in one view. This complexity can strain system
limits and can make maintenance of the views difficult.
Consider the use of a large number of views, each one

implementing restrictions for a specific set of users. One
issue that arises immediately is how to correctly route user
requests to the view that is appropriate to them. Often, the
solution chosen is to resolve the request in the application,

not in the database. Moreover, if a user can bypass the view
when accessing data, for example by having direct access to
the underlying tables, then the restrictions are not enforced.
Given the shortcomings of the traditional methods of im-

plementing FGAC, some database vendors have proposed
solutions that do not rely on the use of views to control ac-
cess to tabular data. For instance, the Oracle Virtual Private
Database [5, 7] solution allows users to define a security
policy, which is a function written in PL/SQL that returns
a string representing a predicate, and to attach the security
policy to a table. When that table is accessed, the secu-
rity policy is automatically enforced. Sybase Row Level
Access Control [9] allows users to define access rules that
apply restrictions to retrieved data. The related work sec-
tion further discusses the Oracle and Sybase approaches.
Microsoft SQL Server primarily supports traditional view
based access control, though they have a feature called row
level permissions. However, row level permissions seem
to be usable only with table hierarchies. In DB2, support
for FGAC is currently provided through traditional mecha-
nisms based on views, triggers and special registers.
The remainder of this paper is organized as follows. Sec-

tion 2 proposes FGAC constructs that allow restrictions to
be expressed on database accesses. Aside from row and
column level restrictions that respectively restrict the set of
rows and columns of a table, cell level restrictions can be
specified to limit access to specific fields of a row. Sec-
tion 3 describes how restrictions expressed in terms of the
proposed constructs can be enforced using dynamic views.
Section 4 presents an algorithm for translating a P3P pri-
vacy policy into the proposed FGAC constructs. Section 5
discusses related work, and Section 6 presents concluding
remarks. Appendix A argues for extending the function-
ality of current relational database systems with cell level
access control.

2. Language Constructs

We provide constructs that allow restrictions to be spec-
ified on access to data in a table at the level of a row, a col-
umn, or a cell (i.e., individual column-row intersections).
Privacy policies specified in high-level languages such as
P3P can be translated into these constructs, or one could
specify the policy directly using these constructs.
The proposed facility is complimentary to the current ta-

ble level authorization mechanisms provided by commer-
cial database systems using the grant command [2]. While
grant controls whether a user can access a table at all, the
proposed constructs define the subset of the data within a
table that the user is allowed to access. Conceptually, a re-
striction defines a view of the table in which inaccessible
data has been replaced by null values. As discussed in [6], it
is possible to use either “table semantics” or “query seman-

create restriction restriction-name
on table-x
for auth-name-1 [except auth-name-2]
(((to columns column-name-list)

| (to rows [where search-condition])
| (to cells (column-name-list [where search-condition])+)

)
[for purpose purpose-list]
[for recipient recipient-list]

)+
command-restriction

Figure 1. Fine grained restriction syntax

tics”. With query semantics, if all the values in a row are
hidden by a restriction, then the row is omitted altogether
from the view. With table semantics, the row would instead
be retained.
Figure 1 gives the syntax of a fine grained restriction

command. It states that those in auth-name-1 except those
in auth-name-2 are allowed only restricted access to table-x.
The keywords public (i.e., all users), group, role, and user
can be used to qualify the authorized names. Table-x can be
any table expression.
A restriction can be specified at the level of a column

(Section 2.1), a row (Section 2.2), or a cell (Section 2.3).
More than one restriction can be specified on a table for the
same user (Section 2.4).
A restriction may additionally specify purposes and/or

recipients [1, 3, 6] for which the access is allowed. If no
purpose or recipient is specified, then the restriction applies
to all purposes and recipients respectively. If a purpose or
recipient is specified, the user’s access is limited to only the
specified purpose-recipient combinations.
Akin to the database system variable user that can be

referenced in queries and returns the id of the user issuing
the query, the new system variables purpose and recipient
return the list of purposes and recipients from the current
query context [6]. These values in turn determine the re-
strictions for the current query.
The command-restriction that appears as the last element

of the syntax has the following form and states that access
can be restricted to any combination of select, delete, insert,
or update commands:

restricting access to (all | (select | delete | insert | update)+)

The discussion below will use, for illustration, the Cus-
tomer table with the following schema: Customer (id inte-
ger, name char(32), phone char(32)).

2.1 Column Restriction

A column restriction specifies a subset of the columns in
table-x that auth-name-1 is allowed to access. The follow-
ing restriction, named r1, ensures that only the id column of
Customer is accessed by any database user:

create restriction r1
on Customer
for public
to columns id
restricting access to all

The restriction r2 below ensures that members of the
account group and user Bob have only select access to
columns name and phone.

create restriction r2
on Customer
for group acct, user Bob
to columns name, phone
restricting access to select

2.2 Row Restriction

A row restriction gives the subset of rows in table-x that
auth-name-1 is allowed to access. This subset is specified
using a search-condition over table-x. The restriction r3 be-
low ensures that every access to Customer is qualified by
the predicate, name = user.

create restriction r3
on Customer
for public
to rows where name = user
restricting access to all

If user Bob issues select * from Customer, he would
see id, name and phone for those rows where name equaled
Bob.

2.3 Cell Restriction

A cell restriction defines the row-column intersections
that auth-name-1 is allowed to access. It is possible to
specify multiple column-name lists, each possibly anno-
tated with a search-condition. A search-condition is a cor-
related subquery with an implicit correlation variable t de-
fined over the tuples of table-x. Access to the columns in
column-name-list for each individual row identified by t
is conditionally granted depending upon the result of the
search condition. If no search-condition is given, then ac-
cess is granted to all column values in column-name-list in
table-x. If the search condition ignores correlation variable,
then access is granted or denied to all columns values in

column-name-list in table-x, depending upon the result of
the search-condition.
The following is an example of a cell restriction used to

enforce individual user’s privacy preferences expressed as
opt-in/out choices. Assume that for the purpose of market-
ing, Bob is allowed to see name, but his access to phone is
allowed only if the user has opted-in to revealing her phone
number.

create restriction r4
on Customer for user Bob,
to cells name,

(phone where exists (
select 1
from SysCat.Choices Customer c
where c.ID = Customer.ID and c.C1 = 1))

for purpose marketing
for recipient others

restricting access to select

The above restriction specifies cell restrictions for two
column-name-lists: The first list contains the name column,
and the second contains the phone column. The restriction
allows Bob access to name, only if the variable purpose in-
cludes marketing, and recipient includes others. Otherwise,
all values of the name column will be null for Bob.
The second list of columns has a search-condition asso-

ciated with it since access to phone is dependent upon indi-
vidual user choices. The search-condition comprises an ex-
istential subquery that uses the implicit correlation variable
Customer. For each row in Customer, the subquery verifies,
using the SysCat.Choices Customer table that stores indi-
vidual opt-in/out choices, whether the user has opted-in for
the disclosure of her phone number (represented by a col-
umn value of 1).

2.4 Combining Multiple Restrictions

If multiple restrictions have been defined for a user u and
a table T , then u’s access to T is governed by the combina-
tion of these restrictions.
Assume initially that a user associates with a query a sin-

gle purpose and a single recipient. We consider two design
choices for combining multiple restrictions:

• Intersection—User u is allowed access to data defined
by the intersection of all applicable restrictions. The
details are shown in Table 1.

• Union — User u is allowed access to data defined by
the union of all applicable restrictions. The details are
shown in Table 2.

If the commands specified in the command-restriction
clauses of the restrictions being combined are different, they

row column cell

row
The search-conditions of individual row
restrictions are and’ed together to define
the intersection of rows accessible to a
user.

The row restriction limits the rows ac-
cessible to the user. The column restric-
tion further limits the columns within the
rows accessible to the user.

The row restriction limits the rows acces-
sible to the user. Within each row, the
cell restriction further limits the access
to the cells that qualify the cells’ search-
condition.

column
The user’s access is limited to those
columns that appear in both of the col-
umn restrictions.

Column and cell restrictions intersect
to limit access to only those columns
that appear in both the restrictions. In
addition, the cell restriction’s search-
condition further limits accessible cells
within a column.

cell

The search-conditions are and’ed to-
gether and the user is allowed access to
a cell if the composite condition is satis-
fied for the cell. The value of the com-
posite condition for a cell that does not
appear in both the restrictions is false.

Table 1. Combining restrictions with intersection

row column cell

row
The search-conditions of individual row
restrictions are or’ed together to define
the union of rows accessible to a user.

The user is given access to all the cells
for any row that satisfies the row restric-
tion. Additionally, the user is allowed ac-
cess to all the cells in any of the columns
that satisfies the column restriction, ir-
respective of whether the corresponding
rows satisfy the row restriction.

The user is given access to all the cells
in any of the rows that satisfy the row
restriction. Additionally, the user is al-
lowed access to all other cells that satisfy
the cell restriction’s search-condition, ir-
respective of whether the corresponding
rows satisfy the row restriction.

column
The user is allowed access to a column
if it appears in either of the two column
restrictions.

The user is given access to all the cells
in any column appearing in the column
restriction, regardless of whether the cell
restriction is satisfied for these cells. For
cells in a column for which the column
restriction does not apply, access is given
if the cell restriction is satisfied.

cell
The search-conditions are or’ed together
and the user is allowed access to a cell
if the composite condition is satisfied for
the cell.

Table 2. Combining restrictions with union

Policy Translator

Query Rewriting

FGAC
Restrictions

Privacy
Policy User Query

with purpose
& recipient

Privacy Catalogs

RDBMS

PR PT

Figure 2. Implementation architecture

are respectively and’ed or or’ed depending upon the choice
of intersection or union semantics.
Multiple restrictions can be combined in any order, both

with intersection and union semantics. With the intersec-
tion semantics, the user’s access to data decreases as addi-
tional restrictions are applied. Conversely, with union se-
mantics, access to data increases as additional restrictions
are applied.
We prefer intersection semantics over union since addi-

tional restrictions should intuitively decrease a user’s access
to information.1
Finally, if a query is annotated with multiple purpose-

recipient pairs, instead of a single pair, then restrictions gov-
erning access to any of the pairs become relevant for the
query. These restrictions are then combined as above. Note
that once a user’s access to a table has been restricted, the
user can only access the data allowed for the purposes and
recipients specified in the restrictions.

3. Implementation

We next present a design for implementing the proposed
constructs, building upon the ideas presented in [1, 6]. In
this and the remainder of the paper, we focus on cell re-
strictions limited to select statement access. Figure 2 shows
the overview of the design. The policy translator accepts a
privacy policy (written in, for example, P3P) and metadata

1It is conceivable to use mixed modes for combining restrictions. For
example, intersection could be used to combine multiple row restrictions
while union could be used to combine multiple column or cell restric-
tions. However, the semantics of such combinations can become quite
complex as the restriction imposed by a combination may no longer be
order-independent.

stored in privacy catalogs and generates cell restrictions that
implement the policy. The schema of the privacy metadata
catalogs shown in Figure 2 used to drive the translation of
P3P privacy policies into cell level restrictions are given be-
low.

PR (purp-recip char(18),
p3ptype char(32),
choice tabname char(32),
choice colname char(32))

PT (p3ptype char (32), tabname char(32), colname char(32))

Table PR stores, for each purpose, recipient and p3p data
type pair, the (table name-column name) pair that records
individual user opt-in/out choice, should any choice be
available for that combination. Table PT stores, for each
P3P data type, the table names and column names which
store values of these P3P types.
Figure 3 gives the algorithm used for enforcing the fine

grain restrictions. For ease of exposition, we assume there is
a single purpose-recipient pair associated with a query and
there is at most a single restriction which is relevant for the
query. The enforcement algorithm combines the restrictions
relevant to individual queries annotated with purpose and
recipient information and transforms the user’s query into
an equivalent query over a dynamic view that implements
the restriction.
In detail, Line 1 iterates over each table reference t in

a query Q. Line 2 accesses metadata to determine if there
is a restriction r governing the usage of t by user u who is
submitting the query Q. If no such restriction exists, then t
remains unmodified in Q. Otherwise, Lines 3 and 4 replace
each reference to table t in query Q with a reference to a
dynamic view v.
The generation of the dynamic view v is implemented in

Lines 5 through 25. The view v is a select statement which
conditionally projects each column c 2 t. Line 7 searches
for a column reference to c 2 r. If no such reference exists
with the purpose/recipient of queryQ, then the user u is not
allowed access to c and Line 8 thus projects a null value
for all values of c. Otherwise, Line 10 searches for a where
clause associated with c 2 r. If no such clause exists, then
u is granted unconditional access to c. Otherwise, Line 15
outputs the condition of the where clause into a SQL case
statement which verifies the condition before outputting the
value of c (on Line 18). If the condition is false, access to
the column value is denied and Line 19 outputs a null value
for c.

4. Translating Privacy Policies

It is expected that the privacy policies will likely be writ-
ten in some high-level policy language. The following illus-

1 for each table reference t in query Q do begin
2 if (exists a restriction r pertaining to t for Q) then begin
3 create a dynamic view v 2 Q over t
4 replace each reference to t 2 Q with a reference to v 2 Q

// create the dynamic view v using
// the following print statements
//

5 print ”select”
6 for each column c 2 t do begin

// cp, cr are the purposes, recipients
// of column c in restriction r
// Qp, Qr are the purpose, recipient of query Q
//

7 if (c 62 r|Qp 2 cp ^Qr 2 cr

// c isn’t included in the restriction r
// access to c is thus prohibited
//

8 print ”null”
9 else begin

// The whereClause function returns
// the predicate associated with c
// that is specified in the restriction
//

10 let w = whereClause(c)
11 if w = null then

// There is no “where” condition
// governing the use of c 2 r, thus access
// to all column values is granted unconditionally
//

12 print c.colname
13 else begin

// Implement the “where” condition
// using a SQL case statement to grant
// only conditional access to the column c
//

14 print ”case when exists (”
15 print w.condition
16 print ”)”
17 print ”then”
18 print c.colname
19 print ”else null end as”
20 print c.colname
21 end
22 end
23 end
24 print ”from”
25 print t.tablename
26 end

Figure 3. Algorithm for enforcing fine grained
cell level restrictions using a Hippocratic
database system

trates the basic syntax of the P3P policy specification lan-
guage [3].

<POLICIES> ...
<POLICY name = "Policy_Name1" > ...
<STATEMENT>
...
<PURPOSE>
stated-purpose
[required = ("always"|"opt-in"|"opt-out")]

</PURPOSE>
<RECIPIENT>
stated-recip
[required = ("always"|"opt-in"|"opt-out")]

</RECIPIENT>
<RETENTION> retention_val </RETENTION>
<DATA GROUP>
<DATA ref = data-ref-val>
...
</DATA GROUP>

</STATEMENT>
</POLICY>
<POLICY>
...
</POLICY>
...
</POLICIES>

The process of transforming a policy like the one above
into fine grained restrictions involves: (1) parsing the policy
to extract the list of statements, (2) mapping data abstrac-
tions into their implementation specific equivalents, e.g. in
the above specification this would mean mapping data-ref-
val to its corresponding table name(s) and column name(s),
(3) structuring the choice tables which record individual
user opt-in/out choices (in some cases, this may not be nec-
essary since there may be no such choices), and (4) gener-
ating the restriction statements. Assuming that data-ref-val
maps to columns A and B of table T, the above abstract
specification would lead to the following restriction being
constructed:

create restriction Policy Name1
on T
for public
to cells A,B

[where opt-in-out-conditions]
for purpose stated-purpose
for recipient stated-recip

restricting access to select

Figure 4 is a detailed example of a privacy policy, for a
fictional Healthcare provider.
The metadata contains the information needed to asso-

ciate ”#personal” (personal information) and ”#medical”
(medical information) with database tables which store this
information. Personal information maps to the name, SSN,
address, email and DOB fields of the Patients table, while
medical information maps to the xray, pharmacy, family,
appointment and lifestyle fields of the Patients table. Thus,

...
<!-- Statement1 -->
<STATEMENT>
<CONSEQUENCE>
Encodes that personal and medical information
can be accessed for emergency purposes
by ourselves
</CONSEQUENCE>
<PURPOSE>
<other-purpose>
Emergency

</other-purpose>
</PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref = "#personal"/>
<DATA ref = "#medical">
<CATEGORIES>
<health/>
</CATEGORIES>
</DATA>
</DATA-GROUP>
</STATEMENT>

<!-- Statement2 -->
<STATEMENT>
<CONSEQUENCE>
Encodes that we and drug companies
with the same data usage policies
can access personal and medical information
for new_drug_research on an opt-out basis
</CONSEQUENCE>
<PURPOSE><develop/></PURPOSE>
<RECIPIENT>
<ours required="opt-out"/>
<same required="opt-out"/>
</RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref = "#personal"/>
<DATA ref = "#medical">
<CATEGORIES>
<health/>
</CATEGORIES>
</DATA>
</DATA-GROUP>
</STATEMENT>
...

Figure 4. A sample privacy policy written for
a health care provider

create restriction Statement1
on Patients
for public
to cells Name, SSN, Address, Email, DOB,

XRay, Pharmacy, Family,
Appointment, Lifestyle

purpose Emergency
recipient ours

restricting access to select

create restriction Statement2.1
on Patients
for public
to cells Name, SSN, Address, Email, DOB,

XRay, Pharmacy, Family,
Appointment, Lifestyle

where
exists (
select 1
from SysCat.Choices Patients cp
where cp.ID = Patients.ID
and cp.C1 = 1)

for purpose develop
for recipient ours

restricting access to select

create restriction Statement2.2
on Patients
for public
to cells Name, SSN, Address, Email, DOB,

XRay, Pharmacy, Family,
Appointment, Lifestyle

where
exists (
select 1
from SysCat.Choices Patients cp
where cp.ID = Patients.ID
and cp.C2 = 1)

for purpose develop
for recipient same

restricting access to select

Figure 5. Translation of the privacy policy in
Figure 4 into fine grained cell level restric-
tions

the P3P healthcare policy given in Figure 4 is translated into
the restrictions given in Figure 5.
For simplicity, the restrictions in Figure 5 assume that all

data types in a P3P statement are contained in a single table.
The Choices Patients table is created by the database

administrator to record individual opt-in/out decisions de-
scribed in the privacy policy. In Figure 5, C1 represents the
choice to allow Drug Research to see personal and medical
data if the drug research is being conducted by the health-
care company itself. Choice C2 is the option to allow usage
of the personal and medical data for drug research by other
healthcare companies having the same privacy policy as this
company. The example illustrates the basic steps involved
in the translation process.
Figure 6 gives the pseudo-code showing the steps in-

volved in transforming P3P policy into our proposed
constructs. A unique restriction name, needed for the
command, is generated on Line 5. Line 7 uses the
mapP3PStatementToTable function to recover the table
name which stores the information described by the data
types in the P3P statement. This metadata has been pop-
ulated by the database administrator. On Line 8, the the
restriction is set to public to apply to all users. Line 10 uses
the mapP3PDataTypeToColumns function to retrieve the
column names that store information described by the P3P
data types in the statement. Again, this information has
been prepared and supplied by the database administrator
and stored in metadata tables.
The function mapP3PPurposeToChoiceTable accepts

a statement id and returns the table storing individ-
ual user choices for this statement. The function
mapP3PPurposeToChoiceColumn accepts a statement-
purpose pair and returns the column in the choice table
which records the corresponding users’ choices. Both these
functions are driven from metadata.

5. Related Work

5.1 Oracle

Oracle has introduced a fine-grained access control ca-
pability via their security policy concept [5, 7] which, once
defined on a table or view, modifies any future query against
that table by adding a predicate into the query. In essence,
they have allowed row restrictions traditionally handled by
views to be dynamically added to queries [8].
The fundamental difference between the Oracle ap-

proach and the one in this paper is that Oracle modifies the
query by adding predicates while the approach in this paper
leaves the query alone and effectively modifies the table be-
ing accessed by injecting a dynamically created view of the
table between the query and the target table.

1 for each statement s in policy do begin
2 for each purpose p in s do begin
3 for each recipient r in s do begin

4 print ”create restriction ”
5 print generate-unique-restriction-name()
6 print ” on table ”
7 print mapP3PStatementToTable(s)
8 print ” for public ”
9 print ” to cells ”
10 print mapP3PDataTypeToColumns(s)

11 if (p.required != always) then
12 print ”where exists (select 1 from ”
13 + mapP3PPurposeToChoiceTable(s)
14 + ” p where p.ID = ”+ mapP3PStatementToTable(s) +”.ID
15 and ”+ mapP3PPurposeToChoiceColumn(s,p) + ”= 1))”

16 if (r.required != always) then
17 print ”and exists (select 1 from ”
18 + mapP3PRecipientToChoiceTable(s)
19 + ” r where r.ID = ”+ mapP3PStatementToTable(s) +”.ID”
20 + ”and ”+ mapP3PRecipientToChoiceColumn(s, r) + ”= 1))”
21 print ”for purpose” + p.name
22 print ”for recipient” + r.name
23 end
24 end
25 end
26 print ”restricting access to select”

Figure 6. Algorithm for translating a P3P pri-
vacy policy into fine grained cell level restric-
tions

The Oracle approach shares the following advantages
with our design:

• It is pervasive to all users of the table.

• It does not require application modification.

• It does not require a large number of statically defined
views.

Its primary disadvantages are:

• It requires user programming of a strictly defined
“predicate producing” procedure in order to implement
a security policy.

• It does not address column or cell restrictions.

5.2 Sybase

Sybase Adaptive Server version 12.5 has introduced a
feature called row level access control [9] that enables the
database owner or table owner to restrict access to a table’s

rows by defining access rules and binding those rules to the
table. Access to data can be further controlled by setting
application contexts and creating login triggers.
Access rules apply restrictions to retrieved data, enforced

on select, update and delete operations. Adaptive Server
enforces the access rules on all columns that are read by
a query, even if the columns are not included in the select
list. Using access rules is similar to using views, or using
an ad hoc query with where clauses. The query is compiled
and optimized after the access rules are attached, so it does
not cause performance degradation. Access rules provide
a virtual view of the table data, the view depending on the
specific access rules bound to the columns.
Our proposal differs from the Sybase row level access

control solution as follows:

• It allows restrictions to be defined on columns and cells
in addition to rows.

• A restriction can contain as many predicates as desired
and this is done in a single statement (i.e., create re-
striction). Sybase would need to create a separate ac-
cess rule for each predicate, and’ing them, and then
binding them to the appropriate columns.

6. Conclusion

Databases of the future must ensure the privacy of the
data subjects that they store information on. The security
functionality offered by current commercial database prod-
ucts is not adequate to enforce privacy compliance. The
main contributions of this paper are:

• Language constructs for specifying restrictions at the
level of a row, a column, or a cell that integrate well
with the rest of the relational database infrastructure.

• Semantics of combining multiple restrictions.

• Design for implementing the proposed constructs.

• Algorithm for translating a P3P privacy policy into the
proposed constructs.

Our fond hope is that this paper will serve to create dia-
log on the right functionality that the database systems must
support and the efficient ways of its implementation.
Acknowledgments We wish to thank Alvin Cheung for
useful comments on the paper.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In 28th Int’l Conference on Very Large Databases,
Hong Kong, China, August 2002.

[2] D. Chamberlin. A Complete Guide to DB2 Universal
Database. Morgan Kaufmann, 1998.

[3] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle. The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation,
April 2002.

[4] US Department of Health and Human Services.
http://www.hhs.gov/ocr/hipaa.

[5] T. Kyte. Fine-grained access control. Technical report, Oracle
Corporation, 1999.

[6] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt. Limiting disclosure in Hippocratic
databases. In 30th Int’l Conf. on Very Large Data Bases,
Toronto, Canada, August 2004.

[7] A. Nanda and D. K. Burleson. Oracle Privacy Security Au-
diting. Rampant, 2003.

[8] M. Stonebraker and E. Wong. Access control in a relational
data base management system by query modification. In
ACM/CSC-ER, 1974.

[9] Sybase. Sybase Adaptive Server Enterprise 12.5, Sys-
tem Administration Guide, Row Level Access Control.
http://sybooks.sybase.com/onlinebooks.

ID Name HomePhone WorkPhone Salary
1 Alicia Campbell 408-418-5198 408-419-9111 10,000
2 Bob Bobbett 408-418-5198 408-419-9112 20,000
3 Carl Abrahams 408-333-6633 408-419-9113 30,000
4 Dan Charmer 408-432-8644 408-419-9114 40,000
5 Ellen Generous 408-555-1235 408-419-9115 50,000

Table 3. Table of BlueCo’s clients

Name HomePhone OfficePhone
Alicia Campbell - 408-419-9111
Bob Bobbett 408-418-5198 -
Carl Abrahams 408-333-6633 408-419-9113

Table 4. Cell level enforcement

A. The Case for Cell Level Enforcement

Compliance with current privacy legislation mandates
that the user’s consent be obtained for the use/disclosure
of the personal information stored about them. Row or col-
umn level restriction are not adequate for modeling scenar-
ios where individuals may make opt-in/out choices with dif-
ferent aspects of their information. To achieve this goal of
minimal disclosure while allowing useful tasks to be per-
formed on relevant information, cell level enforcement is
key. A similar case for cell level enforcement has been
made in [6].
Consider a scenario requiring adherence to the HIPAA

regulation [4]. BlueCo is a healthcare provider that stores
personal data on individuals who enroll in its plans. BlueCo
has affiliations with a number of hospitals, research institu-
tions, and marketing companies. Under HIPAA, any indi-
vidually identifiable healthcare information held or trans-
mitted by BlueCo is considered protected information. For
any use or disclosure of protected health information that is
not for treatment, payment, or health care operation and that
is not otherwise permitted (e.g. law enforcement), BlueCo
must get the data subject’s consent.
Assume a simplified version of BlueCo’s database given

in Table 3. ResearchCo is an epidemiological research
institute that periodically harvests BlueCo’s data. Under
HIPAA, all clients must give their consent for release of
their home and office numbers.
Alicia Campbell opts out of having her home phone

number, but does not mind if BlueCo discloses her office
number. Suppose John Seeker, a researcher at ResearchCo
issues the following query:

select name, homephone, officephone
from clients where salary ∑ 30000

Given the choices that Alicia has made, only her name
and office phone number should be displayed as shown in
Table 4.

Name HomePhone OfficePhone
Carl Abrahams 408-333-6633 408-419-9113

Table 5. Row level enforcement

Database systems employing row level controls restrict
disclosure to all information in a particular row, when a re-
striction is only on particular columns in that row. Thus, us-
ing conventional row level controls, the results for the query
are those shown in Table 5. Both Alicia and Bob are no
longer present in the result, even though they have agreed
that one of their two phone numbers can be disclosed.
This simple example illustrates the inadequacy of row

level restrictions. Similar arguments can be made for col-
umn level restrictions. They are not flexible enough to allow
disclosure of non-sensitive data and suppression of sensitive
data on a subject by subject basis.

 99

Table A.2 – Granted Patents

ID Publication Key Contributions

1 Method and System for Using

Fine-Grained Access Control

(FGAC) to Control Access to Data

in a Database

US Patent US8,234.299B2

This patent is the foundation for the row permission and

column mask concepts discussed in the core publication

#1 in table A.1 above.

2 Method for Establishing a Trusted

Relationship Between a Data

Server and a Middleware Server

US Patent US 7,647,626B2

This patent is the foundation for the trusted context

concept discussed in the core publication #1 in table A.1

above.

3 Access Control for Elements in a

Database Object

US Patent US7,865,521B2

This patent is the foundation for the table restriction

concept discussed in publication #2 in table A.1 above.

4 Extending Relational Database

Systems to Automatically Enforce

Privacy Policies

US Patent US 7,243,097 B1

This patent is the foundation for the method to translate

privacy policies into table restrictions discussed in

publication #2 in table A.1 above.

USOO8234299B2

(12) United States Patent (10) Patent No.: US 8,234.299 B2
Bird et al. (45) Date of Patent: Jul. 31, 2012

(54) METHOD AND SYSTEM FOR USING 6,487,552 B1 * 1 1/2002 Lei et al. 1.1
6,813,617 B2 * 1 1/2004 Wong et al. 1/1 FINE-GRAINED ACCESS CONTROL (FGAC) 7,483,896 B2 1/2009 Johnson 1.1

TO CONTROL ACCESS TO DATAN A 2002fOO 16924 A1* 2, 2002 Shah et al. T13/200
DATABASE 2003/0014394 A1* 1/2003 Fujiwara et al. 707 3

2003/0236781 A1* 12/2003 Lei et al. 707/3

(75) Inventors: Paul Miller Bird, Markham (CA); 39S A. 858: E. OOZ
ya-Ching Stephenben, Saratoga 2005/014417.6 A1* 6/2005 Lei et al. 7O7/1OO
(CA); George Gerald Kiernan, San 2005/0177570 A1* 8, 2005 Dutta et al. . 707/9
Jose, CA (US); Scott Ian Logan, Don 2005.0246338 A1* 11/2005 Bird 707/9
Mills (CA); Allen William Luniewski, 2005/0289342 A1* 12/2005 Needham et al. .. T13/169
Cupertino, CA (US); Walid Rjaibi 2006/0020581 A1* 1/2006 Dettinger et al. 707/3

s s s 2006, OO59567 A1* 3, 2006 Bird et al. 726/27
Markham, CA (US) 2008/0010233 A1* 1/2008 Sacket al. 707/1

2008/007 1785 A1 3/2008 Kabra et al. 707/9
(73) Assignee: International Business Machines contine) al

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

patent is extended or adjusted under 35 Chaudhuri et al., Fine Grained Authorization Through Predicated
U.S.C. 154(b) by 472 days. Grants, Apr. 2007, IEEE Xplore, pp. 1174-1183.*

(21) Appl. No.: 12/013,253 (Continued)
(22) Filed: Jan. 11, 2008 Primary Examiner — Wilson Lee

9 Assistant Examiner — Jessica NLe
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Sawyer Law Group, P.C.

US 2009/O182747 A1 Jul. 16, 2009 (57) ABSTRACT

(51) Int. Cl. A method and system for controlling access to data stored in
G06F 7700 (2006.01) a table of a database are provided. The method includes
G06F 7/30 (2006.01) marking the table of the database as being protected with

(52) U.S. Cl. ... 707/781 fine-grained access control (FGAC), creating a system autho
(58) Field of Classification Search 70779, 694 rization class for the table of the database, the system autho

707,713.78.999-009 rization class having a default row authorization that prevents
See application file for complete search history access to all rows in the table, the system authorization class

being unmodifiable, creating a user authorization class for the
(56) References Cited table of the database, the user authorization class having a

U.S. PATENT DOCUMENTS
5,987.455 A * 1 1/1999 Cochrane et al. 1f1
6,085,191 A * 7/2000 Fisher et al. 707/737
6.212,511 B1 4/2001 Fisher et al. 1f1
6,236,996 B1 5/2001 Bapat et al.

default row authorization that prevents access to all rows in
the table, the user authorization class being modifiable, and
associating the system authorization class and the user autho
rization class with the table of the database.

18 Claims, 2 Drawing Sheets

1 2OO

MARK TABLEAS BEING PROTECTE CNA 202
TABLE-LEVE, E.G., BYAFME-GRANED
ACCESS CONTROL (FGAC) MECHANISM

CREATE AUTHORIZATION CLASS THAT 204
OEMES ALL ACCESS TORCWS AND

COLUMNS TO A TABLE

ASSOCATE AUTHORIZATION CLASS WITH
TABLE TONFORCE ACEFAULTRULE OF
"NOACCESS TO ROWS AND COLUMNS

OF THE TABLE

206

US 8,234.299 B2
Page 2

U.S. PATENT DOCUMENTS
2008/0162402 A1* 7/2008 Holmes et al. 707/1
2008/0313134 A1* 12/2008 Lei 707/2
2008/0319999 A1* 12/2008 Simpson et al. 707/9

OTHER PUBLICATIONS

Leicester, J. M.. “VPDand Columnar FGAC'Oramoss Oracle, http://
72. 14.203.104/search?q=cache: yPsSX99vWWAJ:oramossoracle.

blogspot.com/+database+FGAC+%22column-level+security22&
hl=en&gl=us&ct=clnk&cd=3, Jan. 8, 2006, 4 Pages.
Burleson Consulting, “Oracle Virtual Private Database Policy (VPD)
Tips'. http://www.dba-oracle.com/art builder vpd.htm, Oracle
Virtual Private Database VPD with RLS and FGAC, Aug. 25, 2003,
5 Pages.

* cited by examiner

U.S. Patent Jul. 31, 2012 Sheet 1 of 2 US 8,234.299 B2

INPUTIOUTPUT
DEVICES 102 1. 1 OO

PROGRAMMED COMPUTER 104

DATA ACCESS DATABASE 106
CONTROL MODULE 11

FIG. 1

1. 200

MARK TABLE AS BEING PROTECTED ONA
TABLE-LEVEL, E.G., BY A FINE-GRAINED
ACCESS CONTROL (FGAC) MECHANISM

CREATE AUTHORIZATION CLASS THAT 204
DENIES ALL ACCESS TO ROWS AND

COUMNS TO A TABLE

ASSOCATE AUTHORIZATION CLASS WITH 2O6
TABLE TO ENFORCE A DEFAULT RULE OF
"NO ACCESS" TO ROWS AND COLUMNS

OF THE TABLE

FIG. 2

U.S. Patent Jul. 31, 2012 Sheet 2 of 2 US 8,234.299 B2

I/O
DEVICE

NETWORK
ADAPTER

310
COMMUNICATION

DEVICE
3O8E

FIG. 3

US 8,234,299 B2
1.

METHOD AND SYSTEM FOR USING
FINE-GRAINED ACCESS CONTROL (FGAC)

TO CONTROL ACCESS TO DATA INA
DATABASE

FIELD OF THE INVENTION

The present invention relates generally to data processing,
and more particularly to techniques for controlling access to
data in a database.

BACKGROUND OF THE INVENTION

Business enterprises typically maintain data in database.
For both legal and business reasons, business enterprises are
increasingly becoming sensitive to unauthorized access to
data in their databases. One type database system that is
commonly used by enterprise businesses is a relational data
base in which data is organized in rows and columns of one or
more tables (or table objects). Accordingly, business enter
prises are exploring and implementing a number of mecha
nisms to prevent inadvertent or unauthorized access to row
and/or column data. In a relational database management
system (RDBMS), table object privileges granted to a user
control whether or not access to the data in the table object is
allowed. In general, such privilege control does not conven
tionally extend to the column-level or the row-level.
One technique for controlling access to data in a table on a

column-level or a row-level includes use of a label-based
access control (LBAC) mechanism—i.e., unless a label of a
user is compatible with a label associated with a row or
column of a table, then the data for that row or column is not
returned to the user. Business enterprises, however, have gen
erally been less accepting of label-based access control
mechanisms due to the restrictive nature of label components,
the need to provide a label for rows and columns, the lack of
flexibility in terms of what can be expressed within labels.

Business enterprises have turned to more flexible mecha
nisms—e.g., fine-grained access control (FGAC) mecha
nisms including views, triggers, Oracle’s virtual private data
base, and so on. Such fine-grained access control mechanisms
all have one thing in common—the mechanisms supplement,
but do not supplant, access control provided by privileges.
That is, if a user has a SELECT privilege on a table, the user
has access to all row and column data in the table; with
conventional fine-grained access control mechanisms, that
access is restricted by the addition of predicates and other
logic to reduce the rows (and columns) seen by the user. But,
by default, every user with privileges on a table has full access
to all row and column data until and unless a fine-grained
access control restriction is applied to rows or columns. This
leaves open the possibility that a user, with privileges on a
table object, can inadvertently be missed or not affected by
fine-grained access control mechanisms, and therefore the
user may be able to access data that the user would otherwise
not be allowed to access.

BRIEF SUMMARY OF THE INVENTION

In general, this specification describes a method, system,
and computer program for method for controlling access to
data stored in a table of a database. In one implementation, the
method includes marking the table of the database as being
protected with fine-grained access control (FGAC), creating a
system authorization class for the table of the database, the
system authorization class having a default row authorization
that prevents access to all rows in the table, the system autho

10

15

25

30

35

40

45

50

55

60

65

2
rization class being unmodifiable, creating a user authoriza
tion class for the table of the database, the user authorization
class having a default row authorization that prevents access
to all rows in the table, the user authorization class being
modifiable, and associating the system authorization class
and the user authorization class with the table of the database.
The details of one or more implementations are set forth in

the accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system
including a data access control module in accordance with
one implementation.

FIG. 2 illustrates one implementation of a method for
controlling access to data in a table of a database.

FIG. 3 is a block diagram of a data processing system
Suitable for assisting a user increating software code inaccor
dance with one implementation.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates generally to data processing,
and more particularly to techniques for controlling access to
data in a database system. The following description is pre
sented to enable one of ordinary skill in the art to make and
use the invention and is provided in the context of a patent
application and its requirements. The present invention is not
intended to be limited to the implementations shown but is to
be accorded the widest scope consistent with the principles
and features described herein.

FIG. 1 illustrates a data processing system 100 in accor
dance with one implementation. Data processing system 100
includes input and output devices 102, a programmed com
puter 104, and a database 106. Input and output devices 102
can include devices Such as a printer, a keyboard, a mouse, a
digitizing pen, a display, a printer, and the like. Programmed
computer 104 can be any type of computer system, including
for example, a workstation, a desktop computer, a laptop
computer, a personal digital assistant (PDA), a cell phone, a
network, and so on. Database 106 can be a relational database
including one or more tables (not shown) for storing data.

Running on programmed computer 104 is a database man
agement system (DBMS) 108 including a data access control
module 110. In one implementation, the database manage
ment system (DBMS) 108 and data access control module
110 are features of DB2 available from International Business
Machines, Corporation of Armonk, N.Y. In one implementa
tion, the data access control module 110 implements a fine
grained access control (FGAC) to control user access to data
stored in one or more tables of the database 106. The FGAC
can be used to deny access to particular row(s) or column(s)
of the one or more tables in the database 106, which will be
discussed in greater detail below.

In one implementation, the data access control module 110
implements row authorization and column authorization as
the FGAC on the one or more tables in database 106. In
addition to the row/column authorization, there may also be
traditional object-level (or table-level) privileges on each
table (e.g., SELECT privilege on a table EMPLOYEE). In
one implementation, a row authorization allows the holder of
such authorization access to a subset of rows of an FGAC
protected table. In one implementation, a column authoriza

US 8,234,299 B2
3

tionallows the holder of such authorization access to a subset
of values (or cells) in a column of an FGAC protected table. In
one implementation, row authorizations take precedence over
column authorizations—i.e., if a user is not authorized to see
any rows in an FGAC protected table, a column authorization
for some column in that table will not allow that user to see
any values in that column.

In one implementation, row and column authorizations are
associated with a higher level entity called an authorization
class. An authorization class (in one implementation) is asso
ciated with one and only one FGAC protected table, and
contains one or more row authorizations and Zero or more
column authorizations. When an authorization class is cre
ated, a default row authorization that denies all access (e.g., a
row predicate of “1 =0) is created and implicitly granted to
PUBLIC. This default row authorization cannot be deleted
from the class nor can the default row authorization be
revoked as it represents the default access available to users
(which is none) through this authorization class.

FIG. 2 illustrates a method 200 for controlling access to
data in a table of a database in accordance with one imple
mentation. A table (e.g., in database 106) is marked as being
protected on a table-level (step 202). For example, the table
can be marked as being protected on a table-level by a data
base management system assigning one or access privileges
to the table—i.e., access to the table is defined to the table as
a whole. In one implementation, a fine-grained access control
mechanism is applied to the table to protect (or control access
to) the table on a table-level. Other suitable techniques for
protecting access to a table on a table-level (or object-level)
can be implemented. An authorization class is created (e.g.,
by the database management system) that, as a default, pre
vents access to all rows and columns of a table (step 204). In
one implementation, a default system authorization class is
created as well as a default user authorization class. Both of
these classes contain the normal class default row authoriza
tion described above. The system authorization class enforces
the default access rule of “no access” for an FGAC protected
table and this class cannot be dropped or modified in any way.
The default user authorization class is provided as a location
for any authorizations for which no authorization class is
specified (i.e. it is a convenience to allow for authorizations to
be defined without creating an authorization class); while the
default user authorization class cannot be dropped, it can be
modified like any other user defined authorization class.
An authorization class can be granted to (or revoked from)

users, roles, groups, or PUBLIC. Granting an authorization
class implicitly includes all authorizations defined within that
class. If subsequent changes are made to the contents of that
authorization class, those changes are automatically inherited
by anyone granted the authorization class. If desired, row
authorizations and column authorizations from an authoriza
tion class can be individually granted (with the exception of
the class default row authorization); this would be of value in
those cases where one or more of the authorizations, but not
all, within an authorization class are to be granted or where
there is no desire to have future changes to the contents of the
authorization class automatically inherited.
The authorization class (or classes) is associated with the

table to enforce a default rule of “no access” to rows and
columns of the table (step 206). All authorization classes
defined on the same table affect and are considered for each
and every query against that table. When more than one
authorization of the same type (e.g., row or column) from the
same authorization class apply to the same user, these autho
rizations are logically OR'ed together allowing that user
access to the union of data authorized through those authori

5

10

15

25

30

35

40

45

50

55

60

65

4
zations. For example, if user Joe is authorized to see all blue
rows according to one row authorization in class AC1, and is
authorized to see all red rows according to another authori
Zation from the same authorization class AC1, then user Joe is
allowed access to the union of blue and red rows.
By default, (in one implementation) the contents of differ

ent authorization classes on the same table are logically
OR'ed together to achieve a union. However, sometimes this
is not the desired behavior—i.e., in some cases, the contents
of one or more of the authorization classes are considered to
refine the contents of other authorization classes and the
desire is to have the intersection of these authorization classes
be used rather than the union. In Such cases, the relationship
between two authorization classes can be explicitly defined to
be an intersect and the aggregate of authorizations present in
the query from each authorization class will be logically
AND’ed together instead. Specifically, when two classes are
defined as intersecting, authorizations from the same autho
rization class will be OR'ed together to form a set and then
logically AND'ed with the set from the other authorization
class. For example, if user Joe is authorized to see all blue
rows according to a row authorization in one authorization
class AC1, and is authorized to see all rows for Canadian
residents according to another authorization from a different
authorization class AC2, where authorization class AC2 has
been defined as intersecting with authorization class AC1,
then user Joe is authorized to see a view that contains the blue
rows representing Canadian residents only (not all the blue
rows). An authorization class can be defined to intersect with
one or more (or all) authorization classes on the same FGAC
protected table.

EXAMPLE

The following example illustrates one implementation of
the techniques discussed above. Assume the following envi
rOnment:
CREATE TABLE MYSCHEMAT1 (C1 INT, C2 INT
WITH ALTERNATE VALUE 99, C3 INT) PRO
TECTED BY FGAC

CREATE ROLE WAREHOUSE
CREATE ROLE ACCOUNTING
CREATE ROLE TEMPORARY ACCOUNTING
GRANT SELECT ON MYSCHEMA.T1 TO ROLE
WAREHOUSE, ROLE ACCOUNTING, ROLE TEM
PORARY ACCOUNTING

GRANT ROLE WAREHOUSE TO FERNANDO
GRANT ROLE ACCOUNTING TO BOB
GRANT ROLE TEMPORARY ACCOUNTING TO
HALEY

The introduction of FGAC protection causes two authoriza
tion classes to be created:

the system authorization class SYSIBM DEFAULT con
taining the row authorization ROWDEFAULT with the
(1-0) predicate which is implicitly granted to PUBLIC

the default user authorization class USER DEFAULT con
taining the row authorization ROWDEFAULT with the
(1-0) predicate which is implicitly granted to PUBLIC

Bob, Fernando, and Haley all have SELECT privilege on
MYSCHEMA.T1 from their role membership, but they do
not have access to any rows in that table. If any of them issues
a SELECT * FROMMYSCHEMA.T1, the internal represen
tation of the query within the SQL compiler is the equivalent
of:
SELECT * FROM (SELECT C1, 99, C3 FROM
MYSCHEMAT1 WHERE (1=0) OR (1=0))

US 8,234,299 B2
5

Observe that there are two "1=0 predicates injected in
SELECT query statement. The first predicate represents the
default row authorization contained by the default user autho
rization class that was created when the table was marked as
FGAC protected; the second predicate represents the default
row authorization from the system defined authorization
class. Since there are no column authorizations granted to any
of them, DB2 injects just the alternate value for column C2 in
the column. (NOTE: the SQL compiler is smart enough to
remove the redundant 1-0 predicates above but leaving them
in makes the description easier to follow).

Let us assume that the job definition for the members of the
ACCOUNTING role requires them to see all rows where the
column C1 equals 5. To allow this, a row authorization needs
to be created and granted to the role. The security adminis
trator decides to create an authorization class to represent the
access needed for the ACCOUNTING job definition, creates
a row authorization within the authorization class, and grants
the set as a whole to the ACCOUNTING role.
CREATE AUTHORIZATION CLASS ACCOUNTING
ONMYSCHEMAT1

CREATE AUTHORIZATION ROWAUTH1 WITHIN
MYSCHEMAT 1 ACCOUNTING
FOR ROWS WHERE C1 =5

GRANT AUTHORIZATION
MYSCHEMA.T1ACCOUNTING
ACCOUNTING

Now, if Bob issues a SELECT * FROMMYSCHEMA.T1,
he will be able to access some rows in this table based on the
following reasons. First, Bob has SELECT privilege on
MYSCHEMA.T1 granted to him via the role ACCOUNT
ING. Second, this same role has been granted an authoriza
tion class, ACCOUNTING, defined on table MYSCHE
MA.T1. The ACCOUNTING class contains a row
authorization which allows Bob to see all rows in MYSCHE
MA.T1 where column C1 =5. However, Bob does not hold
(directly or indirectly) a column authorization for protected
column C2. Therefore, Bob will still see the alternate value 99
for all rows in MYSCHEMA.T1 where column C1 =5. The
internal representation of the query within the SQL compiler
is the equivalent of:
SELECT * FROM (SELECT C1, 99, C3 FROM
MYSCHEMAT1
WHERE (C1 =5) OR (1=0)) OR (1=0) OR (1=0))

The first row predicate of ((C1 =5) OR (1=0)) represents the
authorizations granted to Bob indirectly when the authoriza
tion class ACCOUNTING was granted to the role
ACCOUNTING. The first row predicate represents all the
current authorizations in this authorization class. The next
row predicate (1-0) is the default row authorization from the
default user authorization class. The last row predicate (1–0)
is the default row authorization from the system defined
authorization class. Since no class intersects with any other,
the predicates are OR'ed together to get the union.

To allow Bob access to values in column C2, a column
authorization must be defined and granted to him, or to a role
he is member in, or to a group he is memberin, or to PUBLIC.
Let's assume that the ACCOUNTING job definition requires
access to column C2 so the security administrator defines a
new column authorization in the existing ACCOUNTING
authorization class which contains a condition allowing
access only to a set of specific values in column C2.
CREATE AUTHORIZATION COLUMNAUTH1
WITHINACCOUNTING
FOR COLUMN C2 WHERE C2>10

CLASS
TO ROLE

10

15

25

30

35

40

45

50

55

60

65

6
Now, if Bob issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com
piler is the equivalent of:
SELECT * FROM (SELECT C1, (CASE WHEN C2>10
THEN C2 ELSE 99 END), C3 FROM MYSCHE
MAT1
WHERE (C1 =5) OR (1=0)) OR (1=0) OR (1=0))

The row predicates are as they were in the previous case but
now Bob has automatically inherited the new column autho
rization in the ACCOUNTING authorization class as well.

Meanwhile, Haley is still unable to access any rows in the
table. As a temporary employee in accounting, let us assume
that she is only allowed to see the same rows as Bob but not
the contents of column C2. The security administrator could
define an authorization class to represent this particular case,
but instead the security administrator chooses to simply grant
the ROWAUTH1 authorization, but not the ACCOUNTING
authorization class itself, directly to the role TEMPORARY
ACCOUNTING since the security administrator plans to
later remove it (i.e., it is a temporary Solution:)
GRANT AUTHORIZATION ROWAUTH1 WITHIN
MYSCHEMA.T1ACCOUNTING TO ROLETEMPO
RARY ACCOUNTING

Now, if Haley issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com
piler is the equivalent of:
SELECT * FROM (SELECT C1, 99, C3 FROM
MYSCHEMAT1
WHERE (C1 =5) OR (1=0)) OR (1=0) OR (1=0))

Since Haley does not have column authorization for column
C2, she will simply get the alternate value. Also, since she was
granted a specific authorization and not the authorization
class, she will not automatically inherit the rest of the autho
rizations, or any future changes, that exist in the class.

Suppose that the security administrator wishes to stop all
access as he tracks a security problem. To do so, the security
administrator quickly alters the default user authorization
class, which currently only has the default row authorization,
to intersect with all other authorization classes on the table as
follows:
ALTER AUTHORIZATION CLASS USER DEFAULT
ONMYSCHEMA.T1 INTERSECTS WITH ALL

At this point, if Bob or Haley issues a SELECT * FROM
MYSCHEMA.T1, they will see no rows at all for the follow
ing reason. The change to make the USER DEFAULT autho
rization class intersect with all other authorization classes
now means that the granted authorizations from USER DE
FAULT, in this case the default row authorization for the class,
are logically AND'ed with all the others. The internal repre
sentation of the query within the SQL compiler is the equiva
lent of:
SELECT * FROM (SELECT C1, (CASE WHEN C2>10
THEN C2 ELSE 99 END), C3 FROM MYSCHE
MAT1
WHERE (1 =0) AND (((C1=5) OR (1=0)) OR (1=O)))

In this case, the relevant authorizations from the intersecting
authorization class have been placed in the first predicate and
then logically AND'ed with the union of the relevant autho
rizations from all the other classes. Obviously, Bob sees no
rows this way. To remove the emergency access stoppage, the
security administrator modifies the USER DEFAULT autho
rization class so that is not longer intersecting with all others.
Accordingly, authorization classes can dynamically adjust to
change (e.g., changes to class are automatically seen by all
who have access to class).

Fernando can still not see any rows as nothing has changed
for him. As a member of the Warehouse team, it is decided

US 8,234,299 B2
7

that Fernando is allowed to see any rows where column
C3<100. The security administrator decides not to create a
new authorization class for this case and does the following:
CREATE AUTHORIZATION ROWAUTH2
FOR ROWS WHERE (C3<100)

This causes a row authorization to be created in the USER
DEFAULT authorization class. The security administrator
now grants this to the Warehouse role so that Fernando
acquires the row authorization, as follows:
GRANT AUTHORIZATION ROWAUTH2 WITHIN
MYSCHEMA.T1..USER DEFAULT TO ROLE
WAREHOUSE

Now, if Fernando issues a SELECT * FROM MYSCHE
MA.T1, the internal representation of the query within the
SQL compiler is the equivalent of:
SELECT * FROM (SELECT C1, 99, C3 FROM
MYSCHEMAT1
WHERE (1 =0)) OR ((C3<100) OR (1=0)) OR (1=0))

Since Fernando does not have column authorization for col
umn C2, he will simply get the alternate value. The first row
predicate (1-0) is the default row predicate from the
ACCOUNTING authorization class while the second row
predicate ((C3<100) OR (1–0)) shows the union of all autho
rizations available to Fernando in the USER DEFAULT
authorization class. The last row predicate is the default row
predicate from the system defined authorization class.

Suppose that the security administrator wishes to limit the
rows that can be seen on the weekend by anyone inaccounting
to those for which column C3 is equal to Zero. To do so, the
security administrator creates a new authorization class
WEEKEND ACCESS that intersects with authorization
class ACCOUNTING as follows:
CREATE AUTHORIZATION CLASS WEEKEND AC
CESS ON MYSCHEMA.T1 Intersects with Accounting

CREATE AUTHORIZATION ROWAUTH3 WITHIN
WEEKEND ACCESS
FOR ROWS WHERE (IS WEEKEND() AND C3=0)

GRANT AUTHORIZATION CLASS MY SCHEMAT1
WEEKEND ACCESS TO PUBLIC

Now, if Bob issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com
piler is the equivalent of:
SELECT * FROM (SELECT C1, (CASE WHEN C2>10
THEN C2 ELSE 99 END), C3 FROM MYSCHE
MAT1
WHERE (((IS WEEKEND() AND C3=0) OR (1=0))
AND ((C1=5) OR (1=O))) OR (1=0) OR (1=0)))

In this case, the predicate ((IS WEEKEND() AND C3-0)
OR (1-0)) represents all the relevant authorizations from the
new authorization class WEEKEND ACCESS and these are
logically AND'ed with all the relevant authorizations from
the intersecting authorization class ACCOUNTING in the
form of the predicate ((C1 =5) OR (1-0)). Finally, the relevant
authorizations from the other, non-intersecting authorization
classes are OR'ed in (for this example, they are simply the
class default authorizations for the system and user default
classes).

Note that this new intersecting class also affects Haley but
not Fernando. If Haley issues a SELECT * FROMMYSCHE
MA.T1, the internal representation of the query within the
SQL compiler is the equivalent of:
SELECT * FROM (SELECT C1, 99, C3 FROM
MYSCHEMAT1
WHERE (((IS WEEKEND() AND C3=0) OR (1=0))
AND ((C1=5) OR (1=O))) OR (1=0) OR (1=0)))

Since Haley's access is dependent on the authorizations in the
ACCOUNTING class, the new authorization WEEKEN

5

10

15

25

30

35

40

45

50

55

60

65

8
D ACCESS class can close off that access since its authori
Zations are AND’ed with those in the ACCOUNTING class.
If Fernando issues a SELECT * FROM MYSCHEMA.T1,
the internal representation of the query within the SQL com
piler is the equivalent of:
SELECT * FROM (SELECT C1, 99, C3 FROM
MYSCHEMAT1
WHERE (((IS WEEKEND() AND C3=0) OR (1=0))
AND (1=O))) OR (C3<100) OR (1=0)) OR (1=0)))

In this case, Fernando is not dependent on authorizations
from ACCOUNTING and so his access is not affected by the
new authorization class.

In the example above, rather than modify the column defi
nition to implement FGAC, an administrator can simply cre
ate a column authorization as follows:
CREATE AUTHORIZATION AUTHX
ONTABLE T1
FOR COLUMN C2
(Case when C2>10 then C2 Else 99 End)

Hence, the alternate value need not be specified together with
the table definition and could be done separately within the
column authorization definition.
Implementation

In one implementation, SQL DDL statements are used to
create authorization classes and authorizations as well as to
grant and revoke the authorization classes. Modified SQL
statements can be used to modify table attributes to activate
FGAC protection. When an SQL/XML statement is com
piled, for each reference to a table marked as FGAC pro
tected, the authorization classes defined for that table, be it the
one created explicitly by the administrator or the default one
created by the system when the table is marked protected, are
searched and any relevant row or column authorizations in
that class for the statement authorization information (pri
mary and secondary authorization IDs) are gathered; rel
evancy is determined by whether the authorization class, or
individual authorization, has been granted to one of the autho
rization IDs in the statement authorization information.
A “pseudo-View' definition is created by: gathering all the

relevant row authorizations from the same authorization class
and logically ORing them together in a "authorization class
expression'; identifying which authorization classes, if any,
are defined as intersecting with each other and logically
AND'ing the “authorization class expression' for each of
these classes with the other to create a “intersecting authori
Zation class expression set; logically ORing any remaining
“authorization class expression with each other and then
logically ORing them with all “intersecting authorization
class expression' sets; using the final result as the predicate
portion of the “pseudo-View' definition. Similar logic is fol
lowed for dealing with the expressions from all relevant col
umn authorizations with the end result for each unique col
umn being implemented as CASE logic in the appropriate
location for the column in select list of the “pseudo-View'
definition. If no column authorizations are found, then the
defined alternate value is implemented as a constant in that
location.
One or more of method steps described above can be per

formed by one or more programmable processors executing a
computer program to perform functions by operating on input
data and generating output. Generally, the invention can take
the form of an entirely hardware embodiment, an entirely
Software embodiment or an embodiment containing both
hardware and Software elements. In one implementation, the
invention is implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.

US 8,234,299 B2

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device. The medium can be
an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga
tion medium. Examples of a computer-readable medium
include a semiconductor or Solid state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag
netic disk and an optical disk. Current examples of optical
disks include compact disk read only memory (CD-ROM),
compact disk read/write (CD-R/W) and DVD.

FIG. 3 illustrates a data processing system 300 suitable for
storing and/or executing program code. Data processing sys
tem 300 includes a processor 302 coupled to memory ele
ments 304A-B through a system bus 306. In other implemen
tations, data processing system 300 may include more than
one processor and each processor may be coupled directly or
indirectly to one or more memory elements through a system
bus. Memory elements 304A-B can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories that provide temporary storage
of at least Some program code in order to reduce the number
of times the code must be retrieved from bulk storage during
execution. As shown, input/output or I/O devices 308A-B
(including, but not limited to, keyboards, displays, pointing
devices, etc.) are coupled to data processing system 300. I/O
devices 308A-B may be coupled to data processing system
300 directly or indirectly through intervening I/O controllers
(not shown).

In one implementation, a network adapter 310 is coupled to
data processing system 300 to enable data processing system
300 to become coupled to other data processing systems or
remote printers or storage devices through communication
link 312. Communication link 312 can be a private or public
network. Modems, cable modems, and Ethernet cards are just
a few of the currently available types of network adapters.

Various implementations for controlling access to data in a
database have been described. Nevertheless, various modifi
cations may be made to the implementations. For example,
steps of the methods described above can be performed in a
different order and still achieve desirable results. Accord
ingly, many modifications may be made without departing
from the scope of the following claims.
What is claimed is:
1. A computer-implemented method for controlling access

to data stored in a table of a database, wherein the computer
performs the functions in the following method, the method
comprising:

marking the table of the database as being protected with
fine-grained access control (FGAC);

creating a system authorization class for the table of the
database, the system authorization class having a default
row-level authorization that prevents access to all rows
in the table, the system authorization class being
unmodifiable;

creating a user authorization class for the table of the data
base, the user authorization class having a default row
level authorization that prevents access to all rows in the
table, the user authorization class being modifiable

10

15

25

30

35

40

45

50

55

60

65

10
wherein the user authorization class is provided as a
location for any authorizations for which no authoriza
tion class is specified;

associating the system authorization class and the user
authorization class with the table of the database,
wherein the association of the system authorization class
with the table of the database operates to deny access to
the rows and columns of the table;

receiving a request from a user seeking to access data in the
table of the database;

determining whether any other user authorization class is
applicable to the user;

responsive to no other user authorization class being appli
cable to the user,
determining whether the system authorization class and

the user authorization class are defined as intersecting
classes;

responsive to the system authorization class and the user
authorization class being defined as intersecting
classes, preventing the user from accessing any row in
the table of the database;

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes, permitting the user to access rows or columns
in the table of the database based on the union of
authorizations.

2. The computer-implemented method of claim 1 further
comprising:

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes,
forming a union of authorizations by logically ORing

authorizations from the system authorization class
and the user authorization class.

3. The computer-implemented method of claim 2, wherein
responsive to at least one other user authorization class being
applicable to the user, the method further comprises:

determining whether the system authorization class and the
at least one other user authorization class are defined as
intersecting classes; and

responsive to the system authorization class and the at least
one other user authorization class being defined as inter
secting classes, preventing the user from accessing any
row in the table of the database.

4. The computer-implemented method of claim3, wherein
responsive to the system authorization class and the at least
one other user authorization class not being defined as inter
secting classes, the method further comprises:

determining whether the user authorization class and the at
least one other user authorization class are defined as
intersecting classes;

responsive to the user authorization class and the at least
one other user authorization class being defined as inter
Secting classes,
forming a first set of authorizations by logically ORing

authorizations from the user authorization class;
forming a second set of authorizations by logically
ORing authorizations from the at least one other user
authorization class;

forming an intersection of authorizations by logically
AND'ing the first set of authorizations and the second
set of authorizations; and

permitting the user to access rows or columns in the table
of the database based on the intersection of authori
Zations.

5. The computer-implemented method of claim 4, wherein
responsive to the user authorization class and the at least one

US 8,234,299 B2
11 12

other user authorization class not being defined as intersect- responsive to the system authorization class and the at least
ing classes, the method further comprises: one other user authorization class being defined as inter

forming a union of authorizations by logically ORing secting classes, preventing the user from accessing any
authorizations from the user authorization class and the row in the table of the database.
at least one other user authorization class; and 5 10. The non-transitory computer program product of claim

permitting the user to access rows or columns in the table of 9, wherein responsive to the system authorization class and
the database based on the union of authorizations. the at least one other user authorization class not being

6. The computer-implemented method of claim 1, wherein defined as intersecting classes, the computer program product
the database is a relational database. further comprises computer executable code for:

7. A non-transitory computer program product comprising 10 determining whether the user authorization class and the at
a non-transitory computer readable storage medium, the non- least one other user authorization class are defined as
transitory computer readable storage medium for controlling intersecting classes;
access to data stored in a table of a database, the computer responsive to the user authorization class and the at least
program comprising computer executable code for: 15 one other user authorization class being defined as inter

marking the table of the database as being protected with Secting classes,
fine-grained access control (FGAC); forming a first set of authorizations by logically ORing

creating a system authorization class for the table of the authorizations from the user authorization class;
database, the system authorization class having a default forming a second set of authorizations by logically
row-level authorization that prevents access to all rows 20 ORing authorizations from the at least one other user
in the table, the system authorization class being authorization class;
unmodifiable wherein the user authorization class is pro- forming an intersection of authorizations by logically
vided as a location for any authorizations for which no AND'ing the first set of authorizations and the second
authorization class is specified; set of authorizations; and

creating a user authorization class for the table of the data- 25 permitting the user to access rows or columns in the table
base, the user authorization class having a default row- of the database based on the intersection of authori
level authorization that prevents access to all rows in the Zations.
table, the user authorization class being modifiable; and 11. The non-transitory computer program product of claim

associating the system authorization class and the user 10, wherein responsive to the user authorization class and the
authorization class with the table of the database, 30 at least one other user authorization class not being defined as
wherein the association of the system authorization class intersecting classes, the computer program product further
with the table of the database operates to deny access to comprises computer executable code for:
the rows and columns of the table; forming a union of authorizations by logically ORing

receiving a request from a user seeking to access data in the authorizations from the user authorization class and the
table of the database; 35 at least one other user authorization class; and

determining whether any other user authorization class is permitting the user to access rows or columns in the table of
applicable to the user; the database based on the union of authorizations.

responsive to no other user authorization class being appli- 12. The non-transitory computer program product of claim
cable to the user, 7, wherein the database is a relational database.
determining whether the system authorization class and 40 13. A non-transitory computer system comprising:

the user authorization class are defined as intersecting a processing System;
classes; a storage medium;

responsive to the system authorization class and the user a database; and
authorization class being defined as intersecting a database management system controlling access to data
classes, preventing the user from accessing any row in 45 stored in a table of the database, the database manage
the table of the database; ment system

responsive to the system authorization class and the user marking the table of the database as being protected with
authorization class not being defined as intersecting fine-grained access control (FGAC);
classes, permitting the user to access rows or columns creating a system authorization class for the table of the
in the table of the database based on the union of 50 database, the system authorization class having a
authorizations. default row-level authorization that prevents access to

8. The non-transitory computer product of claim 7. all rows in the table, the system authorization class
wherein the computer program product further comprises being unmodifiable;
computer executable code for: creating a user authorization class for the table of the

responsive to the system authorization class and the user 55 database, the user authorization class having a default
authorization class not being defined as intersecting row-level authorization that prevents access to all
classes, rows in the table, the user authorization class being
forming a union of authorizations by logically ORing modifiable wherein the user authorization class is pro

authorizations from the system authorization class vided as a location for any authorizations for which no
and the user authorization class. 60 authorization class is specified;

9. The non-transitory computer program product of claim associating the system authorization class and the user
8, wherein responsive to at least one other user authorization authorization class with the table of the database,
class being applicable to the user, the computer program wherein the association of the system authorization
product further comprises computer executable code for: class with the table of the database operates to deny

determining whether the system authorization class and the 65 access to the rows and columns of the table;
at least one other user authorization class are defined as receiving a request from a user seeking to access data in
intersecting classes; and the table of the database;

US 8,234,299 B2
13

determining whether any other user authorization class
is applicable to the user;

responsive to no other user authorization class being
applicable to the user,

determining whether the system authorization class and
the user authorization class are defined as intersecting
classes;

responsive to the system authorization class and the user
authorization class being defined as intersecting
classes, preventing the user from accessing any row in
the table of the database;

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes, permitting the user to access rows or columns
in the table of the database based on the union of
authorizations.

14. The non-transitory computer system of claim 13,
wherein the database management system further

responsive to the system authorization class and the user
authorization class not being defined as intersecting
classes,
forms a union of authorizations by logically ORing

authorizations from the system authorization class
and the user authorization class.

15. The non-transitory computer system of claim 14,
wherein responsive to at least one other user authorization
class being applicable to the user, the database management
system further

determines whether the system authorization class and the
at least one other user authorization class are defined as
intersecting classes, and

responsive to the system authorization class and the at least
one other user authorization class being defined as inter
secting classes, prevents the user from accessing any
row in the table of the database.

5

10

15

25

30

14
16. The non-transitory computer system of claim 15,

wherein responsive to the system authorization class and the
at least one other user authorization class not being defined as
intersecting classes, the database management system further

determines whether the user authorization class and the at
least one other user authorization class are defined as
intersecting classes,

responsive to the user authorization class and the at least
one other user authorization class being defined as inter
Secting classes,
forms a first set of authorizations by logically ORing

authorizations from the user authorization class,
forms a second set of authorizations by logically ORing

authorizations from the at least one other user autho
rization class,

forms an intersection of authorizations by logically
AND'ing the first set of authorizations and the second
set of authorizations, and

permits the user to access rows or columns in the table of
the database based on the intersection of authoriza
tions.

17. The non-transitory computer system of claim 16,
wherein responsive to the user authorization class and the at
least one other user authorization class not being defined as
intersecting classes, the database management system further

forms a union of authorizations by logically ORing autho
rizations from the user authorization class and the at
least one other user authorization class, and

permits the user to access rows or columns in the table of
the database based on the union of authorizations.

18. The non-transitory computer system of claim 13,
wherein the database is a relational database.

USOO7647626B2

(12) United States Patent (10) Patent No.: US 7.647,626 B2
Bird et al. (45) Date of Patent: *Jan. 12, 2010

(54) METHOD FORESTABLISHING ATRUSTED 6,112,196 A 8/2000 Zimowski et al. 707/2
RELATIONSHIPBETWEEN ADATASERVER 6.212,636 B1* 4/2001 Boyle et al. T13,168
AND AMDDLEWARE SERVER 6,266,666 B1 7/2001 Ireland et al. 707/10

(75) Inventors: Paul Miller Bird, Markham (CA); Curt 6,286,104 B1 ck 9, 2001 Buhle et al. 713,201
Lee Cotner, Gilroy, CA (US); Walid 6,349,338 B1 2/2002 Seamons et al. 709,229
Rjaibi, Markham (CA); Timothy Jon 6,377,994 B1 * 4/2002 Ault et al. 709,229
Vincent, Toronto (CA)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
past lsity listed under 35 Park, J. S. and Sandhu, R. 2000. Secure Cookies on the Web. IEEE

.S.C. 154(b) by ayS. Internet Computing 4, 4 (Jul. 2000), 36-44.*

This patent is Subject to a terminal dis- (Continued)
claimer.

Primary Examiner Christian LaForgia
(21) Appl. No.: 11/008,507 Assistant Examiner James Turchen

(74) Attorney, Agent, or Firm Sughrue Mion, PLLC
(22) Filed: Dec. 8, 2004

(57) ABSTRACT
(65) Prior Publication Data

US 2006/0123468 A1 Jun. 8, 2006
A data server of a data processing system is operably coupled

(51) Int. Cl. to a database and in communication with a middleware server.
G06F 7/04 (2006.01) A connection between the data server and the middleware
G06F 5/16 (2006.01) server is established and managed. A set of attributes identi
G06F 7/30 (2006.01) fying trusted middleware servers is instituted with the data
H04L 29/06 (2006.01) server. The middleware server transmits a connection request

(52) U.S. Cl. 726/5; 726/2: 726/3 to the data server. The connection request has request
(58) Field of Classification Search 726/2, attributes including identifying the connection request as

726/3, 5 being for a new connection or reuse of an existing connection
See application file for complete search history. with different connection request attributes. A connection

with the middleware server is established by the data server
(56) References Cited based on the connection request. A connection status message

U.S. PATENT DOCUMENTS

5,586.260 A 12/1996 Hu 395/2002
5,598,536 A * 1/1997 Slaughter et al............. TO9,219
5,619,657 A * 4, 1997 Sudama et al. 709,225
5,841,869 A 1 1/1998 Merkling et al.
6,052,785 A 4/2000 Lin et al. T13 201
6,076,092 A 6/2000 Goldberg et al. 707/103

312

MIDWARESERWR 04

is received by the middleware server from the data server
indicating a status of the connection request. A trust indicator
for the connection is established at the data server according
to a trust status identified by the set of attributes for the
middleware server.

36 Claims, 8 Drawing Sheets

ATASERVER:34

COE 105 46
RUS CNNTN

coMAND

H
434

Accra-CENTE -

SiOSE
408

CNERUSF
a coMscMFOR

USER
H

408
&ery FUSER
eacAN

40
ECLNEXECUTIONOF
USER COMBAMX

412
RSJTsoFXECUTE

USERCOMMANE

NNECTION32

NETWORK118

VE CONNECKNS

on I trusted
USRPRWILGES

CE 33

US 7,647,626 B2
Page 2

6,434,543
6,516,416
6,631,371
6,745,332
7,174.565
7,181,764
7,325,246

2002fOO16777
2002.0049914
2002fOO65956
2002fO184217

U.S. PATENT DOCUMENTS

8, 2002
2, 2003

10, 2003
6, 2004
2, 2007
2, 2007
1, 2008
2, 2002
4, 2002
5, 2002

12, 2002

Goldberg et al. 707/2
Gregg et al. 726.8
Lei et al.
Wong et al. T26/4
Kadyk et al. 726/12
Zhu et al. 726/4
Halasz et al. 726/2
Seamons et al. 705/76
Inoue et al. 713,201
Yagawa et al. TO9,330
Bisbee et al. 707/9

2003, OO14527 A1
2003/0236975 A1
2004/OO64335 A1*
2006, OO75075 A1

OTHER PUBLICATIONS

Chadwick, D. W., Otenko, A., and Ball, E. 2003. Role-Based Access
Control With X.509 Attribute Certificates. IEEE Internet Computing
7, 2 (Mar. 2003), 62-69.*
Kristol, D. and Montulli, L. 1997 HTTP State Management Mecha
nism. RFC. RFC Editor.

1/2003 Terwindt et al.
12/2003 Birket al.
4/2004 Yang 705/1
4/2006 Malinen et al.

- - - - - - - - - - - - 709,227

* cited by examiner

US 7.647,626 B2 U.S. Patent

US 7.647,626 B2 Sheet 2 of 8 Jan. 12, 2010 U.S. Patent

00| \7 WELLSÅS SONISSE OORHd V/LV/C)]

XA? JONALEN 8? ?

(0) SnLV1S

OE_LOENNOO MJEST-NON(…) ISnell Hof (JESn

647,626 B2 U.S. Patent

U.S. Patent Jan. 12, 2010 Sheet 7 of 8 US 7.647,626 B2

FORMING A VERBAL AGREEMENT

REGISTER THE VERBAL AGREEMENT

RECEIVE CONNECTION REQUEST FROM
MIDDLEWARE SERVER

REQUEST TO REUSE CONNECTION?

604

608

628
TRANSMT
ERROR

MESSAGE

O
REQUEST CONTAIN DATABASES

PRVTLEGES
YES

CREATE A CONNECTION 612

TRANSMIT CONNECTION STATUS MESSAGE 614

UPDATE MDDLEWARE SERVER CONNECTION 616
INDICATOR

618

NO

SET AND CHECK MDDLEWARE SERVER TRUST
NDCATOR

TRANSMT
ERROR

MESSAGE
INDICATOR INDICATE TRUSTED NO

YES

REUSE CONNECTION WITH NEW ATTRIBUTES 622

TRANSMIT CONNECTION STATUS MESSAGE 624

RECEIVE COMMAND TO OBTAN DATA 26

2

6

EXECUTE COMMAND TO OBTAN DATA 630

632 TRANSMIT OBTANED DATA TO MDDLEWARE
SERVER

600-1 F.G. 6

U.S. Patent Jan. 12, 2010 Sheet 8 of 8 US 7.647,626 B2

TRANSMITA REQUEST FOR A NEW CONNECTION TO THE 702
DATA SERVER

RECEIVE A CONNECTION STATUS MESSAGE FROM THE 704
DATASERVER INDICATING THAT THE CONNECTION HAS

BEEN ESTABLISHED

TRANSMIT AREQUEST TO REUSE THE CONNECTION WITH 7O6
NEW ATTRIBUTES

RECEIVE A CONNECTION STATUS MESSAGE FROM THE 708
DATASERVER FOR THE REUSE REQUEST

DOES THE
CONNECTION STATUS MESSAGE

FOR REUSE REQUEST INDICATE THAT THE REQUEST
NO WAS GRANTED?

YES

TRANSMIT COMMAND TO OBTAN DATA FROM DATABASE 712

RECEIVE REOUESTED DATA 714

INFORM USER THAT REUSE REQUEST WAS 716
UNSUCCESSFUL

700-1

710

FG. 7

US 7,647,626 B2
1.

METHOD FORESTABLISHING ATRUSTED
RELATIONSHIPBETWEENA DATASERVER

AND AMIDDLEWARE SERVER

FIELD OF THE INVENTION

The present invention relates to the field of establishing a
trusted relationship between a data server and a middleware
SeVe.

BACKGROUND

Access to sensitive data in a database is often managed by
relying on the use of user identifications and passwords. If a
user desires access to data in the database, a user id and
password are often checked to determine if the user is regis
tered to access data from the database. If the user is registered
and the correct password has been provided then a connection
with the database may be established.

Frequently, access to databases relying on user ids and
passwords originate from a few primary locations. However,
in Such a case multiple user ids may access this data from the
same location. Since these locations may be known and
trusted, there may not be a requirement to authenticate every
different user id and password for these locations.

SUMMARY

In accordance with an aspect of the present invention there
is provided for a data server of a data processing system
operably coupled to a database, a method of managing a
connection with a middleware server, the middleware server
sending a request for a connection to the data server, the
request comprising request attributes, the method compris
ing: instituting a set of attributes identifying trusted middle
ware servers with the data server, establishing a connection
with the middleware server based on a request therefrom; and
establishing a trust indicator for the connection according to
a trust status identified by the set of attributes for the middle
Ware Sever.

In accordance with an aspect of the present invention there
is provided for a middleware server of a data processing
system, a method of establishing a connection with a data
server operably coupled to a database, the method compris
ing: transmitting a connection request to the data server, the
connection request having request attributes including iden
tifying the connection request as being for a new connection
or reuse of an existing connection with different connection
request attributes; and receiving a connection status message
from the data server indicating a status of the connection
request.

In accordance with an aspect of the present invention there
is provided for a data server of a data processing system
operably coupled to a database, a computer program product
for managing a connection with a middleware server, the
middleware server sending a request for a connection to the
data server, the request comprising request attributes, the
computer program product comprising: a computer readable
medium for tangibly transporting computer executable code
to the middleware server, the computer executable code com
prising: code for instituting a set of attributes identifying
trusted middleware servers with the data server, code for
establishing a connection with the middleware server based
on a request therefrom; and code for establishing a trust
indicator for the connection according to a trust status iden
tified by the set of attributes for the middleware server.

10

15

25

30

35

40

45

50

55

60

65

2
In accordance with an aspect of the present invention there

is provided for a middleware server of a data processing
system, a computer program product for establishing a con
nection with a data server operably coupled to a database, the
computer program product comprising: a computer readable
medium for tangibly transporting computer executable code
to the middleware server, the computer executable code com
prising: code for transmitting a connection request to the data
server, the connection request having request attributes
including identifying the connection request as being for a
new connection or reuse of an existing connection with dif
ferent connection request attributes; and code for receiving a
connection status message from the data server indicating a
status of the connection request.
A data server of a data processing system is operably

coupled to a database and in communication with a middle
ware server. A connection between the data server and the
middleware server is established and managed. A set of
attributes identifying trusted middleware servers is instituted
with the data server. The middleware server transmits a con
nection request to the data server. The connection request has
request attributes including identifying the connection
request as being for a new connection or reuse of an existing
connection with different connection request attributes. A
connection with the middleware server is established by the
data server based on the connection request. A connection
status message is received by the middleware server from the
data server indicating a status of the connection request. A
trust indicator for the connection is established at the data
server according to a trust status identified by the set of
attributes for the middleware server.

Other aspect and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of embodiments of the
invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in conjunction with
the drawings in which:

FIGS. 1A and 1B show a data server operatively coupled to
a middleware server;

FIG. 2 shows another middleware server attempting to
negotiate data with the data server of FIG. 1;
FIG.3 shows the middle ware server of FIG. 1 attempting

to negotiate data with the data server of FIG. 1;
FIG. 4 shows a response taken by the middleware server

and the data server of FIG. 1 when a user command requests
a copy of data from the data server 134;

FIG. 5 shows interaction between the middleware server
and the data server of FIG. 1 when another user attempts to
send a command requesting data servable by the data server;

FIG. 6 illustrate a method of managing connections with
the middleware server for the data server; and

FIG. 7 illustrates a method of establishing a connection
with the data server for the middleware server.

DETAILED DESCRIPTION

FIG. 1A shows two data processing systems (A 100 and B
130) in operable communication via network 118. Both data
processing systems 100 and 130 contains a bus 108 that
operatively couples a central processing unit (CPU) 109, an
input/output interface 110 and a memory 102/132. The input/
output interface 110 manages communications between the

US 7,647,626 B2
3

bus 108 and a display 112, a keyboard 114, a disc 116 and the
network 118 for each of the data processing systems 100 and
130.
The memory 132 of data processing system B 130 includes

a data server 134, a database 136 operatively coupled to the
data server 134, and an operating system 133. The data server
134 may be, for example, an information retrieval system of
a database management system. The data server 134 includes
computer executable code 135 with a collection of modules
135A to 135K. These modules 135A to 135K perform func
tions (when compiled and executed) that compose a data
server method. The functions of the data server method may
include using the network 118 to communicate with data
processing system A 100. In an alternate embodiment, the
database 136 may be located in another data processing sys
tem, in which case, the data processing system B 130 may use
the network 118 for communication with the database 136.

The memory 102 of the data processing system A 100
includes a middleware server 104 and an operating system
103. The middleware server 104 includes computer execut
able code 105 with a collection of modules 105A to 105K.
These modules 105A to 105K perform functions (when com
piled and executed) that compose a middleware server
method. The functions of the modules 105A to 105K may
include directing the middleware server 104 to negotiate for
data with the data server 134.
The data server 134 of the data processing system B 130

acts as an intermediary between the database 136 and the
middleware server 104.
A data server administrator 152 administers the data server

134 according to a verbal agreement 154. A middleware
server administrator 150 administers the middleware server
104 according to the verbal agreement. The verbal agreement
154 contains an agreement between the data server adminis
ter 152 and the middleware server administer 150 regarding
the characteristics of connections and data transfers between
the middleware server 104 and the data server 134. For
example, the verbal agreement 154 may set forth that the data
server 134 is to be set up such that connection requests from
the middleware server 104 received thereat are treated by the
database 136 as trusted connection. To perform Such an exem
plary set up, the data server administrator 152 registers (in the
database 136, for example) connection trust attributes that are
associated with the trusted connections. The connection trust
attributes may include a user id associated with a trusted
connection, an IP (internet protocol) address of data process
ing system from which connection requests are received, or
other attributes. The middleware server 104 includes user
identification attributes 105 for the middleware server admin
istrator 140.

It will be appreciated that the middleware server 104, the
data server 134 and the database 136 may be present on the
same or on different data processing systems.

FIG. 1B shows an alternative to storing the database 136 in
the memory 132 of the data processing system B 130 of FIG.
1A. The database 136 maybe stored in a memory 152 of a data
processing system C 150. The data processing systems A100,
B 130 and C 152 are in operable communication via the
network 188.

FIG. 2 illustrates another middleware server 204 in com
munication with the data server 134 via the network 118. The
middleware server 204 contains code 208 with a module
208A. The middleware server 204 is located in a memory 202
of a data processing system 201.
The data processing system 201 includes known modules

that facilitate communication via the network 118 and is
indicated as a connection line 216. Sucha connection line 212

10

15

25

30

35

40

45

50

55

60

65

4
is also used to connect the data processing system B 130 with
the network 118. The connection lines 216 and 212 are used
for establishing a connection 206 (via the network 118)
between the data processing system B 130 and the data pro
cessing system 201.
The middleware server 204 has not been set up as being

trusted on the data server 134 by the data server administrator
152. This may be because an agreement was not previously
set between administrators of the data server 134 and the
middleware server 204 to govern interactions between these
two servers 134 and 204.
The middleware server 204 is attempting to negotiate to

obtain data through the data server 134. The code 208 directs
a CPU (not illustrated) of the data processing system 201 to
establish the connection 206 with the data server 134. Once
the connection 206 is established, the code 208 directs the
data processing system 201 to issue a request 214 for request
ing access to the data associated with the data server 134. The
request 214 is sent to the data server 134 via the connection
line 216 through the connection 206 and over to the connec
tion line 212.
A list 210 is stored in the memory 132 of the data process

ing system A 130 indicating currently active connections
established with the data server 134. The code 135A directs
the data processing system B 130 to update the list 210 in
response to the data processing system B 130 establishing a
connection with the middleware server 204. Once the con
nection 206 is set up, the code 135B directs the data process
ing system B 130 to set a trust indicator in the list 210 to “do
not trust' (for example, a bit may be used and set to a value of
“0” for this case) because the middleware server 204 has not
bee previously registered with the data server 134 as a trusted
entity.
The decision to trust or not to trusta requesting middleware

server is performed by the data server 134 on the basis of
verbal agreements 154 between the database 136 and various
middle ware servers that have been registered with the data
server 134. Such verbal agreements 154 are registered with
the data server 134 by the data server administrator 152 to
provide an indication of connections that are to be trusted.
This information may be stored in a table that the data server
134 can search each time a request connection is received.

For each connection request received, the data server 134
compares attributes of the connection request (e.g. user id, IP
address, etc.) with information stored in the database 136
about the connections that are to be trusted. If there is a match
then the current connection is marked as a trusted connection;
otherwise, the connection is marked as untrusted.
The data server 134 will establish a connection with the

middleware server 204 based on the request; however, that
connection will be marked as not trusted because the middle
ware server 204 has not been registered as trusted on the data
server 134. The data server 134 will continue to honor
requests from the middleware server 204 but since the con
nection between these two is not trusted the data server 134
will reject a request from the middleware server 204 to reuse
the connection under a different user id without Supplying a
password. On the other hand, a middleware server that is
registered as being trusted with the data server 134 will have
requests to reuse the existing connection under a different
user granted without requiring that a password be Supplied.

FIG. 3 illustrates a connection between the middleware
server 104 and the data server 134 of FIG.1. The middleware
server 104 has a connection line312 with the network 118 and
the data server 134 has a connection line 314 with the network
118. The memory 132 of the data processing system B 130
may include a list 310 of trusted middle ware servers in

US 7,647,626 B2
5

addition to the data server 134 and the list of current active
connections 210. The list 310 of trusted middleware server
may also be derived when examining a request by looking at
the list 210 and selecting those connections that have a posi
tive trust indicator.

The list 210 of current active connections includes an indi
cation as to whether or not the connection is trusted. A con
nection is trusted when the data server 134 determines that the
connection's source attributes match the attributes of a con
nection source (i.e. middle ware server) registered in the
database 136 as to be trusted.
The middleware server 104 attempts to make a connection

with the data server 134. The code 105A directs the middle
ware server 104 to establish a connection 302 with the data
Server 134.
The data processing system 100 includes known modules

that facilitate communication via the network 118 and is
indicated as a connection line312. Sucha connection line314
is also used to connect the data processing system B 130 with
the network 118. The connection lines 312 and 314re used for
establishing a connection 302 (via the network 118) between
the data processing system B 130 and the data processing
system 100.
A request 306 to establish a connection along with a copy

308 of the user id 106 currently associated with the middle
ware server 104 are sent as a package 304 from the middle
ware server 104 to the data server 134 via the network 118.
There are two possible scenarios for processing of this request
by the data server 134: either this is a new connection between
the middleware server 104 and the data server 134 or a con
nection already exists between these two parties and the
request contains a request to maintain the connection ther
ebetween using a different user id (and possibly a password).

If the package 304 is for a request for a new connection,
then the data server 134 receives the request and authenticates
the user id and the password before the connection is estab
lished. As part of the authentication process, the data server
updates the list 210 of current active connections. The data
server 134 then examines attributes of the connection with the
middleware server 104 and if such attributes match attributes
in the database 136 of a trusted server then the middleware
server 104 is identified as being trusted and marks the con
nection as trusted. Once this is complete, the middleware
server 104 can start requesting services from the database 136
through the data server 134 via this connection.

If the package is for a request to maintain a connection with
a different user id, then the data server 134 receives the
request and examines the list 210 to determine if the middle
ware server 104 is a trusted connection. If the existing con
nection between the middleware server 104 and the data
server 134 is trusted then the current connection between the
parties is maintained with the different user id without requir
ing a password associated with the different user id; other
wise, a password is required and the connection can be bro
ken.
The connection source attributes in the database 136 may

indicate that all connections from a particular source are to be
trusted, irregardless of the user id. Alternatively, the connec
tion source attributes may indicate only specific user ids that
may be interchanged on a trusted connection without the
requirement of a password, other user ids from the same
Source may require passwords.

FIG. 4 illustrates a situation when a user command 402 is
received by the middleware server 104 requesting a copy of
data from the data server 134.

In response to receiving the user command 402, the code
105C directs the middleware server 104 to transmit a reuse

10

15

25

30

35

40

45

50

55

60

65

6
connection command 401 to the data server 134 via the estab
lished connection 302. The connection 302 shows a copy of
the reuse connection command 401 which is then received by
the data server 104.

In response to the data server 134 receiving the reuse con
nection command 401, the code 135H directs the data server
134 to determine whether to reuse the established connection
302 for executing the user command 402 received by the
middleware server 104. The code 135H may direct the data
server 134 to issue a notice indicating that the established
connection 302 may be reused for executing the user com
mand 402 submitted by the middleware server 104 if the
trusted indicator (as shown in table 210) indicates that the
middleware server 104 may be trusted. If the middleware
server 104 may be trusted, the code 135H may direct the data
server 134 to transmit an acceptance notice 404 to the middle
ware server 104 via connection 302. The code 135H may
direct the data server 134 to decline executing the user com
mand 402 received by the middleware server 104 if the trusted
indicator (as shown in table 210) indicates that the middle
ware server 134 may not be trusted. If the middleware server
104 is not to be trusted, the code 135H may direct the data
server 134 to transmit a decline notice (to the middleware
server 104) for declining the reuse of the connection 302 for
the user command 402.

In response to receiving the acceptance notice 404, the
code 105D may direct the middleware server 104 to transmit
the user command 402 to the data server 134 (via connection
302); thus, the connection 302 is reused for transmitting the
user command to the data server 134. In response to receiving
the decline notice, the code 105D may direct an error message
(not shown) to the user who submitted the user command 402
indicating that the user command 408 for requesting data
access was declined by the data server 134.

In response to the data server 134 receiving a copy of the
user command 408 from the middleware server 104, the code
1351 directs the data server 134 to receive the copy of the user
command 408, and then to execute the user command 408.

In an alternative, before the data server 134 executes the
user command 408, the code 135I may direct the data server
143 to determine whether the user associated with the user
command 408 has predetermined data access privileges (for
accessing the data being requested) that were previously
established with the data server 134. For example, the data
server 134 may decline execution of the user command 408
because the data server 134 determines that the user as no
predetermined access rights established for accessing that
data identified in the user command 408. In this case, the data
server 134 transmits a decline execution notice 410 to the
middleware server 104. For the case when the data server 134
determines that the user is associated with access privileges
with the data, the data server 134 may execute the user com
mand 408 to access the data stored in the database 136, then
the data server 134 transmits the accessed data 412 via con
nection 302 over to the middleware server 104.

In response to receiving the decline notice 410 declining
access to data, the code 105E directs the middleware server
104 to transmit an error message (not shown) to the user. In
response to receiving the accessed data 412, the code 105E
directs the middleware server 104 to transmit the accessed
data 412 to the user.

FIG. 5 shows an interaction between the data server 134
and the middleware server of FIG. 1 when another user
attempts to send a command from the middleware server 104
for accessing data via by the data server 134. The code 105
includes the code 105F. The code 135 includes the code 135J
and the code 135K.

US 7,647,626 B2
7

In response to receiving a release signal from the user, the
code 105F directs the middleware server 104 to transmit a
type of connection reset command 501 to the data server 134.
The reused connection command 501 is shown in the connec
tion 302. 5

In response to receiving the reused connection command
501 via the established connection 302, the code 135J directs
the data server 134 to set a type of connection indicator ofuser
to indicate that the user is currently connected. For example,
the data server 134 may set the user ID to the name of the 10
current user of the connection. Once the user has completed
using the connection 302, the user may wish to either request
more data from the data server 134 or reset the type of con
nection indicator which permits other users to interact with
the data server 134. 15

In response to receiving a release indicator from the user,
the code 105F directs the middleware server 104 to transmit a
type of connection reset command 502 to the data server 134
via the established connection 302.
The code 135J, in response to the data server 134 receiving 20

the type of connection reset command 502 via the connection
502, directs the data server 134 to permit another user to use
the connection 302. The table 210 contains indications for
each user id of the trust and use status; for example, the
non-user status connection indicator is '1' (which indicates 25
the user JOE is reusing the connection 302), and the user
status connection indicator is set to “0” to indicate that the
administrator 150 of the MDW (W) 104 is not using the
connection 302. This arrangement provides a mechanism
which permits user JOE exclusive channel to submit user 30
commands to the data server 134.

In response to receiving the reset command 502 from the
middleware server 104 via the connection 302, the code 135K
directs the data server 134 to set the type of connection
indicator to indicate a non-user connection status, which 35
includes setting the currently connected Status to of user
ID=Admin (the administrator 152) to “1” (the “1” indicates
the administrator has control of the connection 302), and
setting the currently connected status of user JOE to “0” (the
“O'” indicates that user JOE is no longer the active user using 40
the connection 302). Now another user of the middleware
server may reuse the connection 302.

FIG. 6 illustrates a method 600 for the data server 134 of
managing a connection with a middleware server. A verbal
agreement is formed between the middleware server and the 45
data server in step 602. The verbal agreement indicates
whether or not the data server will trust the middleware server
and to what degree the middleware server will be trusted. This
Verbal agreement is then registered with the data server in step
604. 50
A connection request is received from the middleware

server in step 606. The connection request includes request
attributes such as whether the request is for a new connection
or a reuse of an existing connection, a user identification (and
possibly password) for a user of the middleware server, an IP 55
address for the middleware server, etc. In step 608 the request
attributes are examined to determine if the request is a reuse
of an existing connection using different attributes (e.g. dif
ferent user identification). If the request is not to reuse the
connection then it is a request for a new connection. 60
The request for a new connection is examined in step 610

to determine if the request attributes contain access privileges
for the database (e.g. does the user identification and pass
word match a user id and password registered in the data
base). If the request contains access privileges, then a con- 65
nection between the data server and the middleware server is
created in step 612. A connection status message is transmit

8
ted to the middleware server in step 614 indicating that the
connection was established. A connection indicator is
updated in step 616 to indicate that the middleware server is
connected with the data server. A trust indicator is then set and
checked for the middleware server in step 618. Based on
attributes of the middleware server in the request (e.g. IP
address) and attributes of servers that can be trusted (as found
in the registered verbal agreement), the trust indicator is set as
trust or not trust for the middleware server.
If the connection request for a new connection does not

contain database access privileges then an error message is
transmitted to the middleware server in step 628.

If the connection request is to reuse a connection then the
trust indicator for the middleware server is examined in step
620. If the trust indicator indicates that the middleware server
is not a trusted server then an error message is transmitted to
the middleware server in step 634.

If the trust indicator indicates that the middleware server is
a trusted server then the connection may be reused with new
attributes. These new attributes are set for the connection in
step 622. A connection status message is transmitted to the
middleware server in step 624 indicating that the connection
is being reused with the new attributes.

After a new connection has been established or the existing
connection is set up to be reused, a command to obtain data
from the database is received from the middleware server in
step 626. The command to obtain data is executed in step 630
and the obtained data is transmitted to the middleware server
in step 632.

FIG. 7 illustrates a method 700 of establishing a connection
with the data server by the middleware server. A request for a
new connection is transmitted from the middleware server to
the data server instep 702. A connection status message is
received from the data server in step 704 indicating whether
or not the connection has been established.

After a connection has been established a request to reuse
the connection with different attributes 9e.g. different user id)
is transmitted to the data server in step 706. A connection
status message is received form the data server in step 708
indicating whether or not the request to reuse the connection
was granted.
The connection status message is examined in step 710 to

determine if the request to reuse the connection was granted.
If the request was not granted then a user is informed in step
716 that the request was unsuccessful.

If the request was successful thena command to obtain data
from the database is transmitted to the data server in step 712.
The requested data is received form the data server in step
714.
The detailed description of the embodiments of the present

invention does not limit the implementation of the embodi
ments to any particular computer programming language.
The computer program product may be implemented in any
computer programming language provided that the OS (Op
erating System) provides the facilities that may support the
requirements of the computer program product. A preferred
embodiment is implemented in the C or C++ computer pro
gramming language (or may be implemented in other com
puter programming languages in conjunction with C/C++).
Any limitations presented would be a result of a particular
type of operating System, computer programming language,
or data processing system and would not be a limitation of the
embodiments described herein.

It will be appreciated that the elements described above
may be adapted for specific conditions or functions. The
concepts of the present invention can be further extended to a
variety of other applications that are clearly within the scope

US 7,647,626 B2

of this invention. Having thus described the present invention
with respect to preferred embodiments as implemented, it
will be apparent to those skilled in the art that many modifi
cations and enhancements are possible to the present inven
tion without departing from the basic concepts as described in
the preferred embodiment of the present invention.

The invention claimed is:
1. For a data server of a data processing system operably

coupled to a database, a method of managing a connection
with a middleware server, the middleware server sending a
request for a connection to the data server, the request com
prising request attributes, the method comprising:

storing a set of attributes identifying middleware servers
trusted by the data server;

establishing a connection between the middleware server
and the data server based on a request, having connec
tion request attributes, received from the middleware
server; and

setting a trust indicator for the connection, according to a
trust status determined by comparing the set of attributes
identifying the middleware server to the received con
nection request attributes, the trust status indicating
whether the connection is one of a trusted connection
and a non-trusted connection,

wherein if the connection between the middleware server
and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware
server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

2. The method of claim 1, wherein the step of establishing
a connection comprises:

updating a connection indicator after the connection has
been established to indicate that the connection has been
established.

3. The method of claim 2, wherein the step of setting a trust
indicator comprises:

determining if the trust indicator is set for the connection;
and

if the trust indicator is set, determining whether the con
nection is trusted after the connection indicatorindicates
the connection is established.

4. The method of claim 1 wherein the step of storing com
prises:

forming an agreement between the data server and the
middleware server containing the set of attributes; and

registering the set of attributes with the data server.
5. The method of claim 1 wherein the step of establishing

a connection comprises:
receiving a request from the middleware server to establish

a connection therebetween; and
determining whether the request attributes indicate a

request for a new connection or a reuse of an existing
connection with different request attributes.

6. The method of claim 5 wherein the step of establishing
a connection further comprises:

determining if the request attributes include access privi
leges for the database if the request attributes indicate a
request for a new connection;

creating the connection if the request attributes include
access privileges; and

transmitting a connection status message to the middle
ware server indicating that the connection has been
established.

10

15

25

30

35

40

45

50

55

60

65

10
7. The method of claim 5 wherein the request attributes

comprises a user identification and the different request
attributes comprises a different user identification.

8. The method of claim 7, wherein the step of establishing
the connection further comprises:

determining whether the existing connection can be reused
based on the trust indicator of the existing connection.

9. The method of claim 8, wherein the step of determining
whether the existing connection can be reused comprises:

transmitting a connection status message to the middle
ware server indicting that the connection may be reused
if the trust indicator indicates that the middleware server
is trusted.

10. The method of claim 8, wherein the step of determining
whether the existing connection can be reused comprises:

transmitting a connection status message to the middle
ware server indicating that the existing connection may
not be reused if the trust indicator indicates that the
middleware server is not trusted.

11. The method of claim 1 further comprising:
receiving a command via the connection for obtaining data

in the database from the middleware server; and
executing the command in the request if the trust indicator

for the middleware server indicates that the middleware
server is trusted.

12. The method of claim 11, wherein the step of executing
comprises:

transmitting a decline execution notice to the middleware
server if the request attributes do not include access
privileges for the data identified in the command; and

transmitting obtained data to the middleware server in
response to the command if the request attributes
include access privileges for the data identified in the
command.

13. The method of claim 1, wherein the middleware server
receives the request for connection to the data server from a
user connected to the middleware server over a network.

14. The method of claim 1, wherein the connection request
attributes comprise attributes of a user connected to the
middleware server and attributes of the middleware server.

15. The method of claim 1, wherein the trust indicator is
stored at the data server.

16. The method of claim 1, wherein the storing the set of
attributes identifying middleware servers trusted by the data
server occurs prior to the establishing the connection between
the middleware server and the data server based on the
request.

17. For a middleware server of a data processing system, a
method of establishing a connection with a data server oper
ably coupled to a database, the method comprising:

transmitting a connection request to the data server, the
connection request having request attributes that iden
tify the connection request as being one of a new con
nection and reuse of an existing connection having dif
ferent connection request attributes; and

receiving a connection status message from the data server
indicating a status, when the data server determines that
the middleware server is one of a trusted middleware
server and a non-trusted middleware server by compar
ing the request attributes to a stored set of attributes
identifying the middleware server, of the connection as
being one of a trusted connection and a non-trusted
connection,

wherein if the connection between the middleware server
and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware

US 7,647,626 B2
11

server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

18. The method of claim 17, wherein the step of transmit
ting a connection request comprises:

transmitting the connection request with the request to
reuse the existing connection to the data server via the
existing connection,

wherein the request attributes comprises a user identifica
tion and the different request attributes comprises a dif
ferent user identification than the existing connection.

19. The method of claim 17, further comprising:
transmitting a command for obtaining data in the database

to the data server if the connection status message indi
cates that the connection has been established.

20. The method of claim 19 further comprising:
receiving obtained data from the data server in response to

the command.
21. For a data server of a data processing system operably

coupled to a database, a computer program product having
computer executable codes embodied on a computer-read
able storage medium for managing a connection with a
middleware server, the middleware server sending a request
for a connection to the data server, the request comprising
request attributes, the computer program product comprising:

code storing a set of attributes identifying middleware
servers trusted by the data server;

code establishing a connection between the middleware
server and the data server based on the request received
from the middleware server; and

code setting a trust indicator for the connection according
to a trust status determined by comparing the set of
attributes identifying the middleware server to the
received connection request attributes, the trust status
indicating whether the connection is one of a trusted
connection and a non-trusted connection,

wherein if the connection between the middleware server
and the data server is a trusted connection, the data
server permits use of the connection by the middleware
server when a first user is connected to the middleware
server and permits reuse of the connection by the
middleware server when a second user, different from
the first user, is connected to the middleware server
without requiring authentication of the second user.

22. The computer program product of claim 21, wherein
the code establishing a connection comprises:

code updating a connection indicator after the connection
has been established to indicate that the connection has
been established.

23. The computer program product of claim 22, wherein
the code setting a trust indicator comprises:

code determining if the trust indicator is set for the con
nection; and

code, if the trust indicator is set, determining whether the
connection is trusted after the connection indicator indi
cates the connection is established.

24. The computer program product of claim 21, wherein
the code storing comprises:

code forming an agreement between the data server and the
middleware server containing the set of attributes; and

code registering the set of attributes with the data server.
25. The computer program product of claim 21, wherein

the code establishing a connection comprises:
code receiving a request from the middleware server to

establish a connection therebetween; and

5

10

15

25

30

35

40

45

50

55

60

65

12
code determining whether the request attributes indicate a

request for a new connection or a reuse of an existing
connection with different request attributes.

26. The computer program product of claim 25, wherein
the code establishing a connection further comprises:

code determining if the request attributes include access
privileges for the database if the request attributes indi
cate a request for a new connection;

code creating the connection if the request attributes
include access privileges; and

code transmitting a connection status message to the
middleware server indicating that the connection has
been established.

27. The computer program product of claim 25, wherein
the request attributes comprises a user identification and the
different request attributes comprises a different user identi
fication.

28. The computer program product of claim 27, wherein
the code establishing the connection further comprises:

code determining whether the existing connection can be
reused based on the trust indicator of the existing con
nection.

29. The computer program product of claim 28, wherein
the code determining whether the existing connection can be
reused comprises:

code transmitting a connection status message to the
middleware server indicting that the connection may be
reused if the trust indicator indicates that the middleware
server is trusted.

30. The computer program product of claim 28, wherein
the code determining whether the existing connection can be
reused comprises:

code transmitting a connection status message to the
middleware server indicating that the existing connec
tion may not be reused if the trust indicator indicates that
the middleware server is not trusted.

31. The computer program product of claim 21, further
comprising:

code receiving a command via the connection for obtaining
data in the database from the middleware server; and

executing the command in the request if the trust indicator
for the middleware server indicates that the middleware
server is trusted.

32. The computer program product of claim 31, wherein
the step of executing comprises:

code transmitting a decline execution notice to the middle
ware server if the request attributes do not include access
privileges for the data identified in the command; and

code transmitting obtained data to the middleware server in
response to the command if the request attributes
include access privileges for the data identified in the
command.

33. For a middleware server of a data processing system, a
computer program product having computer executable
codes embodied on a computer-readable storage medium for
establishing a connection with a data server operably coupled
to a database, the computer program product comprising:

code transmitting a connection request to the data server,
the connection request having request attributes that
identify the connection request as being for one of a new
connection and reuse of an existing connection having
different connection request attributes; and

code receiving a connection status message from the data
server indicating a status, when the data server deter
mines that the middleware server is one of a trusted
middleware server and a non-trusted middleware server
by comparing the request attributes to a stored set of

US 7,647,626 B2
13 14

attributes identifying the middleware server, of the con- wherein the request attributes comprises a user identifica
nection as being one of a trusted connection and a non- tion and the different request attributes comprises a dif
trusted connection, ferent user identification than the existing connection.

wherein if the connection between the middleware server and the data server is a trusted connection, the data 35. The computer program product of claim 33, further
server permits use of the connection by the middleware compr1S1ng:
server when a first user is connected to the middleware code transmitting a command for obtaining data in the
server and permits reuse of the connection by the database to the data server if the connection status mes
middleware server when a second user, different from Sage indicates that the connection has been established.
the first user, is connected to the middleware server 10
without requiring authentication of the second user.

34. The computer program product of claim 33, wherein
the code transmitting a connection request comprises:

code transmitting the connection request with the request response to the command.
to reuse the existing connection to the data server via the 15
existing connection, k

36. The computer program product of claim 35, further
comprising:

code receiving obtained data from the data server in

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,647,626 B2 Page 1 of 1
APPLICATION NO. : 11/008507
DATED : January 12, 2010
INVENTOR(S) : Bird et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 1047 days.

Signed and Sealed this
Sixteenth Day of November, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

US007865521B2

(12) United States Patent (10) Patent No.: US 7,865,521 B2
Bird et al. (45) Date of Patent: *Jan. 4, 2011

(54) ACCESS CONTROL FOR ELEMENTS INA 6,721,727 B2 4/2004 Chau et al. 707/3
DATABASE OBJECT 7,133,875 B1 * 1 1/2006 Chatterjee et al. 707/999. 102

(75) Inventors: Paul Miller Bird, Markham (CA); 2003/0046550 A1 3/2003 Carroll et al. T13,185
Walid Rjaibi Markham (CA) s 2004/O139043 A1* 7/2004 Lei et al. 707/1

2005.0246338 A1 11/2005 Bird
(73) Assignee: International Business Machines 2007/0033196 A1 2/2007 Moore 707/10

Corporation, Armonk, NY (US) 2007/0038596 A1 2/2007 Pizzo et al. 707/2

(*) Notice: Subject to any disclaimer, the term of this 2008/0275880 A1 11/2008 Bird et al.
patent is extended or adjusted under 35
U.S.C. 154(b) by 263 days.
This patent is Subject to a terminal dis- OTHER PUBLICATIONS
claimer. Panagiotis Katsaros, “On the Design of Access Control to Prevent

Sensitive Information Leakage in Distributed Object Systems: A
(21) Appl. No.: 11/299,857 Colored PetriNet Based Model”, SpringerLink Contemporary, Oct.

1-1. 11, 2005, vol. 3761. Download: http://www.springerlink.com/con
(22) Filed: Dec. 12, 2005 tent/5p71 wO99rlepaye/fulltext.pdf*

(65) Prior Publication Data (Continued)
US 2007/O136291 A1 Jun. 14, 2007 un. T4, Primary Examiner John E. Breene

(51) Int. Cl. Assistant Examiner Hares Jami
G06F 7700 (2006.01) (74) Attorney, Agent, or Firm Terry Carroll; SVL IP Law
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/781: 707/783; 707/999.1 (57) ABSTRACT
707/999.9

(58) Field of Classification Search 707/1-10,
707/781, 783,999.1,999.9

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,815,574 A 9/1998 Fortinsky
6,026,388 A 2/2000 Liddy et al.
6,085,191 A * 7/2000 Fisher et al. 707/9
6,308,273 B1 10/2001 Goertzel et al.
6,321,235 B1 1 1/2001 Bird 707/2O3
6,321,334 B1 1 1/2001 Jerger et al.
6.424,974 B1 7/2002 Cotner et al. 707/103
6,487,552 B1 * 1 1/2002 Lei et al. 707/4
6,643,633 B2 11/2003 Chau et al. 707/1

RECEWEAREUEST
FROMAUSERT0 ACESS
THE BATABASE 8ECT

304 ACCESS
RESRCTION
MPOS

YS

USERN
ST group

YS

USER
SATSFIS ST

YNAMIC
ONTION

310

344 SR SATSFE
ADITIONALYNAMIC

CONTIN?

GENERATEACYNAMI
PSEU-Wew of He

ATA8ASE OBJECT
copRSN ONLY THE
STMNT STIN THE

ATAEASE OBJECT

RSONTTH
RUS usNTH
YNAMICPSUd-view

OF THE DATABASE OBJECT

302

No

No.

38

PERMITUSERTOACCESS

A method, for controlling access to elements in a database
object are provided. The method provide for receiving a
request from a user to access the database object, determining
whether an access restriction is imposed on the database
object, and controlling access to the elements in the database
object by the user based on the access restriction. The access
restriction specifies one or more users to which the access
restriction is applicable, defines a dynamic condition the one
or more users must satisfy in order to access the database
object, and identifies one or more of the elements in the
database object accessible to the one or more users when the
dynamic condition is satisfied.

30 Claims, 7 Drawing Sheets

THEELEMENTS IN THE
ATAAS decT

prohibit USER FROM
ACCSSNST
EEMENTSN THE
ATABASE OBJECT

US 7,865,521 B2
Page 2

OTHER PUBLICATIONS

Hadjiefthymiades, SP et al., “A Generic Framework for the Deploy
ment of Structured Databases on the World WideWeb.” Computer
Networks and ISDN Systems, May 1996, vol. 28, No. 7-11, 9 pgs.
Zhenchuan, Xu et al., “Dynamic Tuning of XML Storage Schema in
VXMLR.” IEEE 2003, Proceedings of the Seventh International
Database Engineering and Applications Symposium, pp. 1-11.
International Search Report (ISR) dated Jan. 3, 2007, for correspond
ing foreign Application.
Rakesh Agrawal, et al., “Extending Relational Database Systems To
Automatically Enforce Privacy Policies”, IBM Almaden Research
Center, 650 Harry Road, San Jose, CA, Proceedings of the 21st
International Conference on Data Engineering, IEEE, 2005.
Office Action dated Oct. 16, 2006; cited in U.S. Appl. No.
10/837,387.
Final Office Action dated May 4, 2007; cited in U.S. Appl. No.
10/837,387.
Office Action dated Oct. 18, 2007; cited in U.S. Appl. No.
10/837,387.
Office Action dated Apr. 23, 2008; cited in U.S. Appl. No.
10/837,387.
Office Action dated Apr. 10, 2009; cited in U.S. Appl. No.
10/837,387.
Tzelepi, S. et al., “Security of Medical Multimedia.” Medical
Informatics and the Internet in Medicine, vol. 27. No. 3, Sep. 2002,
pp. 169-184.
Damiani, E. et al., “Regulating Access to Semistructured Information
on the Web.” Information Security for Global Information Infrastruc
tures, Sixteenth Annual Working Conf. on Information Security, Aug.
22-24, 2000, Beijing, China, pp. 351-360.
Duesterwald, E. "A Practical Data Flow Framework for Array Ref
erence Analysis and its use in Optimizations. ACM Sigplan Notices
vol. 28, No. 6, Jun, 1993, Proc of the ACM SIGPLAN '93 Conf, on
Programming Language Design and Implementation Albuquerque,
NM, Jun. 23-25, pp. 68-67.
Low, M. et al., “Fine Grained Object Protection in Unix.” Operating
Systems Review vol. 27, No. 1, Jan. 1993, pp. 33-50.

Salemi, C. et al., “A Privilege Mechanism for UNIX System V
Release 4 Operating Systems.” Conf. Proceedings, USENIX. Sum
mer 1992 Technical Conf. San Antonio, Texas, Jun. 8-12, 1992, pp.
235-241.
Leiss, E. et al., “Protecting Statistical Databases by Combining
Memoryless Table Restrictions With Randomizations.” AFIPS
Conf. Proc., vol. 56, 1987 National Computer Conference, Jun.
15-18, 1987, Chicago, Illinois, pp. 591-600.
Damiani, E. et al., “A Fine-Grained Access Control System for XML
Documents.” ACM Transactions on Information and System Secu
rity, vol. 5, No. 2, May 2002, pp. 169-202.
Grimm, R. et al., “Separating Access Control Policy, Enforcement,
and Functionality in Extensible Systems.” ACM Transactions on
Computer Systems, vol. 19, No. 1, Feb. 2001, pp. 36-70.
Coulouris, G. et al., “Security Requirements for Cooperative Work: A
Model and Its System Implications.” Position Paper for 6th SIGOPS
European Workshop, Dagstuhl, Sep. 1994, pp. 184-186.
Wang, Weigang, “Team-and-Role Based Organizational Context and
Access Control for Cooperative Hypermedia Environments.”
Hypertext 99, Darmstadt Germany, Copyright ACM 1999, pp. 37-46.
Böhlen, Michael H. et al., “Temporal Statements Modifiers.” ACM
Transaction on Database Systems, vol. 25, No. 4. Dec. 2000, pp.
407-456.
Lakshmanan, Laks, V.S. et al., “SchemaSQL-An Extension to SQL
for Multidatabase Interoperability.” ACM Transactions on Database
Systems, vol. 26, No. 4. Dec. 2001, pp. 476-519.
Ng, Wilfred, “An Extension of the Relational Data Model to Incor
porate Ordered Domains.” ACM Transactions on Database Systems,
vol. 26, No. 3, Sep. 2001, pp. 344-383.
Hadjiefthymiades, SP et al., “A Generic Framework for the Deploy
ment of Structured Databases on the World WideWeb.” Computer
Networks and ISDN Systems, May 1996, vol. 28, No. 7-11, pp.
1139-1148. (Abstract).
Zhenchuan, Xu et al., “Dynamic Tuning of XML Storage Schema in
VXMLR.” 2003, Proceedings International Database Engineering
and Applications Symposium, pp. 76-86. (Abstract).

* cited by examiner

U.S. Patent Jan. 4, 2011 Sheet 1 of 7 US 7,865,521 B2

RECEIVE AREOUEST FROMA USER TO ACCESS 1 O2
THE DATABASE OBJECT

1O4
DETERMINE WHETHER ANACCESS RESTRICTION

IS IMPOSED ON THE DATABASE OBJECT

CONTROL ACCESS TO ELEMENTS IN THE 106
DATABASE OBJECT BY THE USER BASED ON THE

ACCESS RESTRICTION

FIG. 1

US 7,865,521 B2 U.S. Patent

U.S. Patent Jan. 4, 2011 Sheet 3 of 7 US 7,865,521 B2

RECEIVE ARECRUEST 302
FROMA USER TO ACCESS
THE DATABASE OBJECT

3O4 ACCESS
RESTRICTION
IMPOSED?

NO

PERMIT USER TO ACCESS 3O6
YES THE ELEMENTS IN THE

DATABASE OBJECT 3O8
USER IN

1ST GROUPP

YES

USER 31 O
SATISFIES 1ST

DYNAMIC
ONDITION?

PROHIBIT USER FROM 312
ACCESSING THE
ELEMENTS IN THE
DATABASE OBJECT

314 SER SATISFE
ADDITIONAL DYNAMIC

CONDITION?

YES

GENERATE A DYNAMIC
PSEUDO-VIEW OF THE 316
DATABASE OBJECT

COMPRISING ONLY THE
1ST ELEMENT SET IN THE

DATABASE OBJECT

RESPOND TO THE 318
RECUEST USING THE

DYNAMIC PSEUDO-VIEW
OF THE DATABASE OBJECT

FIG. 3

U.S. Patent

404

408

410

412

414

Jan. 4, 2011

RECEIVE AREOUEST
FROMA USERTO
ACCESS THE

DATABASE OBJECT

402

ACCESS
RESTRICTION
MPOSED?

NO

YES

USER IN
1ST GROUPP

YES

OBTAIN ONE OR
MORE SESSION
VARABLES

ASSOCATED WITH
THE USER

ONE OR
MORE SESSION
VARIABLES = 1 ST

DYNAMIC
ONDITION2

NO

YES

ALLOW USERTO
ACCESS 1ST

ELEMENT SET IN THE
DATABASE OBJECT

Sheet 4 of 7

PERMIT USER TO
ACCESS THE

ELEMENTS IN THE
DATABASE OBJECT

416

ONE OR
MORE SESSION
VARABLES = 2ND

DYNAMIC
ONDITION?

YES

ALLOW USER TO
ACCESS 2ND

ELEMENT SET IN THE
DATABASE OBJECT

FIG. 4

US 7,865,521 B2

418

PROHFBIT USER
No FROM ACCESSING

THE ELEMENTSN
THE DATABASE

OBJECT

42O

U.S. Patent Jan. 4, 2011 Sheet 6 of 7 US 7,865,521 B2

6O2 6O4 606 608

NAME

J. Adams

T. Browne

M. Davis

C. Edwards

P. Hall

ADDRESS

290 E. 59th Street, New York, NY
15 W. 19th Street, Chicago, IL
8890 N.W. 8th Street, Miami, FL
63 University Street, Seattle, WA
700 Pacific Avenue, Dallas, TX

PHONE

212) 555-1555
312) 555-4587

CREDIT CARD

2221-5553-4466-8837

6351-42.15-7893-1105

305) 555-8259 4821-1355-7913-4103
206) 555-5692 8923-7561-5225-8978
214) 555-7396 3614-7465-0121-3254

610-1
61O-2

610-3

610-4

61O-5
(

610-n
W. Zappa 39 N.W. H. Street, Washington, DC (202) 555-6923 5214-9874-3156-5647

1. 612a

P. Ha 3614-7465-0121-3254

39 N.W. H. Street, Washington, DC 5214-9874-3156-5647

1. 612b

W. Zappa

NAME

J. Adams

T. Browne

M. Davis

C. Edwards

ADDRESS

290 E. 59th Street, New York, NY
15 W. 19th Street, Chicago, IL
8890 N.W. 8th Street, Miami, FL
63 University Street, Seattle, WA
700 Pacific Avenue, Dallas, TX FIG. 6

W. Zappa 39 N.W. H. Street, Washington, DC

U.S. Patent Jan. 4, 2011 Sheet 7 Of 7 US 7,865,521 B2

AO
DEVICE
708a

NETWORK
ADAPTER COMMUNICATION

DEVICE
708b.

FIG. 7

US 7,865,521 B2
1.

ACCESS CONTROL FOR ELEMENTS INA
DATABASE OBJECT

FIELD OF THE INVENTION

The present invention relates generally to database man
agement systems. More particularly, the present invention is
directed to controlling access to elements in a database object.

BACKGROUND OF THE INVENTION

In a Database Management System (DBMS), data is stored
in tables made up of records (e.g., rows) having one or more
fields (e.g., columns). A view is a logical construct imposed
over a table and is defined by metadata in the DBMS known
as a view definition. The view definition contains mappings to
one or more rows and columns in one or more tables stored in
a database. Tables and views are considered to be database
objects.

Fine-Grained Access Control (FGAC) is a mechanism by
which the DBMS controls access to database object records
and/or fields based on the identity of the user attempting to
access the database object. FGAC complements the tradi
tional Discretionary Access Control (DAC) implemented by
many DBMS by allowing the DBMS to enforce two levels of
access control: DAC is enforced at the object level (e.g., does
the user have the right to access that table'?) and FGAC is
enforced at the element level (e.g., does the user have the right
to access that row or column?).

Traditional methods of implementing FGAC within
DBMS have relied upon the use of views. A view can be used
to alter or restrict the data seen by a user using the view to
access the underlying table(s). Views, however, have a num
ber of shortcomings. For example, when the number of dif
ferent restrictions is numerous, view definitions may become
quite complex in an effort to incorporate all of the restrictions
in one view, which strains system limits and makes mainte
nance of the view difficult.

Additionally, if a large number of simple views are desired,
e.g., each one implementing a unique view of a table based on
the restrictions for a specific set of users, the routing of user
requests becomes difficult with the solution often being
resolved within the database application rather than the
DBMS. Furthermore, a user may be able to bypass the FGAC
implemented through the views by accessing the base tables
directly.

Another known implementation of FGAC is the use of user
attributes to modify queries by adding predicates into the
queries. A predicate is a condition that must be satisfied for
the DBMS to return a value. In this approach, the user
attributes (e.g., user identifier) are compared against a secu
rity policy defined within a procedure provided by the user on
a table or view to make decisions regarding access to data.
This approach allows row restrictions, traditionally handled
by views, to be dynamically added to queries without requir
ing application modification.
One drawback of the query modification approach is that it

only allows the DBMS to control access at the row-level.
Views still have to be used to control access at the column
level. Additionally, the approach requires user programming
of a strictly defined “predicate producing procedure in order
to implement a security policy. Moreover, query modification
interferes with dynamic query caching because the modified
queries will no longer match the original text of the queries,
which makes query matching problematic and impacts the
performance benefits of caching.

10

15

25

30

35

40

45

50

55

60

65

2
Further, the solutions described above fail to address the

requirements from emerging privacy applications. Generally,
a privacy policy indicates who can access what information,
for what purpose, and resulting in what obligations. For
example, a user John Doe may be allowed to access the credit
card column from a customer table if he is using the billing
application to process a customer order, but he may not be
allowed to access that column for the purpose of sending
marketing information to the customer. Existing FGAC solu
tions cannot address this requirement because they either do
not support controlling access at the column level or they
provide control access at the column level, but only for col
umns that have been statically defined (i.e., view-based tech
niques). Hence, a user is always restricted to a set of columns,
regardless of the purpose for which he or she is accessing
those columns.

Privacy applications are only one example where such
flexibility is needed. Recent user requirements in the area of
database security indicate that there is a need for database
Vendors to provide the notion of a session context. A session
context is uniquely identified by a set of session attributes that
may include the ID of the user who established that session,
the IP address of the computer from which the user initiated
the session, as well as other attributes as dictated by a par
ticular implementation or scenario. Within a particular con
text, a user can have one or more privileges on one or more
database objects that are not necessarily available to them
within a different context. Thus, it is only natural that the next
logical user requirement would be to allow certain columns to
be accessible within one context, but not within another con
text. Currently, the only way to accomplish this would be to
define a set of views that restrict access to certain columns and
grant access on those views to users depending on their ses
sion context. Maintaining several views, however, has the
same drawbacks mentioned earlier.

Accordingly, there is a need for a flexible mechanism to
control access to elements in a database object based on one
or more dynamic conditions, such as a session context or an
access purpose without requiring the creation and mainte
nance of static views or the modification of queries. The
present invention addresses Such a need.

SUMMARY OF THE INVENTION

A method, computer program product, and system for con
trolling access to elements in a database object are provided.
In this document, a group of one or more users is denoted as
a user group and a set of one or more of the elements in a
database object is denoted as an element set in the database
object. The method, computer program product, and system
provide for receiving a request from a user to access the
database object, determining whether an access restriction is
imposed on the database object, the access restriction speci
fying a first user group to which the access restriction is
applicable, defining a first dynamic condition the first user
group must satisfy in order to access the database object, and
identifying a first element set in the database object accessible
to the first user group when the first dynamic condition is
satisfied, and controlling access to the elements in the data
base object by the user based on the access restriction.

Controlling access to elements in a database object using
access restrictions, rather than views or modified queries,
eliminates the worries concerning the creation and mainte
nance of complex views, the users bypassing restrictions by
accessing underlying tables directly, the difficulties associ
ated with routing user requests when there is a large number
of views, the ability to control access at both the row and

US 7,865,521 B2
3

column level, the need to program strictly defined “predicate
producing procedures, and the problems of dynamic query
caching interferences. In addition, because the access restric
tions are defined using one or more dynamic conditions, the
flexibility needed to address current privacy and security
concerns is achieved.

Particular implementations can include controlling access
to the elements in the database object by confirming whether
the user is in the first user group when the access restriction is
imposed on the database object, verifying whether the user
satisfies the first dynamic condition when the user is in the
first user group, and allowing the user to access the first
element set when the user satisfies the first dynamic condi
tion.

Verifying whether the user satisfies the first dynamic con
dition may include obtaining one or more session variables
associated with the user when the user is in the first user group
and comparing the one or more session variable associated
with the user to the first dynamic condition to determine
whether the user satisfies the first dynamic condition. In an
implementation, allowing the user to access the first element
set in the database object comprises generating a dynamic
pseudo-View of the database object comprising only the first
element set in the database object when the user satisfies the
first dynamic condition and responding to the request from
the user using the dynamic pseudo-View of the database
object.

In some embodiments, the database object is a table or a
view, at least one element in the first element set is a column,
the first dynamic condition is a session context or a session
purpose associated with a user in the first user group, and the
access restriction is stored in a database. Additionally, the
access restriction can further define an additional dynamic
condition the first user group must satisfy in order to access
the first element set.

In other implementations, the access restriction further
defines a second dynamic condition the first user group must
alternatively satisfy in order to access the database object and
further identifies a second element set in the database object
accessible to the first user group when the second dynamic
condition is satisfied. At least one element in the first element
set may also be an element in the second element set.

Further aspects may include determining whether another
access restriction is imposed on the database object, the other
access restriction specifying a second user group to which the
other access restriction is applicable. The other access restric
tion can also define another dynamic condition the second
user group must satisfy in order to access the database object
and identify another element set in the database object acces
sible to the second user group when the other dynamic con
dition is satisfied. In one embodiment, at least one user in the
first user group is also a user in the second user group.

Another implementation also includes deciding whether
an exception to the access restriction is applicable to the user
requesting access to the database object and permitting the
user to access the elements in the database object when the
exception to the access restriction is applicable to the user.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a process flow of a method for controlling access
to elements in a database object according to an aspect of the
invention.

FIG. 2 illustrates a system according to one embodiment of
the invention.

10

15

25

30

35

40

45

50

55

60

65

4
FIGS. 3-5 depict flowcharts of methods for controlling

access to elements in a database object according to various
implementations of the invention.

FIG. 6 shows a sample database object and exemplary
dynamic pseudo-Views generated based on the sample data
base object according to one aspect of the invention.

FIG. 7 is a block diagram of a data processing system with
which embodiments of the present invention can be imple
mented.

DETAILED DESCRIPTION

The present invention relates generally to database systems
and more particularly to controlling access to elements in a
database object. The following description is presented to
enable one of ordinary skill in the art to make and use the
invention. Various modifications to the preferred implemen
tations and the generic principles and features described
herein will be readily apparent to those skilled in the art. Thus,
the present invention is not intended to be limited to the
implementations shown, but is to be accorded the widest
Scope consistent with the principles and features described
herein.

FIG. 1 depicts a process 100 for controlling access to
elements in a database object. At 102, a request to access the
database object is received from a user. A determination is
then made at 104 as to whether an access restriction is
imposed on the database object. In an embodiment, the access
restriction specifies a first user group comprising one or more
users to which the access restriction is applicable, defines a
first dynamic condition the first user group must satisfy in
order to access the database object, and identifies a first ele
ment set comprising one or more of the elements in the
database object accessible to the first user group when the first
dynamic condition is satisfied. In this document, a group of
one or more users is denoted as a user group and a set of one
or more of the elements in a database object is denoted as an
element set in the database object.

Access to the elements in the database object by the user is
controlled based on the access restriction when the access
restriction is imposed on the database object and the user is in
the first user group (106). In some implementations, the data
base object is a table or a view, at least one element in the first
element set is a column, and the first dynamic condition is a
session context or a session purpose associated with a user in
the first user group.
A session purpose could be determined based on the type of

application the user is employing when requesting access to
the database object, for example, a purchasing application or
a marketing application. A session context could be the loca
tion from which the user is requesting access to the database
object, for instance, from the office or at home. The location
may be determined based on the IP address of the computer
from which the user is requesting access.

Session context and session purpose are just two examples
of dynamic conditions. A dynamic condition can also be a
function. For example, the condition can be “F(current time)
is TRUE' where “F” is a function that compares the current
time to the time of the day when access can be granted.

Illustrated in FIG. 2 is a system 200 including a server 202
interconnected to clients 210-1 to 210-in via a network 208.
Server 202 and clients 210-1 to 210-n may be any data pro
cessing system, such as computers, workstations, and hand
held portable devices. In addition, system 200 may include
more or less clients in other embodiments. Network 208 may
be the Internet or World Wide Web (WWW) in some imple
mentations.

US 7,865,521 B2
5

System 200 also includes a database 204 and resources
206a-206b. Each resource may be a storage media, a data
base, a set of XML (eXtensible Markup Language) docu
ments, a directory service, such as LDAP (Lightweight Direc
tory Access Protocol) server, or a backend system. Other
embodiments of system 200 may include more or less data
bases and/or resources.

Database 204 and resources 206a-206b are coupled to
server 202. The interface between server 202 and database
204 and resources 206a-206b may be a local area network,
Internet, a proprietary interface, or any combination of the
foregoing. Clients 210-1 to 210-in can access database 204
and resources 206a-206b through server 202. Any of server
202, database 204, resources 206a-206b, and clients 210-1 to
210-n may belocated remotely from one another or may share
a location.
The configuration of system 200 is not intended as a limi

tation of the present invention, as will be understood by those
of ordinary skill in the art from a review of the following
detailed description. For example, network 208 may com
prise a wireless link, a telephone communication, a radio
communication, or a computer network (e.g., a Local Area
Network (LAN) or a Wide Area Network (WAN)).

In one implementation, database 204 is operable to store a
database object comprising a plurality of elements and server
202 is operable to receive a request from a user to access the
database object. The request may be submitted by the user
through one of clients 210-1 to 210-in. Server 202 is also
operable to determine whether an access restriction is
imposed on the database object. The access restriction speci
fies a first user group to which the access restriction is appli
cable, defines a first dynamic condition the first user group
must satisfy in order to access the database object, and iden
tifies a first element set in the database object accessible to the
first user group when the first dynamic condition is satisfied.

Server 202 is then operable to control access to the ele
ments in the database object by the user based on the access
restriction when the access restriction is imposed on the data
base object and the user is in the first user group. In some
embodiments, database 204 is further operable to store the
access restriction. The access restriction may be stored in a
catalog of database 204 (not shown).

FIG. 3 shows a process 300 for controlling access to ele
ments in the database object according to an aspect of the
invention. A request to access the database object is received
from a user at 302. At 304, a determination is made as to
whether an access restriction is imposed on the database
object. The access restriction specifies a first user group to
which the access restriction is applicable, defines a first
dynamic condition and an additional dynamic condition the
first user group must satisfy in order to access the database
object, and identifies a first element set in the database object
accessible to the first user group when the first dynamic
condition and the additional dynamic condition are satisfied.

If no access restriction is imposed on the database object,
the user is permitted to access the elements in the database
object (306). However, if the access restriction is imposed on
the database object, process 300 confirms whether the user is
in the first user group to which the access restriction is appli
cable (308). When the user is not in the first user group,
process 300 proceeds to 306 and the user is permitted to
access the elements in the database object.
When the user is in the first user group, process 300 verifies

whether the user satisfies the first dynamic condition (310). If
the user does not satisfy the first dynamic condition, the user
is prohibited from accessing the elements in the database
object (312). If the user does satisfy the first dynamic condi

10

15

25

30

35

40

45

50

55

60

65

6
tion, process 300 verifies whether the user satisfies the addi
tional dynamic condition (314). When the user fails to satisfy
the additional dynamic condition, process 300 proceeds to
312 and prohibits the user from accessing the elements in the
database object.
A dynamic pseudo-View of the database object comprising

only the first element set is generated when the user satisfies
the first dynamic condition and the additional dynamic con
dition (316). The request from the user is then responded to
using the dynamic pseudo-view of the database object (318).
A dynamic pseudo-View is a view-like entity with attributes
similar to a predefined regular view. However, because it is
dynamically created, it does not exist in a database, such as
database 204 in FIG. 2, and has no dependencies.

Depicted in FIG. 4 is another process 400 for controlling
access to elements in a database object. At 402, a request is
received from a user to access the database object. A deter
mination is then made at 404 as to whether an access restric
tion is imposed on the database object. The access restriction
specifies a first user group to which the access restriction is
applicable, defines a first dynamic condition the first user
group must satisfy in order to access the database object, and
identifies a first element set in the database object accessible
to the first user group when the first dynamic condition is
satisfied.

In the embodiment, the access restriction also defines a
second dynamic condition the first user group must alterna
tively satisfy in order to access the database object and iden
tifies a second element set in the database object accessible to
the first user group when the second dynamic condition is
satisfied. In some implementations, at least one element in the
first element set is also an element in the second element set.
When no access restrictions are imposed on the database

object, the user is permitted to access the elements in the
database object (406). When the access restriction is imposed
on the database object, process 400 confirms whether the user
is in the first user group (408). If the user is not in the first user
group, process 400 proceeds to 406 and permits the user to
access the elements in the database object.

If the user is in the first user group, one or more session
variables associated with the user is obtained (410). In one
embodiment, when the user establishes a session through
Some application, a session start trigger will populate one or
more session variables associated with the user with the
appropriate values based on information from the user and the
application. The session start trigger is a program that is
automatically executed when a session is established. Process
400 then compares the one or more session variables associ
ated with the user to the first dynamic condition to determine
whether the user satisfies the first dynamic condition (412).
The user is allowed to access the first element set in the

database object when the user satisfies the first dynamic con
dition, i.e., the one or more session variables match or corre
spond to the first dynamic condition (414). When the one or
more session variables do not match the first dynamic condi
tion, process 400 compares them to the second dynamic con
dition (416). If they also fail to match the second dynamic
condition, the user is prohibited from accessing the elements
in the database object (418). However, if the one or more
session variables associated with the user match the second
dynamic condition, the user is allowed to access the second
element set in the database object (420).

FIG. 5 illustrates a process 500 for controlling access to
elements in a database object according to a further embodi
ment of the invention. A request to access the database object
is received from a user at 502. A determination is then made
at 504 as to whetheran access restriction has been imposed on

US 7,865,521 B2
7

the database object. The access restriction specifies a first user
group to which the access restriction is applicable, defines a
first dynamic condition the first user group must satisfy in
order to access the database object, and identifies a first ele
ment set in the database object accessible to the first user
group when the first dynamic condition is satisfied.

If no access restrictions are imposed on the database object,
the user is permitted to access the elements in the database
object (506). If, however, the access restriction has been
imposed on the database object, process 500 decides whether
an exception to the access restriction is applicable to the user
requesting access to the database object (508). When the
exception to the access restriction is applicable to the user at
block 508, a determination is made as to whether another
access restriction is imposed on the database object, the other
access restriction specifies a second user group to which the
other access restriction is applicable (510). In an implemen
tation, at least one user in the first user group is also a user in
the second user group.

The other access restriction may further define another
dynamic condition the second user group must satisfy in
order to access the database object and identify another ele
ment set in the database object accessible to the second user
group when the other dynamic condition is satisfied. Addi
tionally, the other element set in the database object may be a
subset of the first element set.

Process 500 will proceed to 506 to permit the user to access
the elements in the database object when no other access
restrictions are imposed on the database object. However, it
will decide whether an exception to the other access restric
tion is applicable to the user requesting access to the database
object when the other access restriction is also imposed on the
database object (512). The user is permitted to access the
elements in the database object if the exception to the other
access restriction is applicable to the user (506). In contrast,
access to the elements in the database object by the user is
controlled based on the other access restriction if the excep
tion to the other access restriction is inapplicable to the user
(514).
When the exception to the access restriction is not appli

cable to the user at block 508, a determination is made as to
whether another access restriction is imposed on the database
object (516). If no other access restrictions are imposed on the
database object, access to the elements in the database object
by the user is controlled based on the access restriction (518).
However, if another access restriction is imposed on the data
base object, process 500 will decide whether an exception to
the other access restriction is applicable to the user requesting
access to the database object (520).

Access to the elements in the database object by the user
will be controlled based on the access restriction when the
exception to the other access restriction is applicable to the
user (518). Conversely, access to the elements in the database
object by the user will be controlled based on both access
restrictions when the exception to the other access restriction
is not applicable to the user (522).
Shown in FIG. 6 is a sample database object 600 with

elements 602–610. Database object 600 is a table called “cus
tomer data' with a column 602 for names, a column 604 for
addresses, a column 606 for phone numbers, and a column
608 for credit card numbers. Table 600 has n number of rows
610-1 to 610-in. Embodiments of the present invention
enables access restrictions to be created Such that it becomes
possible to express which elements 602–610 in database
object 600 are accessible by a user and under what condition.

For example, suppose a user named “Bob” is allowed to
access columns 602, 604, and 608 in table 600 for the purpose

10

15

25

30

35

40

45

50

55

60

65

8
of “Billing” and only columns 602 and 604 for the purpose of
“Marketing.” The following Structured Query Language
(SQL) statement illustrates how an access restriction can be
created to limit user Bob's access to columns 602–610 intable
600 based on the purpose of access.
CREATE RESTRICTION r1
ON TABLE customer data
FOR Bob
TO COLUMNS

(name, address, credit card) WHEN (SessionVari
ablePurpose =Billing)

(name, address) WHEN (SessionVariablePurpose
=Marketing)

Thus, when table 600 is queried by user Bob, server 202 in
FIG. 2 for example, can determine that an access restriction
applies for user Bob. Server 202 may then look up a session
variable “SessionVariablePurpose' associated with user Bob
and read its value. If it is set to “Billing, server 202 will
implement access restriction “r1 in the query plan as if that
restriction was statically defined as follows:
CREATE RESTRICTION r1
ON TABLE customer data
FOR Bob
TO COLUMNS (name, address, credit card)

A dynamic pseudo-View 612a of table 600 that is depicted in
FIG. 6 can be generated to respond to user Bob’s queries to
table 600.

However, if the value of the session variable "SessionVa
riablePurpose' was “Marketing, then server 202 will imple
ment restriction “r1 in the query planas if that restriction was
statically defined as follows:
CREATE RESTRICTION r1
ON TABLE customer data
FOR Bob
TO COLUMNS (name, address)

A dynamic pseudo-view 612b of table 600, which is illus
trated in FIG. 6, will be generated to respond to user Bob's
queries on table 600. For more information regarding the
creation and use of access restrictions, see 'A Method for
Implementing Fine-Grained Access Control Using Access
Restrictions.” U.S. patent application Ser. No. 10/837,387,
filed on Apr. 30, 2004, which is hereby incorporated by ref
erence in its entirety for all purposes.
The invention can take the form of an entirely hardware

embodiment, an entirely software embodiment, or an
embodiment containing both hardware and software ele
ments. In one aspect, the invention is implemented in Soft
ware, which includes, but is not limited to, firmware, resident
Software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer
usable or computer-readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, elec

tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer
readable medium include a semiconductor or Solid State
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk, and an optical disk. Current examples

US 7,865,521 B2
9

of optical disks include DVD, compact disk-read-only
memory (CD-ROM), and compact disk-read/write (CD-R/
W).

FIG. 7 depicts a data processing system 700 suitable for
storing and/or executing program code. Data processing sys
tem 700 includes a processor 702 coupled to memory ele
ments 704a–b through a system bus 706. In other embodi
ments, data processing system 700 may include more than
one processor and each processor may be coupled directly or
indirectly to one or more memory elements through a system
bus.
Memory elements 704a–b can include local memory

employed during actual execution of the program code, bulk
storage, and cache memories that provide temporary storage
of at least Some program code in order to reduce the number
of times the code must be retrieved from bulk storage during
execution. As shown, input/output or I/O devices 708a-b
(including, but not limited to, keyboards, displays, pointing
devices, etc.) are coupled to data processing system 700. I/O
devices 708a-b may be coupled to data processing system 700
directly or indirectly through intervening I/O controllers (not
shown).

In the embodiment, a network adapter 710 is coupled to
data processing system 700 to enable data processing system
700 to become coupled to other data processing systems or
remote printers or storage devices through communication
link 712. Communication link 712 can be a private or public
network. Modems, cable modems, and Ethernet cards are just
a few of the currently available types of network adapters.

Various implementations for controlling access to ele
ments in a database object have been described. Nevertheless,
one of ordinary skill in the art will readily recognize that
various modifications may be made to the implementations,
and any variations would be within the spirit and scope of the
present invention. For example, the above-described process
flows are described with reference to a particular ordering of
process actions. However, the ordering of many of the
described process actions may be changed without affecting
the scope or operation of the invention. Accordingly, many
modifications may be made by one of ordinary skill in the art
without departing from the spirit and scope of the following
claims.

What is claimed is:
1. A method of controlling access to elements in a database

object, the method comprising:
receiving a request from a user to access the database

object, wherein the request includes a query to retrieve
information from the database object;

determining whether an access restriction is imposed on
the database object, the access restriction specifying a
first user group to which the access restriction is appli
cable, defining a first dynamic condition the first user
group must satisfy in order to access the database object,
and identifying a first element set in the database object
accessible to the first user group when the first dynamic
condition is satisfied, wherein the first element set
includes at least one, and less than all, table columns of
the database object to restrict access to one or more table
columns, wherein the first dynamic condition indicates
access information including one or more of a session
context and session purpose for the user to access the
database object, and whereintwo or more of said session
contexts and purposes for the user to access the database
object enable access to be restricted to at least one dif
ferent table column of said database object; and

5

10

15

25

30

35

40

45

50

55

60

65

10
controlling access to the elements in the database object by

the user based on the access restriction, wherein control
ling access to the elements in the database objects com
prises:
confirming whether the user is in the first user group
when the access restriction is imposed on the database
object;

verifying whether the user satisfies the first dynamic
condition when the user is in the first user group by
ascertaining session information for the user from one
or more session variables associated with the user,
wherein the session information includes one or more
of the session context and session purpose for access
of the database object, and comparing the session
information for the user against the access informa
tion indicated by the first dynamic condition to deter
mine satisfaction of that condition; and

allowing the user to access the first element set when the
user satisfies the first dynamic condition, wherein
allowing the user to access the first element set com
prises:
dynamically generating a dynamic pseudo-View of

the database object comprising only the first ele
ment set in response to said verification of the user
satisfying the first dynamic condition; and

responding to the request from the user by applying
the received query to the dynamic pseudo-View of
the database object to retrieve the information.

2. The method of claim 1, wherein the database object is a
table or a view.

3. The method of claim 1, wherein the access restriction
further defines a second dynamic condition the first user
group must alternatively satisfy in order to access the data
base object and further identifies a second element set in the
database object accessible to the first user group when the
second dynamic condition is satisfied.

4. The method of claim 3, wherein at least one element in
the first element set is also an element in the second element
Set.

5. The method of claim 1, wherein the access restriction
further defines an additional dynamic condition the first user
group must satisfy in order to access the first element set.

6. The method of claim 1, further comprising:
determining whether another access restriction is imposed

on the database object, the other access restriction speci
fying a second user group to which the other access
restriction is applicable.

7. The method of claim 6, wherein the other access restric
tion further defines another dynamic condition the second
user group must satisfy in order to access the database object
and identifies another element set in the database object
accessible to the second user group when the other dynamic
condition is satisfied.

8. The method of claim 7, wherein the other element set is
a subset of the first element set.

9. The method of claim 6, wherein at least one user in the
first user group is also a user in the second user group.

10. The method of claim 1, further comprising:
deciding whether an exception to the access restriction is

applicable to the user requesting access to the database
object; and

permitting the user to access the elements in the database
object when the exception to the access restriction is
applicable to the user.

11. A system comprising:
a database operable to store a database object, the database

object comprising elements; and

US 7,865,521 B2
11

a server coupled to the database, the server comprising a
processor and a memory, the server being operable to:
receive a request from a user to access the database

object, wherein the request includes a query to
retrieve information from the database object;

determine whether an access restriction is imposed on
the database object, the access restriction specifying a
first user group to which the access restriction is appli
cable, defining a first dynamic condition the first user
group must satisfy in order to access the database
object, and identifying a first element set in the data
base object accessible to the first user group when the
first dynamic condition is satisfied, wherein the first
element set includes at least one, and less than all,
table columns of the database object to restrict access
to one or more table columns, wherein the first
dynamic condition indicates access information
including one or more of a session context and session
purpose for the user to access the database object, and
wherein two or more of said session contexts and
purposes for the user to access the database object
enable access to be restricted to at least one different
table column of said database object; and

control access to the elements in the database object by
the user based on the access restriction, wherein con
trolling access to the elements in the database object
comprises:
confirming whether the user is in the first user group
when the access restriction is imposed on the data
base object;

verifying whether the user satisfies the first dynamic
condition when the user is in the first user group by
ascertaining session information for the user from
one or more session variables associated with the
user, wherein the session information includes one
or more of the session context and session purpose
for access of the database object, and comparing
the session information for the user against the
access information indicated by the first dynamic
condition to determine satisfaction of that condi
tion; and

allowing the user to access the first element set when
the user satisfies the first dynamic condition,
wherein allowing the user to access the first ele
ment set comprises:
dynamically generating a dynamic pseudo-View of

the database object comprising only the first ele
ment set in response to said verification of the
user satisfying the first dynamic condition; and

responding to the request from the userby applying
the received query to the dynamic pseudo-View
of the database object to retrieve the information.

12. The system of claim 11, wherein the database object is
a table or a view.

13. The system of claim 11, wherein the access restriction
further defines a second dynamic condition the first user
group must alternatively satisfy in order to access the data
base object and further identifies a second element set in the
database object accessible to the first user group when the
second dynamic condition is satisfied.

14. The system of claim 13, wherein at least one element in
the first element set is also an element in the second element
Set.

15. The system of claim 11, wherein the access restriction
further defines an additional dynamic condition the first user
group must satisfy in order to access the first element set.

10

15

25

30

35

40

45

50

55

60

65

12
16. The system of claim 11, wherein the server is further operable to:
determine whether another access restriction is imposed on

the database object, the other access restriction specify
ing a second user group to which the other access restric
tion is applicable.

17. The system of claim 16, wherein the other access
restriction further defines another dynamic condition the sec
ond user group must satisfy in order to access the database
object and identifies another element set in the database
object accessible to the second user group when the other
dynamic condition is satisfied.

18. The system of claim 17, wherein the other element set
is a subset of the first element set.

19. The system of claim 16, wherein at least one user in the
first user group is also a user in the second user group.

20. The system of claim 11, wherein the server is further
operable to:

decide whether an exception to the access restriction is
applicable to the user requesting access to the database
object; and

permit the user to access the elements in the database object
when the exception to the access restriction is applicable
to the user.

21. A computer program product comprising a computer
readable storage medium, the computer-readable storage
medium including a computer-readable program for control
ling access to elements in a database object, wherein the
computer-readable program when executed on a computer
causes the computer to:

receive a request from a user to access the database object,
wherein the request includes a query to retrieve infor
mation from the database object;

determine whether an access restriction is imposed on the
database object, the access restriction specifying a first
user group to which the access restriction is applicable,
defining a first dynamic condition the first user group
must satisfy in order to access the database object, and
identifying a first element set in the database object
accessible to the first user group when the first dynamic
condition is satisfied, wherein the first element set
includes at least one, and less than all, table columns of
the database object to restrict access to one or more table
columns, wherein the first dynamic condition indicates
access information including one or more of a session
context and session purpose for the user to access the
database object, and whereintwo or more of said session
contexts and purposes for the user to access the database
object enable access to be restricted to at least one dif
ferent table column of said database object; and

control access to the elements in the database object by the
user based on the access restriction, wherein controlling
access to the elements in the database object comprises:
confirming whether the user is in the first user group
when the access restriction is imposed on the database object;

verifying whether the user satisfies the first dynamic
condition when the user is in the first user group by
ascertaining session information for the user from one
or more session variables associated with the user,
wherein the session information includes one or more
of the session context and session purpose for access
of the database object, and comparing the session
information for the user against the access informa
tion indicated by the first dynamic condition to deter
mine satisfaction of that condition; and

US 7,865,521 B2
13

allowing the user to access the first element set when the
user satisfies the first dynamic condition, wherein
allowing the user to access the first element set com
prises:
dynamically generating a dynamic pseudo-View of 5

the database object comprising only the first ele
ment set in response to said verification of the user
satisfying the first dynamic condition; and
responding to the request from the userby applying

the received query to the dynamic pseudo-View
of the database object to retrieve the information.

22. The computer program product of claim 21, wherein
the database object is a table or a view.

23. The computer program product of claim 21, wherein
the access restriction further defines a second dynamic con
dition the first user group must alternatively satisfy in order to
access the database object and further identifies a second
element set in the database object accessible to the first user
group when the second dynamic condition is satisfied.

24. The computer program product of claim 23, wherein at
least one element in the first element set is also an element in
the second element set.

25. The computer program product of claim 21, wherein
the access restriction further defines an additional dynamic
condition the first user group must satisfy in order to access
the first element set.

10

15

25

14
26. The computer program product of claim 21, wherein

the computer-readable program when executed on the com
puter further causes the computer to:

determine whether another access restriction is imposed on
the database object, the other access restriction specify
ing a second user group to which the other access restric
tion is applicable.

27. The computer program product of claim 26, wherein
the other access restriction further defines another dynamic
condition the second user group must satisfy in order to
access the database object and identifies another element set
in the database object accessible to the second user group
when the other dynamic condition is satisfied.

28. The computer program product of claim 27, wherein
the other element set is a subset of the first element set.

29. The computer program product of claim 26, wherein at
least one user in the first user group is also a user in the second
user group.

30. The computer program product of claim 21, wherein
the computer-readable program when executed on the com
puter further causes the computer to:

decide whether an exception to the access restriction is
applicable to the user requesting access to the database
object; and

permit the user to access the elements in the database object
when the exception to the access restriction is applicable
to the user.

(12) United States Patent
Agrawal et al.

US007243097 B1

US 7,243,097 B1
Jul. 10, 2007

(10) Patent No.:
(45) Date of Patent:

(54) EXTENDING RELATIONAL DATABASE
SYSTEMIS TO AUTOMATICALLY ENFORCE
PRIVACY POLICIES

(75) Inventors: Rakesh Agrawal, San Jose, CA (US);
Paul Miller Bird, Markham (CA);
Tyrone W. A. Grandison, San Jose,
CA (US); Gerald George Kiernan, San
Jose, CA (US); Scott Ian Logan, Don
Mills (CA); Walid Rjaibi, Markham
(CA)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 11/307,763

(22) Filed: Feb. 21, 2006
(51) Int. Cl.

G06F 7/00 (2006.01)
GO6F 7/OO (2006.01)

(52) U.S. Cl. ... 707/3; 707/100
(58) Field of Classification Search 707/3,

707/9, 10, 100; 709/220, 225
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,941,947 A * 8/1999 Brown et al. 709,225
6,065,012 A 5, 2000 Balsara et al.
6.253,203 B1* 6/2001 O'Flaherty et al. 707/9
6,496,832 B2 12/2002 Chi et al.

2002/0095405 A1* 7/2002 Fujiwara 707/3
2004/0215626 A1 10, 2004 Colossi et al.
2005/014417.6 A1* 6/2005 Lei et al. 7O7/1OO
2005/0289342 A1 12, 2005 Needham

OTHER PUBLICATIONS
P3P Definition, obtained from www.wikipedia.org, Jun. 27, 2006.*
Graefe, Goetz; "Query Evaluation Techniques for Large Data
bases': ACM Computing Surveys, vol. 25, No. 2, Jun. 1993.

Privacy
Policy
201

Policy
Translator

202

Agrawal et al.; “Hippocratic Databases”; Proceedings of the 28th
VLDB Conference, Hong Kong, China, 2002.
LeFevre et al.: “Limiting Disclosure in Hippocratic Databases”;
Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004.
“New Features in Adaptive Server Version 12.5”: What's New in
Adaptive Server Enterprise?; Chapter 1; http://manuals. Sybase.com/
onlinebooks/group-as?asg 1250ef whatsnew? (a Generic Book
TextView/445;hf=0 if X.
“Fine Grained Access Control and Application Contexts' Ask Tom
(part of Oracle Magazine); Jun. 1999; http://asktom.oracle.com/~
tkyte/article2/index.html.
Stonebraker et al.; "Access Control in a Relational Data Base
Management System by Query Modification': Department of Elec
trical Engineering and Computer Sciences and the Electrical
Research Laboratory, University of California, Berkley, California
94720.

Chamberlin, Don; "A Complete Guide to DB2 Universal Database':
pp. 122-128; Morgan Kaufmann Publ.; Jun. 1998.
Nanda et al; "Oracle Privacy Security Auditing: Includes Federal
Law Compliance with HIPAA, Sarbanes-Oxley & The Gramm
Leach-Bliley Act GLB': pp. 240-251; Oracles in Focus; Rampant
TechPress; Dec. 2003.

* cited by examiner
Primary Examiner Sam Rimell
(74) Attorney, Agent, or Firm—Ramraj Soundararajan; IP
Authority, LLC

(57) ABSTRACT

A method of transforming relational database management
systems into their privacy-preserving equivalents is pro
vided. Language constructs allow fine grained access control
(FGAC) restrictions to be specified on the access to data in
a table at the level of a row, a column or a cell. Fine grained
restrictions are a combination of access control and privacy
policy restrictions, which ensure compliance with current
privacy legislation mandates.

13 Claims, 6 Drawing Sheets

User Query
with purpose
and recipient

210

Query Rewriting
y

208

FGAC Privacy
Restrictions PR PT Catalogs

204 206

RBMS

U.S. Patent Jul. 10, 2007 Sheet 1 of 6 US 7,243,097 B1

create restrictioja rests.iction-Elaine
it tie-X
for auth-plaime-1 except auth-name-2
{ to calumns column-maile-list)

(to rows where search-condition
to cells (colunt-name-list where search-condition +

for purpose purpose-list
for recipient recipient-list

+
cofiliaisi-restriction

Figure 1

Privacy User Query
Policy with purpose
201 and recipient

210
Policy

Translator
202

E. Query Rewriting
FGAC Privacy

Restrictions Catalogs
204 206

RDBMS
208

Figure 2

U.S. Patent Jul. 10, 2007 Sheet 2 of 6 US 7,243,097 B1

receiving a user query
300

identifying and combining
restrictions

302

transforming the user
Cuery
304

accessing data from
database
306

Figure 3

U.S. Patent Jul. 10, 2007 Sheet 3 of 6 US 7,243,097 B1

for each table reference t in query do begin
if exists a restrictioi pertaining to it for the legit

create 3 dynastic "...ie & over
replace aach reference to f is with a reference to ; a

create the city rainic tiew - sing
the following print state leists

print select
for each collini : clo begin

e, c, are the purposes, recipients
it of cotti e is gest actics. f*

, , are the plairpose, tecipient of quiet C.

faciliged in the est::ction r
to c is thus gigibited

;:

S priat rul
else legi

Tie hereClaise fictii is
if the predicate associated with

that is specified in the restriction

let u = 'whereCause:
if i) = nil the

f. There is no “here critici
governing the use of 2 r", this access
o ill clusii wailies is grated unconditionally

print ecolinate
3. else begin.

if Implement the where condition
... sing a SQL case staterial to grant
i? only conditional access to the cofumi
; :

s print "case when exists (
pring it.condition
print)
priat then

8 print C. colinate
print else null end as

. print Ecclaire
ead

etc.
3. ead
4. print from

pit f.i.alienate
2? ent

Figure 4

U.S. Patent Jul. 10, 2007 Sheet 4 of 6 US 7,243,097 B1

: - - State?tet - - -
3TTEES.
< 'OTSEQUENCE:-
Encodes that perioral and medical information
can be accessed for emergency purpose is
by curselve a

- COTSEQUENCE:-
REE

cother-purpages
Emergency

< other-purposex
a PURPOSEs
-RECIPIENT - sourg -- RECIPIET:
a RETEKTIONs: stated-purpose & RETENTION--
D-RTP.
- DATA ref = "#personal" is
e DATA ref - 'irredical' .
& AEEGREE:
slitealth, -

a CATEGORIES >
: DATAY

- DATA-GRCIP:
- STATEMENT's
s: - - State at: - - %

TTEMENT,
a CETSETTERFE:
Encode is that we and drug companies:
with the garne data usage polities
can access personal and medical information
for new drug rege arch on an opt-out basis

c. CONSEQUENCE:
: PTIRPCSEs a develops a? PURPOSE
& RECEIEEE
cours required="opt-out" -
- gate required="opt-out" :

& RECIPIEET
&RETENTION-stated-purpose > <, RETENTION >
&E- RP3,
:IATA ref - "#personal" / >
ATA if a "ttie ital -
TERIE3:

v:health:
< * CATEGORIES:

a DATA:-
- IATA-GROUE:

a gTATEMENT .

Figure 5

U.S. Patent Jul. 10, 2007 Sheet 5 of 6 US 7,243,097 B1

create restriction State Retail
on Patients
for public
to calls Narae, SSN. Address. Email. DOB,

XRay. Pharinacy. Family,
Appointment. Lifestyle

purpose Energe: c
recipient Oli's

restricting access to select

create restriction. Statenefit.
on Patients
for public
to cells Naina. SSN. Address, Einail, DOB.

XRay. Pharmacy. Family.
Appointment, Lifestyle

where
exists (

select
from SysOat. Choices. Patients cp
where cp ID = Patients. ID
and cp.C1 F 1

for purpose develop
for recipient curs

restricting access to select

create restriction Staterient.
on Patients
for public
to cells Nagle, SSN. Address, Email, DOB,

XRay, Pharmacy, Fainly,
Appointment, Lifestyle

where
exists (

Select I
from SysCat. Choices. Patients cp
where cp.I.D = Patients.ID

and cp C2 = 1
for purpose develop
for recipient same

restricting access to select

Figure 6

U.S. Patent Jul. 10, 2007 Sheet 6 of 6 US 7,243,097 B1

i for each statements in golicy do begin
for each purpose E is do begin

for each recipiei. i* is a di begita
priat "create testrictical pair Egedietate-like-testiction-aa.gie?)
print oil table
priat map?3PStateinest TcTable(s)
priat” for public
prit to cells"
paint apP3PDatalypeTo(Cciutatists) 9
if tequited - aliyays the E1

print where exists (select 1 from
-- isgF3PPurposeToChoiceTable(s)

4 + p where p.I.D = *-i- inapF3PStatementoTable(s) + ID
and "-- mapp3PPurposeToChoiceColumn(s) + = 1.)

3 if (r. equired = always the
print and exists (select 1 ficial”

3 + imagp3PRecipient TochoiceTable(s)
+ where ID = *+ map.P3FStatementictable(s) + ED"

t +'athi -- inapF3PRecipiest Tohoice clinius, r) + '= 1)
print for guispose” - p. 133rie
priat “fer tecipient' -- '..saire

23. Ed
24 east
25 ed
25 paint restricting access to select

Figure 7

US 7,243,097 B1
1.

EXTENDING RELATIONAL DATABASE
SYSTEMIS TO AUTOMATICALLY ENFORCE

PRIVACY POLICES

FIELD OF THE INVENTION

The present invention relates generally to the field of
database systems. More specifically, the present invention is
related to privacy preserving relational database manage
ment systems.

DISCUSSION OF PRIOR ART

The pervasive use of computing technology and the
increased reliance on information systems have created a
heightened awareness and concern about the storage and use
of private information. This worldwide phenomenon has
ushered in a plethora of privacy-related guidelines and
legislations, e.g. the OECD Privacy Guidelines in Europe,
the Canadian Privacy Act, the Australian Privacy Amend
ment Act, the Japanese Privacy Code, the Health Insurance
Portability and Accountability Act (HIPAA), and Gramm
Leach-Bliley Consumer Privacy Rule. Compliance with
these legislations has become an important corporate con
cern. The current methods employed to address the disclo
Sure compliance problem involve training individuals to be
cognizant of the various regulations and changing organi
Zational processes and procedures. However, these
approaches are only a partial Solution and need to be
augmented with technological Support.
The users of relational databases require that a fine

grained access control (FGAC) implementation meet the
following desiderata:

the implementation must solve the problem within the
database itself without application changes or applica
tion awareness of the implementation.

the implementation must ensure that all users of the data
are covered, regardless of how the data is accessed.

the implementation must minimize the complexity and
maintenance of the FGAC policies.

the implementation must provide the ability to control
access to rows, columns, or cells as desired.

Traditional methods of database access control have
relied upon the use of statically defined views, which are
logical constructs defined over database tables that can alter
or restrict the data seen by a user. Using predefined views as
the method for FGAC works well only when the number of
different restrictions is few or the granularity of the restric
tions is such that it affects large, easily identified groups of
users. When these conditions are not true, view definitions
can become complex in an effort to accommodate all the
restrictions in one view. This complexity can strain system
limits and can make maintenance of views difficult.

If a large number of views are used, each one implement
ing restrictions for a specific set of users, one issue that
arises is how to correctly route user requests to the view that
is appropriate to them. Often, the Solution chosen is to
resolve the request in the application, not in the database.
Moreover, if a user can bypass the view when accessing
data, for example by having direct access to the underlying
tables, then the restrictions are not enforced.

Given the shortcomings of the traditional methods of
implementing FGAC, Some database vendors have proposed
solutions that do not rely on the use of views to control
access to tabular data. For instance, OracleTM Virtual Private
Database solution as described in article titled, “Fine
grained access control’ by Kyte and pages 240–253 of book

10

15

25

30

35

40

45

50

55

60

65

2
titled, “Oracle Privacy Security Auditing” by Nanda et al.,
allows users to define a security policy, which is a function
written in PL/SQL that returns a string representing a
predicate, and to attach the security policy to a table. When
that table is accessed, the security policy is automatically
enforced. In essence, row restrictions traditionally handled
by views are allowed to be dynamically added to queries as
described in article entitled, "Access control in a relational
database management system by query modification', by
Wong et al. The disadvantages of this approach are that
OracleTM requires user programming of a strictly defined
“predicate producing procedure in order to implement a
security policy and it does not address column or cell
restrictions. Sybase R. Row Level Access Control as
described in e-book entitled, “Sybase Sybase Adaptive
Server Enterprise 12.5, System Administration Guide',
allows users to define access rules that apply restrictions to
retrieved data. Sybase R Adaptive Server Enterprise 12.5
enables the database owner or table owner to restrict access
to a table's rows by defining access rules and binding those
rules to the table. Access to data can be further controlled by
Setting application contexts and creating login triggers.
Access rules apply restrictions to retrieved data, enforced on
select, update and delete operations. Adaptive Server
enforces the access rules on all columns that are read by a
query, even if the columns are not included in the select list.
Using access rules is similar to using views, or using an
adhoc query with where clauses. The query is compiled and
optimized after the access rules are attached, so it does not
cause performance degradation. Access rules provide a
virtual view of the table data, the view depending on the
specific access rules bound to the columns. Sybase R needs
to create a separate access rule for each predicate, anding
them, and then binding them to the appropriate columns.
Microsoft(R) SQL Server primarily supports traditional view
based access control, though it has a feature called row level
permissions, but it seems to be usable only with table
hierarchies. In IBMR, DB2, the only support for FGAC is
currently provided through the view mechanism.
The following references provide for creating views of

datasets in database systems.
U.S. patent assigned to Microsoft Corporation, (U.S. Pat.

No. 6,065,012), discloses rows and columns with data
source control which will be asked for data in a particular
cell. A dynamic Summary view is generated by defined
HTML page that links data binding HTML tables and other
HTML controls to predetermined data within a storage of
data. Accessing the Subset of the program module is done at
the cell level and may be done by executing a script to call
defined methods of the objects within the program module
or accessing a control module defined within the program
module.

U.S. patent assigned to NCR Corporation, (U.S. Pat. No.
6.253.203), uses a large number of statically defined views
to handle restrictions.

U.S. patent assigned to University of Minnesota, (U.S.
Pat. No. 6,496,832), discloses a system for analyzing data
organized into data sets and for transforming datasets into a
visual representation. The visual representation appears to
provide a dynamic view of cell structure and transformed
data sets with the value of cells linked.

U.S. patent application publication assigned to Interna
tional Business Machines Corporation, (2004/0215626 A1),
discloses a method and system for improving performance

US 7,243,097 B1
3

of database queries within an RDBMS system with metadata
objects. The view of the data in support of one or more
Summary tables is automatically identified and adjusted.

Article entitled, “Query Evaluation Techniques for Large
Databases, by Graefe, discloses enforcement of access
control within a relational database environment.

Article entitled, “Hippocratic Databases” by Agrawal et
al., discusses a vision of database systems that take respon
sibility for the privacy of data they manage, inspired by the
Hippocratic Oath. The article also enunciates the key pri
vacy principles that Hippocratic Databases should support.

Article entitled, “Limiting Disclosure in Hippocratic
Databases” by LeFevre et al., discusses the incorporation of
privacy policy enforcement into an existing application and
database environment. Privacy policies (prescribed rule and
conditions) are stored in the database where they can be used
to enforce limited disclosure. Every query is associated with
purpose and recipient pairs. SQL queries issued to the
database are intercepted and augmented to reflect the pri
vacy policy rules regarding the purpose and recipient issuing
the query.

Whatever the precise merits, features, and advantages of
the above cited references, none of them achieves or fulfills
the purposes of the present invention.

SUMMARY OF THE INVENTION

The present invention provides for a method of providing
fine grained access control within a database, the method
comprising the steps of receiving a user query; identifying
and combining restrictions relevant to the user query, the
restrictions specifying access to data in a table in the
database at the level of at least one of or a combination of:
individual rows, individual columns or individual cells, and
the restrictions comprising a combination of access control
and privacy policy restrictions; transforming the user query
into an equivalent query which implements the restrictions;
and accessing the data based on the equivalent query.
The present invention provides for a system providing

fine grained access control (FGAC) within a database,
wherein the system comprises a policy translator which
accepts as input a least a privacy policy and privacy meta
data catalogs; and a relational database which stores the
privacy metadata catalogs and FGAC restrictions. The
FGAC restrictions specify access to data in a table in the
relational database at the level of at least one of or a
combination of individual rows, individual columns or
individual cells, these restrictions comprising a combination
of access control and privacy policy restrictions.
The present invention provides for an article of manufac

ture comprising a computerusable medium having computer
readable program code embodied therein which provides
fine grained access control within a database, the medium
comprising: computer readable program code aiding in
receiving a user query; computer readable program code
identifying restrictions on access to data in a table in the
database at the level of at least one or a combination of:
individual rows, individual columns or individual cells, the
restrictions comprising a combination of access control and
privacy policy restrictions; computer readable program code
transforming the user query into an equivalent query which
implements the restrictions; and computer readable program
code aiding in accessing the data based on the equivalent
query.

5

10

15

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates fine grained restriction syntax, as per the
present invention.

FIG. 2 illustrates implementation architecture for con
structs, as per the present invention.

FIG. 3 illustrates a method of providing fine grained
access control within a database, as per the present inven
tion.

FIG. 4 illustrates an algorithm for enforcing fine grained
restrictions, as per the present invention.

FIG. 5 illustrates an example of a privacy policy for a
healthcare provider, as per the present invention.

FIG. 6 illustrates the translation of a privacy policy into
fine grained cell level restrictions, as per the present inven
tion.

FIG. 7 illustrates an algorithm for translating a P3P
privacy policy into fine grained cell level restrictions, as per
the present invention.

BRIEF DESCRIPTION OF THE PREFERRED
EMBODIMENTS

While this invention is illustrated and described in a
preferred embodiment, the invention may be produced in
many different configurations. There is depicted in the
drawings, and will herein be described in detail, a preferred
embodiment of the invention, with the understanding that
the present disclosure is to be considered as an exemplifi
cation of the principles of the invention and the associated
functional specifications for its construction and is not
intended to limit the invention to the embodiment illustrated.
Those skilled in the art will envision many other possible
variations within the scope of the present invention.

Databases of the future must ensure the privacy of the data
subjects whom they store information on. The security
functionality offered by current commercial database prod
ucts does not adequately address the key issues necessary to
enforce privacy compliance: cell level policy enforcement.
Compliance with current privacy legislation mandates that
the user's consent be obtained for the usef disclosure of their
personal information. Row or column level restrictions are
not adequate for modeling scenarios where individuals may
have opt-in/out choices with different aspects of their infor
mation. To achieve this goal of minimal disclosure while
allowing useful tasks to be performed on relevant informa
tion, cell level enforcement is key. A similar case for cell
level enforcement is made in article titled, “Limiting dis
closure in Hippocratic Databases” by LeFevre et al.
The U.S. Department of Health and Human Services

website provides a scenario requiring adherence to the
HIPAA regulation. BlueCo is a healthcare provider that
stores personal data on individuals who enroll in its plans.
BlueCo has affiliations with a number of hospitals, research
institutions, and marketing companies. Under HIPAA, any
individually identifiable healthcare information held or
transmitted by BlueCo is considered protected private infor
mation. For any use or disclosure of protected health infor
mation that is not for treatment, payment, or health care
operation and that is not otherwise permitted (e.g. law
enforcement), Blue Co must get the data subjects consent.
A simplified version of BlueCo’s database is given in

Table 1. ReasearchCo is an epidemiological research insti
tute that periodically harvests BlueCo’s data. Under HIPAA,
all clients must give their consent for release of their home
and office numbers.

US 7,243,097 B1
5

TABLE 1.

Table of BlueCo's clients

ID Name Home Phone Work Phone Salary

1 Alicia Campbell 408-418-51.98 408-419-9111 10,000
2 Bob Bobbett 408-418-5198 408-419-9112 20,000
3 Carl Abrahams 408-333-6633 408-419-9113 30,000
4 Dan Charmer 408-432-8644 408-419-9114 40,000
5 Ellen Generous 408-555-1235 408-419-9115 50,000

Alicia Campbell opts out of having her home phone
number, but does not mind if BlueCo discloses her office
number. A researcher at Research Co issues the following
query:

Select name, homephone, officephone
from clients where salary.<=30000
Given the choices that Alicia made, only her name and

office phone number should be displayed as shown in Table
2.

TABLE 2

Cell Level Enforcement

Name Home Phone Office Phone

Alicia Campbell 408-419-9111
Bob Bobbett 408-418-51.98
Carl Abrahams 408-333-6633 408-419-9113

Database systems employing row level controls restrict
disclosure of all information in a particular row, when a
restriction is only on particular columns in that row.

Thus, using conventional row level controls, the results
for the query are those shown in Table 3. Both Alicia and
Bob are no longer present in the result, even though they
have agreed that one of their two phone numbers can be
disclosed. This simple example illustrates the inadequacy of
row level restrictions. Similar arguments can be made for
column level restrictions. They are not flexible enough to
allow disclosure of non-sensitive data and Suppression of
sensitive data on a subject by Subject basis.

TABLE 3

Row Level Enforcement

Name Home Phone Office Phone

Carl Abrahams 408-333-6633 408-419-9113

The present invention presents constructs for imbuing
relational database systems with fine grained access control
and show how they can be used to enforce disclosure control
enunciated in the vision for Hippocratic databases as
described in article entitled, “Hippocratic Databases” by
Agrawal et al. These constructs have been designed to fit
well with the rest of the infrastructure of a relational
database system. The present invention also provides for the
implementation of proposed FGAC constructs. The present
invention further describes how privacy policies written in a
higher-level specification language Such as P3P can be
algorithmically translated into the proposed constructs.

Constructs defined according to the present invention,
allow restrictions to be specified on the access to data in a
table at the level of a row, a column, or a cell (i.e. individual
column-row intersections). Privacy policies specified in

10

15

25

30

35

45

50

55

60

65

6
high-level languages Such as P3P can be translated into these
constructs, or the policy could be specified directly using
these constructs.
The proposed construct is complimentary to the current

table level authorization mechanisms provided by commer
cial database systems using the grant command as
described in pages 122–128 of book entitled, “A complete
Guide to DB2 Universal Database' by Don Chamberlin.
While the grant command controls whether a user can
access a table at all, the constructs of the present invention
define the subset of the data within a table that the user is
allowed to access. Conceptually, a restriction defines a view
of the table in which inaccessible data has been replaced by
null values. As discussed in article entitled, “Limiting dis
closure in Hippocratic Databases” by LeFevre et al., it is
possible to use either “table semantics” or "query seman
tics’. With query semantics, if all the values in a row are
hidden by a restriction, then the row is omitted altogether
from the view. With table semantics, the row would instead
be retained unless a primary key column is restricted.

FIG. 1 gives the syntax of a fine grained restriction
command, as per the present invention. It states that those in
auth-name-1 except those in auth-name-2 are allowed only
restricted access to table-X. As a short hand, the restriction
can be defined for public (i.e., all users), and in that case the
exception to all users can be provided in auth-name-2. The
keywords group and user can be used to qualify the autho
rized names. FIG. 1's table-X can be any table expression.
A restriction, as per the present invention, presents a

single command that comprises a combination of access
control and privacy policy restrictions. A restriction can be
specified at the level of a column, a row, or a cell. More than
one restriction can be specified on a table for the same user.
A restriction may also specify purposes and/or recipients for
which the access is allowed. If no purpose or recipient is
specified, then the restriction applies to all purposes and
recipients respectively. If a purpose or recipient is specified,
the user's access is limited to only the specified purpose
recipient combinations.

Akin to the database system variable user that can be
referenced in queries and returns the id of the user issuing
the query, the new system variables purpose and recipient
return the list of purposes and recipients from the current
query context. These values in turn determine the restric
tions for the current query.
The command-restriction that appears as the last element

of the syntax has the following form and states that access
can be restricted to any combination of select, delete, insert,
or update commands:

restricting access to (all(select/delete/insertilupdate)+)
The Customer table with the following schema: Customer

(id integer, name char(32), phone char(32)) is used below for
illustration purposes.
Column Restriction:
A column restriction specifies a Subset of the columns in

table-X that auth-name-1 is allowed to access. The following
restriction, named r1, ensures that only the id column of
Customer is accessed by any database user:

create restriction r1
on Customer
for public
to columns id
restricting access to all
The restriction r2 below ensures that members of the

account group and user Bob have only select access to
columns name and phone.

US 7,243,097 B1
create restriction r2
on Customer
for group acct, user Bob
to columns name, phone
restricting access to select

Row Restriction:
A row restriction gives the subset of rows in table-X that

auth-name-1 is allowed to access. This Subset is specified
using a search-condition over table-X. The restriction r3
below ensures that every access to Customer is qualified by
the predicate, name user.

create restriction r3
on Customer
for public
to rows where name=user
restricting access to all
If user Bob issues select from Customer, he would see

id, name and phone for those rows where name equaled Bob.
Cell Restriction:
A cell restriction defines the row-column intersections

that auth-name-1 is allowed to access. It is possible to
specify multiple column-name lists, each possibly annotated
with a search-condition. A search-condition is a correlated
subquery with an implicit correlation variable t defined over
the tuples of table-X. Access to the columns in column
name-list for each individual row identified by t is condi
tionally granted depending upon the result of the search
condition. If no search-condition is given, then access is
granted to all column values in column-name-list in table-X.
If the search condition ignores the implicit correlation
variable, then access is granted or denied to all columns
values in column-name-list in table-X, depending upon the
result of the search-condition.
The following is an example of a cell restriction used to

enforce individual user's privacy preferences expressed as
opt-in/out choices. Assume that for the purpose of market
ing, Bob is allowed to see name, but his access to phone is
allowed only if the user has opted-in to revealing her phone
number.

restrictions are anded
together to define the

OW

OW

of individual

intersection of rows
accessible to a user.

column

cell

10

15

25

30

35

The search conditions

create restriction ra.
on Customer for user Bob,
to cells name,

(phone where exists (
select 1
from SysCat.Choices Customer c
where c.ID = Customer.ID and c.CI = 1))

for purpose marketing
for recipient others

restricting access to select

The above restriction specifies cell restrictions for two
column-name-lists: The first list contains the name column,
and the second contains the phone column. The restriction
allows Bob access to name, only if the variable purpose
includes marketing, and recipient includes others. Other
wise, all values of the name column will be null for Bob.
The second list of columns has a search-condition asso

ciated with it since access to phone is dependent upon
individual user choices. The search-condition comprises an
existential Subquery that uses the implicit correlation vari
able Customer. For each row in Customer, the subquery
verifies, using the SysCat.Choices Customer table that stores
individual opt-in/out choices, whether the user has opted-in
for the disclosure of her phone number (represented by a
column value of 1).
Combining Multiple Restrictions:

If multiple restrictions have been defined for a user u and
a table T, then us access to T is governed by the combina
tion of these restrictions.
Assume initially that a user associates with a query a

single purpose and a single recipient. Two design choices for
combining multiple restrictions have been considered

Intersection User u is allowed access to data defined by
the intersection of all applicable restrictions. The
details are shown in Table 4.

Union User u is allowed access to data defined by the
union of all applicable restrictions. The details are
shown in Table 5.

TABLE 4

Combining Restrictions with Intersection
column cell

The row restriction limits the rows
accessible to the user. Within each
row, the cell restriction further limits
the access to the cells that qualify the
cells search condition.

The row restriction
limits the rows
accessible to the user.
The column restriction
further limits the
columns within the
rows accessible to the
St.

Column and cell restrictions intersect
to limit access to only those columns
that appear in both the restrictions. In
addition, the cells restriction's search
condition further limits accessible cells
within a column.

The user's access is
limited to those
columns that appear in
both of the column
restrictions.

The search-conditions are and ed
together and the user is allowed access
to a cell if the composite condition is
satisfied for the cell. The value of the
composite condition for a cell that does
not appear in both the restrictions is
false.

US 7,243,097 B1

TABLE 5

Combining Restrictions with Union

10

OW column cell

OW The search The user is given The user is given access to all the
conditions of access to all the cells cells in any of the rows that satisfy
individual for any row that the row restriction. Additionally,
restrictions are
ored together to
define the union of
rows accessible to a
St.

satisfies the row
restriction.
Additionally, the
user is allowed
access to all the cells
in any of the

the user is allowed access to all
other cells that satisfy the cell
restrictions search-condition,
irrespective of whether the
corresponding rows satisfy the row
restriction.

columns that
satisfies the column
restriction,
irrespective of
whether the
corresponding rows
satisfy the row
restriction.
The user is allowed
access to a column if
it appears in either
of the two column
restrictions.

column The user is given access to all the
cells in any column appearing in the
column restriction, regardless of
whether the cell restriction is
satisfied for these cells. For cells in
a column for which the column
restriction does not apply, access is
given if the cell restriction is
satisfied.

cell The search conditions are ored
together and the user is allowed
access to a cell if the composite
condition is satisfied for the cell.

If the commands specified in the command-restriction
clauses of the restrictions being combined are different, they
are respectively anded or ored depending upon the choice
of intersection or union semantics.

Multiple restrictions can be combined in any order, both
with intersection and union semantics. With the intersection
semantics, the user's access to data decreases as additional
restrictions are applied. Conversely, with union semantics,
access to data increases as additional restrictions are applied.

Finally, if a query is annotated with multiple purpose
recipient pairs, instead of a single pair, then restrictions
governing access to any of the pairs become relevant for the
query. These restrictions are then combined as above. Note
that once a user's access to a table has been restricted, the
user can only access the data allowed for the purposes and
recipients specified in the restrictions.
A system for implementing the constructs of the present

invention is shown in FIG. 2. Cell level restrictions limited
to select statement access are discussed in the remainder of
the application; however, FGAC restrictions also apply to
row and column level restrictions.
A policy translator 202 accepts a privacy policy 201

(written in, for example P3P) and metadata stored in privacy
catalogs 206 in database 208 and generates restrictions that
implement the policy. FGAC restrictions 204 are a combi
nation of the privacy policy restrictions generated by policy
translator 202 and access control restrictions that may be
defined in the database. The FGAC restrictions relevant to
individual queries annotated with purpose and recipient
information 210 are identified and combined, and the user's
query is transformed into an equivalent query over a
dynamic view that implements the restriction. The schema

35

40

45

50

55

60

65

of the privacy metadata catalogs shown in FIG. 2 used to
drive the translation of P3P privacy policies into cell level
restrictions are given below:
PR (purp-recip char(18),
p3ptype char(32),
choice tabname char(32),
choice colname char(32))
PT (p3ptype char (32), tabname char(32), colname char

(32))
Table PR stores, for each purpose, recipient and p3p data

type pair, the (table name-column name) pair that records
individual user opt-in/out choice, should any choice be
available for that combination. Table PT stores, for each P3P
data type, the table names and column names which store
values of these P3P types.

FIG. 3 is a flowchart illustrating an exemplary method as
per the teaching of the present invention to provide fine
grained access control within a relational database. A user
query is received at step 300. The user query is annotated
with purpose and recipient information. FGAC restrictions
which are a combination of privacy policy and access
control restrictions are stored in the database. These FGAC
restrictions may be specified at the level of individual rows,
columns, cells, or a combination of these. In step 302, the
FGAC restrictions relevant to the user query are identified
and combined. The user query is then transformed into an
equivalent query over a dynamic view that implements the
restriction, in step 304. The data from the database is
accessed based on the equivalent query, in step 306.

FIG. 4 illustrates an exemplary algorithm, as per the
teaching of the present invention, which enforces the fine
grain restrictions. For ease of exposition, it is assumed that
there is a single purpose-recipient pair associated with a
query and there is at most a single restriction which is

US 7,243,097 B1
11

relevant for the query. The enforcement algorithm combines
the restrictions relevant to individual queries annotated with
purpose and recipient information and transforms the user's
query into an equivalent query over a dynamic view that
implements the restriction.

In detail, Line 1 iterates over each table reference tin a
query Q. Line 2 accesses metadata to determine if there is a
restriction r governing the usage of t by user u who is
Submitting the query Q. If no such restriction exists, then t
remains unmodified in Q. Otherwise, Lines 3 and 4 replace
each reference to table tin query Q with a reference to a
dynamic view V.
The generation of the dynamic view V is implemented in

Lines 5 through 25. The view V is a select statement which
conditionally projects each column cet. Line 7 searches for
a column reference to cer. If no such reference exists with
the purpose/recipient of query Q, then the user u is not
allowed access to c and Line 8 thus projects a null value for
all values of c. Otherwise, Line 10 searches for a where
clause associated with cer. If no such clause exists, then u is
granted unconditional access to c. Otherwise, Line 15 out
puts the condition of the where clause into a SQL case
statement which verifies the condition before outputting the
value of c (on Line 18). If the condition is false, access to the
column value is denied and Line 19 outputs a null value for
C

The following illustrates the basic syntax of the P3P
policy specification language:

&POLICIESs . . .
<POLICY name = “Policy Name1"> . . .

STATEMENT

PURPOSEs
stated-purpose

required = (always
PURPOSEs
RECIPIENT

stated-recip
required = (always

RECIPIENT
<RETENTIONs retention wall &RETENTION
&DATA GROUPs

<DATA ref= data-refvals

“opt-in"opt-out)

“opt-in"opt-out)

&DATA GROUP
&STATEMENT

&POLICY
POLICY

&POLICY

&POLICIES

The process of transforming a policy like the one above
into fine grained restrictions involves: (1) parsing the policy
to extract the list of statements, (2) mapping data abstrac
tions into their implementation specific equivalents, e.g. in
the above specification this would mean mapping data-ref
Val to its corresponding table name(s) and column name(s),
(3) structuring the choice tables which record individual user
opt-in/out choices (in some cases, this may not be necessary
since there may be no Such choices), and (4) generating the
restriction statements. Assuming that data-ref-val maps to
columns A and B of table T, the above abstract specification
would lead to the following restriction being constructed:

create restriction Policy Name 1
on T
for public

10

15

25

30

35

40

45

50

55

60

65

12
to cells AB
where opt-in-out-conditions
for purpose stated-purpose
for recipient stated-recip
restricting access to select
FIG. 5 is a detailed example of a privacy policy, for a

fictional Healthcare provider. The metadata contains the
information needed to associate “ipersonal' (personal infor
mation) and “imedical' (medical information) with data
base tables which store this information. Personal informa
tion maps to the name, SSN, address, email and DOB fields
of the Patients table, while medical information maps to the
Xray, pharmacy, family, appointment and lifestyle fields of
the Patients table. Physician, Healthcare and Drug Research
are assumed to be user roles and thus do not require refining.
Thus, the P3P healthcare policy given in FIG. 5 is translated
into the restrictions given in FIG. 6. For simplicity, the
restrictions in FIG. 6 assume that all columns in a P3P policy
are contained in a single table.
The creation and population of the Choices Patients table

should be coordinated to synchronize with the creation and
update of the patients table. The policy translator modifies
the structure of the choices patients table to ensure that the
correct number of choice fields are present for recording
opt-in/opt-out decisions for a particular table. In the above
example, C1 represents the choice to allow Drug Research
to see personal data if the drug research is being conducted
by the healthcare company itself. Choice C2 is the option to
allow usage of personal data for drug research by other
healthcare companies having the same privacy policy as this
company. The example illustrates the basic steps involved in
the translation process. FIG. 7 gives the pseudo-code show
ing the steps involved in transforming P3 policy into the
present invention’s language constructs.
A unique restriction name, needed for the command is

generated on Line 2. Line 3 uses the mapP3PPolicyToTable
function to uncover the table name which stores the infor
mation described by the data types in the P3P statement.
This metadata is populated by the database administrator.
On Line 4, the set of users who are authorized to access data
specified by the policy are obtained using the
mapp3PPolicyTo Authorized Users command which uses
database metadata to derive the set of authorized users. The
database administrator is responsible for populating this
information in the database metadata tables. Line 10 uses the
mapp3PDataTypeToGolumns function to retrieve the col
umn names that store information described by the P3P data
types in the statement. Again, this information has been
prepared and Supplied by the database administrator and
stored in metadata tables.
The function mapP3PPurposeToChoiceTable accepts a

statement id and returns the table storing individual user
choices for this Statement. The function
mapp3PPurposeToChoiceColumn accepts a statement-pur
pose pair and returns the column in the choice table which
records the corresponding users' choices. Both these func
tions are driven from metadata.

Although the present invention, as described, provides
restrictions specified for tables and at least one or a combi
nation of rows, columns or cells in a relational database; it
should be noted that restrictions can also be specified for
collection of objects and attributes of these objects in an
object database, or collection of documents and attributes of
elements in these documents in an XML database. Hence,
how such restrictions are specified should not be used to
limit the scope of this invention.

US 7,243,097 B1
13

Additionally, the present invention provides for an article
of manufacture comprising computer readable program code
contained within implementing one or more modules to
provide fine grained access control in a relational database.
Furthermore, the present invention includes a computer
program code-based product, which is a storage medium
having program code stored therein which can be used to
instruct a computer to perform any of the methods associ
ated with the present invention. The computer storage
medium includes any of, but is not limited to, the following:
CD-ROM, DVD, magnetic tape, optical disc, hard drive,
floppy disk, ferroelectric memory, flash memory, ferromag
netic memory, optical storage, charge coupled devices, mag
netic or optical cards, smart cards, EEPROM, EPROM,
RAM, ROM, DRAM, SRAM, SDRAM, or any other appro
priate static or dynamic memory or data storage devices.

Implemented in computer program code based products
are software modules for:

(a) aiding in receiving a user query:
(b) identifying and combining restrictions relevant to the

user query, the restrictions specifying access to data in a
table in the database at the level of at least one or a
combination of individual rows, individual columns or
individual cells, and the restrictions comprising a combina
tion of access control and privacy policy restrictions;

(c) transforming the user query into an equivalent query
which implements the restrictions; and

(d) aiding in accessing the data based on the equivalent
query.

CONCLUSION

A system and method has been shown in the above
embodiments for the effective implementation of extending
relational database systems to automatically enforce privacy
policies. While various preferred embodiments have been
shown and described, it will be understood that there is no
intent to limit the invention by such disclosure, but rather, it
is intended to cover all modifications falling within the spirit
and scope of the invention, as defined in the appended
claims. For example, the present invention should not be
limited by Software/program, computing environment, or
specific computing hardware. Moreover, the present inven
tion should not be limited to how the restrictions are
specified. All programming and data related thereto are
stored in computer memory, static or dynamic, and may be
retrieved by the user in any of conventional computer
storage, display (i.e., CRT) and/or hardcopy (i.e., printed)
formats.

What is claimed is:
1. A method of providing fine grained access control

within a database, said method comprising:
receiving a user query;
identifying and combining restrictions relevant to said

user query, said restrictions specifying access to data in
a table in said database at the level of at least one of or
a combination of individual rows, individual columns
or individual cells, and said restrictions comprising a
combination of access control and privacy policy
restrictions, said privacy policy restrictions being gen
erated by transforming a privacy policy by the follow
ing steps:
parsing said privacy policy to extract a list of state

ments,
mapping data abstractions in said privacy policy into

their implementation specific equivalents,

10

15

25

30

35

40

45

50

55

60

65

14
structuring choice tables which record individual user

opt-in/out choices, and
generating restriction statements;

transforming said user query into an equivalent query
which implements said restrictions; and

accessing said data based on said equivalent query.
2. A method of providing fine grained access control

within a database, according to claim 1, wherein said
restrictions are generated by transforming said privacy
policy and using privacy metadata catalogs.

3. A method of providing fine grained access control in a
database, according to claim 1, wherein said restrictions are
combined by union or intersection.

4. A method of providing fine grained access control in a
database, according to claim 2, wherein said privacy policy
is written in high-level policy language.

5. A method of providing fine grained access control in a
database, according to claim 4, wherein said high-level
policy language is P3P.

6. A method of providing fine grained access control in a
database, according to claim 2, wherein said privacy meta
data catalogs store individual opt-in/opt-out choices.

7. A method of providing fine grained access control in a
database, according to claim 1, wherein said restrictions
specify purposes and/or recipients for which access is
allowed.

8. A system providing fine grained access control (FGAC)
within a database, said system comprising:

a database to store privacy metadata catalogs and FGAC
restrictions, said FGAC restrictions specifying access
to data in a table in said database at the level of at least
one of or a combination of individual rows, individual
columns or individual cells and said FGAC restrictions
comprising a combination of access control and privacy
policy restrictions, said data of said database being
accessed based on a transformed equivalent query
which implements said FGAC restrictions; and

a policy translator to accept as input a least a privacy
policy and said privacy metadata catalogs, said policy
translator transforming said privacy policy into said
privacy policy restrictions by: parsing said privacy
policy to extract a list of Statements, mapping data
abstractions in said privacy policy into their implemen
tation specific equivalents, structuring choice tables
which record individual user opt-in/out choices, and
generating restriction statements.

9. A system providing fine grained access control (FGAC)
within a database, according to claim 8, wherein said
privacy policy is written in high-level policy language.

10. A system providing fine grained access control
(FGAC) within a database, according to claim 9, wherein
said high-level policy language is P3P.

11. A system providing fine grained access control
(FGAC) within a database, according to claim 8, wherein
said privacy metadata catalogs store individual opt-in/opt
out choices.

12. A system providing fine grained access control
(FGAC) within a database, according to claim 8, wherein
said FGAC restrictions specify purposes and/or recipients
for which access is allowed.

13. An article of manufacture comprising a computer
usable medium having computer readable program code
embodied therein which provides fine grained access control
within a database, said medium comprising:

computer readable program code aiding in receiving a
user query:

US 7,243,097 B1
15

computer readable program code identifying restrictions
on access to data in a table in said database at the level
of at least one or a combination of individual rows,
individual columns or individual cells, said restrictions
comprising a combination of access control and privacy
policy restrictions;

computer readable program code transforming a privacy
policy into said privacy policy restrictions by: parsing
said privacy policy to extract a list of Statements,
mapping data abstractions in said privacy policy into

16
their implementation specific equivalents, structuring
choice tables which record individual user opt-in/out
choices, and generating restriction statements;

computer readable program code transforming said user
query into an equivalent query which implements said
restrictions; and

computer readable program code aiding in accessing said
databased on said equivalent query.

k k k k k

 100

Appendix B: Data Encryption Portfolio

Table B.1 – Research Papers

ID Publication Key Contributions

1 Holistic Database Encryption

International Conference on Security

and Cryptography (SECRYPT)

- Design of a holistic database encryption solution which

allows organizations to meet their security and

compliance requirements without having to make

compromises either on the security side or on the

database side.

- Enable organizations to adhere to zero-trust security.

- Implementation of the solution in IBM DB2 for Linux,

Unix and Windows.

2 Towards Zero-Trust Database
Security – Part 1

IEEE Future Directions Newsletter:

Technology Policy & Ethics

- Introduces a database threat model and raises

awareness of the direct and indirect means through which

the same data in a database can be accessed.

3 Towards Zero-Trust Database
Security – Part 2

IEEE Future Directions Newsletter:

Technology Policy & Ethics

- Outlines solutions (including encryption) to address the

direct and indirect access challenges and to enable zero-

trust database security.

Holistic Database Encryption

Walid Rjaibi
IBM Canada Lab, 8200 Warden Avenue, Markham, Ontario, Canada

wrjaibi@ca.ibm.com

Keywords: Databases, Encryption, Key Management, Security, Compliance.

Abstract: Encryption is a key technical control for safeguarding sensitive data against internal and external threats. It
is also a requirement for complying with several industry standards and government regulations. While
Transport Layer Security (TLS) is widely accepted as the standard solution for encrypting data in transit, no
single solution has achieved similar status for encrypting data at rest. This is particularly true for database
encryption where current approaches are forcing organizations to compromise either on the security side or
on the database side. In this paper, we discuss the design and implementation of a holistic database
encryption approach which allows organizations to meet their security and compliance requirements without
having to sacrifice any critical database or security properties.

1 INTRODUCTION

Internal threats, external threats, government
regulations, and industry standards require
organizations to implement security controls to
ensure information is adequately protected. Failure
to do so can have a negative impact on an
organization such as loss of customer data, damage
to brand reputation, and even financial penalties.
Encryption is a key technical control for protecting
information. It is also an explicitly stated
requirement for compliance with many regulations
and standards such as the General Data Protection
Regulation (Voigt, 2017) and the Payment Card
Industry Data Security Standard (Chuvakin, 2009).

While TLS is widely accepted as the standard

solution for encrypting data in transit, no single
solution has achieved similar status for encrypting
data at rest. This is particularly true for database
encryption where current approaches are forcing
organizations to compromise either on the security
side or on the database side. Indeed, database
encryption poses some very unique challenges as not
only the solution needs to be sound from a security
perspective, but it also needs to coexist in harmony
with critical database properties such as
performance, integrity, availability, and
compression.

The rest of this paper is organized as follows.
Section 2 discusses the related work around database
encryption. In section 3, we state our contributions.
Section 4 defines the threats our database encryption
solution defends against. In section 5, we describe
our solution design in full details. Lastly, section 6
summarizes our approach and outlines our future
work.

2 RELATED WORK

Current database encryption solutions can be divided
into four main categories: Column encryption
(Benfield, 2001), tablespace encryption (Freeman,
2008), file system encryption (Anto, 2018), and self-
encrypting disks (Dufrasne, 2016). Unfortunately,
each of these solutions forces the organization to
make a compromise either on the database side or on
the security side.

Column encryption negatively affects database
performance as queries with range predicates cannot
benefit from index-based access plans to limit the
data to read from the table. Instead, the database
system is forced to read the entire table to evaluate
the query. Tablespace encryption may leave certain
data vulnerable to attacks when, for example, an
administrator inadvertently takes an action that
moves data from an encrypted tablespace to an
unencrypted one. An example of such action would

be the creation of a materialized query table (MQT)
to speed up the execution of data warehousing
queries. File system encryption and self-encrypted
disks provide no protection against privileged users
on the operating system. As long as the file
permissions allow access, such users can easily view
the content of the database by browsing the
underlying files on the operating system.

3 CONTRIBUTIONS

The crux of our contribution is the design of a
holistic database encryption approach which allows
organizations to meet their security and compliance
requirements without having to make compromises
either on the security side or on the database side.
Our solution improves over the state of the art
discussed above as follows:

• Pervasiveness: All data is encrypted
whether it is user tablespace data, system
tablespace data, temporary tablespace data,
transaction logs data, or database backups
data.

• Security: The database content is not
vulnerable to attacks by malicious
administrators who may choose to bypass
the database and access the database
indirectly through the file system
interfaces.

• Performance: The database system is not
forced to dismiss index-based access plans
to answer queries with range predicates.

• Breadth: The solution is built into the
database engine itself which means that it is
available on all platforms where the
database system itself runs. Also, it does
not force the database system to dismiss the
opportunity to bypass the file system and
write data directly to raw devices in order
to boost performance.

• Quantum-safety: The implementation does
not make use of asymmetric encryption to
wrap data encryption keys. Data encryption
keys are wrapped with symmetric
encryption (Chandra, 2014). Therefore, the
implementation is safe against future
attacks by quantum computers
implementing Shor’s algorithm which is
known to break asymmetric encryption that

is based on integer factorization such as
RSA or on discrete logarithms such as
Diffie-Hellman (Shor, 1997). Additionally,
the default encryption key size is 256 bits.
This also makes the implementation safe
against future attacks by quantum
computers implementing Grover’s
algorithm which is known to offer a
quadratic improvement in brute-force
attacks on symmetric encryption schemes
like AES (Grover, 1996).

We have also implemented the solution in a
commercial database system (IBM DB2 for Linux,
Unix, and Windows).

4 THREAT MODEL

We focus on protecting data at rest. For protecting
data in transit between a database server and a client
application against eavesdroppers, we assume TLS
has been configured to provide this protection. TLS
is the standard for protecting data in transit and is
implemented by all major database systems.

The content of a database deployed on a given
database server can be accessed in two different
ways: Directly and indirectly. Direct access is when
users interact with the database using the usual
database interfaces such as querying the database
tables using SQL. In this context, we assume that the
database authentication and authorization
mechanisms have been configured to ensure that
data is accessible only to the appropriate users.
Authentication ensures that users are who they claim
they are while authorization ensures that
authenticated users have access only to those objects
or elements within objects for which they have been
granted permissions (Rjaibi, 2004).

Indirect access is when a user chooses to bypass

the database system altogether and uses operating
system commands to browse the content of the
database. For example, on Linux, the following
command would display the content of the physical
file associated with a given tablespace:

strings
‘/u01/database/payroll_tbspace’

This command will be executed by the operating

system bypassing all the database authentication and
authorization controls.

Our solution addresses this threat by encrypting
the database and ensuring that such encryption is
under the control of the database system itself. This
means that if a user chooses to bypass the database
system as shown above, the operating system
command will return cipher text which will be of no
value to the attacker.

An attacker may also choose to access the

database content from decommissioned hard drives
or by physically stealing such hard drives. Our
solution addresses this concern as well because the
attacker will only find cipher text on those drives.
Figure 1 gives a high level overview of our database
threat model.

Figure 1: Database threat model.

5 DATABASE ENCRYPTION
DESIGN

5.1 Encryption Key Management

Encryption key management is a critical aspect of an
encryption solution. Our solution uses two types of
encryption keys: A Data Encryption Key (DEK) and
a Master Key (MK).

The DEK is the encryption key used to encrypt
the actual data in the database. It is automatically
generated by the database system at database
creation time. The DEK is encrypted with the MK
and stored within the database configuration
structures together with the following attributes:

• The encryption key size: This is the length

of the encryption key in bits (e.g., 256 bits).
• The encryption algorithm: This is the

symmetric encryption algorithm used to
encrypt the data with the DEK (e.g., AES).

• The master key label: This is the unique
identifier of the master key within the
external management system. For example,
if the external management system is a
Hardware Security Module (HSM), then
the database system will call out to the
HSM and ask it to either encrypt or decrypt
the DEK as required. A call to decrypt the
DEK is done once when the database
system starts up. A call to encrypt the DEK
is also done once when the database is
created.

• The master key integrity value: To guard
against the (rare) event where the MK
acquired at some future point in the life of
the database is not the one that was actually
used to encrypt the DEK, we calculate an
integrity value for the MK. We do this by
applying a Hash Message Authentication
Code (HMAC) function to the MK and
store the result. Before making use of the
DEK, we first compute an HMAC based on
the MK acquired. If the computed HMAC
and the stored HMAC match this implies
that the master key acquired is indeed the
one that was used to encrypt the DEK.
Although rare, this is important to avoid
corrupting data through decryption with the
wrong key.

The MK is the encryption key used to encrypt

the DEK. Only a unique identifier of the MK is
stored within the database configuration structures.
The MK itself is stored in an external key
management system such as an HSM.

The reasons for choosing these two types of keys

are security, performance, and availability. By
storing the MK physically away from the database
system, we are assured that compromise of the
database system infrastructure does not give the
attacker access to both the encrypted data and the
encryption keys. Additionally, the concept of MK
allows database administrators to rotate encryption
keys without impacting the database performance or
worse requiring the database to be taken offline to
complete the operation. In fact, rotating the MK only
requires decrypting the DEK with the old MK and
re-encrypting it again with the new MK. In contrast,
rotating the DEK requires reading the whole
database, decrypting the data with old DEK, re-
encrypting it with the new DEK, and writing it back
to disk. Thus, the two types of keys we chose in our
solution design (DEK and MK) allow administrators

to meet their regulatory compliance needs around
rotating encryption keys without necessarily having
to incur a performance penalty or take a downtime.

5.2 Data Encryption

Implementing security in database systems is always
a delicate balance between meeting the security
requirements, and ensuring that security coexists in
harmony with other critical database features such as
performance, compression, and availability. For
database encryption, this means that the placement
of the encryption run-time processing is key to
designing an effective solution.

5.2.1 Encryption Run-time Placement

Our design places the encryption run-time
processing just above the database I/O layer in the
database kernel stack. The reasons for this choice are
the following:

• Pervasiveness: This ensures that all data is
encrypted whether it is user tablespace data,
system tablespace data, temporary
tablespace data, or transaction logs data.

• Transparency: This ensures that encryption
has no impact on database schemas and
user applications. In fact, encryption can be
thought of as invisible to them.

• Performance: This ensures that data stored
in the database buffer cache remains in
clear text. Consequently, encryption
imposes no restrictions on the database
system when it comes to selecting the most
efficient plan to execute a query (e.g.,
queries with range predicates).

• Compression: Database systems implement
compression techniques to reduce the size
of the data stored on disk. Typically, these
techniques look for repeating patterns in
order to avoid storing all copies of such
patterns. Encryption, by definition, removes
all patterns. This means that the order in
which compression and encryption are
performed is important. For example, if
encryption is performed first, then the
compression rate will be zero as encryption
will leave no patterns. Thus, placing our
encryption run-time processing just above
the database I/O layer ensures that
encryption and compression can coexist in
harmony.

5.2.2 Encryption Run-time Processing

The encryption run-time processing consists of two
functions: Encryption and decryption. Encryption
takes place when the database system is writing data
out to the storage system. Decryption happens when
the database system is reading data in from the
storage system.

While the solution can easily support any
symmetric block cipher for encryption/decryption,
we have chosen to implement support for only AES
and 3DES as they are the most commonly used
block ciphers. AES is actually the standard
symmetric block cipher. Block ciphers support many
modes of operations. Electronic Code Book (ECB)
is the easiest mode to implement but is also the
weakest from a security perspective. This is because
in ECB mode the same clear text input will always
result in the same cipher text. This may be fine for
encrypting small pieces of data such as a password,
but not for database encryption as this will introduce
patterns and may compromise the encryption
solution. Instead, we have chosen to use the Cipher
Block Chaining (CBC) mode as it does not introduce
patterns. This means we need to provide an
initialization vector when calling the block cipher in
CBC mode for encryption, as well as maintain that
initialization vector in our meta-data so that it is
available for decryption purposes. Note that the
initialization vector is not meant to be a secret. It
only needs to be random.

When writing data to the file system, the
database system writes them in chunks to minimize
the I/O overhead. A chunk is a collection of data
pages where each page is 4KB in size. A page is set
of rows, and a database table is a collection of pages.
This poses an interesting question as to the level of
granularity to adopt for encryption. We have chosen
the data page to be that level granularity. A row
level granularity would have had a higher impact on
performance as encryption calls would have to be
made for each row separately. A chunk level
granularity would have created a dependency
between the pages in that chunk due to the chaining
inherent to the CBC mode. For example, to decrypt
page 5, one must first decrypt pages 1, 2, 3, and 4.
This would have had a negative impact on query
performance as it diminishes the value of index-
based access.

It is also worth noting that the data page level
granularity has allowed us to avoid having to

needlessly increase the database size due to
encryption. In fact, encryption block ciphers such as
AES and 3DES encrypt data one block at a time. For
example, the block size for AES is 16 Bytes. This
means that when the clear text to encrypt is not an
exact multiple of the block size, padding is required
and this obviously increases the cipher text
compared to the original clear text. Fortunately, the
choice of a data page for the encryption granularity
avoids this problem as data pages are always an
exact multiple of the encryption block size.

5.2.3 Transaction logs

Transaction logs are files where the database system
logs transactions such as insert, delete, and update
operations. They are a critical component for
ensuring the integrity of the database as well as for
allowing recoverability of the database following a
database crash. The structure of a transaction log file
consists of two pieces: A header which contains
meta-data about the file, and a payload which
contains the actual database transaction details.

In section 5.2.2 above, we have seen how the
placement of the encryption run-time ensures that all
data written to disk, including transaction logs, is
automatically encrypted. However, transaction logs
pose one additional challenge. In a database
recovery scenario, we must be able to decrypt the
transaction logs even when the database system is
down. This means that we cannot rely on the DEK
related information (section 5.1 above) to decrypt
the transaction logs as the database system may be
offline. To address this challenge, the transaction
logs structure has been extended so that these logs
are self-contained when decryption is required. More
specifically, the header piece of the transaction logs
structure has been extended so that it contains its
own copy of the DEK related information. This also
opens the door for an opportunity to further boost
security by generating a separate DEK for the
transaction logs that is distinct from the DEK for the
database.

5.2.4 Database backups

A database backup is a copy of the database content
at a given point in time. Database systems provide a
command and/or API to allow users to take those
backups. In the case of a database crash, the
database can be recovered to the state it was at when
the last backup was taken. Additionally, when
healthy transaction logs from the damaged database
are available, it is possible to recover the database to

a further point in time by reapplying the database
transactions from the transaction logs. Like
transaction logs, a database backup consists of two
pieces: A header which contains meta-data about the
backup, and a payload which contains the actual
copy of the database.

Database backups pose the same challenge as
transaction logs in the sense that they too need to be
self-contained when decryption is required.
Consequently, this challenge is addressed in the
same way by extending the database backup header
piece so that it contains its own copy of the DEK
related information. Like transaction logs, database
backups have their own unique DEK.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a holistic approach
to database encryption which allows organizations to
meet their security and compliance needs without
having to make compromises either on the security
side or on the database side. Figure 2 gives a high
level overview of the architecture, which we
implemented in IBM DB2 for Linux, Unix, and
Windows.

Figure 2: Database encryption architecture.

In our future work, we intend to enhance our

holistic database encryption solution to better
address two challenges. The first challenge is
encrypting existing databases. Unlike newly created
databases, an existing database already has data and
turning encryption on for that database means not

only encrypting new incoming data, but also
encrypting that existing data. The current solution
requires the organization to turn on the encryption
for the existing database during a scheduled database
maintenance window. This is because the current
approach for encrypting an existing database works
by having the database administrator take a backup
of the existing database and then restoring it using
the RESTORE DATABASE command. While
processing the restore, the database system encrypts
the data as that is analogous to new incoming data.
We would like to allow database administrators to
turn on encryption for their existing databases
without having to wait for a scheduled maintenance
window. To do so, we plan to investigate creating a
background process which encrypts the database
incrementally while the database system continues
to serve applications. The main challenge would be
finding out how to perform this incremental
encryption without compromising the data integrity.

The second challenge is rotating the DEK online.

Currently, our solution allows rotating only the MK
online. While rotating the MK is usually sufficient,
there may be situations where rotating the DEK
itself is required. Currently, the only way to do this
is during a scheduled maintenance window
following the same database backup and restore
discussed above. We believe that the solution for
encrypting existing databases without having to wait
for scheduled maintenance window would also
allow rotating the DEK online as that is
fundamentally the same problem. That is, in both
cases, the database content needs to be read, re-
encrypted with a new DEK, and written back to disk.

ACKNOWLEDGEMENTS

The author would like to thank Saifedine Rjaibi and
Devan Shah for their valuable comments.

REFERENCES

Rjaibi, W., Bird, P., 2004. A Multi-Purpose
Implementation of Mandatory Access Control in
Relational Database Management Systems. In
VLDB’04, 30th International Conference on Very
Large Data Bases. Morgan Kaufmann.

Chandra, S., Paira, S., Alam, S., Sanyal, G., 2014. A
Comparative Survey of Symmetric and Asymmetric
Key Cryptography. In ICECCE’14, International

Conference on Electronics, Communication and
Computational Engineering. IEEE.

Grover, L., 1996. A Fast Quantum Mechanical Algorithm
for Database Search. In STOC’96, 28th Annual ACM
Symposium on Theory of computing. ACM.

Shor, P., 1997. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SIAM Journal on Computing, Volume 26
Issue 5.

Dufrasne, B., Brunson, S., Reinhart, A., Tondini, R., Wolf,
R., 2016. IBM DS8880 Data-at-rest Encryption, IBM
Redbooks. New York, 7th edition.

Benfield, B., Swagerman, R., 2001. Encrypting Data
Values in DB2 Universal Database. IBM
DeveloperWorks.

Anto, J., 2008. Understanding EFS. IBM
DeveloperWorks.

Freeman, R., 2008. Oracle Database 11g New Features,
McGraw-Hill.

Voigt, P., Von Dem Bussche, A., 2017. The EU General
Data Protection Regulation (GDPR), Springer
International.

Chuvakin, A., Williams, B., 2009. PCI Compliance:
Understand and Implement Effective PCI Data
Security Standard Compliance, Elsevier.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Towards Zero-Trust Database Security –
Part 1

Walid Rjaibi, Mohammad Hammoudeh

Abstract—The rise of external threats, internal threats and data breaches is driving enterprises to implement zero-trust security
to better protect their IT assets and reduce risk. While zero-trust security for networks and identity management systems have
received a great deal of focus, very little attention has been devoted to zero-trust security for database systems. This is a major
issue as database systems are the custodian of enterprises most critical data and are often the primary target of both external
and internal attacks. After all, databases contain valuable data such attackers want to steal. In Part One of this series, we
explore both the direct and indirect means through which the same data in a database system can be accessed and the
challenges they pose to adhering to the basic tenets of zero-trust security. In Part Two, we outline a set of solutions that are
most suitable to address these challenges and enable enterprises to implement zero-trust database security without negatively
impacting core database tenets such as query performance.

Index Terms—Databases, Security, Zero-Trust.

—————————— u ——————————

1 INTRODUCTION
HE 2018 Cost of a Data Breach Study, conducted by
the Ponemon Institute and sponsored by IBM, found

that the global average cost of a data breach was $3.86
million [1]. This was an increase of 6.4% compared to 2017
according to the same study. The study also found that
the average size of a data breach (in terms of number of
records lost or stolen) grew 2.2% from 2017. Meanwhile,
Gartner estimates that worldwide spending on cyberse-
curity in 2018 was around $114 billion, an increase of
12.4% compared to 2017 [2]. Recognizing that current ap-
proaches aren’t sufficiently adequate, several organiza-
tions are now turning into zero-trust security to better
protect their assets and reduce the risk of incurring a data
breach. So, what exactly is zero-trust security?

Zero-trust security was coined by Forrester’s John

Kindervag in 2010 [3], [4]. In its essence, zero-trust securi-
ty removes the notion of trust from the enterprise net-
work (e.g., no more trusted users, devices, or applica-
tions). It assumes that untrusted entities exist both out-
side and inside the enterprise network. The basic tenets of
zero-trust security can be summarized as follows:

1. Tenet 1: Ensure all resources are accessed in a

secure manner regardless of location.
2. Tenet 2: Grant access to resources based on

“need-to-know” and strictly enforce access
control.

3. Tenet 3: Monitor and audit all user activities.

While extensive coverage of zero-trust security imple-

mentations for networks [3] and identity management sys-
tems [5] exists, very little coverage exists for database sys-
tems. We contend that zero-trust security implementations
for database systems is equally important for three main
reasons. First, database systems are the custodians of the
enterprise most valuable data. This is the very data attack-
ers of all sorts are seeking. Secondly, the same data entrust-
ed with the database system can be accessed in a variety of
distinct and independent ways, thus broadening the data-
base attack surface. Lastly, the database privileges model is
inherently a double-edged sword, creating opportunities
for privileges to be abused intentionally or unintentionally.

2 DATABASE THREAT MODEL
We assume that organizations are implementing user au-
thentication, auditing and Transport Layer Security (TLS)
which are standard features on all major database systems
today. We also assume that organizations are implement-
ing adequate operational policies such as operating sys-
tem and database software vulnerability patching. In this
paper, we focus on direct and indirect means for accessing
data in a database and the challenges they pose to adher-
ing to the three zero-trust security tenets outlined in sec-
tion 1.

The same data in a database can be accessed in two dif-

ferent ways: Indirectly or directly. Indirect access occurs
when a user bypasses the database system altogether.
This is most dangerous because it completely bypasses all
database access control and auditing. We distinguish be-
tween two use cases:

1. File system access: This takes place when a
user chooses to access the data directly on the
file system using operating system com-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• Walid Rjaibi is with the Departmentof Computing and Mathematics, Man-

chester Metropolitan University, and the IBM Canada Lab, 8200 Warden
Avenue, Markham ON L6E 1E9. E-mail: wrjaibi@ca.ibm.com.

• Mohammad Hammoudeh is with the Department of Computing and
Mathematics, Manchester Metropolitan University, Manchester M15 6BH.
E-mail: M.Hammoudeh@mmu.ac.uk.

T

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

mands.
2. Storage media access: This takes place when a

user recovers the data from the actual storage
media such as a stolen or lost hard drive or
tape.

Failure to address these two use cases makes it impos-

sible to adhere to the first two tenets of zero-trust security
outlined in section 1.

Direct access takes place using standard database inter-

faces such as Structured Query Language (SQL). We dis-
tinguish between two use cases:

1. Interactive database access: This is typically

done by database administrators using an in-
teractive interface offered by the database sys-
tem. This is usually used to perform adminis-
trative tasks.

2. Application database access: This is the most
common use case where end users interact
with an application which in turn interacts
with the database system to execute requests
on behalf of those end users.

The issue with interactive database access is privilege

abuse where, for example, a database administrator
chooses to abuse their privileges to access sensitive data.
The application database access poses two issues. The
first one is application bypass where, for example, the ap-
plication administrator chooses to abuse the application
database credentials to access sensitive data or make
changes that are not permitted by the application’s busi-
ness logic. The second issue is the loss of user identity
which diminishes the value of auditing to hold users ac-
countable for their actions. This stems from the fact that
the application uses a generic user ID to access the data-
base on behalf of all users as opposed to the actual user
identity.

Fig. 1. Database threat model.

Failure to address privilege abuse and application by-
pass makes it impossible to adhere to the first two tenets
of zero-trust security outlined in section 1. Similarly, fail-
ure to address the loss of user identity makes it impossi-
ble to adhere to the third tenet of zero-trust security (aslo
outlined in section 1). Fig. 1 summarizes our database
threat model.

3 CONCLUSION
Database systems contain enterprises most valuable data
and are often the primary target of both internal and ex-
ternal attacks. Implementing zero-trust database security
starts with first understanding the database threat model.
Table 1 summarizes these threats and how they relate to
the basic tenets of zero-trust security. In Part Two of this
series we outline solutions and best practices for address-
ing these threats and implement zero-trust database secu-
rity.

TABLE 1

ZERO-TRUST DATABASE SECURITY CHALLENGES
Threat Threat

type
Fundamental zero-trust
security tenet

File system
access

Indirect Tenets 1 and 2

Storage media
access

Indirect Tenets 1 and 2

Privilege abuse Direct Tenets 1 and 2
Application
bypass

Direct Tenets 1 and 2

Loss of end
user identity in
multitiered
environments

Direct Tenet 3

REFERENCES
[1] The Ponemon Institute, https://www.ibm.com/security/data-breach,

2019.
[2] Gartner, https://www.gartner.com/en/newsroom/press-

releases/2018-08-15-gartner-forecasts-worldwide-information-
security-spending-to-exceed-124-billion-in-2019, 2019.

[3] E. Gilman, D. Barth, Zero Trust Networks: Building Secure Systems
in Untrusted Networks. O’Reilly Media, 2017.

[4] S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, “A Systemat-
ic Review of the Availability and Efficacy of Countermeasures to In-
ternal Threats in Healthcare Critical Infrastructure”, IEEE Access, 6,
pp.25167-25177, 2018.

[5] Centrify, https://www.centrify.com/education/what-is-zero-
trust-privilege, 2019.

Walid Rjaibi is Distinguished Engineer and Chief
Technology Officer (CTO) for Data Security with IBM in Toronto,
Canada. Prior to his current role, Walid was Research Staff Member
in network security and cryptography with IBM Research in Zurich,
Switzerland. Walid’s work on Data Security has resulted 26 granted
patents and several publications in journals and conference proceed-
ings such as the IDUG solutions journal, the internation conference
on security and cryptography (SECRYPT), the internation confer-
ence on data engineering (ICDE), and the internation conference on
Very Large Databases (VLDB).

AUTHOR ET AL.: TITLE 3

Mohammad Hammoudeh is the Head of the
CfACS IoT Laboratory and a Reader in Future Networks and Securi-
ty with the Department of Computing and Mathematics, Manchester
Metropolitan University. He has been a researcher and publisher in
the field of big sensory data mining and visualization. He is a highly
proficient, experienced, and professionally certified cybersecurity
professional, specializing in threat analysis, and information and
network security management. His research interests include highly
decentralized algorithms, communication, and cross-layered solu-
tions to Internet of Things, and wireless sensor networks.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Towards Zero-Trust Database Security –
Part 2

Walid Rjaibi, Mohammad Hammoudeh

1 INTRODUCTION
N Part One, we have explored the direct and indirect
means through which the same data in a database sys-

tem can be accessed and the challenges they pose to ad-
hering to the basic tenets of zero-trust security. Here, we
outline the solutions that are most suitable to address
these challenges and enable enterprises to implement ze-
ro-trust database security without negatively impacting
core database tenets such as query performance.

2 SEPARATION OF DUTIES
Traditionally, database systems have been designed such
that the Database Administrator (DBA) manages all as-
pects of the database, including security and auditing.
Additionally, the DBA inherently had full access to all
tables in the database. With the emergence of insider
threats as a security concern equally important to external
threats [1], this traditional model clearly hampers an or-
ganization’s ability to fully implement zero-trust database
security.

We contend that database systems must provide the

capability to allow organizations to vest security admin-
istration and database administration into two non-
overlapping roles so separation of duties can be enforced.
Separation of duties also ensures that the DBA does not
have implicit access to all the data in the database. This
separation of duties enables organizations to better ad-
here to zero-trust security. It may also dictate the type of
database system to adopt as not all database systems nec-
essarily provide the capabilities to enforce separation of
duties.

3 DATA ENCRYPTION
Indirect access is most dangerous as it completely bypass-
es all access control and auditing in the database system.
A powerful countermeasure to protect against indirect
access is data encryption as encrypted data is of no value
to an attacker. However, data encryption for database
systems comes in many forms and not all forms of en-
cryption address the indirect access threats outlined.
There are also performance implications that need to be
taken into account when selecting a database encryption
solution.

Fig. 1 contrasts the key database encryption options.
Self-Encrypting Disks and file system encryption provide
the broadest coverage (they encrypt entire disks or file
systems), but they only protect against indirect access to

storage media. Tablespace encryption, full database en-
cryption and column encryption protect against indirect
access to both storage media and file system. Column
encryption, however, is intrusive to applications and neg-
atively affects performance. Tablespace encryption may
create a vulnerability when a DBA inadvertently moves
data from an encrypted tablespace to an unencrypted one,
or when data is held in temporary tablespaces. Therefore,
full database encryption allows organizations to imple-
ment zero-trust security without having to compromise
either on the database side or on the security side. The
design of one such solution is discussed in detail in [2]. To
give an example, consider a classical 3-tier banking appli-
cation which stores client data in its backend database. To
protect this data against indirect access, the application
would enable full database encryption for its backend
database. Using the solution discussed in [2], this can be
achieved using SQL as follows:

CREATE DATABASE <db-name> ENCRYPT

Fig. 1. Database encryption options.

4 FINE-GRAINED ACCESS CONTROL
Fine-Grained Access Control (FGAC) refers to the ability
to control access to database tables at the row level, col-
umn level, or cell level. This level of granularity ensures
users are granted only the privileges they need and is
paramount for mitigating the direct access scenarios out-
lined in Part One. However, database FGAC comes in
many forms and not all forms adequately address the
direct access threats. There are also usability implications
that need to be taken into account when selecting a data-
base FGAC solution.

Fig. 2 contrasts the database FGAC options. Database
views [3] and application-based FGAC provide most flex-

I

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ibility in terms of expressing FGAC rules, but the security
they provide is not data-centric and can be bypassed. La-
bel-Based Access Control (LBAC) [5] is a data-centric se-
curity model where the security policy is always enforced
regardless of whether the table is accessed directly or in-
directly through a view. However, LBAC lacks in flexibil-
ity when it comes to expressing security rules outside of
the rigid No Read-Up and No Write-Down rules of Multi-
level Security (MLS) [6]. Row permissions and column
masks [4] combine the benefits of views and LABC. They
are very suitable to implementing zero-trust security. To
give an example, consider our banking application again.
Suppose that client data is stored in a table called CLI-
ENT. Further, suppose that the bank’s security policy is
such that only members of the TELLER role can see the
full account number in table CLIENT. Anyone else can
only see the last 4 digits. Using the solution discussed in
[4], this can be achieved using SQL as shown below. The
mask construct created is automatically evaluated by the
database system each time the account number column is
accessed and ensures the bank’s security policy is en-
forced.

CREATE MASK ACCOUNT_ACCESS
ON CLIENT
FOR COLUMN account RETURN
CASE WHEN
 VERIFY_ROLE_FOR_USER (USER, ‘TELLER’) = 1
 THEN account
 ELSE 'XXXX-‘|| SUBSTR(ACCOUNT,5,4)
END
ENABLE;

Fig. 2. Database FGAC options.

5 USER IDENTITY PROPAGATION IN MULTITIERED
ENVIRONMENTS

In multitiered database environments, the application
interacts with the database system using a generic user
ID. This model does not contribute to implementing zero-
trust security because the database system does not see
the actual end user identities. One major implication of
this is diminished user accountability as the database au-
dit log will only show a generic user ID with no refer-
ences to the actual end users behind the application.

Some database systems provide the notion of Applica-

tion Context to give applications the tools to propagate the
end user identity to the database system where it can be

used for auditing purposes [7]. In other solutions such as
the Trusted Context concept introduced in [4], a more
formal mechanism is used to allow the establishment of a
trust relationship between the database system and the
application and for the propagation of end user identities
to the database system in a controlled and secure manner.

Strategies for implementing zero-trust database securi-

ty must consider multitiered database environments to
ensure that user accountability is maintained. This may in
turn dictate the type of database system to adopt as not
all database systems necessarily provide the capabilities
to enable applications to propagate end user identities. To
give an example, let’s continue with our banking applica-
tion. To ensure that the actual end user identities are
propagated to the database, the application can leverage
the trusted context concept introduced in [4]. This re-
quires the following steps:

1. The administrator creates a trusted context

object to define a trust relationship between
the application and its backend database.

2. The application establishes a trusted connec-
tion with its backend database.

3. Before issuing any request to the database on
behalf of an end user, the application switches
the current user of the connection to the new
user. This automatically propagates the end
user identity to the database where it is used
for all access control and auditing till the ap-
plication switches user again.

6 CONDITIONAL AUTHORIZATION
Traditional database authorization does not provide control
around when a particular privilege can be exercised. One
major use case where this model falls short is application
bypass. An application administrator may choose to abuse
the application credentials by accessing the database outside
the scope of the application.

Some database systems provide a capability to allow

organizations to require the database system to verify
more attributes before allowing a user to exercise their
privileges. For example, the Trusted Context concept in-
troduced in [4] addresses application bypass by requiring
the database system to authorize the application user ID
only when additional attributes have been verified.
Therefore, an application administrator who wishes to
abuse the application credentials by accessing the data-
base outside the scope of the application will find it hard
to do so.

Strategies for implementing zero-trust database securi-

ty must consider enforcing conditional authorization to
protect against privilege abuse scenarios. This may also
influence the choice of the database system to adopt as
not all database systems necessarily support conditional
authorization.

AUTHOR ET AL.: TITLE 3

7 CONCLUSIONS
Databases contain enterprises most critical data and are the
subject of attacks by both insiders and outsiders. Implement-
ing zero-trust database security is therefore paramount to
protect critical data. While user authentication, Transport
Layer Security and auditing are standard practices and are
usually implemented adequately by most organizations, the
indirect and direct threats outlined in this paper require care-
ful thinking including the choice of the database system to
adopt. Table 1 summarizes the indirect and direct threats we
outlined together with the security best practices to address
them and enable adherence to zero-trust security.

TABLE 1

IMPLEMENTING ZERO-TRUST DATABASE SECURITY
Threat Threat

type
Security best practice

File system
access

Indirect Full database encryption

Storage media
access

Indirect Full database encryption

Privilege abuse Direct - Separation of duties
- Fine-Grained Access Con-
trol (FGAC)

Application
bypass

Direct Conditional authorization

Loss of end
user identity in
multitiered
environments

Direct User identity propagation

REFERENCES
[1] Verizon,

https://www.knowbe4.com/hubfs/rp_DBIR_2017_Report_exe
csummary_en_xg.pdf, 2017.

[2] W. Rjaibi, “Holistic Database Encryption”, Proc. International Confer-
ence on Security and Cryptography, 2018.

[3] R. Elmasri, S. Navathe, Fundamentals of Database Systems 6th.
Addison-Wesley, 2010.

[4] W. Rjaibi, M. Hammoudeh, " Fine-Grained Database Authoriza-
tion and User Identity Propagation in Multitiered Environ-
ments", IEEE Trans. On Knowledge and Data Engineering, submit-
ted for publication (Pending evaluation), 2019.

[5] W. Rjaibi, P. Bird, “A Multi-Purpose Implementation of Mandatory
Access Control in Relational Database Management Systems”, Proc.
International Conference on Very Large Data Bases, 2004.

[6] W. Rjaibi, “An introduction to multilevel secure relational da-
tabase management systems”, Proc. The conference of the Centre
for Advanced Studies on Collaborative research (CASCON), 2004.

[7] Oracle, “Defense-in-Depth Database Security for On-Premises
and Cloud Databases”,
https://www.oracle.com/technetwork/database/security/sec
urity-compliance-wp-12c-1896112.pdf., 2019.

Walid Rjaibi is Distinguished Engineer and Chief
Technology Officer (CTO) for Data Security with IBM in Toronto,
Canada. Prior to his current role, Walid was Research Staff Member
in network security and cryptography with IBM Research in Zurich,
Switzerland. Walid’s work on Data Security has resulted 26 granted
patents and several publications in journals and conference proceed-
ings such as the IDUG solutions journal, the international conference
on security and cryptography (SECRYPT), the international confer-
ence on data engineering (ICDE), and the international conference
on Very Large Databases (VLDB).

Mohammad Hammoudeh is the Head of the
CfACS IoT Laboratory and a Reader in Future Networks and Securi-
ty with the Department of Computing and Mathematics, Manchester
Metropolitan University. He has been a researcher and publisher in
the field of big sensory data mining and visualization. He is a highly
proficient, experienced, and professionally certified cybersecurity
professional, specializing in threat analysis, and information and
network security management. His research interests include highly
decentralized algorithms, communication, and cross-layered solu-
tions to Internet of Things, and wireless sensor networks.

 101

Appendix C: Mandatory Access Control Portfolio

Table C.1 – Research Papers

ID Publication Key Contributions

1 A Multi-Purpose Implementation of
Mandatory Access Control in
Relational Database Management
Systems

Very Large Databases (VLDB)

Conference

- Design of a mandatory access control solution for

database systems which addresses the limitations of

traditional Multilevel Security (MLS).

- Enable organizations to adhere to zero-trust security.

- Implementation of the solution in IBM DB2 for Linux,

Unix and Windows, and Informix.

2 Inter-Node Relationship Labeling:
A Fine-Grained XML Access
Control Implementation Using
Generic Security Labels

International conference on security

and cryptography (SECRYPT)

- Design of a solution which improves over traditional

node-based XML access control approaches, by

considering inter-node relationships as the control

granularity.

- Enable databases to extend fine-grained authorizations

to XML columns in database tables.

- Enable organizations to meet privacy requirements and

adhere to zero-trust security.
3 An Introduction to Multilevel

Secure Relational Database
Management Systems

International Conference on

Computer Science and Software

Engineering

Survey and critique of traditional implementations of

mandatory access control in database systems (i.e.,

MLS).

A Multi-Purpose Implementation of Mandatory Access

Control in Relational Database Management Systems

Walid Rjaibi Paul Bird

IBM Toronto Software Laboratory
8200 Warden Avenue
Markham, Ontario

Canada
{wrjaibi, pbird}@ca.ibm.com

Abstract

Mandatory Access Control (MAC) implemen-
tations in Relational Database Management
Systems (RDBMS) have focused solely on
Multilevel Security (MLS). MLS has posed
a number of challenging problems to the
database research community, and there has
been an abundance of research work to ad-
dress those problems. Unfortunately, the use
of MLS RDBMS has been restricted to a few
government organizations where MLS is of
paramount importance such as the intelligence
community and the Department of Defense.
The implication of this is that the investment
of building an MLS RDBMS cannot be lever-
aged to serve the needs of application domains
where there is a desire to control access to ob-
jects based on the label associated with that
object and the label associated with the sub-
ject accessing that object, but where the label
access rules and the label structure do not nec-
essarily match the MLS two security rules and
the MLS label structure. This paper intro-
duces a flexible and generic implementation of
MAC in RDBMS that can be used to address
the requirements from a variety of application
domains, as well as to allow an RDBMS to ef-
ficiently take part in an end-to-end MAC en-
terprise solution. The paper also discusses the
extensions made to the SQL compiler compo-
nent of an RDBMS to incorporate the label

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

access rules in the access plan it generates for
an SQL query, and to prevent unauthorized
leakage of data that could occur as a result of
traditional optimization techniques performed
by SQL compilers.

1 Introduction

Mandatory Access Control (MAC) is a means of re-
stricting access to objects based on the sensitivity
(as represented by a label) of the information con-
tained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such
sensitivity[8]. A well-known implementation of MAC
is Multilevel Security (MLS), which, traditionally, has
been available mainly on computer and software sys-
tems deployed at highly sensitive government organi-
zations such as the intelligence community or the U.S.
Department of Defense. The Basic model of MLS was
first introduced by Bell and LaPadula[9]. The model
is stated in terms of objects and subjects. An object is
a passive entity such as a data file, a record, or a field
within a record. A subject is an active process that
can request access to objects. Every object is assigned
a classification, and every subject a clearance. Classi-
fications and clearances are collectively referred to as
labels. A label is a piece of information that consists of
two components: A hierarchical component and a set
of unordered compartments. The hierarchical compo-
nent specifies the sensitivity of the data. For example,
a military organization might define levels Top Secret,
Secret, Confidential and Unclassified. The compart-
ments component is nonhierarchical. Compartments
are used to identify areas that describe the sensitivity
or category of the labeled data. For example, a mili-
tary organization might define compartments NATO,
Nuclear and Army. Labels are partially ordered in
a lattice as follows: Given two labels L1 and L2,
L1 >= L2 if and only if the hierarchical component
of L1 is greater than or equal to that of L2, and the

1010

compartment component of L1 includes the compart-
ment component of L2. L1 is said to dominate L2.
MLS imposes the following two restrictions on all data
accesses:

• The Simple Security Property or “No Read Up”:
A subject is allowed a read access to an object
if and only if the subject’s label dominates the
object’s label.

• The *-Property (pronounced the star property) or
“No Write Down”: A subject is allowed a write
access to an object if and only if the object’s label
dominates the subject’s label.

1.1 Problem Statement

MAC implementations in Relational Database Man-
agement Systems (RDBMS) have focused solely on
MLS. MLS has posed a number of challenging prob-
lems to the database research community, and there
has been an abundance of research work to address
those problems. There has also been three commercial
MLS RDBMS offerings, namely, Trusted Oracle[16],
Informix OnLine/Secure[17], and Sybase Secure SQL
Server[20]. Unfortunately, the use of MLS RDBMS
has been restricted to a few government organizations
where MLS is of paramount importance such as the in-
telligence community and the Department of Defense.
In fact, very few commercial organizations need such
type of security. The implication of this is that the in-
vestment of building an MLS RDBMS cannot be lever-
aged to serve the needs of application domains where
there is a desire to control access to objects based on
the label associated with that object and the label as-
sociated with the subject accessing that object, but
where the label access rules and the label structure
do not necessarily match the MLS two security rules
and the MLS label structure (i.e., a hierarchical com-
ponent and a set of unordered compartments). The
question that begs to be asked is therefore the follow-
ing: Do such application domains exist and, if so, what
are they?

We contend that the answer to that question is an
unequivocal yes. Privacy[19] is one example of such
application domain. Generally, a privacy policy indi-
cates for which purposes an information is collected,
whether or not it will be communicated to others,
and for how long that information is retained before
it is discarded. For example, a user cannot access a
customer record for the purpose of sending that cus-
tomer marketing information if that customer did not
agree to receive such information. Access to privacy-
sensitive data can be regarded as analogous to access
to MLS data in the sense that in both cases there is
a tag associated with the object being accessed and
the subject accessing that object. The tag represents
a “purpose” in the case of the former and represents

a “security label” in the case of the latter. Unfor-
tunately, a MAC implementation in an RDBMS that
strictly implements MLS fails to address privacy re-
quirements for the following two main reasons. First,
MLS labels include a hierarchical component that is
not applicable in the case of privacy. Next, the MLS
security properties do not apply in the context of pri-
vacy. For example, to read an object in MLS, the
subject’s compartment component must include that
object’s compartment component (the simple security
property). In privacy, the rule is exactly the opposite.
That is, if an object is tagged with the purposes mar-
keting and purchase, then a user accessing that object
for the purpose of sending marketing information must
be allowed to access that object.

Another application domain is private banking. In
private banking, country laws and regulations often re-
quire to limit the amount of data that can be viewed
by a bank employee. For example, Swiss banking laws
do not allow a Swiss bank employee located in Toronto
to access account information for customers based in
Switzerland. Typically, banking applications code this
fine-grained access control in the application itself, as
opposed to delegating this task to the RDBMS. Un-
fortunately, this application-aware approach has made
enterprise security policies a laborious and complex
task. It also has the drawback of exposing the secu-
rity policies to the application programmers. If each
customer account is tagged with a label indicating the
geographical location of the customer and if each bank
employee can be assigned a label that also indicates
the geographical location of that employee (for exam-
ple, based on the system security context established
when that employee logs on to the database), then an
RDBMS that implements a form of MAC where the
database administrator could define the label struc-
ture and the label access rules could relieve the ap-
plications from implementing such fine-grained access
control policies.

Moreover, the ever increasing enterprise demands
for more security has led to the emergence of label
security products that provide the ability to set up
and control access based upon labels throughout an
entire network from end-to-end. For example, such la-
bel security products have the ability to control the
network to decide whether or not a particular labeled
data row can be transmitted on a particular channel
or be delivered to a particular workstation on that net-
work. An important advantage of such label security
products is their ability to offer a centrally managed
tool for defining label access policies and for assign-
ing access labels to users as well as to other entities
on the network. Traditional implementations of MAC
in RDBMS (i.e., MLS) do not offer the required flex-
ibility to efficiently integrate with such label security
products and to provide pervasive system coverage us-
ing a unified and centrally managed label access policy.

1011

Therefore, there is a need for a flexible and generic
implementation of MAC in RDBMS that can be used
to address the requirements from a variety of appli-
cation domains, including those of MLS, and to ef-
ficiently take part in an end-to-end MAC enterprise
solution.

1.2 Contributions

The contributions made in this paper can be summa-
rized as follows:

1. A methodology to define labels and to set up a
database table such that access to a row in that
table is based upon the label associated with that
row and the label associated with the user access-
ing that row. More specifically, the methodology
introduces a number of extensions to SQL that
would allow a database administrator to:

• Define label types

• Define label access rules and exceptions to
them

• Assign labels and exceptions to database
users

• Attach a label type and a set of label access
rules to a database table

2. Extensions to the SQL compiler component of an
RDBMS to:

• Incorporate the label access rules in the ac-
cess plan it generates for an SQL query

• Prevent unauthorized leakage of data that
could occur as a result of traditional opti-
mization techniques performed by SQL com-
pilers

3. Extensions to the runtime processor component
of an RDBMS to enforce label access rules

4. A method to allow an RDBMS to efficiently take
part in an end-to-end MAC enterprise solution

1.3 Synopsis

Section 2 gives a brief survey of MAC implementations
in RDBMS. Section 3 introduces our methodology for
defining labels and for setting up a database table such
that access to a row in that table is based upon the
label associated with that row and the label associated
with the user accessing that row. Section 4 presents
our extensions to the SQL compiler component of an
RDBMS to incorporate the label access rules in the ac-
cess plan it generates for an SQL query, and to prevent
unauthorized leakage of data that could occur as a re-
sult of traditional optimization techniques performed
by SQL compilers. Section 5 describes our extensions
to the methodology introduced in section 3 in order to

allow an RDBMS to efficiently take part in an end-to-
end MAC enterprise solution. Lastly, section 6 sum-
marizes our results and discusses future work.

2 Related Work

MAC implementations in Relational Database Man-
agement Systems have focused solely on MLS, which
is of paramount importance to a few government or-
ganizations such as the intelligence community or the
Department of Defense. In fact, there has been an
abundance of research within the last two decades or
so in the area of multilevel secure relational databases.
The results of such research can be divided into three
broad areas as follows.

2.1 Multilevel Secure Relational Database
Models

The Sea View model[1] was the pioneering formal mul-
tilevel secure relational database designed to provide
mandatory access control. It extended the concept of
a database relation to include the security labels. A
relation that is extended with the security labels is
called a multilevel relation. The Sea View model also
coined the concept of polyinstantiation, which refers to
the simultaneous existence of multiple tuples with the
same primary key, where such tuples are distinguished
by their security labels. In order to avoid covert chan-
nels, subjects with different security labels are allowed
to operate on the same database relation through
the use of polyinstantiation[1]. The Jajodia-Sandhu
model[2] was derived from the Sea View model. It
was shown in [3] that the Sea View model can re-
sult in the proliferation of tuples on updates and the
Jajodia-Sandhu model addresses this drawback. The
Smith-Winslett model[4] was the first model to exten-
sively address the semantics of an MLS database. The
MLR model[5] is based on the Jajodia-Sandhu model,
and also integrates the belief-based semantics of the
Smith-Winslett model. It was shown in [7] that all the
aforementioned models can present users with some
information that is difficult to interpret. The BCMLS
model[6] addresses those concerns by including the se-
mantics of an unambiguous interpretation of all data
presented to the users.

2.2 Multilevel Secure RDBMS Architectures

Multilevel secure RDBMS architectures schemes can
be divided into two general categories: The Trusted
Subject architecture and the Woods Hole architec-
tures.

The Trusted Subject architecture[10] is a scheme
that contains a trusted RDBMS and a trusted oper-
ating system. The RDBMS is custom-developed to
include all the required security rules, but uses the as-
sociated trusted operating system to make actual disk
data accesses. A benefit of this scheme is that the

1012

RDBMS has access to all levels of data at the same
time, which minimizes retrieval and update process-
ing. However, this scheme results in a special purpose
RDBMS that requires a large amount of trusted code
to be developed and verified along with the normal
RDBMS features.

The Woods Hole architectures assume that an un-
trusted off-the-shelf RDBMS is used to access data and
that trusted code is developed around that RDBMS
to provide an overall secure RDBMS. They can be di-
vided into two main categories: The kernelized archi-
tectures and the distributed architectures[10, 11].

The kernelized architecture scheme uses a trusted
operating system and multiple copies of the RDBMS,
where each copy is associated with some trusted front-
end. Each pair (trusted front-end, RDBMS) is asso-
ciated with a particular security level. The trusted
operating system ensures that data at different secu-
rity levels is stored separately, and that each copy of
the RDBMS gets access to data that is authorized for
its associated security level. A benefit of this scheme
is that data at different security levels is isolated in
the database, which allows for higher level assurance.
However, this scheme results in an additional over-
head as the trusted operating system needs to separate
data at different security levels when it is added to the
database and might also need to combine data from
different security levels when data is retrieved by an
RDBMS copy that is associated with a high security
level.

The distributed architecture scheme uses multiple
copies of the trusted front-end and RDBMS, each as-
sociated with its own database storage. In this archi-
tecture scheme, an RDBMS at security level l contains
a replica of every data item that a subject at level l
can access. Thus, when data is retrieved, the RDBMS
retrieves it only from its own database. Another ben-
efit of this architecture is that data is physically sepa-
rated into separate hardware databases. However, this
scheme results in an additional overhead when data is
updated as the various replicas need to be kept in sync.

2.3 Multilevel Secure Transaction Processing

Although the two MLS security properties described
above prevent direct legal flow of information from a
security level to another nondominated security level,
they are not sufficient to ensure that security is not
compromised since it could be possible for leakage
of information to occur through indirect means via
covert channels. A covert channel can easily be es-
tablished with conventional concurrency control algo-
rithms such as two-phase locking (2PL) and times-
tamp ordering (TO). In both 2PL and TO algorithms,
whenever there is contention for the same data item
by transactions executing at different security levels,
a lower level transaction may be either delayed or sus-
pended to ensure correct execution. In such a scenario,

two colluding transactions executing at high and low
security levels can establish an information flow chan-
nel from a high security level to a low security level
by accessing the selected data item according to some
agreed-upon code[12].

Considerable effort has been devoted to the de-
velopment of efficient, secure algorithms for the ma-
jor schemes of RDBMS architectures described above.
In [13], Keefe et al. present a formal frame-
work for secure concurrency control in multilevel
databases. Lamport[14] offers solutions to the secure
readers/writers problem. While these solutions are se-
cure, they do not yield serializable schedules when ap-
plied to transactions, and they suffer from the prob-
lem of starvation, i.e., transactions that are reading
data items at a low security level may be delayed
indefinitely[18]. In [15], Ammann and Jajodia offer
two timestamp-based algorithms that yield serializable
schedules, but both suffer from starvation. On the
commercial secure RDBMS side, both Trusted Oracle
RDBMS[16] and Informix OnLine/Secure RDBMS[17]
offer concurrency control solutions that are free from
covert channels.

3 Methodology for Setting up MAC in
an RDBMS

The methodology we propose allows a database ad-
ministrator to define labels and to set up a database
table such that access to a row in that table is based
upon the label associated with that row and the la-
bel associated with the user accessing that row. More
specifically, the methodology allows the database ad-
ministrator to:

• Define label types

• Define label access rules and exceptions to them

• Assign labels and exceptions to database users

• Attach a label type and a set of label access rules
to a database table

We now introduce our extensions to SQL to imple-
ment this methodology. The goal of this exercise is
not to describe the blueprint for the implementation.
Rather, we will focus on the new SQL concepts that
must be implemented to support such methodology.
Also, we have chosen not to overload the paper with
the details of the exact syntax of the SQL extensions
proposed, as we believe that such level of details is
more appropriate for a standardization proposal to the
SQL standard committee. However, we will illustrate
the syntax and the concepts introduced via examples.

3.1 Label Component

A label component is a database entity that can be
created, altered and dropped. It is introduced as a

1013

building block for labels (i.e., a label is composed of
one or more label components). The label component
definition specifies the set of valid elements for that
label component. This set of elements can be either
ordered or unordered (the default). In an ordered set,
the order in which the elements appear is important:
The rank of the first element is higher than the rank
of the second element, the rank of the second element
is higher than the rank of the third element, and
so on. To allow database administrators to create,
alter and drop label components, we introduce the
CREATE, ALTER and DROP label component SQL
statements. The CREATE LABEL COMPONENT
SQL statement creates a label component that can
be used to define a label type. The ALTER LABEL
COMPONENT SQL statement permits to add or
drop an element to/from a label component. The
DROP LABEL COMPONENT SQL statement drops
a label component.

Example 1

The following SQL statement creates a label compo-
nent called level and specifies the set of valid values
for this label component.

CREATE LABEL COMPONENT level
OF TYPE varchar(15)
USING ORDERED SET
{“TOP SECRET”, “SECRET”, “CLASSIFIED”}

The following SQL statement creates a label com-
ponent called compartments and specifies the set of
valid values for this label component. Note that the
set specified is unordered.

CREATE LABEL COMPONENT
compartments OF TYPE varchar(15)
USING SET
{“NATO”, “NUCLEAR”, “ARMY”}

The following SQL statement adds a new ele-
ment to the level component and specifies the rank of
this new element within the ordered set.

ALTER LABEL COMPONENT level
ADD ELEMENT “UNCLASSIFIED”
AFTER “CLASSIFIED”

The following SQL statement drops the level
component.

DROP LABEL COMPONENT level

3.2 Label Type

The relationship between a label and a label type
is analogous to the relationship between a data row

and a table schema. As the table schema defines
the set of columns that make up a data row, so the
label type defines the set of label components that
make up a label. To allow database administrators
to create, alter and drop label types, we introduce
the CREATE, ALTER and DROP label type SQL
statements. The CREATE LABEL TYPE creates a
label type by specifying the label components that
make up such label type. The ALTER LABEL TYPE
alters the definition of a label type by adding or
dropping a label component to/from that label type.
The DROP LABEL TYPE SQL statement drops a
label type.

Example 2

The following SQL statement creates a label type
called MLS and specifies its label components.
Note the keyword MULTIVALUED next to the
compartments component. This indicates that the
compartments component can have more than a
single value at a time. This keyword can only be
specified for label components based on an unordered
set (section 3.4 explains the reason behind this choice).

CREATE LABEL TYPE MLS
COMPONENTS level,
compartments MULTIVALUED

The following SQL statement drops the level
component from label type MLS.

ALTER LABEL TYPE MLS DROP level

The following SQL statement drops the MLS la-
bel type.

DROP LABEL TYPE MLS

3.3 Access Labels and Row Labels

We distinguish two types of labels: Access labels and
row labels. Access labels are created and assigned to
database users, which, in conjunction with the label
access rules (section 3.4), determine which labeled
rows these users have access to. To allow database
administrators to create, drop, grant and revoke
access labels, we introduce the CREATE, DROP,
GRANT and REVOKE access label SQL statements.
The CREATE ACCESS LABEL SQL statement
creates an access label based on an existing label type.
The GRANT ACCESS LABEL SQL statement grants
an access label to a database user. The REVOKE
ACCESS LABEL SQL statement revokes an access
label from a database user. The DROP ACCESS LA-
BEL SQL statement drops an access label and revokes
it from any database user to whom it has been granted.

1014

Example 3

The following SQL statement creates an access
label.

CREATE ACCESS LABEL L1

OF LABEL TYPE MLS
level “SECRET”, compartments “NATO”

The following SQL statement grants access label
L1 to database user Joe.

GRANT ACCESS LABEL L1

TO USER Joe

The following SQL statement revokes access la-
bel L1 from database user Joe.

REVOKE ACCESS LABEL L1

FROM USER Joe

The following SQL statement drops access label
L1.

DROP ACCESS LABEL L1

A row label labels a data row in a database ta-
ble. To allow database users to provide a row label
when inserting or updating a row in a database table,
we introduce the ROWLABEL function. ROWLA-
BEL is a means of providing the label value of a data
row.

Example 4

The following INSERT SQL statement shows how the
row label can be provided using the ROWLABEL
function. The statement inserts a row into a database
table called T1 having two columns A and B both of
type integer. We assume that rows in table T1 are
labeled with a label of label type MLS defined above.

INSERT INTO T1 VALUES
(ROWLABEL(“SECRET”, “NATO”), 1, 2)

The following SQL statement shows how the
ROWLABEL function can be used to update the level
component of the row label for the row inserted above.

UPDATE T1 SET
ROWLABEL(level) = “TOP SECRET”
WHERE A = 1 AND B = 2

3.4 Label Access Policy

A label access policy defines the label access rules that
the RDBMS evaluates to determine whether or not a
database user is allowed access to a labeled data row in

a database table. Access rules can be divided into two
categories: Read access rules and write access rules.
Read access rules are applied by the RDBMS when
a user attempts to read a labeled data row (e.g., a
SELECT statement). The RDBMS applies the write
access rules when a user attempts to insert, update or
delete a labeled data row. In both cases, an access rule
is a predicate that puts together the same component
from an access label and a row label and an operator
as follows:

Access Label component-name
<operator>

Row Label component-name

The type of operator allowed depends on the
label component. For label components based on
an ordered set, the operator can be any of the
relational operators {=, <=, <, >, >=, ! =}. For label
components based on an unordered set, the operator
must be one of the set operators {IN, INTERSECT}.
Recall from section 3.2 that a label component based
on an unordered set can be multivalued. That is,
it can contain more than a single value at a time.
Thus, when comparing multivalued label components
we are actually comparing data sets. This is the
reason why the operators supported are set operators,
i.e., inclusion and intersection. Obviously, certain
RDBMS could choose to support additional operators
but we contend that the ones given above would
be the most commonly used. To allow database
administrators to create, alter and drop label policies,
we introduce the CREATE, ALTER and DROP
label policy SQL statements. The CREATE LABEL
POLICY SQL statement creates a label access policy
for a given label type by specifying one or more read
access rules and one or more write access rules. The
ALTER LABEL POLICY SQL statement permits the
addition or dropping an access rule to/from a label
access policy. The DROP LABEL SQL statement
drops a label access policy.

Example 5

The following SQL statement creates a label ac-
cess policy that implements the two MLS properties
introduced in section 1 above (i.e., “No Read Up”
and “No Write Down”).

CREATE LABEL POLICY mls-policy
LABEL TYPE MLS
READ ACCESS RULE rule1

ACCESS LABEL level >= ROW LABEL level
READ ACCESS RULE rule2

ROW LABEL compartments IN
ACCESS LABEL compartments

WRITE ACCESS RULE rule1
ACCESS LABEL level <= ROW LABEL level

1015

WRITE ACCESS RULE rule2
ACCESS LABEL compartments IN
ROW LABEL compartments

The following SQL statement drops read access
rule rule2 from label access policy mls-policy.

ALTER LABEL POLICY mls-policy
DROP READ ACCESS RULE rule2

The following SQL statement drops label access
policy mls-policy.

DROP LABEL POLICY mls-policy

3.5 Exceptions

Exceptions are introduced to provide the flexibility
for some database users to bypass one or more access
rules. For example, in an MLS context, it is often
the case that some special users are allowed to write
information to lower security levels even though
this is in contradiction with the *-security property.
Thus, exceptions are introduced to allow the database
administrator to grant a database user an exception
to bypass one or more access rules in a particular
label access policy. To allow database administrators
to grant and revoke exceptions, we introduce the
GRANT and REVOKE exception SQL statements.
The GRANT EXCEPTION SQL statement grants
a database user an exception to bypass one or more
access rules in a label access policy. The REVOKE
EXCEPTION SQL statement revokes a previously
granted exception from a database user.

Example 6

The following SQL statement grants an excep-
tion to database user Joe so that he can bypass the
write access rules in label access policy mls-policy.

GRANT EXCEPTION
ON WRITE ACCESS RULE rule1, rule2
FROM LABEL POLICY mls-policy
TO USER Joe

The following SQL statement revokes the above
exception from user Joe.

REVOKE EXCEPTION
ON WRITE ACCESS RULE rule1, rule2
FROM LABEL POLICY mls-policy
FROM USER Joe

3.6 Labeled Tables

A labeled table is a database table that contains
labeled data rows. When the database administrator

creates a labeled table he/she specifies the label type
and the label access policy to be used for that table.
The label type determines the structure of the label
to be used to label the table’s data rows and the label
access policy determines the access rules to be used
for enforcing access to that labeled table. To allow
database administrators to create labeled tables, we
extend the CREATE TABLE SQL statement by a
new optional clause to specify the label type and the
label access policy.

Example 7

The following SQL statement creates a database
table T1 and specifies the label type and the la-
bel access policy. Note that in our examples so
far we have used MLS-like label types and label
access policies because they are well understood
by the database research community. But it is
obvious that one can follow the methodology given
in this paper to define any label type and any la-
bel access policy, and attach them to a database table.

CREATE TABLE T1 (A integer, B integer)
LABEL TYPE MLS
LABEL POLICY mls-policy

When creating such table, the RDBMS internally
adds a third column to store the label associated with
each row in this table. The choice of the column’s
type depends on the label type. For example, if the
label type is made up of a single component of type,
say varchar(15), then the column’s type would be
varchar(15). If the label type is made up of more
than a single column then the column’s type must
be an Abstract Data Type (ADT). ADTs have been
introduced in SQL’99[21] and are supported by most
commercial RDBMS. Alternatively, the RDBMS
could choose not use an ADT and store the different
label components in separate columns.

4 Extensions to the SQL Compiler
Component in an RDBMS

When a labeled table is accessed, the RDBMS needs
to enforce two levels of access control. The first level
is the traditional Discretionary Access Control (DAC)
which is implemented by all commercial RDBMS[21].
That is, the RDBMS verifies whether the user at-
tempting to access the table has been granted the re-
quired privilege to perform the requested operation on
that table. A discussion of this level of access con-
trol is beyond the scope of this paper. The second
level is MAC. That is, for each data row accessed, the
RDBMS verifies whether the user is allowed access to
that row based on the label associated with the row
and the user’s access label.

1016

4.1 Enforcing MAC on Labeled Tables

There are two possible ways that MAC can be enforced
when a labeled table is accessed. The first possibility is
for the SQL compiler to modify any query that refers
to a labeled table in order to incorporate the access
rules from the label access policy associated with that
table in the form of regular predicates. Next, the SQL
compiler compiles the modified query and generates an
access plan for the query in the normal fashion. The
main advantage of such an approach is its simplicity.
However, it has a major drawback: The access plan
generated for a query that refers to a labeled table
cannot be reused by other users because it is depen-
dent on the access label of the user who issued the
query. Note that some commercial RDBMS cache the
access plan generated for an SQL query so that it can
be reused the next time the SQL query is submitted.
This has some performance benefits as it eliminates
the need to recompile the query. Another drawback of
this approach is that it could result in unauthorized
leakage of data if special care is not taken by the SQL
compiler. This will be detailed further in section 4.2.

The second possibility is to not modify a query that
refers to a labeled table. Rather, the SQL compiler
inserts logic into the access plan that implements the
access rules from the label access policy associated
with any labeled table referred to in the query. Thus,
when the access plan is executed, the access rules from
the label access policy associated with a labeled table
are evaluated for each data row when that labeled
table is accessed. The general processing algorithm to
be inserted in the access plan for a labeled table is as
follows.

Begin

Fetch the user’s access label (e.g., from a
system catalog table)
if (SELECT access)
{

for each row accessed
{

if (read access rules do not permit access)
{

Skip row
}

}
}
else
{

// INSERT, UPDATE, or DELETE access
for each row
{

if (INSERT or UPDATE)
{

if (the row label provided is not valid with
respect to the label type associated with
the labeled table)

Reject INSERT or UPDATE
}
if (write access rules do not permit access)

Reject INSERT, UPDATE or DELETE
}

}
End

This second approach addresses the two shortcomings
of the previous approach (ı.e., query modification).
That is, it allows the cached access plan to be reused
because the access label of the user who issued the
query is acquired at runtime, and it is more secure as
it will be demonstrated in section 4.2.

4.2 Predicates Evaluation Sequence

SQL compilers have traditionally been guided by per-
formance reasons in selecting the order in which the
predicates contained in a query are evaluated. For ex-
ample, more selective predicates are often evaluated
first to narrow down the set of rows to be passed on to
a subsequent join because join operations are costly. If
the method chosen to enforce MAC on a labeled table
is based on query modification to incorporate the ac-
cess rules in the form of regular predicates, then special
care must be taken in selecting the order in which the
predicates on that table are evaluated to avoid unau-
thorized leakage of labeled data rows. For example,
suppose that a query has a predicate on a labeled ta-
ble that involves a User-Defined Function (UDF). Fur-
ther suppose that this UDF takes the whole data row
as an input parameter and that the UDF source code
makes a copy of the data row outside the database (or
sends it as an e-mail to some destination). Now, sup-
pose that some data row R cannot be returned to the
user who issued the query because this would violate
the access rules from the label access policy associated
with this labeled table. If the predicate involving the
UDF is evaluated prior to evaluating the predicates
that implement the access rules then data row R will
be consumed by the UDF and consequently leaked to
an unauthorized user.

If the RDBMS chooses the query modification
method to enforce MAC on a labeled table, then it
must ensure that the predicates that implement the
access rules are evaluated before any other predicate
so that no labeled row leakage could occur. The alter-
native approach that is not based on query modifica-
tion evaluates the access rules immediately after the
row is accessed, and before any predicate is evaluated.
It is therefore more secure than the query modification
approach. It also allows the SQL compiler to continue
to select the order in which predicates are evaluated
in the usual way.

1017

4.3 Index-Only Access Methods

When selecting an access plan, SQL compilers choose
between three methods of accessing the data in a
database table: Scanning the entire table sequentially,
locating specific table rows by first accessing an index
on the table, or accessing just an index on the table
if all the required columns are part of the index key.
This latter method is known as index-only access. SQL
compilers usually rely on the statistics available about
the table and the indices to choose between those three
access methods. If an index only plan is selected then
the label column is not available and therefore the ac-
cess rules from the label access policy associated with
the table cannot be evaluated. MLS RDBMS extended
the primary key on an MLS relation with the secu-
rity label column in order to allow the simultaneous
existence of multiple tuples with the same (non ex-
tended) primary key (i.e., polyinstantiation)[1]. We
borrow this idea from the MLS work to extend every
index created on a labeled table (including the primary
key) with the row label column(s). This would allow
SQL compilers to continue to choose index only access
methods when this is appropriate, and for the access
rules from the label access policy associated with the
table on which the index is created to be evaluated.

5 Methodology for an End-to-end
MAC Enterprise Solution

The ever-increasing enterprise demands for more secu-
rity has led to the emergence of label security products
that provide the ability to set up and control access
based upon labels throughout an entire network from
end to end. For example, such label security prod-
ucts have the ability to control the network to decide
whether or not a particular labeled data row can be
transmitted on a particular channel or be delivered to
a particular workstation on that network. Cryptek[22]
is an example of such a label security product. An
important advantage of such label security products is
their ability to offer a centrally managed tool for defin-
ing label access policies and for assigning access labels
to users as well as to other entities on the network.
We contend that a MAC implementation in RDBMS
should offer the flexibility to integrate with a label se-
curity product for the following reasons:

1. Eliminate the need for the system administrator
to define the label access rules in more than a
single location (i.e., both in the RDBMS and in
the label security product)

2. Eliminate the need for the system administrator
to assign access labels to users in more than a
single location

3. Allow the access to a labeled data row in the
database to be based on more sophisticated la-

bel access rules that a particular implementation
of MAC in an RDBMS may not allow to express

We will now show how the methodology described
earlier in this paper could be extended to allow an
RDBMS to take part in such an end-to-end MAC
scheme by providing the flexibility to integrate with
a label security product.

5.1 Integration Approach

Recall from section 3.6 that we have extended the
CREATE TABLE SQL statement with an optional
clause to specify the label type and the label access
policy. We further extend this SQL statement such
that the LABEL POLICY clause could either specify
the name of a label access policy defined within the
RDBMS, or a label access policy defined externally
to the RDBMS (i.e., within a label security product).
The keyword EXTERNAL is introduced to support
this latter possibility as shown below.

CREATE TABLE T1 (A integer, B integer)
LABEL TYPE some-label-type
LABEL POLICY EXTERNAL

When a data row in such a table is accessed,
the RDBMS needs to supply the ID of the user
making the access together with the data row label
and the table name to the label security product
through a well-defined interface. The label security
product evaluates the label access rules based on the
information received from the RDBMS and returns a
response to the RDBMS through that same interface.
The response could be a Boolean flag indicating
whether or not the access should be allowed.

The SQL compiler will now need to take into
account where the label access rules are defined when
inserting logic into an access plan to enforce MAC on
a labeled table. Thus, a more general description of
the algorithm to be inserted in the access plan for a
labeled table is as follows.

Begin

if (policy defined within RDBMS)
{

Fetch the user’s access label (e.g., from a
system catalog table)

}
if (SELECT access)
{

for each row accessed
{

if (policy defined within RDBMS)
{

if (read access rules do not permit access)
{

Skip row

1018

}
}
else
{

response = callLabelSecurityProduct(userid,
rowlabel, table-name)

if (response is No)
{

Skip row
}

}
}

}
else
{

// INSERT, UPDATE, or DELETE access
for each row
{

if (INSERT or UPDATE)
{

if (the row label provided is not valid with
respect to the label type associated with
the labeled table)

Reject INSERT or UPDATE
}
if (policy defined within RDBMS)
{

if (write access rules do not permit access)
Reject INSERT, UPDATE or DELETE

}
else
{

response = callLabelSecurityProduct
(userid, rowlabel, table-name)

if (response is No)
{

Reject INSERT, UPDATE or DELETE
}

}
}

}
End

Clearly, the calls to the label security product,
which is external to the RDBMS, would cause a
performance degradation. In the next section, we
will show how this performance degradation could be
minimized.

5.2 Performance Improvement

To minimize the performance degradation that could
result from the calls to the label security product, a
caching technique could be used. Before making the
call to the label security product, the RDBMS would
first check the cache to see if a similar call was made
earlier, and if so fetches the response directly from the
cache. The cache structure could look as follows.

Userid RowLabel Table Access Resp.
Joe L T Read Yes
Bob L’ T Write No

Table 1: Label security product responses cache

To ensure that the cache entries are always valid,
the label security product must signal to the RDBMS
through a well-defined interface any changes to the la-
bel access rules associated with a database table, or to
the access labels assigned to a database user. When
such a signal is received, the RDBMS invalidates the
cache entries that are affected by the change in la-
bel access rules or user access labels. For example,
if the label access rules associated with table T have
changed, then all cache entries for table T must be in-
validated. Similarly, if the access label for user Joe has
changed or has been revoked, then all cache entries for
user Joe must be invalidated.

6 Conclusion and Future Directions

This paper has introduced a flexible and generic im-
plementation of MAC in RDBMS that can be used to
address the requirements from a variety of application
domains, as well as to allow an RDBMS to efficiently
take part in an end-to-end MAC enterprise solution.
This implementation differs from traditional MAC im-
plementations in RDBMS, which have focused solely
on MLS, and thus cannot be leveraged to serve the
needs of application domains where there is a desire
to control access to objects based on the label asso-
ciated with that object and the label associated with
the subject accessing that object, but where the label
access rules and the label structure do not necessarily
match the MLS two security rules and the MLS label
structure (i.e., a hierarchical component and a set of
unordered compartments). Moreover, such implemen-
tations do not offer the flexibility to integrate with an
external label security product and therefore cannot
take part in an end-to-end MAC enterprise solution.

There are a number of additional problems re-
lated to implementing a generic MAC solution in an
RDBMS that have not been addressed in this paper.
These will be the subject of our future work. For ex-
ample, triggers could cause labeled data rows to flow
from a labeled table to a nonlabeled table if the subject
of a trigger is a labeled table but the target of that trig-
ger is a nonlabeled table. Without proper flow control
measures, triggers could cause unauthorized leakage of
information to occur. Also, there needs to be a mech-
anism to accommodate views based on labeled tables.
For example, if a view is based on a join between two
labeled tables how would the row label of a join re-
sult row be selected. Should the RDBMS make the
decision about how to combine labels? or should the
RDBMS offer the flexibility that would allow database
administrators to provide the rules for combining two
labels from the same label type?

1019

Acknowledgements

Some of the ideas expressed in this paper were gen-
erated when the first author was a Research Staff
Member at the IBM Zurich Research Lab (ZRL). The
first author would like to thank Dr. Michael Waidner,
manager Network Security & Cryptography, for giving
him the opportunity to start up the database security
research activity at ZRL. The first author would also
like to thank his wife Hue Phan Dam for her valuable
comments on an earlier version of this paper and for
her help with the examples.

Trademarks

IBM and Informix are registered trademarks of
International Business Machines Corporation in the
United States, other countries, or both. Other com-
pany, product and service names may be trademarks
or service marks of others.

Disclaimer

The views expressed in this paper are those of the
authors and not necessarily of IBM Canada Ltd. or
IBM Corporation.

References

[1] D. E. Denning. The Sea View Security Model. In
Proc. of the IEEE Symposium on Security and Pri-
vacy, Oakland, California, USA, 1988.

[2] S. Jajodia, R. Sandhu. Toward a Multilevel Secure
Relational Data Model. In Proc. of ACM SIGMOD,
Denver, Colorado, USA, 1991.

[3] S. Jajodia, R. Sandhu. Polyinstantiation Integrity in
Multilevel Relations. In Proc. of the IEEE Symposium
on Security and Privacy, Oakland, California, USA,
1988.

[4] K. Smith, M. Winslett. Entity Modeling in the MLS
Relational Model. In Proc. of the 18th VLDB Con-
ference, Vancouver, BC, Canada, 1992.

[5] R. Sandhu, F. Chen. The Multilevel Relational Data
Model. Transactions on Information and System Se-
curity, Vol. 1, No. 1, 1998.

[6] N. Jukic, S. V. Vrbsky. Asserting Beliefs in MLS Re-
lational Models. SIGMOD Record, Vol. 26, No. 3,
1997.

[7] N. Jukic, S. V. Vrbsky, A. Parrish, B. Dixon, B. Jukic.
A Belief-Consistent Multilevel Secure Relational Data
Model. Information Systems, Vol. 24, No. 5, 1999.

[8] Trusted Computer Security Evaluation Criteria, DoD
5200.28-STD. US Department of Defense, 1985.

[9] E. Bell, L. J. LaPadula. Secure computer systems:
Unified exposition and multics interpretation. Tech-
nical Report MTR-2997, The Mitre Corporation,
Burlington Road, Bedford, MA 01730, USA.

[10] M. D. Abrams, S. Jajodia, H. J. Podell. Information
Security An Integrated Collection of Essays. IEEE
Computer Society Press, Los Alamitos, CA, USA,
1995.

[11] S. Castano, et al. Database Security. ACM Press,
New York, NY, USA, 1995.

[12] V. Atluri, S. Jajodia, T. F. Keefe, C. MaCollum,
R. Mukkamal. Multilevel Secure Transaction Pro-
cessing: Status and Prospects. Database Security,
X: Status and Prospects, Chapman & Hall 1997, eds.
Pierangela Samarati and Ravi Sandhu.

[13] T. F. Keefe, W. T. Tsai, T. F. Keefe, J. Srivastava.
Multilevel Secure Database Concurrency Control. In
Proc. IEEE sixth International Conference on Data
Engineering, Los Angeles, CA, USA, 1990.

[14] L. Lamport. Concurrent Reading and Writing. In
Comm. ACM, Vol. 20, No. 11, 1997.

[15] P. Ammann, S. Jajodia. A Timestamp Order-
ing Algorithm for Secure, Single-Version, Multi-
level Databases. Database Security, V: Status and
Prospects, C.E. Landweher, ed., Amsterdam, Holland,
1992.

[16] Oracle Corporation. Trusted Oracle Administrator’s
Guide. Redwood City, CA, USA, 1992.

[17] Informix. Informix OnLine/Secure Administrator’s
Guide. Menlo Park, CA, USA, 1993.

[18] E. Bertino, S. Jajodia, L. Mancini, I. Ray. Ad-
vanced Transaction Processing in Multilevel Secure
File Stores. IEEE Transactions on Knowledge and
Data Engineering, Vol. 10, No. 1, 1998.

[19] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu. Hippo-
cratic Databases. In Proc. of the 28th International
Conference on Very Large Databases, Hong Kong,
China, 2002.

[20] Sybase Inc. Building Applications for Secure SQL
Server, Sybase Secure SQL Server Release 10.0.
Emeryville, CA, USA, 1993.

[21] ISO/IEC 9075:1999. Information-Technology-
Database Languages-SQL-Part 1: Framework
(SQL/Framework), 1999 .

[22] Cryptek. www.cryptek.com.

1020

INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED
XML ACCESS CONTROL IMPLEMENTATION USING GENERIC

SECURITY LABELS

Zheng Zhang
University of Toronto

Toronto, Ontario, Canada
zhzhang@cs.toronto.edu

Walid Rjaibi
IBM Toronto Software Laboratory

Markham, Ontario, Canada
wrjaibi@ca.ibm.com

Keywords: Authorization-transparent, fine-grained access control, label-based access control, XML relationship labeling.

Abstract: Most work on XML access control considers XML nodes as the smallest protection unit. This paper shows the
limitation of this approach and introduces an XML access control mechanism that protects inter-node relation-
ships. Our approach provides a finer granularity of access control than the node-based approaches(i.e., more
expressive). Moreover, our approach helps achieve the “need-to-know” security principle and the “choice”
privacy principle. This paper also shows how our approach can be implemented using a generic label in-
frastructure and suggests algorithms to create/check a secure set of labeled relationships in an XML document.

1 INTRODUCTION

XML has rapidly emerged as the standard for the rep-
resentation and interchange of business and other sen-
sitive data on the Web. The current trend of adding
XML support to database systems poses new secu-
rity challenges for an environment in which both re-
lational and XML data coexist. In particular, fine-
grained access control is even more necessary for
XML than for relational data, given the more flexible
and less homogeneous structure of XML data com-
pared to relational tables and rows. The additional
difficulty of controlling access over XML data com-
pared to relational data can be summarized as follows.
• The semi-structured nature of XML data, where a
schema may be absent, or, even if it is present, may
allow much more flexibility and variability in the
structure of the document than what is allowed by
a relational schema.

• The hierarchical structure of XML, which requires
specifying, for example, how access privileges to a
certain node propagate from/to the node’s ancestors
and descendants.
In almost all of the work on XML access con-

trol (Bertino and Ferrari, 2002; Damiani et al., 2002;
Fan et al., 2004), the smallest unit of protection is
the XML node of an XML document, which are
specified by XPath fragments. Access to ancestor-
descendant and sibling relationships among nodes has

not been considered. An access control policy con-
sists of positive (resp. negative) authorization rules
that grant (resp. deny) access to some nodes of
an XML document. The main difference between
XML access control models lies in privilege propa-
gation. Some (Bertino and Ferrari, 2002; Gabillon
and Bruno, 2001) forbid access to the complete sub-
tree rooted at an inaccessible node. Alternatively, if a
node is granted access while one of its ancestor nodes
is inaccessible, the ancestor node would be masked as
an empty node in the XML document (Damiani et al.,
2002). However, this makes visible the literal of the
forbidden ancestor in the path from the root to that au-
thorized node. This can be improved by replacing the
ancestor node literal by a dummy value (Fan et al.,
2004). However, this still does not solve the prob-
lem that different descendant nodes may require their
ancestor’s literal to be visible or invisible differently.
From the differences among the above models, it is
clear that defining a view that precisely describes the
path leading to an authorized node is difficult. The
question that begs to be asked is therefore the fol-
lowing: Is a node the most fine-grained entity within
an XML document upon which a fine-grained access
control model for XML is to be built?

We believe that the answer to this question is
an unequivocal NO. We contend that the path be-
tween nodes is a better alternative upon which a
fine-grained access control model for XML is to be
built (Kanza et al., 2006). In other words, we con-

Figure 1: A document that contains information on accounts, orders and items for an online seller.

tend that ancestor-descendent relationships and sib-
ling relationships should be considered as legitimate
elements to be protected. The main advantages of our
approach are as follows.
First of all, blocking access to a node can be ad-

dressed by blocking access to all the relationships re-
lating to the node. For example, in Figure 1, if we
want to block all access to the Account Node “202”,
we could simply block access to all the paths from
that node’s ancestors to the node and all the paths
from the node to its sibling and descendants.
Second, blocking access to relationships helps

achieve the “need-to-know” principle, one of the most
fundamental security principles. This principle re-
quires information to be accessed by only those who
strictly need the information to carry out their assign-
ments. The practice of “need-to-know” limits the
damage that can be done by a trusted insider who
betrays our trust. The hierarchical structure of an
XML document often reveals classification informa-
tion. For example, in Figure 1, the root of the left
subtree of the document represents a special account
type “VIP Accounts”. Knowing an account node, say
Node “201”, belongs to that subtree reveals the ac-
count type. If the smallest protection unit is a node,
once we let the root of the subtree accessible, we
may leak unnecessary information. For example, sup-
pose that the relationship between the Account Node
“202” and the account type “VIP Accounts” at the
root of the subtree should be protected, knowing the
account type of Node “201” in the subtree reveals
the account type of Node “202”. With relationship
protection, we identify that the ancestor-descendant
relationship between Node “101” and Node “202”,
and the sibling relationship between Node “201”

and Node “202” should be protected while we let
the ancestor-descendant relationship between Node
“101” and Node “201” be accessible.
Third, blocking access to relationships helps

achieve the “choice” principle, one of the most fun-
damental privacy principles. At its simplest, the prin-
ciple means giving clients options as to how any per-
sonal information collected from them may be used.
If the smallest protection element is a node, access
control over one node is propagated to its ances-
tor/descendant nodes (Murata et al., 2003), i.e., when-
ever access is denied to a node, access is denied to its
descendants; whenever access is granted to a node,
access is granted to all its ancestors. Hence, nega-
tive access control policies over ancestor nodes give
a common authorized view of the paths leading to
their descendants. This violates the “choice” princi-
ple: in Figure 1, a client may want to hide the ac-
count type but not the other account information for
the account with AID “A2398”. If the smallest pro-
tection element is a relationship between nodes in an
XML document, we could protect the relationships
between Node “101” and the nodes in the subtree
rooted at Node “201”, and the sibling relationship be-
tween Node “201” and Node “202”. Then all the ac-
count information except the account type is still ac-
cessible from the root of the document tree. More-
over, there is no way to know that the subtree rooted
at Node “201” is a subtree of Node “101”.
Last but not least, protecting relationships between

nodes in an XML document is more expressible in
terms of access control policy translation.
Contributions: The contributions made in this paper
can be summarized as follows:

1. We propose an authorization-transparent fine-

grained access control model that protects the
ancestor-descendant and sibling relationships in an
XML document. Our model distinguishes two lev-
els of access to relationships, namely the existence
access and the value access.

2. We propose a new semantics for concealing rela-
tionships in an XML document where a relation-
ship is defined by a path in the document.

3. We propose a generic and flexible label-based ac-
cess control mechanism to protect relationships.
Our mechanism allows DBAs to define label-based
access control policies.

4. We propose a new query evaluation mechanism to
enforce our access control model.

5. We develop algorithms to check/create a secure set
of labeled relationships of an XML document.

2 RELATEDWORK

XML access control has been studied on issues such
as granularity of access, access-control inheritance,
default semantics, overriding, and conflict resolu-
tions (Bertino and Ferrari, 2002; Damiani et al., 2002;
Gabillon and Bruno, 2001; Murata et al., 2003). In
particular, a useful survey of these proposals is given
in (Fundulaki and Marx, 2004), which uses XPath to
give formal semantics to a number of different mod-
els in a uniform way, making it possible to com-
pare and contrast them. Almost all the recent mod-
els (Bertino and Ferrari, 2002; Damiani et al., 2002;
Gabillon and Bruno, 2001) propose to restrict the
user’s view of a document by access control poli-
cies. In particular, authors in (Damiani et al., 2002;
Gabillon and Bruno, 2001) mark each node as “ac-
cessible” or “inaccessible” in an XML document and
apply conflict resolution policies to compute an au-
thorized pruned view of the document. An alter-
native approach (Miklau and Suciu, 2003) defines
access control policies as XQuery expressions. A
user is given a modified document with encrypted
data and queries are posed on this modified docu-
ment. They present a new query semantics that per-
mits a user to see only authorized data. In (Fan et al.,
2004), security is specified by extending the docu-
ment DTD with annotations and publishing a modi-
fied DTD. Similarly, work by Bertino et al. (Bertino
et al., 2001) and Finance et al. (Finance et al., 2005)
provides XML-based specification languages for pub-
lishing secure XML document content, and for spec-
ifying role-based access control on XML data (Bhatti
et al., 2004; Wang and Osborn, 2004). Restricting
access to nodes has also been used in XACL (IBM,
2001) and XACML (Oasis., 2005), two proposed in-
dustrial standards. Kanza et al. propose to restrict

access to ancestor-descendant relationships (Kanza
et al., 2006) and introduce authorization-transparent
access control for XML data under the Non-Truman
model (Rizvi et al., 2004).

3 DATA MODEL AND QUERIES

We consider an XML document as a rooted directed
tree over a finite set of node literals L with a finite
set of values A attached to atomic nodes (i.e., nodes
with no outgoing edges). Formally, a document D is
a 5-tuple (ND, ED, rootD, literal of D, value of D),
where ND is a set of nodes, ED is a set of directed
edges, rootD is the root of a directed tree, literal of D
is a function that maps each node of ND to a literal
of L, and value of D is a function that maps each
atomic node to a value of A. In order to simplify the
data model, we do not distinguish between elements
and attributes of an XML document. We also assume
that all the values on atomic nodes are of type PC-
DATA (i.e., String).

Example 3.1 Figure 1 shows a document that con-
tains information on accounts, orders, and items for
an online seller. Nodes are represented by circles with
ID’s for easy reference. Values in A appear below the
atomic nodes and are written in bold font.

In this paper, we use XPath (Clark and DeRose, 1999)
for formulating queries and specifying relationships.
XPath is a simple language for navigation in an XML
document. In XPath, there are thirteen types of axes
that are used for navigation. Our focus is on the
child axis (/), the descendant-or-self axis (//), the
preceding-sibling axis and the following-sibling axis
that are the most commonly used axes in XPath. Our
model, however, can also be applied to queries that
include the other axes.

4 RELATIONSHIP ACCESS

First, we consider what it means to conceal a relation-
ship. In general, a relationship is an undirected path
between two nodes in an XML document. A set of
relationships is represented by two sets of nodes. For
example, the pair (C,N), where C is the set of all
Customer Nodes and N is the set of all Name Nodes
in Figure 1, represents the set of relationships between
customers and their names. Concealing the relation-
ships (C, N) means that for every customer c and
name n in the document, a user will not be able to in-
fer (with certainty), from any query answers, whether
n is the name for c. We want this to be true for all
authorized query results. Note that we are concealing
the presence or absence of relationships, so we are

concealing whether any of the set of pairs in (C,N)
exists in the document.
Definition 4.1 (Concealing a Relationship) Given
an XML document D and a pair of nodes n1 and n2

in D, the relationship (n1, n2) is concealed if there
exists a document D0 over the node set of D, such
that the following is true.
1. Exactly one of D and D0 has a path from n1 to n2.
2. For any XPath query Q, the authorized answer set

of Q over D is equal to that of Q over D0.
We consider two kinds of relationships in an XML

document, namely the ancestor-descendant relation-
ships and the sibling relationships. Kanza et al. con-
sider ancestor-descendant relationships only (Kanza
et al., 2006). Sibling relationships are inferred by the
ancestor-descendant relationships. Hence, when ac-
cess to an ancestor-descendant relationship is blocked
in their model, access to the related sibling relation-
ships is automatically blocked.
Example 4.2 In Figure 1, suppose the relationship
between VIP Accounts Node “101” and Account
Node “201” is inaccessible, then the sibling relation-
ship between Node “201” and Node “202” is lost.
It could be necessary to preserve such sibling re-

lationship information. For example, one policy may
want to block access to the ancestor-descendant rela-
tionships between VIP Accounts Node and Account
Nodes while maintain access to the sibling relation-
ships between the Account Nodes.
On the other hand, it might be desirable to block

access to sibling relationships only. For example, one
policy may want to block access to the sibling rela-
tionship between Customer and his Order.
In order to express such access control policies,

we consider sibling relationships as well as ancestor-
descendant relationships.
We distinguish two levels of access to relationships,

namely the existence access and the value access. In
value access, information about a relationship indi-
cates a node whose ID is “va” and whose literal is
“A” is related to a node whose ID is “vb” and whose
literal is “B”. For example, the pair (C, N) is a value
access to the relationships between Customer Nodes
and Name Nodes. In existence access, information
about a relationship is basically the same as informa-
tion of value access but lacks at least one of the values
“va” and “vb”. In other words, existence access to a
relationship returns whether a node of some literal is
related to some node. For example, existence access
could indicate a node whose literal is “A” is related to
a node whose literal is “B”. Obviously, if a relation-
ship is not accessible under existence access, then the
relationship is not accessible under value access.
Example 4.3 Consider the relationship between the
account with AID “A2398” and its customer name in

Figure 1. The value access to this relationship returns
that Node “201” whose literal is “Account” is related
to Node “311” whose literal is “Name” and whose
value is “John”. The typical queries that will return
this information are:

Q1: //Account[AID=“A2398”],
Q2: //Account[AID=“A2398”]/Customer/Name.

Now consider an existence access to this relationship:
a query Q3 wants to return all the accounts’ AID’s
that have a customer name. The fact that “A2398”
is returned tells us that there exists a customer with
name under the account with AID “A2398”, but it
does not tell us what the customer’s name is, nor the
Node ID “311”. In other words, Q1 and Q3 reveal
that Node “201” whose literal is “Account” is related
to some node n whose literal is “Name”, where n is
a child of some node whose literal is “Customer” and
which is a child of Node “201”.

Q3: //Account[Customer/Name]/AID.

In the next section, we show how to specify
ancestor-descendant and sibling relationships and at-
tach access labels to them.

5 ACCESS CONTROL POLICY
SPECIFICATION

Our access control model uses a generic, flexible la-
bel infrastructure (Rjaibi and Bird, 2004) where a la-
bel has only one component “access level”. The value
of the component can be “EXISTENCE”, “VALUE”,
or “NULL”. The ranks of these values are as fol-
lows: “EXISTENCE” > “VALUE” > “NULL”. We
distinguish two types of labels: Access labels and
Path labels. Access labels are created and assigned
to database users, roles, or groups along with the type
of access for which the access label is granted (i.e.,
Read/Write). For simplicity, we consider only users
in this paper. We call read (resp. write) access label
an access label associated with the Read (resp. Write)
access type. Path labels are created and attached to
paths of an XML document. When a user or a path
is not associated with a label, the “NULL” label is
assumed for that user or path.

Example 5.1 The following statement creates and
grants the “EXISTENCE” access label to a database
user Mike for the Read access type.
GRANT ACCESS LABEL EXISTENCE
TO USER Mike FOR READ ACCESS

The following statement revokes the “EXISTENCE”
read access label from Mike.
REVOKE ACCESS LABEL EXISTENCE
FROM USER Mike FOR READ ACCESS

Access to an XML document is based upon the la-
bels associated with the paths of the XML document
and the label associated with the user accessing the
document via the paths. A label access policy consists
of label access rules that the database system evalu-
ates to determine whether a database user is allowed
access to an XML document. Access rules can be
categorized as Read Access rules and Write Access
rules. The former is applied by the database system
when a user attempts to read a path in an XML doc-
ument; the latter is applied when a user attempts to
insert, update or delete a path in an XML document.
In both cases, a label access rule is as follows:
Access Label hoperatori Path Label

where the operator is one of the arithmetic compari-
son operators {=,∑, <,>,∏, 6=}.
Example 5.2 The following statement creates a label
access policy that (1) does not allow a user to read a
path unless his read access label is larger than or equal
to the path label, (2) does not allow a user to write a
path unless his write access label is equal to the path
label.
CREATE LABEL POLICY XML-FGAC
READ ACCESS RULE rule
READ ACCESS LABEL ∏ Path LABEL

WRITE ACCESS RULE rule
WRITE ACCESS LABEL = Path LABEL

Recall value access to a relationship returns more
information than existence access. An “EXIS-
TENCE” label protects existence and value access.
A “VALUE” label protects value access only. There-
fore, if a user with a “NULL” read access label wants
to existence access a path with a “VALUE” path label,
access should be allowed since this existence access
does not return the complete relationship information
from value access. We call this the DEFAULT pol-
icy. This policy only applies to Read Access since
any Write Access involves real node ID’s (i.e., exis-
tence access is impossible). This policy could coex-
ist with other policies such as XML-FGAC to give a
more complete authorized answer set of a query.
Example 5.3 Assume the relationship in Exam-
ple 4.3 has a “VALUE” path label. If a user with a
“NULL” read access label asks query Q3, the exis-
tence access to the relationship should be allowed.
Next, we introduce how the labels are attached to

paths in an XML document. First, attaching a label
to ancestor-descendant paths are specified by an SQL
statement in the following form:
ATTACH path label ANCS path1 DESC path2,

where path1 and path2 are two XPath expressions.
Notice expression path2 is a relative XPath expression
w.r.t. path1. The two expressions specify pairs of an-
cestor nodes (i.e., path1) and descendent nodes (i.e.,
path1/path2). Expression path label is a label.

Example 5.4 The following expression attaches
“EXISTENCE” path labels to the relationships be-
tween Account Nodes and their Customers’ Name
Nodes in Figure 1.
ATTACH EXISTENCE ANCS //Account
DESC /Customer/Name

The following expression attaches a “VALUE” path
label to the relationship between the Item Node with
Name “IPOD” and its Cost Node in Figure 1.
ATTACH VALUE ANCS //Item[Name = “IPOD”]
DESC //Cost
For sibling relationships, we consider the preceding-
sibling axis and the following-sibling axis in XPath.
Thus, attaching a label to sibling paths are specified
by XPath expressions in the following form:
ATTACH path label
NODE path1 PRECEDING-SIBLING path2
FOLLOWING-SIBLING path3,

where path1, path2 and path3 are three XPath ex-
pressions. Notice expressions path2 and path3
are two relative XPath expressions w.r.t. path1.
The expressions specify relationships between some
nodes (i.e., path1), and their preceding siblings (i.e.,
path1/preceding-sibling :: path2) as well as the rela-
tionships between the nodes and their following sib-
lings (i.e., path1/following-sibling :: path3). No-
tice the PRECEDING-SIBLING expression and the
FOLLOWING-SIBLING expression do not have to
appear at the same time.
Example 5.5 The following expression attaches a
“VALUE” path label to the relationship between the
Account whose Customer has Name “Barbara” and
its preceding sibling.
ATTACH VALUE
NODE //Account[Customer/Name = “Barbara”]
PRECEDING-SIBLING Account
Note that the SQL statement to detach a label from

an ancestor-descendant path or a sibling path is sim-
ilar to the SQL statement to attach a label to those
paths except that ATTACH is replaced by DETACH.

6 QUERY EVALUATION

In authorization-transparent access control, users for-
mulate their queries against the original database
rather than against authorization views that transform
and hide data (Motro, 1989). In (Rizvi et al., 2004),
authorization transparent access control is categorized
into two basic classes, the Truman model and theNon-
Truman model. In the Truman model, an access con-
trol language (often a view language) is used to spec-
ify what data is accessible to a user. User queries are
modified by the system so that the answer includes

only accessible data. Let Q be a user query, D be a
database and Du be the part of D that the user is per-
mitted to see, then queryQ is modified to a safe query
Qs such that Qs(D) = Q(Du). We call Qs(D) the
authorized answer set of Q over D. In contrast, in
the Non-Truman model, a query that violates access
control specifications is rejected, rather than modi-
fied. Only valid queries are answered.
Our model is an authorization-transparent Truman

model. We allow users to pose XPath queries against
the original labeled XML document. The evaluation
of an XPath query over a labeled XML document has
two parts. First, we change the usual XPath query
semantics as follows. If a child axis occurs, the eval-
uation follows a parent-child path; if a descendant-or-
self axis occurs, the evaluation follows an ancestor-
descendant path; if a preceding-sibling axis occurs,
the evaluation follows a preceding-sibling path; if a
following-sibling axis occurs, the evaluation follows
a following-sibling path.
Second, we need to make sure that for each path ac-

cessed, a user is allowed access to that path based on
the path label and the user’s access label. Suppose a
path P has a path label L1 and a user Mike has a read
access label L2. According to the XML-FGAC pol-
icy, (1) if L2 is “EXISTENCE”, Mike could read the
path P regardless of the value of label L1; (2) if L2

is “VALUE”, Mike could read the path P if L1 is not
“EXISTENCE”; (3) if L2 is “NULL”, Mike can only
access paths with “NULL” labels; if the DEFAULT
policy coexists, Mike could ask queries to existence
access the path P if L1 is “VALUE”. The discussion
for Write Access is similar. The above logic is in-
serted into the query access plan. When the access
plan is executed, the access rules from the label ac-
cess policy associated with the labeled XML docu-
ment are evaluated for each path accessed in the doc-
ument. This approach allows the cached access plan
to be reused because the access labels of the user who
issued the query are acquired during runtime.
For an XML document, there is an ordering, docu-

ment order (Clark and DeRose, 1999), defined on all
the nodes in the document corresponding to the order
in which the first character of the XML representa-
tion of each node occurs in the XML representation
of the document. This ordering information may leak
information as shown in the following example.
Example 6.1 Let us look at Figure 1 again. Sup-
pose one security policy wants to block public ac-
cess to the sibling relationships between the Customer
Nodes and their Order Nodes. Suppose the following
queries are allowed to return their answers in docu-
ment order: //Customer and //Order. Then the order
of Customer output might match the order of Order
output, hence leaks secret information. The situa-
tion becomes worse if the document has a registered
schema and the schema shows publicly that each cus-

tomer has a fixed number, say 2, of orders. In this
case, the association between a Customer and his Or-
ders is completely leaked.
To prevent an information leak based on document

order, we shuffle the output as follows. Each node
in the output will receive a random number. And the
nodes will be output based on the order of their as-
signed random numbers.
In sum, the processing algorithm to be inserted in

the access plan for a labeled XML document with
XML-FGAC and DEFAULT policies is as follows.
Algorithm: Insert Read and Write Access logic into
a query access plan for a labeled XML document.
1. Fetch the user’s Access Labels for Read and Write
actions (e.g., from a system catalog table).

2. For all paths accessed, do the following.
(a) If it is a Read Access and READ Access rules

do not permit access, skip the path unless (1) the
Read Access Label is “NULL”, (2) the Path La-
bel is “VALUE”, and (3) it is an existence access.

(b) If it is a Write Access and Write Access rules do
not permit access, skip the path.

3. Shuffle output.
Example 6.2 Suppose the document in Figure 1 has
two labels attached to its paths as specified in Exam-
ple 5.4 and the label access policies are XML-FGAC
and DEFAULT. Suppose a database user Mike with a
read access label “EXISTENCE” asks the query Q1:
//Account[Customer/Name]. The query access plan
checks the following paths:
1. the paths P1 from the root of the document to Ac-
count Nodes, i.e., //Account,

2. the paths P2 from Account Nodes to their descen-
dant Name Nodes via Customer Nodes, i.e.,
ANCS //Account DESC /Customer/Name,

3. the paths P3 from Customer Nodes to their children
Name Nodes, i.e., Customer/Name.

Paths P1 and P3 have “NULL” labels, hence, access is
allowed. Paths P2 have “EXISTENCE” labels. Mike
could read them since his read access label is “EXIS-
TENCE”. Read access to P2 is denied for any other
labels and the authorized answer set is empty.
Next, suppose another user John with a read access

label “VALUE” asks the query Q2: //Item//Cost. The
query access plan checks the following paths:
1. the paths P1 from the root of the document to the
Item Nodes, i.e., //Item,

2. the paths P2 from the Item Nodes to their descen-
dant Cost Nodes, i.e., ANCS //Item DESC //Cost.

Paths P1 have “NULL” labels, hence, access is al-
lowed. For P2, one path P21 has a “NULL” la-
bel; the other path P22 has a “VALUE” label as it is

ANCS //Item[Name=“IPOD”] DESC //Cost. John
could read P2 if his read access label is “VALUE”.
John could read P21 but not P22 if his read access la-
bel is “NULL”. Hence, the authorized answer set is
“450$”. However, even if John’s read access label is
“NULL”, the following query from John will still re-
turn the complete answer to Q3: //Item[Cost]. This
is because Q3 only existence accesses the paths P2,
i.e., the authorized answer set only indicates there ex-
ist Cost children Nodes for the Item Nodes “203” and
“204”, but no information about the values and node
ID’s of the Cost Nodes is leaked.

7 CREATE A SECURE SET OF
LABELED RELATIONSHIPS

Our goal is to allow users to label node relationships
and let them be sure that what they want to conceal
is truly concealed from the users whose access labels
do not satisfy the label access policy with the path la-
bels. Unfortunately, it is impossible to guarantee con-
cealment for any arbitrary set of relationships. Some-
times, it is possible to infer a concealed relationship
from the relationships that are not concealed.
Let us see an example of four cases where a re-

lationship could be inferred from a pair of non-
concealed relationship.
Example 7.1 In Figure 1, suppose it is known
that Account Node “201” is a descendant of
VIP Accounts Node “101” and Customer Node “301”
is a descendant of Account Node “201”. Then, there
is no point to conceal the ancestor-descendant rela-
tionship between VIP Accounts Node “101” and Cus-
tomer Node “301”.
Suppose it is known that Customer Node “301” is

a descendant of VIP Accounts Node “101” as well
as Account Node “201”. Since there is only one
path from the root of the document to Account Node
“201”, there is no point to conceal the ancestor-
descendant relationship between VIP Accounts Node
“101” and Account Node “201”.
Suppose it is known that Account Node “201”

and Account Node “202” are the children of
VIP Accounts Node “101”, then there is no point
to conceal the sibling relationship between Account
Node “201” and Account Node “202”.
Suppose it is known that VIP Accounts Node

“101” has a descendant Customer Node “301” and
the customer has a sibling Order Node “302”, then
there is no point to conceal the ancestor-descendant
relationship between VIP Accounts Node “101” and
Order Node “302”.
We say a set of labeled relationships/paths in an

XML document D is not secure w.r.t. a path label
L if one of the following four cases happens.

1. Case 1: D has three nodes, n1, n2 and n3 s.t. the
ancestor-descendant path from n1 to n2 and the
ancestor-descendant path from n2 to n3 have labels
L12 < L and L23 < L. The ancestor-descendant
path from n1 to n3 has a label L13 ∏ L.

2. Case 2: D has three nodes, n1, n2 and n3 s.t. the
ancestor-descendant path from n1 to n3 and the
ancestor-descendant path from n2 to n3 have labels
L13 < L and L23 < L. The ancestor-descendant
path from n1 to n2 has a label L12 ∏ L.

3. Case 3: D has three nodes, n1, n2 and n3 s.t. n1 is
the parent of n2 and n3, the parent-child path from
n1 to n2 and the parent-child path from n1 to n3

have labels L12 < L and L13 < L. The sibling
path from n2 to n3 has a label L23 ∏ L or the
sibling path from n3 to n2 has a label L32 ∏ L.

4. Case 4: D has three nodes, n1, n2 and n3 s.t. the
ancestor-descendant path from n1 to n2 has a label
L12 < L, and either the sibling path from n2 to n3

has a label L23 < L or the sibling path from n3 to
n2 has a label L32 < L. The ancestor-descendant
path from n1 to n3 has a label L13 ∏ L.

There is a simple test to verify that a set of labeled
relationships/paths in an XML document D is not se-
cure w.r.t. a path label L. The test starts by comput-
ing three ternary relations R1, R2 and R3. The first
two columns store the start/end nodes of paths. The
third column stores the label associated with paths (if
a label is missing, then it is a NULL value). In par-
ticular, R1 stores all ancestor-descendant paths in D,
R2 stores all parent-child paths in D, and R3 stores
all sibling paths in D.
1. Case 1 is true for a path label L iff the expression

º$1,$5(R1,L ./$2=$1 R1,L) ° R1,L is not empty
where R1,L is æ$3<L(R1).

2. Case 2 is true for a path label L iff the expression
º$1,$4(R1,L ./$2=$2 R1,L) ° R1,L is not empty
where R1,L is æ$3<L(R1).

3. Case 3 is true for a path label L iff the expression
º$2,$5(R2,L ./$1=$1 R2,L) ° R3,L is not empty
where R2,L is æ$3<L(R2) and R3,L is æ$3<L(R3).

4. Case 4 is true for a path label L iff the expression
º$1,$5(R1,L ./$2=$1 R3,L) ° R1,L is not empty
where R1,L is æ$3<L(R1) and R3,L is æ$3<L(R3).
Furthermore, we give intuitive conditions to con-

struct a secure set of labeled relationships for an XML
document. If we ignore the directions of ancestor-
descendant and sibling paths, all these paths form cy-
cles in an XML document. To assign a path label L
to a relationship between two nodes n1 and n2 in an
XML document D, we must make sure, for every cy-
cle that includes the path from n1 to n2, either there is
another path whose labelL0 ∏ L, or n1 and n2 are de-
scendants of some nodes in the cycle and n1, n2 are

not children of the same parent. Both cases ensure
there is uncertainty whether a relationship between
two nodes n1 and n2 exists: the first case by having
another path missing in the cycle, while in the second
case, the fact that n1 and n2 are descendants of some
nodes in the cycle introduces uncertainty except when
they are children of the same parent, in which case the
sibling relationship between n1 and n2 is leaked.
There is another possible information leak due to

singleton-source disclosure (Kanza et al., 2006). In
short, a user can infer that two nodes n1 and n2 are
related in a document D when (1) the path from the
root of document D to node n2 must go through a
node whose literal is A, (2) the only node with lit-
eral A in document D is node n1. An algorithm
to test singleton-source disclosure has been proposed
in (Kanza et al., 2006) and we will not repeat it here.

8 CONCLUSION

This paper has introduced a fine-grained access con-
trol model for XML data using generic security la-
bels. Our model is based on inter-node relation-
ship labeling and provides finer-grained access con-
trol than traditional node labeling approaches, hence
helps achieve the “need-to-know” security principle
and the “choice” privacy principle. We propose a new
semantics for concealing relationships in an XML
document under the Truman model. To enforce our
model, we provide a new query evaluation algorithm
and suggest algorithms to check/create a set of secure
labeled paths for an XML document.
Our future work includes implementing our model

and validating its effectiveness and performance using
real-life XML access control user cases. An impor-
tant challenge is adapting our mechanism to XQuery,
general XML document graphs and XML schemas.

Acknowledgements: We thank NSERC and IBM
Toronto CAS for their support, and Renée J. Miller
for her careful comments.
Trademark: IBM is a trademark or registered trade-
mark of International Business Machines Corporation
in the United States, other countries, or both.
Disclaimer: The views expressed in this paper are
those of the authors and not necessarily of IBM
Canada Ltd. or IBM Corporation.

REFERENCES

Bertino, E., Castano, S., and Ferrari, E. (2001). On specify-
ing security policies for web documents with an xml-
based language. In SACMAT, pages 57–65.

Bertino, E. and Ferrari, E. (2002). Secure and selective dis-
semination of xml documents. ACM Trans. Inf. Syst.
Secur., 5(3):290–331.

Bhatti, R., Bertino, E., Ghafoor, A., and Joshi, J. (2004).
Xml-based specification for web services document
security. In IEEE Computer, volume 4 of 37, pages
41–49.

Clark, J. and DeRose, S. (1999). XML Path
Language (XPath) version 1.0. Available at
http://www.w3.org/TR/xpath.

Damiani, E., de C. di Vimercati, S., Paraboschi, S., and
Samarati, P. (2002). A fine-grained access control sys-
tem for xml documents. ACM Trans. Inf. Syst. Secur.,
5(2):169–202.

Fan, W. F., Chan, C. Y., and Garofalakis, M. N. (2004). Se-
cure xml querying with security views. In SIGMOD,
pages 587–598.

Finance, B., Medjdoub, S., and Pucheral, P. (2005). The
case for access control on xml relationships. Tech-
nical report, INRIA. Available from http://www-
smis.inria.fr/dataFiles/FMP05a.pdf.

Fundulaki, I. and Marx, M. (2004). Specifying access con-
trol policies for xml documents with xpath. In SAC-
MAT, pages 61–69.

Gabillon, A. and Bruno, E. (2001). Regulating access to
xml documents. In Working Conference on Database
and Application Security, pages 311–328.

IBM (2001). Xml access control. http://xml.coverpages.org
/xacl.html.

Kanza, Y., Mendelzon, A., Miller, R., and Zhang, Z. (2006).
Authorization-transparent access control for xml un-
der the non-truman model. In EDBT, pages 222–239.

Miklau, G. and Suciu, D. (2003). Controlling access to pub-
lished data using cryptography. In VLDB, pages 898–
909.

Motro, A. (1989). An access authorization model for re-
lational databases based on algebraic manipulation of
view definitions. In ICDE, pages 339–347.

Murata, M., Tozawa, A., Kudo, M., and Hada, S. (2003).
Xml access control using static analysis. In CCS,
pages 73–84. ACM Press.

Oasis. (2005). Oasis exensible access control markup lan-
guage (xacml 2.0). http://www.oasis-open.org/ com-
mittees/xacml.

Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. (2004).
Extending query rewriting techniques for fine-grained
access control. In SIGMOD, pages 551–562.

Rjaibi, W. and Bird, P. (2004). A multi-purpose implemen-
tation of mandatory access control in relational data-
base management systems. In VLDB, pages 1010–
1020.

Wang, J. Z. and Osborn, S. L. (2004). A role-based ap-
proach to access control for xml databases. In SAC-
MAT, pages 70–77.

An Introduction to Multilevel Secure Relational Database

Management Systems

Walid Rjaibi

IBM Toronto Software Laboratory
Markham, Ontario, Canada

wrjaibi@ca.ibm.com

Abstract

Multilevel Security (MLS) is a capability that
allows information with different classifications
to be available in an information system, with
users having different security clearances and
authorizations, while preventing users from ac-
cessing information for which they are not
cleared or authorized. It is a security policy
that has grown out of research and develop-
ment efforts funded mostly by the U.S. Depart-
ment of Defense (DoD) to address some of the
drawbacks of the single level mode of opera-
tion that was used at the DoD. The goal was
to build and deploy an MLS-compliant envi-
ronment (e.g., Networks, Operating Systems,
Database Systems) that would provide a much
needed efficiency in processing and distribut-
ing classified information by providing security
through computer security, communications se-
curity, and trusted system techniques instead
of using physical controls, administrative pro-
cedures, and personnel security. As Relational
Database Management Systems (RDBMS) are
at the heart of the DoD’s information sys-
tem, significant research and development ef-
forts have been put into building multilevel se-
cure RDBMS, which have led to the emergence

Copyright c© 2004 IBM Canada Ltd., 2004. Per-
mission to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

of a number of multilevel secure RDBMS so-
lutions, including commercial ones. Over the
past few years and with the increase of secu-
rity concerns, MLS compliance has become a
major requirement from a number U.S. Fed-
eral Government agencies that appear to have
grown beyond the traditional agencies that re-
quire such type and level of security. This
paper introduces MLS, and outlines the chal-
lenges and complexities of building a multilevel
secure RDBMS. The paper also gives concrete
examples of both research and commercial mul-
tilevel secure RDBMS and describes how they
met the above challenges and complexities.

1 Introduction

Multilevel Security (MLS) is a capability that
allows information with different classifications
to be available in an information system, with
users having different security clearances and
authorizations, while preventing users from ac-
cessing information for which they are not
cleared or authorized[2]. It is a security pol-
icy that has been developed primarily for the
U.S. military and intelligence communities, but
has also been adopted by some civilian organi-
zations that store, process and distribute clas-
sified information (e.g., major aircraft manu-
facturers) as well as by a number of defense
departments around the world.

1

Given the extremely high value of the infor-
mation that could be stored in a military or
intelligence database, and the potential dam-
age that could result from the unauthorized dis-
closure, alteration or loss of such information,
preventing users from accessing information for
which they are not cleared or authorized re-
quires much more than just implementing an
access control policy. In particular, security
guards must be put in place to prevent users
from gaining access to information for which
they are not cleared or authorized through in-
direct means.

Covert channels[5] are examples of such in-
direct means. A covert channel can easily
be established with conventional database con-
currency control algorithms such as two-phase
locking (2PL) and timestamp ordering (TO)[6].
In both 2PL and TO algorithms, whenever
there is contention for the same data item by
transactions executing at different security lev-
els, a lower level transaction may be either de-
layed or suspended to ensure correct execution.
In such a scenario, two colluding transactions
executing at high and low security levels can
establish an information flow channel from a
high security level to a low security level by ac-
cessing selected data items according to some
agreed-upon code[4].

Inference[7] is another indirect means by
which users can gain knowledge about infor-
mation for which they are not cleared or au-
thorized. For example, enforcing a primary key
constraint[6] across data from different security
levels could allow a non sufficiently cleared user
to gain knowledge about the existence of a data
row at a higher security level from the duplicate
key error message that is returned to that user
when he or she attempts to insert a data row
at a low security level but having the same pri-
mary key as the data row at the higher security
level.

Building a multilevel secure RDBMS has
thus posed significant challenges to the
database research community. For instance,
secure database transaction protocols had to
be developed, and a solution to reconcile the
conflicting requirements between data integrity
and confidentiality had to be found. MLS has
also posed significant challenges to database
vendors as building a multilevel secure RDBMS

often requires rebuilding major portions of an
existing commercial RDBMS.

There has been an abundance of research
within the last two decades or so in the
area of multilevel secure RDBMS. Such re-
search has addressed specific aspects of build-
ing a multilevel secure RDBMS such as secure
transaction protocols, system architectures, or
polyinstantiation[8], and there is a rich set of
publications about those specific aspects[8, 4,
9, 10]. However, the multilevel secure RDBMS
research literature surprisingly lacks the kind
of publication that would allow someone to get
a good understanding about what it takes to
build a multilevel secure RDBMS as a whole,
as well as to serve as a quick guide for those
who might be thinking about building such
RDBMS.

Moreover, the term multilevel security is
heavily overloaded across the Information
Technology (IT) industry and often means dif-
ferent things to people from different back-
grounds as there are not only multilevel secure
RDBMS, but also multilevel secure operating
systems, multilevel secure networks, multilevel
secure webservers, etc. In addition to being
heavily overloaded, MLS is often incorrectly
used interchangeably with emerging market-
ing terms such as Label-Based Access Control
(LBAC), Row-Level Security, and others. All
of this makes it extremely difficult for those
who have not been directly involved in design-
ing or building a multilevel secure RDBMS to
get a good understanding about what it really
takes to build a multilevel secure RDBMS.

In this paper, the author wishes to share
his expertize in database security and privacy
to try to clarify the mystery of multilevel se-
curity, as well as to outline the challenges
and complexities of building a multilevel secure
RDBMS.

1.1 Synopsis

The rest of this paper is organized as follows.
Section 2 introduces MLS and describes the
MLS certification and evaluation process. Sec-
tion 3 presents and compares Multilevel Se-
cure RDBMS architectures. Section 4 de-
scribes the issue of polyinstantiation. Section
5 presents multilevel secure transaction pro-

2

cessing. Section 6 gives concrete examples of
both research and commercial multilevel secure
RDBMS. Lastly, section 7 summarizes the con-
cepts introduced in this paper.

2 What is Multilevel Secu-

rity?

A good understanding of MLS would not be
complete without understanding its origins,
and what problems it was meant to solve.
The U.S. military and intelligence communities
have historically segregated data based upon
its security classification. Classified data must
reside and be processed on dedicated systems
that do not provide access to users outside of
the immediate community of interest and are
often separated by an air gap and connected
only by a sneaker net[2]. The main drawbacks
of such operational scheme can be summarized
as follows:

• Redundant databases: To store data with
different security levels (e.g., Top Secret
data and Unclassified data), a separate
database must be created and maintained
for each security level.

• Redundant workstations: A user who is re-
quired to access data with different secu-
rity levels (e.g., Top Secret data and Un-
classified data) would be required to use
a different workstation to access each type
of data.

• High cost of IT infrastructure: It is not
possible to share the computer and com-
munication system infrastructures, such
as cabling, network components, printers,
and workstations without risking to com-
promise security.

• Inefficiency: Staff members need to access
several systems to perform their duties.

The U.S. DoD has therefore funded signifi-
cant research and development projects across
various organizations to come up with a so-
lution that would allow classified information
to be stored, processed and distributed in a
secure way, but without the drawbacks listed
above. MLS was that solution[2]. MLS allows

information with different classifications to be
available in an information system, with users
having different security clearances and autho-
rizations, while preventing users from accessing
information for which they are not cleared or
authorized[2]. For example, an MLS system
might process both Secret and Top Secret col-
lateral data and have some users whose maxi-
mum clearance is Secret and others whose max-
imum clearance is Top Secret. Another MLS
system might have all its users cleared at the
Top Secret level, but have the ability to release
information classified as Secret to a network
consisting of only Secret users and systems. In
each of these instances, the system must im-
plement mechanisms to provide assurance that
the system’s security policy is strictly enforced.
MLS has resulted in a shift from providing se-
curity through physical controls, administra-
tive procedures, and personnel security to pro-
viding security using computer and communi-
cation security.

2.1 The Bell-LaPadula Multilevel
Security Model

The Basic model of MLS was first introduced
by Bell and LaPadula[11]. The model is stated
in terms of objects and subjects. An object is
a passive entity such as a data file, a record,
or a field within a record. A subject is an ac-
tive process that can request access to objects.
Every object is assigned a classification, and
every subject a clearance. Classifications and
clearances are collectively referred to as labels.
A label is a piece of information that consists
of two components: A hierarchical component
and a set of unordered compartments. The hi-
erarchical component specifies the sensitivity
of the data. For example, a military organi-
zation might define levels Top Secret, Secret,
Confidential and Unclassified. The compart-
ments component is nonhierarchical. Compart-
ments are used to identify areas that describe
the sensitivity or category of the labeled data.
For example, a military organization might de-
fine compartments NATO, Nuclear and Army.
Labels are partially ordered in a lattice as fol-
lows: Given two labels L1 and L2, L1 >= L2 if
and only if the hierarchical component of L1

is greater than or equal to that of L2, and

3

the compartment component of L1 includes the
compartment component of L2. L1 is said to
dominate L2. MLS imposes the following two
restrictions on all data accesses:

• The Simple Security Property or “No Read
Up”: A subject is allowed a read access to
an object if and only if the subject’s label
dominates the object’s label.

• The *-Property (pronounced the star
property) or “No Write Down”: A sub-
ject is allowed a write access to an object
if and only if the object’s label dominates
the subject’s label.

2.2 Evaluation and Certification

Multilevel secure systems must complete an ex-
tensive evaluation and certification process be-
fore they can be used in military applications.
The evaluation and certification of a multilevel
secure system is usually conducted by an inde-
pendent testing laboratory and is based upon
a clearly defined set of criterion. One set of
criteria is called common criteria, which has
recently been adopted as an ISO standard[3].
Another set of evaluation criteria used by the
U.S. DoD is the Trusted Computer System
Evaluation Criteria (TCSEC)[5]. Most multi-
level secure RDBMS have been developed be-
fore common criteria was adopted. TCSEC has
been the norm for evaluating such RDBMS.

TCSEC is divided into four divisions: D,
C, B, and A ordered in a hierarchical manner
with the highest division (A) reserved for sys-
tems providing the most comprehensive secu-
rity. Each division represents a major increase
in the overall confidence, or trust, that one can
place in the system. Successive levels of trust
build upon and incorporate the criteria of the
previous lower level of trust.

Within Divisions C and B there are a number
of subdivisions known as classes. The classes
are also ordered in a hierarchical manner with
systems representative of Divisions C and B
characterized by the set of computer security
mechanisms that they possess. For Division C,
Discretionary Access Control (DAC)[6] is pro-
vided, whereby users can grant or deny access
by other users and groups of users to the system
resources that the users control. For Division

B, Mandatory Access Control (MAC)[1] is pro-
vided. MAC employs the simple security prop-
erty and the *-property of the Bell-LaPadula
MLS model to protect data of different secu-
rity levels. Division A also provides the MAC
features.

Systems representative of the higher classes
in Division B and Division A derive their se-
curity attributes more from their design and
implementation structure than merely security
features or functionality. Increased assurance
that the required features are operative, cor-
rect, and tamperproof under all circumstances
is gained through progressively more rigorous
design, implementation, and analysis during
the development process. Division A requires
formal (e.g., mathematical) design and verifica-
tion techniques to provide increased assurances
over Division B.

Multilevel secure systems are associated with
TCSEC divisions B and A[2].

3 Multilevel Secure

RDBMS Architectures

Multilevel secure RDBMS architectures can be
divided into two general types, depending on
whether mandatory access control is enforced
by the RDBMS itself or delegated to a trusted
operating system. These two general types are
the Woods Hole Architecture and the Trusted
Subjects Architecture[9, 10].

3.1 Woods Hole Architectures

The Woods Hole architectures are the outcome
of a three-week study on trusted data manage-
ment sponsored by the U.S. Air Force at Woods
Hole, Massachusetts, USA in 1982[9, 10]. The
subject of this study was the following: Can we
build a multilevel secure RDBMS using existing
untrusted off-the-shelf RDBMS, with minimal
change?

The Woods Hole architectures assume that
an untrusted off-the-shelf RDBMS is used to
access data and that trusted code is developed
around that RDBMS to provide an overall se-
cure RDBMS. They can be divided into two
main categories: The kernelized architectures
and the distributed architectures[9, 10].

4

3.1.1 Kernelized Architectures

The kernelized architecture[9, 10] uses a
trusted operating system and multiple copies
of an off-the-shelf RDBMS, where each copy is
associated with some trusted front-end. Each
pair (trusted front-end, RDBMS) is associated
with a particular security level. The trusted
operating system enforces its full access control
policy on all accesses by the RDBMS to the
RDBMS objects. It ensures that data at dif-
ferent security levels is stored separately, and
that each copy of the RDBMS gets access to
data that is authorized for its associated secu-
rity level. The latter is possible because the
multilevel database is decomposed into mul-
tiple single-level databases, where each repre-
sents a fragment of the conceptual multilevel
database. Each fragment is stored in a single-
level operating system object (e.g., a file) which
is labeled by the operating system at the cor-
responding security level, and thus can only be
accessed according to the MAC policy of the
operating system.

Figure 1 illustrates a kernelized architec-
ture where one RDBMS is associated with
the security level “High” and another RDBMS
is associated with the security level “Low”.
The RDBMS associated with the security level
“High” has access to both the fragment of the
database at the high security level and the frag-
ment of the database at the low security level.
But the RDBMS associated with the security
level “Low” has access only to the fragment of
the database at the low security level.

A benefit of this architecture is that data
at different security levels is isolated in the
database, which allows for higher level assur-
ance. Another benefit is that, assuming an al-
ready evaluated operating system, this archi-
tecture should minimize the amount of time
and effort to evaluate the RDBMS. However,
this architecture results in an additional over-
head as the trusted operating system needs to
separate data at different security levels when it
is added to the database and might also need
to combine data from different security levels
when data is retrieved by an RDBMS copy that
is associated with a high security level.

High RDBMS Low RDBMS

Trusted Operating System

Front End
High Trusted Low Trusted

Front End

High User Low User

High Data Low Data

Figure 1: Multilevel secure kernelized RDBMS
architecture.

3.1.2 Distributed Architectures

The distributed (or replicated) architecture[9,
10] is a variation of the kernelized architec-
ture. It uses multiple copies of the trusted
front-end and RDBMS, each associated with
its own database storage. In this architecture
scheme, an RDBMS at security level l contains
a replica of every data item that a subject
at level l can access. Thus, when data is re-
trieved, the RDBMS retrieves it only from its
own database. Another benefit of this archi-
tecture is that data is physically separated into
separate hardware databases. However, this
scheme results in an additional overhead when
data is updated as the various replicas need to
be kept in sync.

3.2 Trusted Subjects Architec-
tures

The trusted subject architecture[9] is a scheme
that contains a trusted RDBMS and a trusted
operating system. According to this architec-
ture, the mandatory access control policy is
enforced by the RDBMS itself. Database ob-
jects (e.g., a table) are stored in operating sys-
tem objects (e.g., a file) labeled at the high-
est security level. A database table can con-

5

tain rows with different security levels. Such
rows are distinguished based on their security
level which is explicitly stored with each row.
This architecture is called “trusted subject” be-
cause the RDBMS is privileged to violate the
operating system’s MAC policy when access-
ing database objects. For example, when a user
with a low security level queries a database ta-
ble, the operating system’s object where that
table is stored ends up being accessed, which
is a violation of the operating system’s MAC
policy. But the RDBMS is trusted to return
to the users only those rows for which he or
she is authorized according to the MAC policy.
Figure 2 illustrates a multilevel secure trusted
subject RDBMS Architecture.

Trusted Operating System

Front End Front End

High User Low User

Untrusted Untrusted

Trusted RDBMS

Database

Figure 2: Multilevel secure trusted subject
RDBMS architecture.

A benefit of this architecture is that the
RDBMS has access to all levels of data at the
same time, which minimizes retrieval and up-
date processing. However, this architecture re-
sults in a special purpose RDBMS that requires
a large amount of trusted code to be developed
and verified along with the normal RDBMS fea-
tures. It also lacks the potential to be evalu-
ated to high TCSEC evaluation classes because
meeting higher levels of assurance requires the
ability to provide separation of mandatory ob-
jects by some form of hardware isolation. It is

also difficult to prove that the trusted software
used to isolate mandatory objects (e.g., data
rows with different security levels) is working
correctly without allowing for the flow of data
with high security level to users with low secu-
rity level.

4 Polyinstantiation

Multilevel secure RDBMS utilize mandatory
access control to prevent the unauthorized dis-
closure of high-level data to low-level users. It
is also necessary to guard against the threat
to confidentiality that can arise from enforcing
database integrity constraints[6] across data
from multiple security levels. To illustrate this
threat to confidentiality, consider the following
database table where the attribute “starship”
is the primary key, and the attribute “label”
represents the data row security level.

Starship Destination Label

Enterprise Mars High

Suppose that a user with a low security level
wishes to insert the tuple (Enterprise, Talos,
Low). From a purely database perspective, this
insert must be rejected because it violates the
primary key constraint. However, rejecting this
insert could be sufficient to compromise secu-
rity as the user with low security level could
infer that the starship Enterprise is on a mis-
sion with a higher security level.

Polyinstantiation[8] is a solution to this
problem. It expands the notion of primary key
to include the security level so that more than
one tuple may possess the same apparent pri-

mary key if they are at different security lev-
els. To continue with our example, a new row
with the same apparent primary key (i.e., En-
terprise) is added to the table.

Starship Destination Label

Enterprise Mars High
Enterprise Talos Low

From a security perspective, the newly added
row is simply a cover story for the real mission
of the starship enterprise.

6

In addition to protecting against inference,
polyinstantiation is also useful to prevent de-
nial of service to legitimate users as well as
to protect against storage covert channels[5].
Covert channels use system variables and at-
tributes to signal information. To illustrate
this type of threat to confidentiality, consider
the following database table where the at-
tribute “starship” is the primary key, and the
attribute “label” represents the data row secu-
rity level.

Starship Destination Label

Enterprise Talos Low

Now, suppose that a user with a high secu-
rity level wishes to update the destination to
be “Mars”. If the RDBMS rejects this update,
then the user may have been denied legitimate
privileges. If the update is allowed by changing
the row’s security level to “High” then a user
with a low security level will notice that the
data row has disappeared and will infer that its
security level has been increased. If the update
is allowed without changing the row’s security
level, then a storage covert channel will be cre-
ated. That is, the data row itself could be used
as a storage object for passing high level infor-
mation to users with low security level. Polyin-
stantiation allows the RDBMS to insert a new
data row with the same apparent primary key
(i.e., Enterprise) but with a high security level
as a result of such update.

Starship Destination Label

Enterprise Talos Low
Enterprise Mars High

From a security perspective, the old data row
is simply a cover story for the real mission of
the starship enterprise.

5 Multilevel Secure Trans-

action Processing

Multilevel secure RDBMS utilize mandatory
access control to prevent the unauthorized dis-
closure of high-level data to low-level users. It
is also necessary to guard against the threat

to confidentiality that can arise from employ-
ing conventional transaction protocols such as
two-phase locking (2PL)[4]. The 2PL transac-
tion protocol delays the execution of conflict-
ing operations by setting locks on data items
for read and write operations[6]. A transaction
must acquire a shared-lock (S-lock) on a data
item before reading it and an exclusive lock
(X-lock) before writing it. The 2PL transac-
tion protocol is inherently vulnerable to timing
covet channels which could be established to
leak confidential information. A timing covert
channel [5] varies the amount of time to com-
plete a task to signal information. To illustrate
this threat to confidentiality, consider the fol-
lowing example.

Let Ti denote a high security level transac-
tion, which is reading a low security level data
item A. Let Tj denote a low security level
transaction, which is trying to write to data
item A. If the 2PL transaction protocol is em-
ployed, then Tj must wait to acquire an X-lock
on data item A (i.e., wait until Ti releases its
S-lock on data item A). Suppose that Tj can
measure the time quantum q it has to wait to
acquire the lock on data item A: A quantum
of waiting time greater than a certain amount
represents ’1’, and a quantum of waiting time
less than that a certain amount represents ’0’.
Transaction Ti can exploit this knowledge to
send one bit of high security level information
to Tj , and by repeating this protocol, any in-
formation can be sent, creating a timing covert
channel.

2PL, and in general conventional transaction
protocols in RDBMS, are not secure against
timing covert channels.

6 Commercial and Re-

search Multilevel Secure

RDBMS

The research and development efforts in the
area of multilevel secure RDBMS have re-
sulted in a number of commercial and research
systems. The most noticeable of these sys-
tems are the following: Trusted Oracle[12],
Informix OnLine/Secure[13], Sybase Secure
SQL Server[14], DB2 for z/OS[15], Trusted

7

Rubix[16], SEAVIEW[8], and Unisys Secure
Distributed DBMS[17].

Trusted Oracle can be configured to run in
one of two modes: DBMS MAC and OS MAC.
The former is an architecture where mandatory
access control is enforced by the RDBMS it-
self, and thus is a trusted subject architecture.
The latter is a kernelized architecture (i.e.,
mandatory access control is delegated to the
operating system). Informix OnLine/Secure,
Sybase Secure SQL Server, DB2 for z/OS, and
Trusted Rubix are examples of a trusted sub-
ject architecture. The SEAVIEW research sys-
tem is an example of a kernelized architecture
whereas the Unisys Secure Distributed research
RDBMS is an example of a distributed archi-
tecture.

Informix OnLine/Secure, Sybase Secure SQL
Server, Trusted Oracle, and Trusted Rubix all
support polyinstantiation. The key for a tu-
ple in Informix OnLine/Secure automatically
includes the tuple security label. Thus, polyin-
stantiation is always possible and cannot be
suppressed by the RDBMS.

The tuple security label in the Sybase Secure
SQL Server is part of all keys. Thus, polyin-
stantiation is always possible and cannot be
suppressed by the RDBMS.

Trusted Oracle can be configured to run in
one of two modes. When run in DBMS MAC
mode, a single Trusted Oracle database can
store information at multiple security levels. In
this mode, Trusted Oracle can turn polyinstan-
tiation on and off at the table level by requiring
key integrity which does not include the tuple
security label. When on, the primary key in-
cludes the tuple label, which allows polyinstan-
tiation to occur. When off, the key does not in-
clude the tuple security label, thus preventing
polyinstantiation.

When run in OS MAC mode, Trusted Oracle
is capable of storing data at only a single secu-
rity label, and the RDBMS is constrained by
the underlying operating system MAC policy.
Without any MAC privilege, the RDBMS can-
not suppress polyinstantiation because a low
RDBMS will not be aware of any tuple with
the same primary key at a higher security level,
and a high RDBMS cannot be trusted to mod-
ify data at a low security level. As such, polyin-
stantiation cannot be prevented when Trusted

Oracle is running in OS MAC mode.
Informix OnLine/Secure and Trusted Ora-

cle provide secure transaction processing pro-
tocols. Informix OnLine/Secure uses an ap-
proach by which a transaction at a low security
level can acquire a write lock on a low data item
even if a transaction at a high security level
holds a read lock on that data item. Thus, a
transaction at a low security level is never de-
layed by a transaction at a high security level.
The transaction at the high security level sim-
ply receives a warning that a lock on a low data
item has been “broken”. Trusted Oracle uses
a combination of locking and multiversioning
techniques.

7 Conclusion

This paper has given an overview of multilevel
security, the MLS evaluation and certification
process, and multilevel secure RDBMS. Build-
ing a multilevel secure RDBMS can be a chal-
lenging task. Depending on the architecture
followed, this might require rebuilding major
portions of an existing commercial RDBMS. It
also requires significant effort to evaluate and
certify, particularly if a high level of assurance
is sought. We are not aware of any commercial
RDBMS that has been evaluated higher than
B1 according to the Trusted Computer Secu-
rity Evaluation Criteria.

Mandatory access control, polyinstantiation,
and secure transaction processing are the key
aspects of a multilevel secure RDBMS. How-
ever, these are not sufficient to ensure that se-
curity cannot be compromised. Depending on
how stringent the requirements of the organi-
zation that wishes to deploy a multilevel secure
RDBMS, the RDBMS might have to imple-
ment additional security guards. For example,
SQL compilers have traditionally been guided
by performance reasons in selecting the order
in which the predicates contained in a query
are evaluated (i.e., more selective predicates
are often evaluated first to narrow down the
set of rows to be passed on to a subsequent
join because join operations are costly). If the
method chosen to enforce MAC when access-
ing a table is based on query modification to
incorporate the MLS two security properties in

8

the form of regular predicates, then special care
must be taken in selecting the order in which
the predicates on that table are evaluated to
avoid unauthorized leakage of data rows. To il-
lustrate how leakage could occur, suppose that
a query has a predicate on a table that involves
a User-Defined Function (UDF). Further sup-
pose that this UDF takes the whole data row as
an input parameter and that the UDF source
code makes a copy of the data row outside the
database (or sends it as an e-mail to some des-
tination). Now, assume that some data row R
cannot be returned to the user who issued the
query because this would violate the MLS se-
curity properties. If the predicate involving the
UDF is evaluated prior to evaluating the pred-
icates that implement the MLS security prop-
erties then data row R will be consumed by the
UDF and consequently leaked to an unautho-
rized user.

Database triggers[6] are another example
where additional security guards could be nec-
essary. A trigger could cause labeled data row
to flow from a table on which mandatory ac-
cess control is enforced to another table on
which mandatory access control is not enforced.
Without proper flow control measures, triggers
could cause unauthorized leakage of informa-
tion to occur.

Acknowledgements

The author wishes to thank Calisto Zuzarte
and Kelly Lyons from the IBM Toronto Labo-
ratory for their suggestion to write a CASCON
paper about multilevel secure RDBMS.

Trademarks

IBM and Informix are registered trademarks
of International Business Machines Corpora-
tion in the United States, other countries, or
both. Other company, product and service
names may be trademarks or service marks of
others.

Disclaimer

The views expressed in this paper are those of
the authors and not necessarily of IBM Canada
Ltd. or IBM Corporation.

About the Author

Walid Rjaibi joined IBM in 1996. He ini-
tially worked at the IBM Toronto Lab within
the DB2 UDB query optimization team for five
years. In this role, Walid was the architect
and author of several innovative solutions in-
cluding the extensions made to the DB2 statis-
tics model to support parallel database envi-
ronments and the query performance simula-
tor. Walid then joined IBM Research in Zurich,
Switzerland (ZRL) where he worked as a Re-
search Staff Member in Network Security and
Cryptography for two years. At ZRL, he was
an active member of the IBM Privacy Technol-
ogy Institute (PTI) where he developed innova-
tive solutions for enabling RDBMS to automat-
ically enforce privacy policies. Walid returned
to the IBM Toronto Lab in March 2003 where
he joined the newly formed DB2 UDB security
development team. He has authored several
research and technical papers on database se-
curity and privacy, and holds a patents portfo-
lio of eleven filed or granted patents. Walid
holds a Computer Engineer degree from the
University of Tunis (Tunisia), and a Masters
degree in Computer Science from Laval Uni-
versity (Canada).

References

[1] W. Rjaibi, P. Bird. A Multi-Purpose Im-
plementation of Mandatory Access Control
in Relational Database Management Systems.
In Proc. of the 30th International Conference
on Very Large Databases, Toronto, Canada,
2004.

[2] Department of Defense. Multilevel Security
in the Department Of Defense: The Basics.
http://nsi.org/Library/Compsec/sec0.html.

[3] The official website of the Common Criteria
Project
http://www.commoncriteriaportal.org/

[4] V. Atluri, S. Jajodia, T. F. Keefe, C. MaCol-
lum, R. Mukkamal. Multilevel Secure Trans-
action Processing: Status and Prospects.
Database Security, X: Status and Prospects,
Chapman & Hall 1997, eds. Pierangela Sama-
rati and Ravi Sandhu.

[5] Trusted Computer Security Evaluation Crite-
ria, DoD 5200.28-STD. U.S. Department of
Defense, 1985.

9

[6] R. Elmasri, S. Navathe. Fundamentals of
Database Systems. ISBN 0-201-54263-3,
Addison-Wesley, 2000.

[7] S. Jajodia, R. Sandhu. Toward a Multi-
level Secure Relational Data Model. In Proc.
of ACM SIGMOD, Denver, Colorado, USA,
1991.

[8] D. E. Denning. The Sea View Security Model.
In Proc. of the IEEE Symposium on Security
and Privacy, Oakland, California, USA, 1988.

[9] M. D. Abrams, S. Jajodia, H. J. Podell. In-
formation Security An Integrated Collection
of Essays. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1995.

[10] S. Castano, et al. Database Security. ACM
Press, New York, NY, USA, 1995.

[11] E. Bell, L. J. LaPadula. Secure computer sys-
tems: Unified exposition and multics inter-
pretation. Technical Report MTR-2997, The
Mitre Corporation, Burlington Road, Bed-
ford, MA 01730, USA.

[12] Oracle Corporation. Trusted Oracle Admin-
istrator’s Guide. Redwood City, CA, USA,
1992.

[13] Informix. Informix OnLine/Secure Adminis-
trator’s Guide. Menlo Park, CA, USA, 1993.

[14] Sybase Inc. Building Applications for Secure
SQL Server, Sybase Secure SQL Server Re-
lease 10.0. Emeryville, CA, USA, 1993.

[15] IBM Corporation. DB2 UDB for z/OS V8
Administration Guide. 2004.

[16] National Computer Security Center. Polyin-
stantaition Issues in Multilevel Secure Rela-
tional Database Management Systems. NCSC
Technical Report - 005, Volume 3/5, Library
No. S-243,039, May 1996.

[17] LouAnna Notargiacomo. Architectures for
MLS Database Management Systems. Infor-
mation Security:An Integrated Collection of
Essays, IEEE Computer Society Press, Los
Alamitos, California, USA.

10

 102

Table C.2 – Granted Patents

ID Publication Key Contributions

1 Controlling Data Access Using
Security Label Components

US Patent US7,568,235B2

This patent is the foundation for the security label

concepts discussed in the core publication #1 in table C.1

above.

2 Method for Modifying a Query by
Use of an External System for
Managing Assignments of User
and Data Classifications

US Patent US7,860,875B2

This patent is the foundation for the enterprise integration

methodology discussed in the core publication #1 in table

C.1 above.

3 Fine-Grained, Label-Based, XML
Access Control Model

US Patent US2009/0063951A1

This patent is the foundation for the inter-node

relationship labelling concept discussed in the

publication #2 in table C.1 above.

US00756.8235B2

(12) United States Patent (10) Patent No.: US 7,568,235 B2
Bird et al. (45) Date of Patent: Jul. 28, 2009

(54) CONTROLLING DATA ACCESS USING (58) Field of Classification Search 726/6,
SECURITY LABEL COMPONENTS 726/27, 28; 713/182

See application file for complete search history.
(75) Inventors: Paul Miller Bird, Markham (CA): s s 56 Ref Cited Walid Rjaibi, Markham (CA) (56) eeees e

U.S. PATENT DOCUMENTS
(73) Assignee: International Business Machines 6,185.551 B1 2/2001 Birrell etal 707/3

Corporation, Armonk, NY (US) 6,526,398 B2 2/2003 Wolff et al. 707/1
- 6,606,681 B1 8/2003 Uzun 711.108

(*) Notice: Subject to any disclaimer, the term of this 6,981,265 B1* 12/2005 Rees et al. T19, 313
patent is extended or adjusted under 35 2001/00 13096 A1 8/2001 Luckenbaugh et al. T13,154
U.S.C. 154(b) by 828 days. 2004/0015701 A1* 1/2004 Flyntz T13, 182

k . (21) Appl. No.: 11/036,839 cited by examiner
Primary Examiner Kambiz Zand

(22) Filed: Jan. 15, 2005 Assistant Examiner Aubrey H Wyszynski
(74) Attorney, Agent, or Firm Patterson & Sheridan, LLP

(65) Prior Publication Data
US 2006/0059567 A1 Mar. 16, 2006 (57) ABSTRACT

O O A method that controls user access to the stored data elements
(30) Foreign Application Priority Data using security label components is disclosed. Each stored

Feb. 20, 2004 (CA) 2459004 data element is associated with a set of data security label
components, and each user is associated with a set of user

(51) Int. Cl. security label components. The method receives a user
H04L 9/32 (2006.01) request to access the stored data elements, compares the set of
H04L 9/00 (2006.01) user security label components to the set of data security label
G06F 7/30 (2006.01) components associated with the users, and based on the com
G6F 7/04 (2006.01) parison result, determines whether or not to permit access to
H04LK LM00 (2006.01) the stored data.

(52) U.S. Cl. 726/27; 726/6, 726/28;
713/182 19 Claims, 14 Drawing Sheets

GENERATE
ACCSS

PARAMETERTYPES
AND

tests

set up
CLASSIFIED
TAs?

ASSIGN
SECURITY ACCESS

ABESTO
USS

GENERATE
ACCESS

PARAMETER
TYPSAND STS

GENERATE
CLASSIFIED
TAB

ASSGNSR
ACCESS

PARAMERS

U.S. Patent Jul. 28, 2009 Sheet 6 of 14 US 7,568,235 B2

Candy
604 606

GENERATE GENERATE
ACCESS YES ACCESS e PARAMETER TYPES PARAMETER
AND TYPES AND TESTS

TESTS? (FIG. 7)

NO

610

GENERATE SETUP
CLASSIFIED YES CLASSIFIED
TABLE TABLE

(FIG. 8)

NO

614

ASSIGN USER ASSIGN YES
SECURITY ACCESS PAAEas

LABELS TO (FIG.9) USERS2

NO

F.G. 6A

U.S. Patent Jul. 28, 2009 Sheet 7 of 14 US 7,568,235 B2

A 600

618

WRITE DATA
TO CLASSIFIED

TABLE

YES WRITE DATA TO
CLASSIFIED TABLE

(FIG. 10)

NO

622

READ
DATA FROM
CLASSIFIED
TABLE'

YES READ DATA FROM
CLASSIFIED TABLE

(FIG. 11)

NO

626
ANY MORE

ACCESS TYPE
DUTIES No Gstart)
YES

B F.G. 6B

U.S. Patent Jul. 28, 2009 Sheet 8 of 14 US 7,568,235 B2

606
702

TRANSFER CONTROL FROM
DECISION STEP 604

(FIG. 6)

704

DEFINETYPES OF ACCESS PARAMETERS TO BE
USED AS DATA ELEMENT ACCESS PARAMETERS
AND AS USER ACCESSABILITY INDICATORS

706

DEFINE TESTS FOR COMPARING DATA ELEMENT
ACCESS RECUREMENTS AGAINST USER ACCESS

ABILITY INDICATORS

708

TRANSFER CONTROL TO
DECISION STEP 608

(FIG. 6)

FIG. 7

U.S. Patent Jul. 28, 2009 Sheet 9 of 14 US 7,568,235 B2

610
802

TRANSFER CONTROL FROMDECISION
STEP 608 (FIG. 6)

804

SETUP CLASSIFIED TABLE

806

GENERATE COLUMN TO CONTAIN DATA
ELEMENT DENTIFIERS

808

GENERATE COLUMN TO CONTAIN DATA
ELEMENTS

810

GENERATE A COLUMN FOR EACHTYPE OF DATA
ELEMENT ACCESS RECUREMENT

812

TRANSFER CONTROL TO
DECISION STEP 612

(FIG. 6)

FIG. 8

U.S. Patent Jul. 28, 2009 Sheet 10 of 14 US 7,568,235 B2

614
902

TRANSFER CONTROL
FROM DECISION
STEP 612 (FIG. 6)

906

GENERATE
USER ACCESS

TABLE2

YES GENERATE USER
ACCESS TABLE

NO

908
910

RECEIVED
REGUEST TO ASSIGN USER

ASSIGN ACCESS
USER ACCESS PARAMETERS
PARAMETERS

912

UPDATE USER
NO ACCESS TABLE

914

TRANSFER CONTROL
TO DECISION

STEP 616 (FIG. 6)

FIG. 9

U.S. Patent Jul. 28, 2009 Sheet 11 of 14 US 7,568,235 B2

618

1001

TRANSFER
CONTROL FROM

DECISION STEP 616
(FIG. 6)

REGUEST
FOR WRITING?

TRANSFER
CONTROL TO

DECISION STEP 620
(FIG. 6)

F.G. 10A

U.S. Patent Jul. 28, 2009 Sheet 12 of 14 US 7,568,235 B2

618

1004

CA RECEIVE ROW

1008

ROW
LABEL
VALIDP

EVALUATE LABEL
SET WRITE

ACCESS RULES

NO

1014

YES ACCESS
ALLOWED2 WRITE ROW

1012

RETURNERROR

1018

TRANSFER CONTROL TO
DECSION STEP 620

(FIG. 6) NO

FIG. 10B

U.S. Patent Jul. 28, 2009 Sheet 13 of 14 US 7,568,235 B2

622

1101

TRANSFER
CONTROL FROM

DECISION STEP 620
(FIG. 6)

REGUEST
FOR READING2

TRANSFER
CONTROL TO

DECISION STEP 624
(FIG. 6)

FIG. 11A

U.S. Patent Jul. 28, 2009 Sheet 14 of 14 US 7,568,235 B2

6 2 2

1104

FETCH ROW

EVALUATE LABEL
SET READ

ACCESS RULES

ACCESS
ALLOWED2 RETURNROW

TRANSFER CONTROL TO
DECISION STEP 624

(FIG. 6)

FIG. 11B

US 7,568,235 B2
1.

CONTROLLING DATA ACCESS USING
SECURITY LABEL COMPONENTS

PRIORITY CLAIM

The present application claims the priority of Canadian
patent application, Serial No. 2,459,004, titled “Method and
System to Control Data Access. Using Security Label Com
ponents.” which was filed on Feb. 20, 2004, and which is
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to access control of stored
data, and more specifically to a method, a system, and a
computer program product to control data access using Secu
rity label components.

BACKGROUND OF THE INVENTION

In general, access control mechanisms based on labels do
not address the requirements from application domains where
the label structure and the label access rules do not necessarily
match those specific to Multilevel Security (MLS).

Access control regulates the reading, changing, and delet
ing of objects stored on a computer system. Access control
further prevents the accidental or malicious disclosure, modi
fication, or destruction of Such objects. Fundamental types of
access control comprise discretionary access control (DAC),
role-based access control (RBAC), and mandatory access
control (MAC). DAC permits the granting and revoking of
access privileges to be left to the discretion of the individual
users. RBAC does not allow users to have discretionary
access to objects. Instead, access permissions are associated
with roles; users are made members of appropriate roles.
MAC, as defined in the Trusted Computer Security Evalua
tion Criteria (TCSEC) is “a means of restricting access to
objects based on the sensitivity (as represented by a label) of
the information contained in the objects and the formal autho
rization (i.e., clearance) of Subjects to access information of
such sensitivity”
One implementation of MAC is Multilevel Security (MLS)

that has typically been available primarily on computer and
Software systems deployed at sensitive government organiza
tions such as the intelligence services or the military.
An MLS model is stated in terms of objects and subjects.

An object is a passive entity Such as a data file, a record, or a
field within a record. A subject is an active process that can
request access to objects. The object is assigned a classifica
tion, and the Subject is assigned a clearance. Classifications
and clearances are collectively referred to as access classes or
labels. A label is a piece of information that comprises a
hierarchical component and a set of unordered compart
mentS.

The hierarchical component specifies the sensitivity of the
data. For example, a military organization might define levels
top secret, secret, confidential, and unclassified. The com
partments component is non-hierarchical and is used to iden
tify areas that describe the sensitivity or category of the
labeled data. For example, a military organization might
define compartments NATO, nuclear, and army. Labels are
partially ordered in a lattice as follows: given two labels L1
and L2, L12=L2 if and only if the hierarchical component of
L1 is greater than or equal to that of L2, and the compartment
component of L1 includes the compartment component of
L2. L1 is said to "dominate” L2.

10

15

25

30

35

40

45

50

55

60

65

2
MLS restricts data accesses through a simple security

property and a *-property (pronounce “the star property').
The simple security property allows a Subject read access to
an object if and only if the subject’s label dominates the
objects label. The *-property allows a subject write access to
an object if and only if the objects label dominates the sub
ject’s label. The *-property prevents subjects from declassi
fying information.

Even though MLS has traditionally been a requirement of
Some sensitive government organizations. Such as the intelli
gence services or the military, the ever-increasing customer
demand for higher security has made MLS attractive for
commercial software products. For example, in certain imple
mentations, the DBMS controls access to database table rows
based on a label contained in the row and the label associated
with the database user attempting the access. The drawbacks
of such implementations comprise a fixed label structure and
fixed access rules.
MLS fixes the label structure of a hierarchal component

and a set of unordered compartments. Thus, the labels cannot
be used for other types of applications to provide fine-grained
access control to database table rows. For example, in certain
banking applications, a label represents a geographical loca
tion, which is a single component and is not hierarchal. MLS
further fixes access rules. Access to database table rows is
governed by the simple security property and the *-property.
Thus, this form of access control based on labels cannot be
used for other purposes. For example, banking applications
have different requirements for the label structure and for the
label access rules.

Although this technology has proven to be useful, it would
be desirable to present additional improvements. Existing
access control systems based on labels strictly implement the
MLS semantics. These conventional access control systems
fail to address the label requirements from application
domains where the label structure and the label access rules
do not necessarily match those described in MLS. Moreover,
these existing solutions cannot be used to enforce privacy
policies. Generally, a privacy policy indicates for which pur
poses an information is collected, whether or not the collected
information will be communicated to others, and for how
long the collected information is retained before it is dis
carded.

For example, a user should not be able to access a customer
record for the purpose of sending that customer marketing
information if that customer did not agree to receipt of Such
information. Access to privacy-sensitive data can be regarded
as analogous to access to labeled data. In both cases, a tag is
associated with the object being accessed and the Subject
accessing that object. The tag is a "purpose' in the case of the
accessing privacy-sensitive data and a "label” in the case of
the accessing labeled data.

However, existing access control Solutions based on labels
strictly implement the MLS semantics, and thus cannot be
used to enforce privacy policies for the following reasons.
Labels include a hierarchal component that is not applicable
in the case of privacy. Furthermore, the MLS security prop
erties do not apply in the context of privacy.
What is therefore needed is a system, a computer program

product, and an associated method for a label-based access
control (LBAC) solution that is capable of implementing the
MLS semantics and of addressing the requirements from a

US 7,568,235 B2
3

variety of application domains, including MLS requirements.
The need for such a solution has heretofore remained unsat
isfied.

SUMMARY OF THE INVENTION

The present invention satisfies this need, and presents a
system, a service, a computer program product, and an asso
ciated method (collectively referred to herein as “the system”
or “the present system') for controlling data access using
security label components. The present system provides, for a
data processing system having memory for storing data ele
ments, a method for directing the data processing system to
control user access to the stored data elements.

Each stored data element is associated with a set of data
security label components. Each user is associated with a set
of user security label components. The present system com
prises receiving a user request to access the stored data ele
ments, comparing the set of user security label components
against the set of data security label components associated
with the users, and determining whether to permit access to
the stored data responsive to the received user request based
on results of the comparison.
The present system comprises a computer program product

for directing a data processing system to control user access to
data elements stored in memory of the data processing sys
tem. Each stored data element is associated with a set of data
security label components. Each user is associated with a set
of user security label components. The computer program
product comprises a computer readable transport medium for
transporting computer executable code to the data processing
system. The computer executable code comprises computer
executable code for receiving a user request to access the
stored data elements, computer executable code for compar
ing the set of user security label components against the set of
data security label components associated with the users, and
computer executable code for determining whether to permit
access to the stored data responsive to the received user
request based on results of the comparison.
The present system comprises an access control system to

be operatively coupled to a data processing system having
memory for storing data elements. The access control system
directs the data processing system to control user access to the
stored data elements. Each stored data element is associated
with a set of data security label components. Each user is
associated with a set of user security label components. The
access control system comprises means for receiving a user
request to access the stored data elements, means for com
paring the set of user security label components against the set
of data security label components associated with the users,
and means for determining whether to permit access to the
stored data responsive to the received user request based on
results of the comparison.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features of the present invention and the man
ner of attaining them will be described in greater detail with
reference to the following description, claims, and drawings,
wherein reference numerals are reused, where appropriate, to
indicate a correspondence between the referenced items, and
wherein:

FIG. 1 is a schematic illustration of an exemplary database
management system installed on a data processing system
having memory storing a database in which an access control
system (ACS) of the present invention can be used;

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 2 is a table illustrating types of access parameters

implemented by the access control system of FIG. 1;
FIG. 3 is a table illustrating data and table access param

eters of the access control system of FIG. 1 for the database of
FIG. 1:

FIG. 4 is a table illustrating a user access table in which
user access parameters are associated by the access control
system of FIG. 1 with users of the database of FIG. 1;

FIG. 5 is a table illustrating tests used by the access control
system of FIG. 1 in comparing table access parameters
against user access parameters for access to the database of
FIG. 1:

FIG. 6 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises determining user requirements;

FIG. 7 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises defining access parameter types and
associated tests;

FIG. 8 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises creating a table contained in the database
of FIG. 1;

FIG. 9 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises assigning user access parameters;

FIG. 10 is a process flow chart illustrating a method of
operation of the access control system of FIG. 1, in which the
operation comprises writing data to a table contained in the
database of FIG. 1; and

FIG. 11 is a process flow chart illustrating a method of
operation of the access control system of FIG.1, in which the
operation comprises reading data from a table contained in
the database of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following detailed description of the embodiments of
the present invention does not limit the implementation of the
embodiments to any particular computer programming lan
guage. The computer program product may be implemented
in any computer programming language provided that the OS
(Operating System) provides the facilities that may support
the requirements of the computer program product. A pre
ferred embodiment is implemented in the C or C++ computer
programming language (or may be implemented in other
computer programming languages in conjunction with
C/C++). Any limitations presented would be a result of a
particular type of operating system, computer programming
language, or data processing system and would not be a
limitation of the embodiments described herein.

FIG.1 portrays an exemplary overall environment in which
a system and associated method for controlling data access
using security label components (an access control system
115) according to the present invention may be used. The
access control system 115 comprises a software program
ming code or a computer program product that is typically
embedded within, or installed on a memory 112. Alterna
tively, system 10 can be saved on a suitable storage medium
such as a diskette, a CD, a hard drive, or like devices.
A data processing system (DPS) 100 comprises a Central

Processing Unit (CPU) 102 operatively coupled to a bus 104.
Bus 104 is operatively coupled to I/O (Input/Output Interface
Unit) 105 and coupled to memory 112. I/O 105 operatively
couples bus 104 to a display unit 108, a keyboard/mouse
(keyboard 110), a disc 111, and a network 109. Memory 112

US 7,568,235 B2
5

may comprises a combination of many types of memory, Such
as RAM (Random Access Memory), ROM (Read Only
Memory), and hard disk (not illustrated).
The memory 112 stores a database 116 and a database

management system (DBMS) 114. The DBMS 114 com
prises the access control system 115. However, the access
control system 115 may operate independently of the DBMS
114 and there may be system calls transferred between the
DBMS 114 and the access control system 115. The DBMS
114 and the access control system 115 comprise computer
executable code that is executed by the CPU 102. The com
puter executable code is compiled from computer pro
grammed instructions written in a high-level computer pro
gramming language (such as, for example, C++ or Java). The
computer executable code is loaded to memory 112 by trans
ferring the computer executable code from disc 111.

Disc 111 is a computer program product comprising a
computer readable medium that is used to transport the com
puter executable code to the DPS 100 via I/O 105. Alterna
tively, the computer readable medium comprises a computer
readable transport signal carried by network 109, the signal
being used to transport the computer executable code to the
DPS 100 via I/O 105. It will be appreciated that the computer
executable code configures the DPS 100 (which is a general
purpose machine) into a specifically configured machine that
may be treated as comprising modules or mechanisms that
achieve specific functions (these functions to be described
below in more detail).

Generally, the computer executable code included in the
access control system 115 directs CPU 102 to define security
labels for data and users. Data security label components are
found in types of access parameters 118. The data security
label components are associated with each data element
stored in a classified table 120. The access control system 115
also defines user security label components that are stored in
a user access table 122. Each user security label component is
associated with a user. The access control system 115 directs
CPU 102 to determine whether the user, who submitted a
request to access a data element, is granted access or is denied
access to the data element based upon a comparison made
between the user security label components and the data
security label components. Tests 124 comprise these tests or
rules for allowing user access to the data element.
The access control system 115 is used to control user

access to stored data shown in classified table 120. Associated
with the stored data are security label components. Associ
ated with the users are user security label components. The
access control system 115 configures a configurable security
label structure that describes the security label components
associated with the stored data and the users (the security
label structure is described below in greater detail). The
access control system 115 also defines label access rules to be
associated with the configurable security label structure. The
access control system 115 executes the defined label access
rules to compare the security label components associated
with the stored data against the security label components
associated with the users. The access control system 115
determines whether to permit and to not permit user access to
the stored databased on the outcome of the executed defined
label access rules.

FIG. 2 is a table illustrating the types of access parameters
used by the access control system 115 of FIG. 1, access
parameters 118. These types of access parameters are a col
lection of security access parameters further referenced
hereinas a security label set label set 118 or label set 118. The
label set 118 is a security label structure that comprises types

10

15

25

30

35

40

45

50

55

60

65

6
of security access components (label components) 202, each
associated with security access parameters such as labelcom
ponent names 204.
The label components label components 202 is a set of

security access label components that are organized as a
schema; the schema is the label set 118. As a table schema
defines the set of columns that make up a data row, so the label
set 118 represents a schema that defines a set of label com
ponents 202 that make up a security access label. The security
access label is either associated with a data element stored in
classified table 120 or associated with a user—as indicated in
user access table 122. The label set 118 comprises security
access rules that the access control system 115 uses to deter
mine whether a user who is associated with a label, L. 1, may
be granted or may be denied access to a data element associ
ated with a label, L 2. Further description for the access rules
or tests is provided below. The security access rules (or tests)
may be stored in a test table, tests 124 of FIG. 1.
A type of access parameter may be treated as one of the

label components 202, each of which is associated with one of
the label component names 204. The set of label components
202 is an entity that may be created, dropped, and altered by
the access control system 115. The security label set 118 (to
be associated with a data element or with a user) may include
one or more of the label components 202. There may be types
of the label components 202, such as for example a “set' type
of the label components 202 and a “tree' type of the label
components 202. There may be an ordered set type of the
label components 202 and there may be an unordered set type
of the label components 202.

In an ordered set type of the label components 202, the
order in which element in a component appears is important:
for example, the rank of a first element is higher than a rank of
a second element, a rank of a second element is higher than a
rank of a third element and so on (for one of the label com
ponents 202). An example of the types of components is
indicated in row 206 of the label set 118, examples of ele
ments of the label component 202.
A tree type of the label components 202 represents a hier

archy of an organization (Such as a company for example).
The tree type of the label components 202 may be used to
represent organizational charts and/or to identify departments
within an organization that owns the data stored in the clas
sified table 120. The label components 202 are stored in the
label set 118, for example, or stored in a database system
catalog if the access control system 115 is to be implemented
in DBMS 114.
FIG.3 shows the classified table 120 of FIG.1. A classified

table is a database table that comprises labeled data rows.
When a database administrator marks the classified table 120
as classified, the database administrator specifies the label set
118 to be used or associated with the classified table 120. The
label set 118 determines the structure of the label components
202 to be used to label the data rows of the classified table 120.
The label set 118 further determines the label access rules
(tests 124) to be used for enforcing access to the classified
table 120.
The classified table 120 comprises one or more classified

data elements 303. The classified table 120 further comprises
one or more row labels 306, one or more row labels 308, and
one or more row labels 310. Each of the row labels 306, row
labels 308, and row labels 310 are associated with a data
element PLAN A, PLAN B, PLAN C, and PLAN D,
respectively, and are indicated in respective table row 312,
table row 314, table row 316, and table row 318. The access
control system 115 generates and assigns security access
labels; i.e., access labels and row labels

US 7,568,235 B2
7

A row label is assigned to each data element stored in the
classified table 120. The data element may be a picture, a test
document, or combination thereof. It is understood that each
row has its own row label (there cannot be duplicate row
labels). It is possible that two rows in the classified table 120
may have two row labels that are identical.
The classified table 120 is a convenient organized storage

of a plurality of data elements used to illustrate one embodi
ment. The row label contains components that are used to
express or indicate the access requirements of a data element.
For example, row label of PLAN A (see table row 312)
comprises security label components LEVEL-TOP
SECRET, COMPARTMENT=ARMY.
OWNER=MARINES.

For example, for PLAN A of table row 312, if a user is a
member of MARINES division of ARMY and that user has a
classification clearance of at least TOP SECRET or better,
that user may have read and/or write access to PLAN A.
However, if that user is not a member of MARINES division
but is instead a member of any other division of ARMY and
that user also has a classification level of at least TOP
SECRET or better, then that user may have only read access
to PLAN A. For any other condition, that user may not have
read or write access to PLAN A.

For example, for PLAN B of table row 314, if a user is a
member of RESEARCH division of NASA and that user also
has a classification clearance of at least SECRET or better,
that user may have read and write access to PLAN. B. How
ever, if that user is not a member of RESEARCH division of
NASA but that user is a member of some other NASA divi
sion and that user has a classification level of at least SECRET
orbetter, that user may have only readaccess to PLAN B. For
any other condition, that user may not have read or write
access to PLAN B.
DBMS 114 may comprise a function that allows database

users to refer to the security label associated with a row in a
classified table in SQL statements. This function may, for
example, be called “ROWLABEL”. ROWLABEL can be
referenced in an SQL statement. ROWLABEL allows users
to reference a row label in SQL statements for manipulating
data contained in the rows of the classified table 120.

For SELECT statements and WHERE clauses (to be
included in an SQL statement), individual label components
are referenced by providing the component name as a param
eter to the ROWLABEL function. For example, a user who
wishes to select only the level component of a label can issue
the following SQL statement:
SELECT ROWLABEL(level), ..., FROM T1
If the user wishes to express a predicate, the following SQL

statement can be issued:
SELECT ROWLABEL(level), ..., FROM T1 WHERE

ROWLABEL(level)="Secret
For INSERT and UPDATESQL statements, ROWLABEL

is a means of providing the label value of a data row. For
example, a user who wishes to insert a row into a classified
table can issue the following SQL statement:
INSERT INTO T1 VALUES (ROWLABEL(SECRET',

NATO), ...)
A user who wishes to update the level component in the

label of some data row can issue the following SQL state
ment:
UPDATE T1 SET ROWLABEL(level)=ROWLABEL

(SECRET) WHERE C1=5
FIG. 4 shows the user access table 122 of FIG.1. The user

access table 122 comprises security access labels (having
component 406, component 408, and component 410) asso
ciated with user identifiers (column 402). An access label is

10

15

25

30

35

40

45

50

55

60

65

8
assigned to each user. It is possible that users may have
identical access labels. Access labels may be granted and
revoked by the database administrator (that is, an executive
level user of the access control system 115) or by another
database user who has sufficient authority to act as an admin
istrator. Access labels may be stored, for example, in a data
base catalog. The access label comprises components that
express or indicate user ability to access data elements stored
in the classified table 120 as predetermined by the adminis
trator.

For example, user WALID (row 412) has a LEVEL=TOP
SECRET (that is, Walid has top secret classification clear
ance). For WALID, COMPARTMENT=ARMY and NASA
(that is, user Walid is a member of the ARMY and a member
of NASA). Also, user Walid is indicated as an owner of
documents that belong to the MARINES (a division of
ARMY). These values indicate that user Walid may have only
read and/or write access to data elements associated with a
security label component MARINES provided that user
Walid has the proper security clearance level (in this case, the
security clearance of user Walid is TOP SECRET). Further
more, user Walid may have only read access to any data
element associated with a security label component ARMY
or NASA, provided that user Walid has the proper security
clearance level (in this case, the security clearance of user
Walid is TOP SECRET).

For example, if a data element is associated with a clear
ance LEVEL that is greater than TOP SECRET (and associ
ated with ARMY or NASA), user Walid may not have read
access to that data element because the classification LEVEL
of user Walid is not sufficient.
User BIRD (row 414) may have read and/or write access to

any data elements that are associated with RESEARCH divi
sion of NASA provided the LEVEL classification of user Bird
is sufficient to permit user BIRD access to those data element.

User BIRD may have only read access to data elements
associated with NASA that do not belong with the
RESEARCH division of NASA (provided that the LEVEL
classification of user Bird is sufficient to permit user BIRD
read access to those sorts of data elements).

FIG. 5 shows the tests 124 of FIG.1. The tests 124 are to be
selected and the label set 118 may also specify the access
rules or tests that the access control system 115 uses to deter
mine whether a user who is associated with an access label
(i.e., access label 1) may have access to a data element asso
ciated with a row label (i.e., row label 1).

Label access rules may be divided categories such as read
access rules and write access rules. The read access rules are
used by the access control system 115 when a user attempts to
read a data element from the classified table 120 (for example,
when the user Submits a SELECT Statement to the DBMS
114). The access control system 115 uses the write access
rules when a user attempts to write (such as, performing an
insert, an update or a delete command) a data element. A label
access rule may be a predicate that combines the same label
components contained in an access label and a row label by
using an operator as follows (for example):

Access Label Component A <operators Row Label Com
ponent A
The type of operator to be used in the label access rules may

depend on the type of label component. For ordered sets of
label components, the operator may be any of the following
relational operators {-, -, <, >, > , =}. For non-ordered sets
of label components, the operator may be, for example, any
one of the set operators {IN, INTERSECT. For trees of label
components, the operator may be, for example, the INTER
SECT set operator. The label set 118 and label access rules

US 7,568,235 B2

may be stored in a database system catalogs when the access
control system 115 is integrated with the DBMS 114.

Exceptions to the label access rules here provide a flexibil
ity to bypass one or more label access rules. For example, in
an MLS context, it is often the case that some special users are
allowed to write information to data elements associated with
lower security levels even though this is in contradiction with
the *-security property. Thus, exceptions are introduced to
allow the database administrator to grant a database user an
exception to bypass one or more rules associated with a
particular label set.

FIG. 6 illustrates a method 600 of operation of the access
control system 115 of FIG. 1, in which the method 600 com
prises determining user commands and requirements. The
access control system 115 of FIG. 1 begins operation at step
602.
The access control system 115 determines whether the user

desires to create the label set 118 of FIG. 2 or create the tests
124 of FIG. 5 (decision step 604). If the user desires to create
label set 118 or tests 124, the access control system 115
creates access parameter types and tests (step 606). If the user
does not desire to create label set 118 or tests 124, operation
continues to decision step 608.
The access control system 115 determines whether the user

desires to create the classified table 120 of FIG. 3 (decision
step 608). If the user desires to create the classified table 120,
the access control system 115 creates the classified table 120
(step 610). If the user does not desire to create the classified
table 120, operation continues to decision step 612.

The access control system 115 determines whether the user
desires to assign security access labels to users as shown in
user access table 122 of FIG. 4 (decision step 612). If the user
desires to assign security access labels, the access control
system 115 assigns user access parameters (step 614). If the
user does not desire to assign security access labels, operation
continues to decision step 616.
The access control system 115 determines whether the user

desires to write data to classified table 120 of FIG.3 (decision
step 616). If the user desires to write data to classified table
120, the access control system 115 writes data to the classified
table 120 (step 618). If the user does not desire to write data
to classified table 120, operation continues to decision step
620.
The access control system 115 determines whether the user

desires read data (that is, data elements 303) from the classi
fied table 120 of FIG.3 (decision step 620). If the user desires
to read data from the classified table 120, the access control
system reads data from the classified table (step 622). If the
user does not desire to read data from the classified table 120,
operation continues to decision step 624.
The access control system 115 determines whether the user

desires to re-perform any of operations of decision step 604,
decision step 608, decision step 612, decision step 616, or
decision step 620 (decision step 624). If the user desires to
re-performany of these operations, the access control system
115 returns to decision step 604 and repeats steps 604 through
622 as required. If the user does not desire to perform these
operations, access control system 115 halts any further opera
tions (step 626).

FIG. 7 illustrates a method of operation of step 606 of the
method 600 of the access control system 115 of FIG.1. Step
606 comprises defining the label set 118 of FIG. 2. The label
set 118 is a set of types of access components. Step 606
further comprises defining the label access rules (tests 124 of
FIG. 5) to be associated with the label set 118.
The access control system 115 helps the database admin

istrator (an executive user of the access control system 115) to

5

10

15

25

30

35

40

45

50

55

60

65

10
define the security label components (indicated in row 202 of
label set 118) and their types. For example, the access control
system 115 permits the database administrator to define secu
rity a label component referenced as LEVEL (oftype integer)
and a label component referenced as COMPARTMENT (of
type string).
The access control system 115 permits the database admin

istrator to define the label set that comprises the security label
component 202. The relationship between the security label
component 202 and the label set 118 is analogous to the
relationship between a data row of a table and a table schema.
As the table schema defines the set of columns that make up
a data row, so the label set 118 set defines the set of security
label components that make up the label set 118. The label set
118 may also be associated with a test table, tests 124 of FIG.
5. The test table, tests 124, comprises a set of access rules that
the access control system 115 uses to determine whether a
user who is associated with a security access label, L. 1, may
or may not access a data row associated with a security label,
L 2. The label access rules may be divided into categories
Such as read access rules and write access rules.
The access control system 115 transfers control from deci

sion step 606 of FIG. 6 because a user has indicated a desire
to define the components to be included in the label set 118 of
FIG. 2 and the tests 124 of FIG. 5 (step 702).
The access control system 115 defines the components of

label set 118 of FIG. 2 (step 704). The components 202 of
label set 118 indicate the types of access parameters 306, 208,
310 to be associated with data elements 303 of FIG. 3.
The access control system 115 defines the tests 124 of FIG.

5 to be associated with the components 202 of label set 118
(step 706). The access control system transfers control back
to decision step 608 of FIG. 6.

FIG. 8 illustrates a method of operation of step 610 of the
method 600 of the access control system 115 of FIG.1. Step
610 comprises creating the classified table 120 of FIG. 1.
A database administrator (an executive user of the access

control system 115) attaches the label set 118 to the classified
table 120. When the label Set 118 is attached to the classified
table 120, the table 120 is considered classified; i.e., the data
elements may only be accessed depending on the execution
outcome of the tests 124 of FIG. 5.
When the user desires to access data elements contained in

the classified table 120, the access control system 115 applies
the access rules defined and associated with the label set 118
of FIG. 2. The label set 118 is attached to the classified table
120 to determine whether or not a user may have or may not
have access to a row containing a data element within the
classified table 120.
The access control system 115 transfers control from deci

sion step 610 of FIG. 6 because a user has indicated a desire
to create the classified table 120 of FIG. 3 (step 802). The
access control system 115 sets up the classified table 120 (step
804).
The access control system 115 generates a column 302 to

contain the data element identifiers (step 806). Each of these
identifiers identifies a specific data element contained in table
120. The access control system 115 generates a column 303 to
contain the data elements (step 808).
The access control system 115 generates a column for each

row label component 306, 308 and 310 (that is, each user
Access Label component 306.108, 310) (step 810). Each
component 306, 308, 310 indicates the data element access
requirements to be compared against user access label com
ponents at a later time (the comparison is further described
below). The access control system transfers control back to
decision step 612 of FIG. 6 (step 812).

US 7,568,235 B2
11

FIG. 9 illustrates a method of operation of step 614 of the
method 600 of the access control system 115 of FIG.1. Step
614 comprises assigning user access labels to users. Each
access label (security Access Label) comprises user access
components, each component indicating an ability of a user to
access data elements stored in the classified table 120 of FIG.
3.
The access control system 115 permits a database admin

istrator (who is an executive level user of the access control
system 115) to grant access labels (security Access Labels) to
specific database users. The access control system 115 uses
the access labels in conjunction with the label set access rules
to determine user access rights with respect to rows (that is,
data elements associated with a row) contained in the classi
fied table 120. The access control system 115 may permit the
database administrator to choose to grant one or more excep
tions to a database user to allow them to bypass one or more
access rules associated with the label set 118.
The access control system 115 may be integrated into an

SQL (Structured Query Language) compiler component (not
illustrated) of the DBMS 114 such that when an SQL query
references the classified table 120, the SQL compiler incor
porates the access rules of the label set associated with the
classified table 120 in an access plan. The SQL compiler
generates the access plan). The access plan is used to execute
the compiled user SQL query. When the access plan is
executed, the access rules may be evaluated for each row (that
contains the data element) in the classified table 120 to deter
mine whether access to a specific row should be allowed or
disallowed.
The access control system 115 transfers control from deci

sion step 614 of FIG. 6 because a database administrator
indicated a desire to assign user access parameters to a user
(step 902).
The access control system 115 determines whether the user

request is a request to generate the user access table 122
(decision step 904). If the user request indicates a desire to
generate the user access table 122, the user access table 122 is
generated (step 906) and processing continues to decision
step 908. If the user request indicates no desire to generate the
user access table 122, processing continues to operation deci
sion step 908.
The access control system 115 determines whether the

received user request indicates a desire to assignaccess labels
(security Access Labels) to a specific user (decision step 908).
If it is determined that the user wishes to assign an access
label to the specific user, the access control system assigns an
access label to a user (step 910) and components of the access
label are selected or filled in for the access label assigned to
the specific user (step 912). If it is determined that the user
does not wish to assign an access label to the specific user, the
access control system 115 transfers control to decision step
616 of FIG. 6.

FIG. 10 illustrates a method of operation of step 618 of the
method 600 of the access control system 115 of FIG.1. Step
618 comprises writing data elements to the classified table
120 of FIG. 1. The access control system transfers control
from decision step 618 of FIG. 6 step 1001).
The access control system 115 determines whether the

access control system 115 received a user request for writing
(that is, a write access command) data to a data element stored
in the classified table 120 (decision step 1002). If the user
request is not a write request, the access control system
returns to step 616 of FIG. 6. If the user request indicates a
write access request, the access control system 115 proceeds
to step 1004. The access control system 115 receives a row to
be written (step 1004).

10

15

25

30

35

40

45

50

55

60

65

12
The access control system 115 validates row security label

components associated with the row (that is, the data element)
to be written to the classified table 120 (decision step 1006).
If the row security label components are not valid the access
control system returns an error to the user (step 1012) and
then transfers control to decision step 620 of FIG. 6 (step
1018). The row security label components are not valid if the
row security label components are not composed of the exact
same components defined in the label set associated with the
classified table 120 or if the values of each row security label
component are not valid with respect to their type.

If the row security label components are valid (decision
step 1006), the access control system evaluates write access
rules associated with the label set of the classified table 120
(step 1008).
The access control system 115 determines whether the

access may be allowed (decision step 1010). If it is deter
mined that access may be allowed, the access control system
115 writes the row into the classified table 120 (step 1014). If
it is determined that access may not be granted or not be
allowed, the access control system 115 returns an error indi
cation to the user (step 1012) and returns to decision step 620
of FIG. 6 (step 1018).
The access control system 115 determines whether there

are more rows to process (decision step 1016). If it is deter
mined that more rows are to be processed, the access control
system returns to step 1004 and repeats step 1004 through
step 1010 for the next row received. If it is determined that
there are no more rows to be written to the classified table 120,
the access control system returns to decision step 620 of FIG.
6 (step 1018).

FIG. 11 illustrates a method of operation of step 622 of
method 600 of the access control system 115 of FIG.1. Step
622 comprises reading one or more rows that were written
into the classified table 120 of FIG. 1. The access control
system 115 transfers control from decision step 622 of FIG. 6
(step 1101)
The access control system 115 determines the type of

access request requested by a user (decision step 1102). If the
type of user access being requested is a read access, the access
control system 115 proceeds to step 1104. If the type of user
access being requested is not a read access, operation is
transferred to decision step 624 of FIG. 6.
The access control system 115 fetches the next row in the

classified table 120 (step 1104). The access control system
115 evaluates the read access rules associated with the label
set 118 (step 1106).
The access control system 115 determines whether user

access may be granted or allowed (decision step 1108). If the
determination is made that user access may be allowed, the
access control system 115 returns the fetched row to the user
(step 110). If the determination is made that the user may not
be allowed or may not be granted access, the access control
system 115 skips the fetched row (i.e., the fetched row is not
returned to the user) (step 1112).
The access control system 115 determines whether there

are any more rows in the classified table 120 to be fetched. If
there are no more rows to be fetched, the access control
system 115 returns to decision step 624 of FIG. 6. If there are
more rows to be fetched, the access control system 115
returns to step 1104 in which case the next row in the classi
fied table 120 is fetched and step 1104 to step 1114 may be
repeated as needed.

In one embodiment, the access control system 115 uses
security access labels to provide fine-grained access control
in the DBMS of FIG.1. Generally, fine-grained access control
refers to a method of providing row-level security for a table

US 7,568,235 B2
13

as known to those skilled in the art. In private banking, coun
try laws and regulations often require limitation of the amount
of data that can be viewed by a bank employee. For example,
Swiss banking laws do not allow a Swiss bank employee
located in Toronto to access account information for custom
ers based in Switzerland. A bank employee can only access
account information for customers who are based in the same
location as the bank employee.

Typically, the bank addresses this access control problem
as follows. When a bank employee is authenticated, a security
context is assigned to him/her based on the authentication
type, location, geography, etc. When that bank employee
issues a request, the request goes through a number of sys
tems up to a mainframe system where an application picks it
up and adds an appropriate predicate based on the employee
location (e.g., WHERE location="Toronto') before it is sub
mitted to the DBMS. This solution is error prone and exposes
security policies directly to the application programmers. It
also requires many code reviews to ensure correctness.
The problem stated above can be easily solved using the

control access system 115 by associating a label with each
customer account that specifies its location and by associating
a label with each bank employee that specifies where that
employee is located. The DBMS can then ensure that bank
employees can only access account information for the cus
tomers located in their geographical location.

Referring to FIG. 7, the following SQL statement creates a
label component called location:
CREATE LABEL COMPONENT location OF TYPE Var

char(15)
USING SET (“Zurich”, “Toronto”, “London”, “Paris')
The following SQL statement creates a label set based on

the component defined above:
CREATE LABEL SET Set1 COMPONENTS location
READ ACCESS RULE rule1 ACCESS LABEL location

IN ROW LABEL location
WRITEACCESS RULE rule2 ROW LABEL location IN
ACCESS LABEL location

Referring to FIG. 8, the following SQL statement creates a
classified table T1 to store customer account information and
associates this table with label set set1:
CREATE Table T1 (CustomerID int, CustomerName char

(30), CustomerBalance)
LABEL SET Set 1
Referring to FIG. 9, the following SQL statements create

two access labels and grant them to bank employee emp A and
empl3:
CREATE ACCESS LABEL label1 IN LABEL SET Set 1

Location “Toronto'
CREATE ACCESS LABEL label2 IN LABEL SET Set 1

Location “Zurich'
GRANT LABEL label1 FOR USER empA FOR ALL
GRANT LABEL label2 FOR USER empB FOR ALL
Referring to FIG. 10, when a user issues an SQL statement

against the classified table T1 that reads or modifies a data
row, the label access rules defined above are evaluated to
determine whether or not the user can read/modify the data
row. Below are exemplary INSERT SQL statement examples
for user emp A.

SQL Command Status

INSERT INTO T1 VALUES (1,
Hans, 100, ROWLABEL
(Zurich))

This command is rejected because
user empA is not allowed to write
account information for customers
located in Zurich (rule2).

10

15

25

30

35

40

45

50

55

60

65

14

-continued

SQL Command Status

INSERT INTO T1 VALUES (2,
“PBIRD,100,ROWLABEL
(Toronto))

This command is accepted because
rule2 is satisfied.

INSERT INTO T1 VALUES This command is accepted because
(3, WRJAIBI, 10, ROWLABEL rule2 is satisfied.
(Toronto)

Below are exemplary INSERT SQL statement examples
for user empl3:

SQL Command Status

INSERT INTO T1 VALUES This command is accepted because
(1, Hans,100, ROWLABEL rule2 is satisfied.
(Zurich))
INSERT INTO T1 VALUES This command is accepted because
(4, Urs,100, ROWLABEL rule2 is satisfied.
(Zurich))

Referring to FIG. 11, the following are exemplary
SELECT SQL statement examples for user emp.A.

SQL Command Status

SELECT * FROM T1 This command returns only rows
PBIRD and WRAIBI. The other 2 roWs
are not returned because rule 1 is not
satisfied.

The following are exemplary SELECT SQL statement
examples for user empFB.

SQL Command Status

SELECT * FROM T1 This command returns only rows Hans
and Urs. The other 2 rows are not
returned because rule 1 is not satisfied.

In the example described above, Urs is a first name com
monly used in the German part of Switzerland. In this case,
the access control system 115 is inserting a record for the
customer called Urs.

In a further example, a bank executive (exec1) located in
Zurich holds access label label1 and is permitted read access
to account information for customers located in Toronto. The
administrator can grant a label exception to this executive to
bypass rule 1 as follows:
GRANT LABEL, EXCEPTION ON RULE rule1 IN Set 1
TOUSER exec1

If the executive issues the SELECT * FROM T1 query,
he/she will be able to see all the rows above.

In a further embodiment, the access control system 115
uses security access labels for providing MLS capability in
the DBMS 114 of FIG. 1. An application wishes the DBMS
114 to provide MLS semantics. In MLS, a label comprises
two components: a hierarchical component a set of unordered
compartments. The hierarchical component is referenced as a
level. In an example, the valid values a level comprises are

US 7,568,235 B2
15

Top Secret, Secret, Classified, and Unclassified. Similarly, a
compartment can take any of the following values: NATO,
Nuclear and Army.

Referring to FIG. 7, the following two SQL statements can
be used to create the two components.
CREATE LABEL COMPONENT level OF TYPE Varchar

(15)
USING ORDERED SET (TOP SECRET, “SECRET',
“CLASSIFIED", “UNCLASSIFIED")

CREATE LABEL COMPONENT compartments OF
TYPE varchar(15)

USING SET (“NATO”, “Nuclear”, “Army”)
The keyword ORDERED in the definition of the first com

ponent indicates that the order in which the elements appear
in the set is significant.

Referring to FIG. 7, the access control system 115 uses the
following SQL statement to create a label set 118 where each
label is composed of the two components defined above. The
statement also permits the access control system 115 to
specify the label access rules. These label access rules imple
ment the simple security property and the *-property previ
ously described.
CREATE LABEL SET set1 COMPONENTS level, com

partments
READ ACCESS RULE rule1 ACCESS LABEL
levels=ROW LABEL level

READ ACCESS RULE rule2 ROW LABEL compart
ments IN ACCESS LABEL compartments

WRITE ACCESS RULE rule3 ROW LABEL
levels=ACCESS LABEL level

WRITEACCESS RULE rule4 ACCESS LABEL compart
ments INROW LABEL compartments

Referring to FIG. 8, the application wishes to create a table
where each data row is to be labeled using a label from set1
above. The access control system can use the following SQL
statement can be used to generate such a table.
CREATE Table T1 (C1 char(3), C2 int)
LABEL SET Set 1
Referring to FIG. 9, the access control system 115 gener

ates the access labels and assigns the access labels to database
users using the following SQL statements:
CREATEACCESS LABEL label1 IN LABEL SET Set1
Level “TOP SECRET', compartments “Nuclear”
CREATEACCESS LABEL label2 IN LABEL SET Set1
Level “CLASSIFIED", compartments “Army”
GRANT LABEL label1 FOR USER Walid FOR ALL
GRANT LABEL label2 FOR USER paul FOR ALL
Referring to FIG. 10, when a user issues an SQL statement

against the classified table T1 that reads or modifies a data
row, the label access rules defined above are evaluated to
determine whether or not the user can read/modify the data
row. Below are exemplary INSERT SQL statements for user
walid.

SQL Command Status
INSERT INTO T1 VALUES
(abc,1,ROWLABEL(TOP
SECRET, NATO))

This command is rejected because the
compartment of user walid (Nuclear) is
not included in the compartments of the
row being inserted (rule4).
This command is accepted because
both rule3 and rule4 are satisfied.

INSERT INTO T1 VALUES
("def 2,ROWLABEL(TOP
SECRET, Nuclear))
INSERT INTO T1 VALUES
('ghi,3,ROWLABEL
(UNCLASSIFIED, Nuclear))

This command is rejected because
user walid is attempting to write a row
at a lower security level (level 3).

10

15

25

30

35

40

45

50

55

60

65

16
Below are exemplary INSERT SQL statements for user

paul.

SQL Command Status
INSERT INTO T1 VALUES
(k1.4.ROWLABEL
(“CLASSIFIED, Army))
INSERT INTO T1 VALUES
(mino,5,ROWLABEL
(SECRET, Army))

This command is accepted because
both rule3 and rule4 are satisfied.

This command is accepted because
both rule3 and rule4 are satisfied

Referring to FIG. 11, the following are exemplary
SELECT SQL statements for user walid.

SQL Command Status

SELECT * FROM T1 This command returns only row:
(def.2, TOP SECRET, Nuclear}).
The other 2 rows are not returned
because rule 2 is not satisfied.

The following are exemplary SELECTSQL statements for
user paul.

SQL Command Status

SELECT * FROM T1 This command returns only row:
(k1.4. CLASSIFIED, Army}).
The other 2 rows are not returned
because rule 1 is not satisfied.

The access control system 115 may be included in a data
base management system (DBMS) 114 or information
retrieval system (IRS). Further, the access control system may
be included in many types of Software applications, such as,
for example (the following represents a non-exhaustive list of
Such applications):
a DBMS adapted to provide fine-grained access control to

database table rows;
a DBMS adapted to provide MLS:
a DBMS adapted to enforce privacy policies:
an operating system (OS) stored in the memory of a DPS, the
OS being adapted to implement a policy where access to
systems files is based on security labels and label access
rules;

a Publish/Subscribe system adapted to implement a policy
where the matching process also take into account the
security labels associated with a subscription and an event
as well as the label access rules; and

an XML system adapted to control access to the nodes in an
XML document based on the security labels and label
access rules.
The access control system 115 is an improvement over

known LBAC solutions in the sense that the access control
system 115 is not restricted to MLS semantics. The access
control system 115 may be used in various application
domains and for various purposes. The access control system
115 may also be used to provide.

It is to be understood that while specific embodiments have
been described to illustrate certain applications of the prin
ciple of the present invention. Other modifications are pos
sible without departing from the spirit and scope of the
present invention.

US 7,568,235 B2
17

What is claimed is:
1. A computer-implemented method of controlling user

access to stored data elements, comprising configuring one or
more computer processors to perform an operation compris
ing:

defining, based on user input, an ordered plurality of secu
rity levels that describe sensitivity of the stored data
elements;

defining, based on user input, a plurality of categories that
categorize the stored data elements;

associating each user with a security level from the ordered
plurality of security levels and a category from the plu
rality of categories, thereby defining a security clearance
for each respective user; and

defining, based on user input and for each of the stored data
elements, a read access rule for the respective stored data
element, wherein the read access rule comprises a con
dition for granting read access to the respective stored
data element, the condition specifying a security level of
the plurality of security levels and a category from the
plurality of categories.

2. The computer-implemented method of claim 1, wherein
the operation further comprises:

receiving a user request to access a stored data element;
evaluating, by operation of the one or more computer pro

cessors, the read access rule for the stored data element
to which access is requested; and

Selectively permitting read access to the stored data ele
ment in response to the access request, based on the
evaluation result for the read access rule.

3. The computer-implemented method of claim 2, wherein
the operation further comprises:

defining, based on user input and for each of the stored data
elements, a write access rule for the respective stored
data element, wherein the write access rule comprises a
condition for granting write access to the respective
stored data element, the condition specifying a security
level of the plurality of security levels and a category
from the plurality of categories; wherein the condition
for granting write access to one of the stored data ele
ments differs from the condition for granting read access
to the one of the stored data elements;

evaluating, by operation of the one or more computer pro
cessors, the write access rule for the stored data element
to which access is requested; and

Selectively permitting write access to the stored data ele
ment in response to the access request, based on the
evaluation result for the write access rule.

4. The computer-implemented method of claim3, wherein
the condition for granting write access further specifies an
exception for a user, whereby the exception allows write
access to be granted to the user even if the condition is not
satisfied.

5. The computer-implemented method of claim3, wherein
the condition of the write access rule is satisfied only if (i) the
security level of the user meets the security level specified by
the write access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
write access rule for the stored data element.

6. The computer-implemented method of claim 1, wherein
the condition for granting read access further specifies an
exception for a user, whereby the exception allows read
access to be granted to the user even if the condition is not
satisfied.

7. The computer-implemented method of claim 1, wherein
the condition of the read access rule is satisfied only if (i) the
security level of the user meets the security level specified by

10

15

25

30

35

40

45

50

55

60

65

18
the read access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
read access rule for the stored data element.

8. A computer program product for controlling user access
to stored data elements, the computer program product com
prising a computer usable medium having computer usable
program code configured to:

define, based on user input, an ordered plurality of security
levels that describe sensitivity of the stored data ele
ments;

define, based on user input, a plurality of categories that
categorize the stored data elements;

associate each user with a security level from the ordered
plurality of security levels and a category from the plu
rality of categories, thereby defining a security clearance
for each respective user;

define, based on user input and for each of the stored data
elements, a read access rule for the respective stored data
element, wherein the read access rule comprises a con
dition for granting read access to the respective stored
data element, the condition specifying a security level of
the plurality of security levels and a category from the
plurality of categories;

receive a user request to access a stored data element;
evaluate the read access rule for the stored data element to

which access is requested; and
selectively permit read access to the stored data element in

response to the access request, based on the evaluation
result for the read access rule.

9. The computer program product of claim 8, wherein the
computer usable program code is further configured to:

define, based on user input and for each of the stored data
elements, a write access rule for the respective stored
data element, wherein the write access rule comprises a
condition for granting write access to the respective
stored data element, the condition specifying a security
level of the plurality of security levels and a category
from the plurality of categories; wherein the condition
for granting write access to one of the stored data ele
ments differs from the condition for granting read access
to the one of the stored data elements;

evaluate the write access rule for the stored data element to
which access is requested; and

selectively permit write access to the stored data element in
response to the access request, based on the evaluation
result for the write access rule.

10. The computer program product of claim 9, wherein the
condition for granting write access further specifies an excep
tion for a user, whereby the exception allows write access to
be granted to the user even if the condition is not satisfied.

11. The computer program product of claim 9, wherein the
condition of the write access rule is satisfied only if (i) the
security level of the user meets the security level specified by
the write access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
write access rule for the stored data element.

12. The computer program product of claim 8, wherein the
condition for granting read access further specifies an excep
tion for a user, whereby the exception allows read access to be
granted to the user even if the condition is not satisfied.

13. The computer program product of claim 8, wherein the
condition of the read access rule is satisfied only if (i) the
security level of the user meets the security level specified by
the read access rule for the stored data element, and (ii) the
category of the user matches the category specified by the
read access rule for the stored data element.

US 7,568,235 B2
19

14. A system, comprising:
a processor; and
a memory containing an access control program, which
when executed by the processor is configured to perform
an operation for controlling user access to stored data 5
elements, comprising:
defining, based on user input, an ordered plurality of

security levels that describe sensitivity of the stored
data elements;

defining, based on user input, a plurality of categories
that categorize the stored data elements;

associating each user with a security level from the
ordered plurality of security levels and a category
from the plurality of categories, thereby defining a
security clearance for each respective user;

defining, based on user input and for each of the stored
data elements, a read access rule for the respective
stored data element, wherein the read access rule
comprises a condition for granting read access to the
respective stored data element, the condition specify
ing a security level of the plurality of security levels
and a category from the plurality of categories;

receiving a user request to access a stored data element;
evaluating the read access rule for the stored data ele
ment to which access is requested; and

Selectively permitting read access to the stored data ele
ment in response to the access request, based on the
evaluation result for the read access rule.

15. The system of claim 14, wherein the operation further

10

15

25

30 comprises:
defining, based on user input and for each of the stored data

elements, a write access rule for the respective stored
data element, wherein the write access rule comprises a

20
condition for granting write access to the respective
stored data element, the condition specifying a security
level of the plurality of security levels and a category
from the plurality of categories; wherein the condition
for granting write access to one of the stored data ele
ments differs from the condition for granting read access
to the one of the stored data elements;

evaluating the write access rule for the stored data element
to which access is requested; and

selectively permitting write access to the stored data ele
ment in response to the access request, based on the
evaluation result for the write access rule.

16. The system of claim 15, wherein the condition for
granting write access further specifies an exception for a user,
whereby the exception allows write access to be granted to the
user even if the condition is not satisfied.

17. The system of claim 15, wherein the condition of the
write access rule is satisfied only if (i) the security level of the
user meets the security level specified by the write access rule
for the stored data element, and (ii) the category of the user
matches the category specified by the write access rule for the
stored data element.

18. The system of claim 14, wherein the condition for
granting read access further specifies an exception for a user,
whereby the exception allows read access to be granted to the
user even if the condition is not satisfied.

19. The system of claim 14, wherein the condition of the
read access rule is satisfied only if (i) the security level of the
user meets the security level specified by the read access rule
for the stored data element, and (ii) the category of the user
matches the category specified by the read access rule for the
stored data element.

(12) United States Patent

US007860875B2

(10) Patent No.: US 7,860,875 B2
Bird et al. (45) Date of Patent: Dec. 28, 2010

(54) METHOD FORMODIFYING A QUERY BY OTHER PUBLICATIONS
USE OF AN EXTERNAL SYSTEM FOR
MANAGING ASSIGNMENT OF USER AND Karjoth, G., Access Control with IBM Tivoli Access Manager, ACM
DATA CLASSIFICATIONS Entry alomation and System Security, vol. 6, No. 2, May

, pp. a
DeFazio, S., et al., Integrating IR and RDBMS Using Cooperative eg g g p

(75) Inventors: Elles, May,(A). Indexing, SIGIR 95 Seattle WA, 1995 ACM 0-89791-714-6/95, pp.
ald Ral D1, Markham 84-92.

Winslett, et al., Formal Query Languages for Secure Relational
(73) Assignee: International Business Machines Databases, ACM Transactions on Database Systems, vol. 19, No. 4.

Corporation, Armonk, NY (US) Dec. 1994, pp. 626-662.
Sandhu, R. Access Control. Principles and Practice, IEEE Commu

(*) Notice: Subject to any disclaimer, the term of this nications Magazine, Sep.1994, pp. 40-48.
patent is extended or adjusted under 35 * cited b
U.S.C. 154(b) by 971 days. c1ted by examiner

Primary Examiner Tim T. Vo
(21) Appl. No.: 10/855,106 Assistant Examiner—Sangwoo Ahn

(74) Attorney, Agent, or Firm Sughrue Mion, PLLC
(22) Filed: May 26, 2004

(57) ABSTRACT
(65) Prior Publication Data

US 2005/0267865A1 Dec. 1, 2005 Disclosed is a data processing-implemented method, a data
processing system, and an article of manufacture for modify

(51) Int. Cl. ing a query during compilation of the query. The query
G06F 7/30 (2006.01) includes a request for an element of data from a table in a
GO6F 2 1/24 (2006.01) database and parameters identifying the requested element.

The data processing-implemented method includes deter
(52) U.S. Cl. 707/759, 707/769; 707/783 EE ters for locati
(58) Field of Classification Search 707/1-10, E. a set Fair SAR.n

See application file for complete 'E', 104. associated with the query, the requested data classification
pp p ry. controlling access to the requested element according to the

(56) References Cited query associated classification, requesting a suggested action
U.S. PATENT DOCUMENTS

5,787,428 A

6,578,037 B1 *
6,581,060 B1

2003. O154401 A1
2003/0236782 A1*
2004/O139043 A1*

7, 1998 Hart 707/9
6,487,552 B1 * 1 1/2002 Lei et al. 707/4

6/2003 Wong et al. 707/10
6/2003 Choy 707/9
8/2003 Hartman et al. 713,201
12/2003 Wong et al. 707/5
7/2004 Lei et al. 707/1
7/2005 Wong 7O7/1OO 2005/O165799 A1*

from an external system for obtaining a comparison of the
requested data classification and the query associated classi
fication based on the available information, receiving the
Suggested action from the external system responsive to the
sent request, and incorporating the Suggested action into the
query, the Suggested action effecting comparison of the
requested data classification with the query associated clas
sification.

14 Claims, 3 Drawing Sheets

202 ITREADERYQUERY
ANALYZEEACE REQUESTIN THE QUERy to Extract

PARAMETERS ANATARGET

DETERMINEAEFEACOTEPARAMETERS

DETERMNEAPE of INFORMATION REQUESTED FROM
TEARGET

ETERMINENNOWN CLASSIFICATIONNORMATION
FORTEREQUESTERANTE TARGEr

GENERAE AREQUESTFoRASTRATECy To obANTHE
UNKNOWN CASSICANNFORMATION BASE ON
EHEDETERMINED ARAMETERIES ANTE
DETERMINEDREQUESTENFORMATION TYPEs

2.

O

21:

RECEIVESUGGESTE COURSES OF ACTIONFOR
OBTANENGTHE UNKNOWN CLASSIFICATION

NFORMATION

24

STHERE
MOREEANONEcoRSE RACTION

SUGESED

216

TERMNEAN RERFORMPLEMENTATION OF 2S
CURSES OF ACTION

22) IMPLEMENTTE succESTED coursecs) of ACTION

2 /

U.S. Patent Dec. 28, 2010 Sheet 1 of 3 US 7,860,875 B2

112

14
INPUTOUTPUT

102 104

MEMORY

NPUTHOUTPUT
CPU INTERFACE

106

EXTERNAL
SYSTEM SYSTEM

NTERACE

100 /
FIG. 1

U.S. Patent Dec. 28, 2010 Sheet 2 of 3 US 7,860,875 B2

READ QUERY 202

ANALYZE EACH REQUEST IN THE QUERY TO EXTRACT 204
PARAMETERS AND A TARGET

DETERMINE ATYPE FOREACH OF THE PARAMETERS 206

DETERMINE ATYPE OF INFORMATION REQUESTED FROM 208
THE TARGET

DETERMINE UNKNOWN CLASSIFICATION INFORMATION 210
FOR THE REQUESTER AND THE TARGET

GENERATE AREQUEST FOR ASTRATEGY TO OBTAIN THE
UNKNOWN CLASSIFICATION INFORMATION BASED ON

THE DETERMINED PARAMETERTYPES AND THE
DETERMINED REQUESTED INFORMATION TYPES

212

RECEIVESUGGESTED COURSE(S) OF ACTION FOR 24
OBTANING THE UNKNOWN CLASSIFICATION

NFORMATION

S THERE
MORE THAN ONE COURSE OF ACTION

SUGGESTED

216

DETERMINE AN ORDER FOR IMPLEMENTATION OF THE 28
COURSES OF ACTION

220) IMPLEMENT THE SUGGESTED COURSE(S) OF ACTION

200 -
FG 2

U.S. Patent Dec. 28, 2010 Sheet 3 of 3 US 7,860,875 B2

120

302 Y EXTERNAL SYSTEM
REQUEST

PROCESSING
MECHANISM

REQUEST
NTERFACE

COMPLER
308

EXTERNAL
QUERY SYSTEM

ANALYSIS INTERFACE QUERY
MECHANISM CLASSIFICATION

s 34 MECHANISM
TARGET TYPE
MECHANISM CONTROLLER

36 38 REQUEST
PARAMETER FORMATION

TYPE INFORMATION MECHANISM

MECHANISM

FG. 3

US 7,860,875 B2
1.

METHOD FOR MODIFYING A QUERY BY
USE OF AN EXTERNAL SYSTEM FOR

MANAGING ASSIGNMENT OF USER AND
DATA CLASSIFICATIONS

FIELD OF THE INVENTION

The present invention relates to the field of database man
agement systems, and more specifically, to a system, method
and a computer program product for modifying a query by use
of an external system for managing assignment of user and
data classifications.

BACKGROUND

Information can be obtained from tables in a database
using queries expressed in a database query language, such as
Structured Query Language (SQL). The query is translated
into an internal representation by a compiler of a database
management system. This internal representation is inter
preted by a runtime processor of the database management
system to execute the query. Access to information in the
database may be controlled according to a classification of
both the tables and the user attempting to access the tables.
For example, a user can only gain access to a specific table if
the user's classification is such that access to the specific table
is permitted based on the table's classification. The table's
classification may be based on the entire table or on individual
elements in each table (e.g. rows) with elements being clas
sified to provide access to elements and not the entire table.
The additional classifications produce complexities in classi
fication management and tracking which may be governed by
a system external to the database management system.

Compilers use various optimization techniques to mini
mize the time and computer resources used for execution of
the internal representation of the query. The compiler deter
mines an efficient access plan to satisfy the query by exam
ining table information and related Statistics. Controlling
access to elements based on user and table classifications may
involve integrating with an external system. Such integration
during execution of the query often increases execution time,
especially if such information is not readily available.

SUMMARY

In accordance with one aspect there is provided a data
processing-implemented method for directing a data process
ing system to modify a query during compilation of the query,
the query including a request for an element of data from a
table in a database and parameters identifying the requested
element, the data processing-implemented method including
determining available information from parameters for locat
ing a classification of the requested element and a classifica
tion associated with the query, the requested data classifica
tion controlling access to the requested element according to
the query associated classification, requesting a Suggested
action from an external system for obtaining a comparison of
the requested data classification and the query associated
classification based on the available information, receiving
the Suggested action from the external system responsive to
the sent request, and incorporating the Suggested action into
the query, the Suggested action effecting comparison of the
requested data classification with the query associated clas
sification.

In accordance with another aspect there is provided a data
processing system for modifying a query during compilation
of the query, the query including a request for an element of

10

15

25

30

35

40

45

50

55

60

65

2
data from a table in a database and parameters identifying the
requested element, the data processing system including a
query analysis mechanism for determining available infor
mation from parameters for locating a classification of the
requested element and a classification associated with the
query, the requested data classification controlling access to
the requested element according to the query associated clas
sification, a request mechanism for preparing a request to the
external system, the request asking the external system to
provide a suggested action for obtaining a comparison of the
requested data classification and the query associated classi
fication, the request comprising the available information, an
external system interface for requesting a Suggested action
from an external system for obtaining a comparison of the
requested data classification and the query associated classi
fication based on the available information, and receiving the
Suggested action from the external system responsive to the
sent request, and a modification mechanism for incorporating
the Suggested action into the query to effect comparison of the
requested data classification with the query associated clas
sification.

In accordance with a further aspect there is provided an
article of manufacture for directing a data processing system
to modify a query during compilation of the query, the query
including a request for an element of data from a table in a
database and parameters identifying the requested element,
the article of manufacture including a program usable
medium embodying one or more executable data processing
system instructions, the executable data processing system
instructions including executable data processing system
instructions for determining available information from
parameters for locating a classification of the requested ele
ment and a classification associated with the query, the
requested data classification controlling access to the
requested element according to the query associated classifi
cation, executable data processing system instructions for
requesting a suggested action from an external system for
obtaining a comparison of the requested data classifications
and the query associated classification based on the available
information, executable data processing system instructions
for receiving the Suggested action from the external system
responsive to the sent request, and executable data processing
system instructions for incorporating the Suggested action
into the query, the Suggested action effecting comparison of
the requested data classification with the query associated
classification.

Other aspects and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig
U.S.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in conjunction with
the drawings in which:

FIG. 1 is an exemplary computing environment in which a
database management system (DBMS) may be actualized;

FIG. 2 illustrates operations of a compiler of the DBMS of
FIG. 1 for modifying a query based on information from an
external system; and

US 7,860,875 B2
3

FIG.3 illustrates functional components of the compiler in
the DBMS of FIG. 1 for modifying a query based on infor
mation from the external system.

DETAILED DESCRIPTION OF EMBODIMENTS

The following detailed description of the embodiments do
not limit the implementation of the embodiments to any par
ticular computer programming language. The computer pro
gram product may be implemented in any computer program
ming language provided that the operating system provides
the facilities that Support the requirements of the computer
program product. A preferred embodiment is implemented in
the C or C++ computer programming language (or may be
implemented in other computer programming languages in
conjunction with C/C++). Any limitations presented would
be a result of a particular type of operating system, computer
programming language, or data processing System and would
not be a limitation of the embodiments described herein.

FIG. 1 illustrates a configuration of a computing environ
ment 100 comprising a data processing system 126 in which
an embodiment of a database management system 122 may
be implemented.

The data processing system 126 includes a central process
ing unit (CPU) 102, a memory 104, an input/output interface
106 and a bus 108. The CPU 102, the memory 104 and the
input/output interface 106 are connected with one another via
the bus 108. The input/output interface 106 is configured so
that it can be connected to an input/output unit 112 in the
computing environment 100.

The CPU 102 can be a commercially available CPU or a
customized CPU suitable for operations described herein.
Other variations of the CPU 102 can include a plurality of
CPUs interconnected to coordinate various operations and
functions. The data processing system 126 serves as an appa
ratus for performing the present method by the CPU 102
executing the present invention.

Data and instructions that are to be executed by the CPU
102 reside in the memory 104. The memory 104 contains a
database management system (DBMS) 122 and a database
110 with multiple tables 116 (only one table is shown for
illustration purposes) that hold information. The instructions
are internal representations of programs that run on the data
processing system 126. Such as the database management
system 122. The programs operate on the data. For example,
if the program is the database management system 122, the
data can be rows in the table 116. The database management
system 122 comprises a compiler 118 and an external system
interface 124. The database management system 122 retains
an indication of operating conditions, such as an identifier for
the user who submitted the query 114, when compiling and
executing the query 114.
The information in the tables 116 may be accessed by a

query 114 that is received by the input/output unit 112 and is
retained in the memory 104. The query 114 may be presented
in an SQL format that is compiled by the compiler 118 to form
an internal representation that is interpreted for execution.
The present invention may be embodied in the compiler 118.
Alternatively, the present invention may be provided as an
extension of the functionality of the compiler 118. The
present invention may be embodied in a program stored in, for
example, the memory 104. Alternatively, the present inven
tion may be recorded on any type of recording medium Such
as a magnetic disk or an optical disk. The present invention
recorded on Such a recording medium is loaded to the
memory 104 of the data processing system 126 via the input/
output unit 112 (e.g. a disk drive).

10

15

25

30

35

40

45

50

55

60

65

4
The compiler 118 recognizes statements in the query 114

including keywords that represent commands and relevant
arguments. During the formation of the internal representa
tion from the query 114, the compiler 118 modifies the query
114 to improve performance during execution.
The external system interface 124 is in communication

with an external system 120 while modifying the query 114 to
improve performance. The external system 120 may be a
system external to the database management system 122 but
residing in the data processing system 126 or it may be exter
nal to the data processing system 126. In the latercase the
external system 120 may communicate with the data process
ing system 126 via a direct link or through a communications
network.
The external system 120 manages the assignment of clas

sifications to users and sections of data in the tables 116. For
example, given a user identification and a table name, the
external system 120 knows how to obtain the classification of
that user. The external system 120 contains a classification
that is associated with the query 114 which may be a classi
fication for a user identification from which the query 114 was
submitted, a classification of the location from which the
query 114 was submitted or some other such similar classifi
cation basis. The external system 120 may also contain access
rules that govern when a user with a particular classification
can access an element from the table 116. An interface in the
external system 120 accepts questions from the compiler 118
providing available information and desired information.
Through this interface the external system 120 is able to either
provide the information requested by the compiler 118 or
provide a course of action for obtaining the information.
As a result, the query 114 may be modified to include

information on a user's classification or table classification or
a comparison of the two classifications. Such information
might be determined by interfacing with the external system
120 during execution or such interfacing may be performed in
advance by the compiler 118 and the results incorporated into
the query 114.

FIG. 2 illustrates operations of the compiler 118 that
modify the query 114 based on information from the external
system 120. The query 114, containing at least one request for
information, is read in step 202. Each request is analyzed in
step 204 to extract parameters of the request and a target of the
request. The type of information of each of the parameters is
determined in step 206. The parameters may also include an
identification associated with the query 114 Such as a user
who submitted the query 114 or a location of the submission.
The type of information requested from the target is deter
mined in step 208.
The table 116 in the database 110 contains information that

is classified. In order for a user who submitted the query 114
to obtain the requested information from the table 116, access
rules for the table 116 in the external system 120 might
indicate that the user have a classification that corresponds to
the classification of the requested information. Based on the
types of parameters included in the request, the user's iden
tification (as contained in the database management system
122) and the type of information requested, step 210 deter
mines what information regarding the user's classification
and the information’s classification is unknown.

Since this unknown classification information is deter
mined prior to completing execution of the query 114, the
compiler 118 determines how the classification information
can be determined in conjunction with the external system
120. A request for a strategy to obtain the unknown classifi
cation information is generated in step 212. This request is

US 7,860,875 B2
5

based on the determined types of the parameters and the
determined type of the requested information.

Suggested course(s) of action for obtaining the unknown
classification information are received in step 214 from the
external system 120. If there are multiple types of unknown
classification information then there may be multiple courses
of action that will be received. Each course of action received
may be directed to obtaining one of the types of unknown
classification information.

If there is more than one course of action received, as
determined in step 216, then an order for the courses of action
is determined in step 218. This order may depend on infor
mation required by each course of action. For example, if one
course of action uses information dependent on a second
course of action then the second course of action is imple
mented first. The order for implementation of the courses of
action may optionally be supplied with the Suggested courses
of action
The course(s) of action are inserted into the query in step

220 Such that they can be easily implemented during execu
tion.

FIG. 3 illustrates functional components of the compiler
118 in the DBMS 122 for modifying the query 114 based on
information from the external system 120. The external sys
tem 120 includes a request interface 300 and a request pro
cessing mechanism 302. The compiler 118 includes a con
troller 304 in communication with a query analysis
mechanism 306, a management interface 308, an information
analysis mechanism 314, a query classification mechanism
310 and a request formation mechanism 312.
The controller 304 in the compiler 118 manages compiling

the query 114 in order to form an internal representation
thereof. During compiling, the controller 304 coordinates
modification of the query 114 to improve execution perfor
mance. When the controller 304 detects a request in the query
114 that requires a check of a user's classification with the
classification of requested information, the request is pro
vided to the query analysis mechanism 306.
The query analysis mechanism 306 includes a target type

mechanism 316 and a parameter type mechanism 318 that
collectively function to determine the information defining
the request and the information sought from the request. The
parameter type mechanism 318 extracts the type of informa
tion of the parameters that define the request. The target type
mechanism 316 determines the type of information that has
been requested. The query analysis mechanism 306 provides
the parameters and target types to the controller 304 where it
is passed to the information analysis mechanism 314 and the
request formation mechanism 312.
The information analysis mechanism 314 receives the

parameters and target types and assesses what information is
available for determining the requested information classifi
cation and user's classification. Based on the available infor
mation, the information analysis mechanism 314 determines
the information that is unknown that is to be used for com
pleting data access qualification for the user. The determined
unknown information is provided to the controller 314 from
which it is passed to the request formation mechanism 312.

The request formation mechanism 312 receives the param
eters and target types as well as an indication of the unknown
information to be used in determining the requested informa
tion classification and user's classification. The request for
mation mechanism 312 formulates a request on how to obtain
the unknown information based on the parameters and target
types. This request is provided to the controller 304 to be
passed to the management interface 308. The external system
interface 308 provides the request to the external system

5

10

15

25

30

35

40

45

50

55

60

65

6
interface 124 in the database management system 122 so that
the request can be submitted to the external system 120.
The request from the request formation mechanism 312

may be one or a combination of for example:
Q1: Given an user identification and a table name, how can

the user classification be obtained?
Q2: Given a set of data values and a table name, how can the

element classification be obtained?
Q3: Given a user classification and an element classifica

tion, how can the two be compared?
The request interface 300 of the external system 120

receives the request from the compiler 118. The request is
provided to the request processing mechanism 302 where a
knowledge base may be drawn upon to produce Suggestions
regarding the manner in which the unknown information can
be obtained. If there are multiple courses of action then the
Suggestion may involve multiple courses of action, each per
taining to obtaining a different piece of unknown informa
tion. The Suggestions from the request processing mechanism
302are provided to the controller 304 via the request interface
300 and the management interface 308 through the external
system interface 124.

Based on the above exemplary requests, the Suggested
course(s) of action form the request processing mechanism
302 may be one or a combination of, for example:

A1: A Subquery which can be used to select a user classi
fication or element classification from a table in the
database 110 known to the external system 120.

A2: A predicate which can be used to filter out the table's
elements (rows or columns) that have a classification
that do not match the user's classification.

A3: A set of values presented directly or indirectly via a
session variable or special register. These values can
represent a set of user classification or a set or element
classifications.

A4: A query which can be used to generate an internal
mapping table for use by the executable form of the
query 114. For a given table, the mapping table enables
identification of the classification of an element in the
table. For example, the mapping table may consist of
(n+1) columns where the first n columns represent the
table columns from which to derive the element classi
fications and the last columns represents a classification
level. When Such a mapping table was not previously
created, an internal mapping table for use by the execut
able form of the query 114 can be generated for this
purpose.

A5: A request to call the external system at execution time
of the query 114 for classification information.

The above requests may produce the Suggested course(s) of
action as indicated below:

Action on Q1:
A1: A Subquery that can be used to select the user classi

fication for the user identification from a database table
known to the external system 120.

A3: A data value(s) that indicates the user classification for
the user identification.

A5: An indication that the external system 120 should be
asked for this information at execution time.

Action on Q2:
A1: A subquery that can be used to select the element

classification for the current element from a mapping
table known to the external system 120.

A4: A query that can be used to generate an internal map
ping table for use by the executable form of the query
114.

US 7,860,875 B2
7

A5: An indication that the external system 120 should be
asked for this information at execution time.

Action on Q3:
A2: A predicate that the compiler 118 can add to the query

114 to filter out the table's elements that do not match the
user's classification. The general form of predicates
returned will be an IN predicate but inequality predi
cates are also possible, particularly if the element clas
sification or user's classification represent a hierarchy.
This type of advice is most likely to be returned when the
element classification is stored within the table itselfor
when a mapping table has been created. If the element
classification is stored within the element then the predi
cate will refer to the table's column where the element
classification level is stored, otherwise, the predicate
will refer to the mapping table's column where the clas
sification level is stored.

A3: A set of values representing the element classification
allowed for the given user's classification. Element level
access control may then be enforced by, for example:
1. The compiler 118 altering the query 114 to add a

predicate using the set of values received. This choice
is possible if the element classification is stored
within the table itself or a mapping table has been
created.

2. If the element classification is not stored within the
table and a mapping table has not been created then a
predicate cannot be used. In this case, interaction
between the DBMS 122 and the external system 120
is used during execution of the query 114 to enforce
element access control. For each element accessed,
the data in the set of columns defining the element
classification and the full table is submitted to the
external system 120 with the result being the element
classification. The result is compared against the set
of values for the given user classification to determine
if the element can be viewed or altered by that user. To
reduce the number of times the DBMS 122 makes a
call to the external system 120 to obtain the element
classification a caching technique may be used. For
example, the information that could be stored in the
cache may be the full table name, the data defining the
element classification and the element classification
as returned by the external system 120.

A5: An indication that the external system 120 should be
asked for this information at execution time.

The request provided by the request processing mechanism
302 may also provide an indication of whether or not the
Suggested course(s) of action can be used of all users or only
for a provided user identification.
The controller 304 provides the suggested course(s) of

action to the query classification mechanism 310 where an
order is determined for the course(s) of action based on
dependence of the results of each course of action. Alterna
tively, this order may be specified by the external system 120
and received with the Suggested course(s) of action. After the
order has been determined, the query classification mecha
nism 310 modifies the query 114 to include the course(s) of
action.
The following are examples of modifying an SQL query to

include obtaining classification information.
A table T1 (C1, C2, C3, ..., Cn) represents a table where

the classification level of an element and the user classifica
tion is an element of the ordered set S={TOP SECRET,
SECRET CONFIDENTIAL CLASSIFIED, UNCLASSI
FIED}. The element level access control policy for this
example states that an element with a classification r can be

10

15

25

30

35

40

45

50

55

60

65

8
viewed by a user with a classification u only ifud-r. Suppose
that a user with a classification level CONFIDENTIAL
issues a query SELECT * FROM T1.
Scenario 1
The compiler 118 sends a request corresponding with Q1

from above to the external system 120 to obtain the user's
classification. Suppose the external system 120 provides a
Suggested course of action corresponding with A3 from
above; that is, a data value representing the user's classifica
tion. The compiler 118 then submits a second request to the
external system 120 based on Q3 above by submitting the
table name (T1) and the user's classification (CONFIDEN
TIAL). Suppose the external system 120 returns a Suggested
course of action corresponding with A2 from above. That is,
in response to the second request the external system 120
returned a predicate in, for example, “C1 IN (CONFIDEN
TIAL, ° CLASSIFIED, UNCLASSIFIED). Based on the
received courses of action the compiler 118 modifies the
query 114 to incorporate the predicate providing a query Such
aS

SELECT * FROM T1 WHERE C1 IN (CONFIDEN
TIAL, "CLASSIFIED, UNCLASSIFIED).

Given that the set is ordered and represents a hierarchy, the
predicate returned could also be “C1>''CONFIDENTIAL”.
Scenario 2

Suppose an element classification is determined based on
the values in columns C1 and C2 as follows:

C1 C2 Element Classification

1 1 TOP SECRET
2 2 SECRET
3 3 CONFIDENTIAL
4 4 CLASSIFIED
5 5 UNCLASSIFIED

The compiler 118 sends the external system 120 a request
corresponding with request Q1 to obtain the user's classifi
cation. Suppose the Suggest course of action is A3; that is, a
data value represent the user's classification. The compiler
118 submits a second request based on the table name (T1)
and the set of column names defined in the classification
mapping shown above (Cl and C2). The Suggested course of
action in response to the second request depends on whether
a mapping table exists.
Response 1: A Mapping Table Exists
A database table (T1MAP) storing mapping information

has been created and is known to the external system 120.
T1MAP consists of three columns, namely, C1, C2 and
LEVEL. For each pair of values (C1, C2), the LEVEL column
indicates an element classification. Based on this informa
tion, the external system 120 can return A1 as the Suggested
course of action; that is, a subquery to select an element
classification from T1 MAP. The subquery would be as fol
lows:

SELECT LEVEL FROMT1MAP WHERE
T1MAPC1 =T1C1 AND T1MAP2=T1C1.

The compiler 118 then sends a request to the external
system 120 corresponding with request Q3 by submitting the
table name (T1) and the user's classification (CONFIDEN
TIAL). If the external system 120 returns suggested action
A2, then the predicate returned would be:
“T1 MAPLEVEL>''CONFIDENTIAL. Based on the sug

US 7,860,875 B2

gested course of action the compiler 118 modifies the query
114 to incorporate the predicate and subquery. The modified
query would be:

SELECT * FROM T1, T1 MAP WHERE
(T1.C1=T1MAPC1 AND T1.C2=T1MAP.C2)
AND (T1 MAPLEVEL> *CONFIDENTIAL).

Response 2: A Mapping Table DoesNotExist
If a mapping table does not exist then the Suggested course

ofaction provided to the compiler 118 might be action A5, an
indication to Submit the same request during execution. The
second request submitted by the compiler 118 corresponds
with request Q3 and submits the table name (T1) and the
user's classification (CONFIDENTIAL). The external sys
tem may provide action A3, a set of data values representing
the element classifications allowed for the user (i.e. all ele
ments having CONFIDENTIAL, ° CLASSIFIED, and
UNCLASSIFIED). Based on the suggestion course of
action the compiler 118 does not modify the query 114 but
inserts logic into the internal representation to perform the
following tasks:

For each element obtained, call the external system 120 by
submitting the table name (T1) and the values (C1, C2).

Obtain the element classification from the call to the exter
nal system 120.

If the element classification is an element of the set {CON
FIDENTIAL, "CLASSIFIED, UNCLASSIFIED}
then include the element in the result set; otherwise,
discard the element.

Although the classification of the user is used as the basis
for obtaining the requested element of data, any classification
associated with the query 114 may be used. Such other asso
ciated classifications may include a classification of the loca
tion from which the query 114 was submitted.

The elements of data that are accessed may be the rows of
the tables 116 or the columns of the tables 116 or some other
delineation of portions of the tables 116.

It will be appreciated that the elements described above
may be adapted for specific conditions or functions. The
concepts of the present invention can be further extended to a
variety of other applications that are clearly within the scope
of this invention. Having thus described the present invention
with respect to preferred embodiments as implemented, it
will be apparent to those skilled in the art that many modifi
cations and enhancements are possible to the present inven
tion without departing from the basic concepts as described in
the preferred embodiment of the present invention. There
fore, what is intended to be protected by way of letters patent
should be limited only by the scope of the following claims.
The invention claimed is:
1. A data processing-implemented method for directing a

data processing system to modify a query during compilation
of the query, the query comprising a request for an element of
data from a table in a database and parameters identifying the
requested element, the data processing-implemented method
comprising:

determining, by a computer, available information from
parameters for locating a classification of the requested
element and a classification associated with the query,
the requested data classification controlling access to the
requested element according to the query associated
classification;

requesting a suggested action from an external system for
obtaining a comparison of the requested data classifica
tion and the query associated classification based on the
available information;

10

15

25

30

35

40

45

50

55

60

65

10
receiving the Suggested action from the external system

responsive to the sent request; and
incorporating the Suggested action into the query, the Sug

gested action effecting comparison of the requested data
classification with the query associated classification,

wherein if the external system knows the requested data
classification and the query associated classification, the
Suggested action is provided prior to execution of the
query, and comprises at least one of the requested data
classification, the query associated classification, a
course of action for obtaining the requested data classi
fication, a course of action for obtaining the query asso
ciated classification, and a comparison of the requested
data classification and the query associated classifica
tion, and

wherein if the external system does not know the requested
data classification and the query associated classifica
tion, the Suggested action comprises a request to call the
external system at execution time of the query.

2. The data processing-implemented method according to
claim 1 wherein the requesting the Suggested action com
prises:

determining unknown information used to obtain a com
parison of the requested data classification with the
query associated classification; and

sending a request to the external system for the Suggested
action, the Suggested action pertaining to obtaining the
unknown information.

3. The data processing-implemented method according to
claim 1 wherein the requesting the Suggested action com
prises:

selecting a request from one of a plurality of formulated
requests based on the available information; and

sending the selected request to the external system to
obtain the Suggested action.

4. The method according to claim 3 wherein the selecting
comprises:

selecting the request from the plurality of formulated
requests consisting of:
a request for the query associated classification based on

providing an identifier for the table and an identifier
associated with the query, and

a request for the requested data classification based on
providing an identifier for the requested element and
the table identifier, and a request for a comparison of
the requested data classification with the query asso
ciated classification.

5. The data processing-implemented method according to
claim 2 wherein the incorporating the Suggested action com
prises:

incorporating a subquery into the query to obtain unknown
information from a table.

6. The method according to claim 1 wherein the incorpo
rating the Suggested action comprises:

incorporating a predicate into the query to delimit sections
of the table that can be obtained by the query according
to the requested data classification and the query asso
ciated classification.

7. The data processing-implemented method according to
claim 1 wherein the incorporating the Suggested action com
prises any one of

incorporating a set of values into the query representing the
unknown information;

incorporating a second query into the query to generate a
mapping table mapping classifications to elements of
data in the table; and

US 7,860,875 B2
11

incorporating a request to the external system to be sent
during execution of the query.

8. The data processing-implemented method according to
claim 1 wherein the comparison comprises:

comparing the data classification with the query associated
classification comprising the Suggested action and deter
mining if the query associated classification is equal to
or greater than the data classification.

9. The data processing-implemented method for directing a
data processing system according to claim 1, wherein the
external system is external to and functions independently
from the data processing system, and communicates with the
data processing system through a communications network.

10. The data processing-implemented method for directing
a data processing system according to claim 1,

wherein the external system contains classification infor
mation and access rules that govern access to data
according to a particular classification, and

wherein the external system is separate of the data process
ing System.

11. The data processing-implemented method according to
claim 1, wherein the query associated classification is based
on a classification of a user Submitting the query, and the

10

15

12
requested data classification is based on a permission level of
a user authorized to view the requested data.

12. The data processing-implemented method according to
claim 11, wherein the Suggested action includes at least one of
instructions for obtaining the requested data classification
when the requested data classification cannot be obtained
with information in the query, and instructions for obtaining
the query associated classification when the query associated
classification cannot be obtained with information in the
query.

13. The data processing-implemented method according to
claim 12, wherein the requested data classification is obtained
using the instructions for obtaining the requested data classi
fication, and the query associated classification is obtained
using the instructions for obtaining the query associated clas
sification and are provided for the comparison of the obtained
requested data classification with the obtained query associ
ated classification.

14. The data processing-implemented method according to
claim 1, wherein when the external system is called at the
execution time of the query, the query is modified during
execution of the query.

k k k k k

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0063951 A1

US 2009006.3951A1

Rjaibi et al. (43) Pub. Date: Mar. 5, 2009

(54) FINE-GRAINED, LABEL-BASED, XML Publication Classification
ACCESS CONTROL MODEL (51) Int. Cl.

G06F 5/00 (2006.01)
(75) Inventors: Walid Rjaibi, Markham (CA): (52) U.S. Cl. .. 71.5/234

Zheng (Alex) Zhang, Toronto (CA) (57) ABSTRACT
A method for controlling access to an XML document

Correspondence Address: includes referencing a schema definition comprising a path
Kunzler & McKenzie security label definition associated with a sibling-to-sibling
8 EAST BROADWAY, SUITE 600 path of an XML document. An XML document may then be
SALT LAKE CITY, UT 84111 (US validated by comparing it with the schema definition. This

9 (US) validation may include verifying that the XML document has
a path security label associated with a sibling-to-sibling path

(73) Assignee: International Business Machines that is at least as restrictive as that specified by the path
Corporation, Armonk, NY (US) security label definition. An access security label may be

s s assigned to a user seeking to access the sibling-to-sibling
path. The path security label and the access security label may

(21) Appl. No.: 11/849,267 then be compared, using pre-determined access rules, to
determine whether the user is authorized to access the sibling to-sibling path. Access to the sibling-to-sibling path may then

(22) Filed: Sep. 1, 2007 be granted or denied according to the access rules.

1OO

104

ACCOUnt

()" () ()
A2398

N

Customer

Name

(2)
John

Online Seller (2)
104

Account
D

A3784

104

Items Go2)

Item Item

104

Customer

Go2)

Name

Go2)
Barbara

Patent Application Publication

104

ACCOUnt

1OO

N

VIP ACCOUnts (02)
104

Customer

()" ()
A2398

Name

(2)
John

ATTACH path-label
ANCS path 1
DESC path2

Fig. 2

Mar. 5, 2009 US 2009/0063951 A1

Online Seller Go2

104

---ar : 104

sess

104

ACCOUnt

Go2)
A3784

104

Item

Customer

D Go2)

Name

Go2)
Barbara

Fig. 1

ATTACH path-label
NODE path 1
PRECEDING-SIBLING path2
FOLLOWING-SIBLING path3

Fig. 3

US 2009/0063951 A1

FINE-GRAINED, LABEL-BASED, XML
ACCESS CONTROL MODEL

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002. This invention relates to XML access control and
more particular to fine-grained, label-based, XML access
control models.
0003 2. Description of the Related Art
0004 XML has rapidly emerged as the prevalent standard
for representing and exchanging business and other sensitive
data over the Internet. The current trend to add XML support
to database systems, however, poses new security challenges
in an environment where both relational and XML data coex
ist. In particular, fine-grained access control methodologies
may be even more important for XML data than for relational
data, given the more flexible and less homogeneous structure
of XML data compared to relational tables and rows.
0005 Controlling access to XML data may be more diffi
cult than controlling access to relational data for several rea
sons. First, the semi-structured nature of XML data, where a
schema may be absent, or, even if present, may allow signifi
cantly more flexibility and variability in the structure of the
document than is allowed by a relational Schema. Second, the
hierarchical structure of XML may require specifying how
access privileges to certain nodes propagate to and from the
nodes ancestors and descendants.
0006. In almost all models for controlling access to XML,
the smallest unit of protection is a node of an XML document,
which is typically specified using an XPathfragment. Access
to ancestor/descendant and sibling relationships among
nodes has typically not been considered. In general, an access
control policy consists of positive or negative authorization
rules that grant or deny access to selected nodes of an XML
document. The main difference between most XML access
control models lies in privilege propagation. For example,
some models forbid access to entire sub-trees that are rooted
at inaccessible nodes.
0007. In other models, an ancestor node for which access

is denied may be masked as an empty node if access is granted
to a descendant node. However, this model may make the
literal of the forbidden ancestor visible in the path from the
root node to the authorized node. In some cases, this situation
may be improved by replacing the literal of an ancestor node
literal with a dummy value. However, this still does not solve
the problem that different descendant nodes may require their
ancestor's literal to be visible or invisible in a different man
ner. Accordingly, each of the above models makes it difficult
to define a view that precisely describes the path leading to an
authorized node.
0008. In view of the foregoing, what is needed is an access
control model for XML that provides a more fine-grained
level of control. Ideally, such a model would be able to protect
relationships between nodes as opposed to the nodes them
selves. Further needed is a model that utilizes security labels
to protect these relationships.

SUMMARY OF THE INVENTION

0009. The present invention has been developed in
response to the present state of the art, and in particular, in
response to the problems and needs in the art that have not yet
been fully solved by currently available methods for control
ling access to information in XML documents. Accordingly,

Mar. 5, 2009

the present invention has been developed to provide a fine
grained, label-based model for controlling access to XML
documents that remedies various problems in the art.
0010 Consistent with the foregoing and in accordance
with the invention as embodied and broadly described herein,
a method for controlling access to an XML document
includes referencing a schema definition comprising a path
security label definition associated with a path of an XML
document. As used herein the term "path’ in an XML docu
ment refers to an ancestor-to-descendent path, a sibling-to
sibling path Such paths, edges, and relationships between
nodes of an XML document. An XML document with secu
rity labels may then be validated by comparing it with the
schema definition. This validation may include Verifying that
the XML document has a path security label associated with
a path that is at least as restrictive as that specified by the path
security label definition. Similarly, an access security label
may be defined for a user seeking to access a sibling-to
sibling path. In one embodiment, the security administrator
may define the access security label for a user. The path
security label and the access security label may be compared,
using pre-determined access rules, to determine whether the
user is authorized to access the sibling-to-sibling path. Access
to the sibling-to-sibling path may then be granted or denied
according to the access rules.
0011. In a second aspect of the invention, a computer
program product may be provided to control access to an
XML document comprising a plurality of nodes and a plural
ity of paths, or relationships, between the nodes. The com
puter program product may include a computer-readable
medium storing a program of computer-readable instruc
tions. When executed, these instructions may cause a com
puter to generate a schema definition comprising a path Secu
rity label definition associated with a sibling-to-sibling path
ofan XML document. The instructions may further enable an
XML document to be validated by comparing it with the
schema definition. This validation may include Verifying that
the XML document has a path security label associated with
a sibling-to-sibling path that is at least as restrictive as that
specified by the path security label definition. These instruc
tions may further cause the computer to reference an access
security label to a user seeking to access the sibling-to-sibling
path of the XML document and compare, using pre-deter
mined access rules, the path security label to the access Secu
rity label to determine whether the user is authorized to access
the sibling-to-sibling path. In one embodiment, these instruc
tions may cause the computer to assign an access security
label to an XML document that fails to comply with a given
Document Type Definition (DTD) or XML Schema Defini
tion (XSD). The access security label assigned may beat least
as restrictive as a path security label designated in the DTD or
XSD. Finally, the instructions may cause the computer to
grant or deny access to the sibling-to-sibling path according
to the access rules. The present invention provides novel
methods for controlling access to XML documents. The fea
tures and advantages of the present invention will become
more fully apparent from the following description and
appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. In order that the advantages of the invention will be
readily understood, a more particular description of the inven
tion briefly described above will be rendered by reference to

US 2009/0063951 A1

specific embodiments illustrated in the appended drawings.
Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered limiting of its scope, the invention will be
described and explained with additional specificity and detail
through use of the accompanying drawings, in which:
0013 FIG.1 illustrates one embodiment of an XML docu
ment tree structure that includes multiple nodes and paths
between the nodes;
0014 FIG. 2 illustrates one embodiment of an SQL/XPath
extension, or statement, to attach a path security label to a
parent-to-child path; and
0015 FIG.3 illustrates one embodiment of an SQL/XPath
extension, or statement, to attach a path security label to a
sibling-to-sibling path.

DETAILED DESCRIPTION OF THE INVENTION

0016. It will be readily understood that the components of
the present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of systems and
methods in accordance with the present invention, as repre
sented in the Figures, is not intended to limit the scope of the
invention, as claimed, but is merely representative of certain
examples of presently contemplated embodiments in accor
dance with the invention. The presently described embodi
ments will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through
Out.
0017 Referring to FIG. 1, one embodiment of an XML
document tree structure 100 is illustrated to provide a basic
understanding of the invention. Here, the document tree
structure 100 stores account and item information associated
with an online seller. As shown, the document tree structure
100 includes a plurality of nodes 102 arranged in a hierarchi
cal tree structure. The relationship between the nodes 102
may be represented by a plurality of paths 104 traveling
between each of the nodes 102. As mentioned previously, the
Smallest unit of protection in most conventional XML access
control models has been the node 102. This method of pro
tection, however, may violate various security principles Such
as the “need-to-know’ and “choice' security principles by
leaking unnecessary or confidential information.
0018 For example, consider the sub-tree rooted at node
102a and represented by the literal “VIP Accounts.” Suppose
that the security policy is such that access to node 102b is
authorized while access to node 102c is unauthorized. Using
a node-based security approach, granting access to node 102b
will normally require granting access to the root node 102a.
Once access is granted to the root node 102a, access will
normally be automatically granted to the child node 102c.
Thus, it may be very difficult to implement a node-based
security approach that can grant access to node 102b while
simultaneously denying access to node 102c. As a result,
many node-based security approaches violate the “need-to
know’ or “choice' security principles because they leak
information about the node 102c.
0019. In selected embodiments in accordance with the
invention, a path- or relationship-based security approach
may be used to provide a more fine-grained, expressive, and
effective access control model to protect information in the
XML document 100. In such a model, ancestor/descendant
and sibling relationships 104, or paths 104, may be consid

Mar. 5, 2009

ered legitimate elements to be protected. Such a model may
also better comply with security principles such as the “need
to-know’ and “choice' security principles.
0020. In certain embodiments, one or more of the paths
104 may be protected with a “security label' associated with
a label-based access control (LBAC) implementation. In such
an implementation, the path security label may be compared
to an access security label granted to a subject (e.g., a user)
attempting to access or traverse the path. Whether access is
authorized may be determined based on pre-determined set of
label access rules. Access to the path may then be denied or
granted based on the label access rules.
0021 For example, consider again the sub-tree rooted at
node 102a. If the security policy is such that access to node
102b is authorized while access to node 102c is unauthorized,
a security label 106a may be attached to the parent-to-child
path between the root node 102a and the child node 102c. A
second security label 106b may be attached to the sibling-to
sibling relationship between node 102c and node 102b. As a
result, access may be granted to the path between the root
node 102a and the child node 102b while simultaneously
denying access to all paths leading to the child node 102c.
0022. In selected embodiments, an SQL extension, also
referred to herein as a command or statement, may be pro
vided to enable an access security label to be granted to a user.
Such an extension may already be available in various data
base management systems, such as IBM's DB2 version 9. For
example, one embodiment of an extension may be imple
mented using the following SQL statement:

GRANTACCESS LABEL label-name
TOUSER user-name FOR READ ACCESS

Here, label-name designates the name of the access security
label and user-name designates the name of the user who is
granted the access security label. Similarly, the phrase “FOR
READ ACCESS' may be replaced with the phrase “FOR
WRITEACCESS’’’ or “FOR ALL ACCESS to grant either
read access, write access, or both types of access to the user.
(0023 Referring to FIGS. 2 and 3, various SQL/XPath
extensions may also be provided to enable security labels to
be attached to paths 104 between nodes 102. For example,
FIG. 2 shows one embodiment of an SQL statement that may
be used to attach a security label to an ancestor/descendant
path (including a parent-to-child path) of an XML document.
In this embodiment, path1 and path2 are XPath expressions
designating the nodes at each end of the path, with path2
being an XPath expression relative to path1. Path-label may
be used to designate the name of the security label that is
attached to the path.
0024 For example, the following statement may be used
to attach a path security label having the name “EXIST
ENCE' to the relationship between the node 102a and the
node 102c of FIG. 1:

ATTACHEXISTENCE
ANCS VIP Accounts
DESC (AccountCustomer/Name = “Barbara

0025 FIG.3 shows one embodiment of an SQL statement
that may be used to attach a security label to a sibling-to

US 2009/0063951 A1

sibling path of an XML document. In this embodiment, path1.
path2, and path3 are XPath expressions, with path2 and path3
being XPath expressions relative to path1. Path2 and path3
specify relationships between the node specified by path1.
and the node's preceding and following siblings. If the node
does not have preceding siblings, the PRECEDING-SIB
LING expression may be deleted from the statement. Simi
larly, if the node does not have following siblings, the FOL
LOWING-SIBLING expression may be deleted from the
statement. Like the extension illustrated in FIG. 2, path-label
may designate the name of the security label attached to the
sibling-to-sibling path.
0026. For example, the following statement may be used

to attacha path security label with the name “VALUE' to the
sibling-to-sibling relationship between the node 102b and the
node 102c of FIG. 1:

ATTACHVALUE
NODE AccountCustomer? Name = “Barbara
PRECEDING SIBLING Account

0027. In addition to providing support for the above SQL/
XPath statements, an extension may be provided to the SQL
compiler. This extension may ensure that the access plan
generated to fetch a column of type XML in a database table
also includes the access rules for evaluating a user's access
rights with respect to the content of the XML column. The
goal is to allow users to label node relationships and let them
be sure that what they want to conceal is truly concealed from
the users whose access labels do not satisfy the label access
policy with the path labels. Unfortunately, it is impossible to
guarantee concealment for any arbitrary set of relationships.
Sometimes, it is possible to infer a concealed relationship
from the relationships that are not concealed.
0028 Let us consider an example of four cases where a
relationship could be inferred from a pair of non-concealed
relationship. Referring to FIG. 1, suppose it is known that
Account Node 102b is a descendant of VIP Accounts Node
102a and Customer Node 102d is a descendant of Account
Node 102b. Then, there is no point to conceal the ancestor
descendant relationship between VIP Accounts Node 102a
and Customer Node 102d. Suppose it is known that Customer
Node 102d is a descendant of VIP Accounts Node 102a as
well as Account Node 102b. Since there is only one path from
the root of the document to Account Node 102b, there is no
point to conceal the ancestor-descendant relationship
between VIP Accounts Node 102a and Account Node 102b.
0029 Suppose it is known that Account Node 102b and
Account Node 102c are the children of VIP Accounts Node
102a, then there is no point to conceal the sibling relationship
between Account Node 102b and Account Node 102c. Sup
pose it is known that VIP Accounts Node 102a has a descen
dant Customer Node 102d and the customer has a sibling
Account ID 102e, then there is no point to conceal the ances
tor-descendant relationship between VIP Accounts Node
102a and Account ID 102e. We say a set of labeled relation
ships/paths in an XML document D is not secure with respect
to a path label L if one of the following four cases occurs.
0030) 1. Case 1: D has three nodes, n, n, and n s.t. the
ancestor-descendant path from n to n and the ancestor
descendant path from n to n have labels L-L and L2-L.
The ancestor-descendant path from n to n has a label
Lisa L.

Mar. 5, 2009

0031 2. Case 2: D has three nodes, n, n and n s.t. the
ancestor-descendant path from n to n and the ancestor
descendant path from n to n have labels LCL and L2-L.
The ancestor-descendant path from n to n has a label
L122L.
0032. 3. Case 3: D has three nodes, n, n and ns.t. n is
the parent of n and n, the parent-child path from n to n and
the parent-child path from n to n have labels L-L and
L-L. The sibling path from n to n has a label L.2L or the
sibling path from n to n has a label L.2L.
0033 4. Case 4: D has three nodes, n, n and n s.t. the
ancestor-descendant path from n to n has a label L-L, and
either the sibling path from n to n has a label LCL or the
sibling path from n to n has a label L.-L. The ancestor
descendant path from n, to n has a label L.2L.
0034. There is a simple test to verify that a set of labeled
relationships/paths in an XML document D is not secure with
respect to a path label L. The test starts by computing three
ternary relations R, R and R. The first two columns store
the start/end nodes of paths. The third column stores the label
associated with paths (if a label is missing, then it is a NULL
value). In particular, R stores all ancestor-descendant paths
in D. R. Stores all parent-child paths in D, and R. Stores all
sibling paths in D.
0035 1. Case 1 is true for a path label L if and only if the
expression Isiss(R*$2–$1R)-R is not empty where
R is Oss-(R1).
0036 2. Case 2 is true for a path label L if and only if the
expression Tussa ($2–$2R)-R is not empty where
R1 is Oss- (R).
0037 3. Case 3 is true for a path label L if and only if the
expressionals, ss (R*S1=S1 R2)-Rs is not empty where
R2 is Oss-t (R2) and Rs is Oss-t (Rs).
0038 4. Case 4 is true for a path label L if and only if the
expression Isiss(R*$2–$1 Rs.)-R is not empty where
R1 is Oss- (R) and Rs is Ossi (Rs).
0039. Furthermore, we give intuitive conditions to con
struct a secure set of labeled relationships for an XML docu
ment. If we ignore the directions of ancestor-descendant and
sibling paths, all these paths form cycles in an XML docu
ment. To assign a path label L to a relationship between two
nodes n and n in an XML document D, we must make sure,
forevery cycle that includes the path from n, to n, either there
is another path whose label L.2L, or n and n are descen
dants of some nodes in the cycle and n, n are not children of
the same parent. Both cases ensure there is uncertainty
whethera relationship between two nodes n and in exists: the
first case by having another path missing in the cycle, while in
the second case, the fact that n and n are descendants of
Some nodes in the cycle introduces uncertainty except when
they are children of the same parent, in which case the sibling
relationship between n and n is leaked.
0040. In certain embodiments, a DTD may be used to
Verify that certain security labels are assigned to paths of an
XML document 100. In the event one or more paths of an
XML document 100 do not include the security labels speci
fied in the DTD, these security labels may be added to the
XML document 100 to make it conform to the DTD. This
feature may be provided to ensure that protected information
in an XML document 100 is truly concealed from users lack
ing the required authority. This feature may also reduce the
chance that users will infer the existence of a concealed
relationship from other relationships that are not concealed.

US 2009/0063951 A1

0041. For example, in certain embodiments, security
labels may be validated in an XML document 100 using an
attribute declaration in a DTD having the following form:

<! ATTLIST N SecurityLabel (Path1 Label1 | Path2 Label2 |...),
#REQUIRED/#IMPLIEDs

0042. Here, N can be instantiated to be a set of nodes in an
XML document 100 (e.g., VIP Accounts), Path1, Path2, etc.
identify instantiated paths relative to each of the nodes to be
protected by a security label, and Label1, Label2, etc. identify
security labels to be attached to the instantiated paths of
Path1, Path2, etc., respectively. In selected embodiments, N.
Path1, Path2, etc. may be identified using XPath expressions.
Similarly, Path1. Path2, etc. may designate ancestor/descen
dant, sibling-to-sibling, or other desired paths in the XML
document 100. The #REQUIRED/#IMPLIED syntax may be
used to designate whether the security labels identified in the
attribute declaration are required (e.g., #REQUIRED) or are
merely optional (e.g., iiIMPLIED).
0043. In operation, when validating an XML document
100 with the DTD, the above-identified attribute declaration
may be checked against the attributes in the XML document
100. This may be performed to verify that the XML document
100 has path security labels at least as restrictive as those
designated in the DTD. If the XML document 100 does not
include path security labels that are at least as restrictive as
those designated in the DTD, path security labels may be
inserted into the XML document 100 to make it conform to
the DTD. Conversely, path security labels of the XML docu
ment 100 that are more restrictive than those designated in the
DTD may be left alone. Thus,
the DTD may be used to impose a set of minimum security
requirements on paths of the XML document 100.
0044. In certain embodiments, when attempting to access
an XML document 100, a user's security label may be com
pared to the path security labels designated in the DTD as
opposed to comparing it with the path security labels of the
XML document 100. This may improve efficiency because a
DTD is typically much smaller than the XML document 100
it is associated with. If the user is not authorized to access the
paths specified in the DTD, the user will not be authorized to
access the corresponding instantiated paths in the XML docu
ment 100. This is because the XML document 100 will have
security labels that are at least as restrictive as those specified
in the DTD.
0045. On the other hand, if the user is authorized to access
paths designated in the DTD, the user is not necessarily
authorized to access the corresponding paths in the XML
document 100. This is because the XML document 100 may
have security labels that are more restrictive than those speci
fied in the DTD. If this is the case, the user's security label
may also be compared to the path security labels of the XML
document 100 to determine whether the user is authorized to
access the paths.
0046. It should be recognized that the features and advan
tages discussed above with respect to a DTD may also be
applied to other languages for describing the schemas of
XML documents, such as the XSD language.
0047. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid

Mar. 5, 2009

ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:
1. A computer program product comprising a computer

readable medium having: computer usable program code
executable to perform operations to control access to an XML
document comprising a plurality of nodes and a plurality of
paths between each of the nodes, the operations of the com
puter program product comprising:

referencing a schema definition comprising a path security
label definition associated with a sibling-to-sibling path
of an XML document;

receiving an XML document to be validated by compari
son with the schema definition;

comparing the XML document to the schema definition;
verifying that the XML document has a path security label

associated with a sibling-to-sibling path that is at least as
restrictive as that specified by the path security label
definition of the schema definition for the nodes associ
ated with the sibling-to-sibling path;

determining an access security label assigned to a user
seeking to access the sibling-to-sibling path protected by
the path security label;

comparing, using pre-determined access rules, the path
security label to the access security label to determine
whether the user is authorized to access the sibling-to
sibling path; and

controlling access to the sibling-to-sibling path in accor
dance with the access rules.

2. The computer program product of claim 1, wherein the
sibling-to-sibling path is specified in the schema definition
using at least one XPath expression.

3. The computer program product of claim 1, wherein the
schema definition is selected from the group consisting of a
document type definition (DTD) and an XML schema defi
nition (XSD).

4. The computer program product of claim 1, wherein the
access security label assigned to a user is assigned by a user
issuing an SQL command utilizing an SQL extension to
assign the access security label.

5. A computer program product to control access to an
XML document comprising a plurality of nodes and a plural
ity of paths between each of the nodes, the computer program
product comprising a computer-readable medium storing a
program of computer-readable instruction that when
executed on a computer causes the computer to:

generate a schema definition comprising a path security
label definition associated with a sibling-to-sibling path
of an XML document;

receive an XML document to be validated by comparison
with the schema definition;

compare the XML document to the schema definition;
verify that the XML document has a path security label

associated with a sibling-to-sibling path that is at least as
restrictive as that specified by the path security label
definition;

assign an access security label to a user seeking to access
the sibling-to-sibling path protected by the path security
label;

US 2009/0063951 A1

compare, using pre-determined access rules, the path Secu
rity label to the access security label to determine
whether the user is authorized to access the sibling-to
sibling path; and

control access to the sibling-to-sibling path in accordance
with the access rules.

6. The computer program product of claim 5, wherein the
sibling-to-sibling path is specified in the schema definition
using at least one XPath expression.

Mar. 5, 2009

7. The computer program product of claim 5, wherein the
schema definition is selected from the group consisting of a
document type definition (DTD) and an XML schema defi
nition (XSD).

8. The computer program product of claim 5, wherein
assigning an access security label comprises utilizing an SQL
extension to assign the access security label.

c c c c c

