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IMITATION 

A DARK 11nfatho111ed tide 
Of inter111inable pride -
A mystery, and a drea111, 
Should Ill)' early life seem; 
I say that dream was fraught 
With a wild and waking thought 
Of beings that have been, 
Which my spirit hath no/ seen, 
Had Ilet them pass 111e by, 
With a dreaming eye ! 
Let none of earth inherit 
Thal vision of 111y spirit; 
Those thoughts I would con/roi, 
As a spe/1 upon my soul: 
For that bright hope at last 
And the light ti111e have past, 
And 111y worldly rest hath gone 
With a sigh as if passed on: 
Icare no/ though if perish 
With a thought I then did cherish. 

Edgar Allan Poe 
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Abstract 

This document is not meant to reinvent the wheel, it mostly is a compilation 
of database tuning concepts, howevere with a persona! touch. It is based 
upon considerations made by various writers, such as [Hainaut 1986], 
[O'Neill 1994], [Date 1990], [Finkelstein 1988] and [Elmasri 1994]. It gives 
an overview of possible parameters aimed to physically tune a database. 
Moreover, it concerns with the problem of index selection. 

Chapter 1, introduces the process of physical database tuning within the 
process of data modeling. It reveals the pitfalls of selecting the appropriated 
indexes. 
Chapter 2, describes the data operations and deals with execution methods 
for queries and joining tables. It abstracts the data access operations into a 
small set of easy to understand and to analyze query types. 
Chapter 3, deals with physical data allocation parameters and access 
structures. It lists a set of parameters that might be helpful during database 
allocation. It describes and evaluates various data access structures, such as 
B-Trees, Clusters and Hash indexes. 
Chapter 4, tries to consolidate chapter 2 and chapter 3 into a small set of I/0 
cost relations. It lists a set of relation that might be used to determine rapidly 
I/0 costs for a given query type and access structure. 
Chapter 5, is based upon a study made by [Finkelstein 1988] to implement a 
physical design tool for relational database. It describes a methodology for 
physical database tuning and lists some tuning guidelines and heuristics 
used to reduce query execution time. 
Chapter 6, gives a practical overview off various considerations that might 
arise during the quest for the optimal index solution. However, we will not 
pretend the case study to be exhaustive, as we start with a limited set of data 
entities, requirements and queries. 

This document is aimed to introduce, help and guide the database designer 
in its first attempts of database tuning. 
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Chapter 1. Introduction 

The following section introduce concepts and basic considerations about physical 
data modeling, also known as physical database design. The physical data design is 
part of a more global design process, the database design. Anticipating an optimal 
database design at the end of data modeling, the physical database design cannot be 
considered as a design process on its own. It is constantly interacting with other 
processes, getting input and giving feedback. Hence, it is important to keep in mind 
that physical data modeling is not a process on its own. Nevertheless, throughout 
this document we focus our efforts essentially on the physical data modeling process. 
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1.1. Database Design Process 

First, we introduce, with reference to [Elmasri 1994], the physical data modeling 
and its place within the database design process. As mentioned before the physical 
design is part of a more global design process, called the database design. 

For small databases that internet with few users and little data, database design is 
not always a complicated topic. However, when medium-size or large databases are 
designed or redesigned for large organizations and information systems, database 
design becomes quite complex. This is because the system must satisfy business 
objectives, dynamic and often complex by nature. Careful design and testing phases 
are imperative to ensure that all these requirements are satisfactorily met. Medium 
and large databases are usually used by about 25  to hundreds of users, managing 
millions of information entities. They also involve hundreds of queries and 
application programs. Such databases are used in government, industry, banks and 
large commercial organizations. Service industries such as banking, insurance, travel, 
hotel and communication companies are totally reliant on successful around-the­
clock operation of their databases. 

Throughout this document we will try to point-out some rules, guidelines and 
heuristics that might be helpful, during the search for an optimal data modeling. 

We can state the problem of database design as follows: 

Design of a /ogical and physica/ structures of one or more databases to 
accommodate the information needs, of the users, in an organization for a defined 
set of applications [Elmasri 1994]. 

The objectives of database design are multiple. Satisfy the information 
requirements of specified users and applications. Provide a natural and easy-to­
understand structuring of the information. Support processing requirements and 
performance objectives such as response time, processing time, and storage 
utilization. In real world conditions, these goals are hard to measure and accomplish. 
That is why we will list some helpful guidelines. 

The problem of optimal design is worsened by the informai and poorly defined 
requirements. 

The general database design process can be identified throughout six leading 
phases: 

1. Requirements collection and analysis, 

2. Conceptual database design, 

3. Choice of a Database Management System, 

4. Logical database design, 

5. Physical database design, 

6. Database system implementation. 
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The design process consists of two parallel activities, as illustrated in Figure 1. 1 .. 
This first, involves the design of data and structures of the databases ; the second is 
related to the design of database processing and software applications. These 
activities are closely related. For example, we can identify data entities that have to 
be stored in database throughout the analysis of database applications. The same 
way, physical database design, which allows us to choose data storage structures and 
data access paths, depends highly on applications that use or access the data. On the 
other hand, the design of database applications is specified by referring to the 
database schema, which are defined in the first activity. Clearly these two activities 
strongly influence one each other. 

The six phases mentioned above do not have to be processed in sequence. In many 
cases you may have to modify the design from an earlier phase during a later phase. 
These feedback loops among phases, and also within phases, are common during 
database design. Figure 1. 1 does not show feedback loops, to avoid complicating the 
diagram. Phase 1 is concerned with collecting information about the intended use of 
the data, whereas phase 6 is dedicated to implement the database in a given 
environment. 

� Conceptual Database Design (phase 2). During this phase, we formalize user 
requirements into a set of Local Conceptual Schemas. Each dedicated to a 
subsystem of the organization. At this stage we consolidate them into a 
Conceptual Schema, which is independent of any specific database management 
system independent (DBMS). Using a high-level data models, such as Entity­
Relational (ER) models [Bodart 1989]. In addition, we identify all possible and 
known database applications and/or transactions that will use the data, using a 
formal language, above the specification of any particular DBMS. 

� Logical Database Design (phase 4). Throughout this phase we convert the 
conceptual schema, into an efficient logical data mode!, corresponding to the 
DBMS chosen throughout phase 3. This phase can take place right after we 
choose the data model, rather than waiting for the choice of a specific DBMS. For 
example, we can start the phase after we decide to use a relational DBMS but have 
not yet decided on a particular one. On market we can find various data models. 
Based upon hierarchical, relational (DB2, ORACLE, INGRES, SYBASE, etc.), or 
object oriented (02, VERSANT) technologies. All these models have specific 
design characteristics that will drive our logical data model [Hainaut 1986]. 

� Physical Database Design (phase 5) . During this phase we change the logical 
schema into computer code documents, namely the DMS-DDL global schemes 
and the Host-Language code fragments. The first document defines data structures 
managed by the DBMS, expressed in its Data Description Language (DDL), while 
the second document implements, most often procedurally, the management of 
structures, like integrity constraints, that have not been or could not be translated 
into DDL. This unfortunate splitting is due to weakness in expressing the contents 
of DBMS compliant logical schema and therefore of the conceptual schema. This 
phase also includes the design of storage specifications for physical items, such as 
memory allocation, record placement, and access paths. The design phase ends up 
with an efficient physical schema in terms of response time, space usage and 
processing time. 
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In the following subsections we discuss briefly each of the six phases of the 
database design process. We will take a deeper look at physical data modeling and its 
problems in section 1.2 .. 

1 .1 . 1 .  Requirements Col lection and Analysis 

Before we can start modeling an efficient database, we must know the 
expectations of the users and the intended uses of the data in as much details as 
possible. We call this process : Requirements Collection and Analysis. To specify the 
requirements, we must first identify all the parts that internet with the information 
system. This means identifying new and existing users as well as their applications. 
The requirements of these users and applications are then collected and analyzed 
[Hainaut 1986]. During requirements analysis, the user requirements are documented 
in objective hierarchies and events, operations, data, and constraints glossaries. 

Typically, the following activities are part of this phase : 

1 [Elmasri 1994] 
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� Jdentify the major application areas and user groups that will use the data. Key 
individuals within each group are chosen as the main participants in the 
subsequent steps of requirements collection and specification. 

� Jnspect existing documentation (policy manuals, forms, reports, and organization 
charts) to determine their influences on requirements collection and specification 
process. 

� Study the current environment and intended use of information. This involves 
pointing out all transactions types and their frequencies, as well as the flow of 
information within the system. The input and output data for transactions are 
documented at this stage. 

� Written responses ta a set of questions are collected from the potential data base 
users. These questions involve the users priorities and the importance they place 
on various applications and queries. Key individuals may be interviewed for 
estimating the worth of information and setup transaction priorities. 

The requirements collection constitutes a summary, for each table and for each 
access module, of all used operations [Hainaut 1986]. For each operation the table 
contains: 

� the n umber of activations per time unit ( day, hour, etc ... ), noted as Nact/d 
� the average number of records qualified for one activation, noted as Ns 
� the number of records treated per time unit, noted as NR/d. It is derived from 

the following formula: (Nact/d) * (Ns/a) = Ns/d . 

All this summarized information is globalised for the whole application ( or set of 
applications), after what it can be quantified into a synthesis according to the rules 
described in [Hainaut 1986]. The synthesis contains for each table the number of 
accesses, updates, deletes and updates. 

1 .1 .2. Conceptual Database Design 

The second phase of database design process involves two parallel activities. The 
first activity, conceptual schema design, examines the data requirements resulting 
from phase 1 and produces a conceptual database schema. The second activity, 
transaction design, examines the database applications analyzed in phase 1 and 
produces high-level specifications for these transactions [Hainaut 1986]. 

The conceptual schema design results in a DBMS independent high level data 
model which cannot be used directly to implement the database. The importance of 
such a schema should not be underestimated, for the following reasons : 

� The goal of conceptual schema design is a complete and correct understanding of 
the database structure, meaning (semantics), interrelationships, and constraints. 
This is best archived without relying on specific DBMS. Each DBMS typically 
has its own particularities that should not be allowed to interfere with the 
conceptual design. 

� The conceptual schema is invaluable as a stable description of the database 
contents. 
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'¼ A good understanding of the conceptual schema is crucial for database users and 
application designers. Use of high level data models, which are more expressive 
and general than a given DBMS data model, is important and helpful. 

'¼ The graphical description of the conceptual schema serves as an excellent vehicle 
of communication among database users, designers, and analysts [Bodart 1989]. 

In this design phase it is important to use a high-level data model (e.g. Entity­
Relationship model [Bodart 1989] for example) which respects the following 
characteristics : 

R:,,- Expressiveness. The data model should be expressive enough to distinguish 
different types of data, relationships, and constraints. 

R:,,- Simplicity. The model should be simple enough for non-specialist users to 
understand and use its concepts. 

R:,,- Minimality. The model should have a small number of basic concepts that are 
distinct and non-overlapping in meaning. 

R:,,- Diagrammatic representation. The model should have a graphical notation 
that is easy to understand. 

R:,,- Formality. A conceptual schema expressed in the data model must represent a 
formal and exact specification of the data. Hence, the model concepts must 
be defined accurately and unambiguously. 

The purpose of the transaction design is to design the characteristics of known 
database transactions in a DBMS independent way. When a database system is 
designed, the designers are aware of many known applications and/or transactions 
that will run on the future database. An important part of database design is to 
specify the functionality of these transactions as soon as possible in the design 
process. This ensures that the database schema will include all the facts needed by 
these transactions. Further, knowing the relative importance of various transactions 
and the expected rates of activation play a crucial part in physical data modeling 
(phase 5). As usual, only some of the transactions are known at design time, after the 
database system is implemented, new transactions are continuously identified and 
added. However, the most important transactions are often known in advance and 
should be specified at early stages [Hainaut 1986]. 

One common technique for specifying transaction at a conceptual level is to 
identify their input/output andfunctional behavior [Hainaut 1986]. By specifying the 
input data, output data, and internai functional flow of control, designers can specify 
a transaction in a conceptual and system-independent way. Transactions usually can 
be grouped into three categories : retrieval, update and mixed transactions. 

'¼ Retrieval transactions are commonly used to retrieve data for display on screen or 
for production reports. 

'¼ Update transactions are used to enter data or modify existing data in the database. 
'¼ Mixed transactions are used for more complex applications that do some retrieval 

and some update. 

Both conceptual design activities should go in parallel, using feedback loops for 
refinement, until a stable design of schema and transactions is reached. 
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1 .1 .3 .  Choice of a Database Management System 

The choice of a DBMS is governed by a various of factors. Sorne factors are 
technical, others are economical, and still others are concerned with the organizations 
policy. The technical factors are concerned with the suitability of DBMS for the task 
at hand. Issues to consider here are the type of the DBMS (relational, network, 
hierarchical, object-oriented, etc ... ), the storage structures and access paths that are 
supported by the DBMS, the user and programmer interfaces available, the types of 
high-level query languages, and so on. The reader can find an overview of the 
technical factors relevant to these data models in [Elmasri 1994]. Let us take a look 
at the economical and organizational factors which lead the DBMS choice. 

The following cost may be considered during DBMS acceptance: 

� Software acquisition cost. This is the 'up-front' cost of buying a software, 
including language options, different interfaces such as forms and screens, 
recovery and backup options, special access methods, and documentation. 

� Maintenance cost. This is the recurring cost of receiving standard maintenance 
service from the vendor and for keeping the DBMS version up to date. 

� Hardware purchase cost. New hardware may be needed, such as additional 
memory, terminals, disk units, even up to a new environment. 

� Database creation and conversion cost. This is the cost of either creating the 
database system from scratch or converting an existing system to the new DBMS 
software. In the latter case it is customary to operate the existing system in parallel 
with the new system until all new applications are fully implemented and tested. 
This cost is hard to project and often underestimated. 

� Persona/ cost. Acquisition of DBMS software for the first time by an organization 
is often accompanied by reorganization of data-processing. New positions of the 
database administrator (DBA) and staff are created in most companies that adopt 
DBMSs. 

� Training cost. Because DBMSs are often complex systems, employees have to be 
trained to use, deal and program with the DBMS. 

The benefits of acquiring a DBMS are not so easy to measure and quantify. A 
DBMS has several intangible advantages over traditional file systems, such as ease of 
use, wider availability of data, and faster access to information. More tangible 
benefits include reduced application development cost, reduced redundancy of data, 
and better control and security. Based on a cost/benefit analysis, an organization has 
to decide when to switch over to a DBMS. This move is generally driven by the 
following factors : 

� Data complexity. As data relationships grow and become more complex, the need 
for a DBMS is felt more strongly. 

� Sharing among applications. The greater the sharing among applications, the 
more the redundancy among files is present. The more it becomes complex to 
keep integrity and coherency among data. Hence, the greater the need for 
Database Management System. 
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� Dynamical/y evolving or growing data. If data changes constantly, it is easier to 
cope with these changes using a DBMS, because we reduce redundancy and all 
problems that go in hand with redundant data, like coherence and integrity. 

� Frequency of ad hoc requests for data. File systems are not at all suitable for ad 
hoc data retrieval. 

� Data volume and need for control. The sheer volume of data and the need to 
control goes for DBMS systems. 

Finally, several economical and organizational factors also affect the choice of 
one Database Management System over another: 

� Structure of the data. If the data to be stored follows a hierarchical structure, a 
hierarchical based technology is likely to be suitable. For data with many inter­
relationships, a network or relational system may be more appropriate. For 
complex data structures or data types, like Binary Large Objects (BLOBs) or 
multi-media objects, an object-oriented system may be suitable. · 

� Familiarity of the staff with the system. If programming staff within the 
organization is familiar with a particular DBMS, it may be of benefit to reduce 
training cost and learning time. 

� Availability of vendor services. The existence of near at hand vendor service 
facilities is desirable to assist in solving any problems with the system. Moving 
from a non-DBMS to a DBMS driven environment is generally a major 
undertaking and requires much vendor assistance at the start. 

In some cases it may not be appropriate to use a DBMS; instead, it may be 
preferable to develop in-house software for applications. This may be the case if 
applications are very well defined and are all known in advance. In such a case, an 
in-house custom-designed system may be appropriate to implement the known 
application in the most efficient way. In most cases, however, new applications that 
were not foreseen at design time corne up after system implementation. This is 
precisely why DBMSs have become very popular: they facilitate the incorporation of 
new applications without major changes to the existing system. 

1 .1 .4. Log ical Data Model ing 

The next phase of database design is to create a logical schema in the data model 
of a selected DBMS. 

During the logical modeling phase, the user' s data and constraints requirements 
are represented as a logical data model. In most cases, a straightforward, well­
documented, and normalized entity-relationship model is enough to represent the 
users requirements. In some situations, however, we must use extensions to the basic 
entity-relationship model, specifically where complex structures and inter­
relationships must be modeled. 
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Data and operations requirements are also converted into entity-life histories. An 
entity-life history is a logical, execution independent model that represents the 
interactions between entities and operations. Entity life histories are very useful for 
ensuring that sufficient attention has been paid to the life cycle of each entity, 
including data archiving and stripping (removing unnecessary data from the 
database). 

Finally, we map the conceptual schema into a logical one, which includes the 
following properties. It is correct, optimal and independent of any existing system. 
Correctness is achieved by mapping all semantics (including integrity constraints) 
present in the conceptual schema into the logical one, no semantic is added nor 
retrieved. In search of the logical data access optimum the schema should only hold 
the data accesses which are mandatory for correct and optimal execution of the 
required transactions. These data accesses have to be mapped to a data structure 
which permits optimal data access. For more detail on logical database optimization 
the reader should consult [Hainaut 1986] [Mathon 1994]. Throughout following lines 
we only give an overview of a four-level design process. 

� Schema simplification. This process transforms the conceptual schema into a 
simpler, better suited schema for optimization reasoning. For instance, N-ary 
relation types are transformed into binary ones, multivalued attributes are reduced 
to single-valued ones, IS-A links are transformed into one-to-one relation types. 

� DBMS independent optimization. This process uses transformations through 
which the schema can be first optimized according to general rules that can apply 
independent of the chosen DBMS. More generally, the schema can be restructured 
according to design requirements concerning access time, distribution, data 
volume, availability, etc .... Schema transformation such as vertical and horizontal 
splitting or merging, denormalisation or structural redundancy are commonly used 
to satisfy these requirements. 

� DBMS translation. Transforms the schema into structures in accordance with the 
target DBMS data model [Hainaut 1986]. For instance, for relational DB (or 
standard files) Many-to-Many relation types are transformed into tables (record 
types) while Many-to-One relation types are transformed into foreign key 
(reference fields). 

� DBMS dependent optimization. This process performs further optimization 
transformations according to the specific rules of a particular DBMS. 

For this pre-physical database management phase, most CASE tools, today, 
provide extensive entity-relationship modeling capabilities, some with dictionaries to 
document the models completely and consistently, with cross-references between the 
various objects and diagrams. Only a few of the more advanced CASE tools provide 
for specialization and generalization hierarchies. Sorne of the more advanced CASE 
tools provide proper entity-life history models and these models are cross-checked to 
the entity-relationship diagrams. We must be aware, that the more the CASE tools 
support such features the more the frontier between conceptual design and logical 
modeling becomes hazy, and the more de design process becomes a logical­
conceptual modeling process. 
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1 . 1 .5. Physical Data Model ing 

The logical design results in a schema of a l l  mandatory accesses, as well as their 
static and dynamic quantification. All this will serve as input to the physical database 
design which ends up in a physical schema, labeled as correct, optimal and 
executable on a real world system. Correctness implies that the DB structure and/or 
the files structure expresses the semantic and the access mechanisms of the 
mandatory access schema. The fact that the schema is to be optimal does not mean 
that the data structures and the access paths have to end up in an optimum, but that 
the schema should achieve an overall good performance for all users and 
applications. 

The physical design process can be branched into three points. The first branch is 
dedicated to the production of the executable schema, the second one is aimed at 
generating the user views, while the third is concerned with physical database tuning. 

� DBMS-DDL and Host coding. Translates the DBMS compliant specifications 
into the DBMS's Data Description Language (DDL). The rejected specifications 
are translated into languages, systems and procedures that are out of DBMS 
control (host language, user interface-manager and human procedures are some 
examples). 

� User Views. This branch determines a subset (views) of schemes that concerns 
each application and end-user category. The views are translated into executable 
code, according to the DBMS and programming standards and habits. The code 
may be divided into two sections: the first one is made of DDL text which 
translates some of the view structures, while the second one expresses, in host­
language code, structures excluded from the DDL texts. 

� Database Physical Tuning. This branch defines the storage and/or access 
structures and parameter settings in order to optimize the database with respect to 
user requirements. These choices define the optimal physical schema, with respect 
to the DBMS. In extention of the DDL schema, for instance, the physical schema 
will include the specification of indexes, physical file assignment, disk contention, 
device assignment, record type space mapping, page size, free space definition, 
clusters, storage nodes, access modes, buffer size and management, etc .... 

The data structure expressed and the access in the physical schema is equivalent to 
the semantic in the logical and the conceptual schema. 
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1 .2. Problem of Physical Database Design 

During the past decades, DBMSs based on the relational model have moved from 
the research laboratory to the business place. One major strength of relational 
systems is its ease of use. Users internet with the systems in a natural way using non­
procedural languages that specify what data are required, but do not specify how to 
perform the operations to retrieve data. Statements specify which tables should be 
accessed as well as conditions restricting which combinations of data from those 
tables are desired. They do not specify the access paths (e.g. indexes) to be used, to 
retrieve data from the tables, or the sequence in which tables are to be accessed. This 
is the job of the so called DBMS optimizer module. Hence relational statements can 
be run independent of the set of existing access paths. 

There has been controversy about the relational systems (R-DBMSs) 
performances compared to other DBMSs. Especial in the transaction-oriented 
environment. Critics of relational systems point out that their non-procedural way 
prevents users from navigating through data the way they believe to be the most 
efficient. Developers of R-DBMSs claim that their system is capable of making the 
best decisions on how to execute the user requests based on statistical models of the 
database and cost estimating formulas. The system carries out analysis on executing 
cost alternatives. A software module, known as the optimizer, makes execution 
decisions based on a statistical model of the database. It performs analysis of 
alternative execution plans for each statement and choose the one that appears to 
have the lowest cost. Optimizer efficiency, in choosing optimal execution plans, is 
critical to system response time. Initial studies2 on the behavior of optimizers have 
shown that the choices made by the optimizer are among the best possible for the set 
of access paths. 

The relational database system does not automatically determine an optimal set of 
access paths. The access paths must be created by the database designer. Access path 
selection is not trivial, since a database designer, more precisely the index designer, 
must balance the advantages of access paths for data retrieval versus their 
disadvantage in maintenance costs, incurred for database inserts, deletes, and updates 
and space utilization. For example, indexing all table attributes is seldom a good 
choice. Updates will be very expensive in that design, and moreover, the index will 
probably require more total space than the table. A poor choice of physical designs 
can result in poor system performance, far below what could be expected if a more 
suited set of access paths was available. Hence a design tool and/or guidelines are 
needed to help designers selecting the right access paths that support efficient system 
performance for a set of applications and users. 

Such a design tool would be useful for initial database design and for major 
reconfigurations of a database. A design tool might be helpful when: 

2 [Finkelstein 1988] 
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lb- The costs of future database must be evaluated, 
lb- the database is to be loaded, 
lb- the workload on a database changes substantially, 
lb- new tables are added, 
lb- the database has been heavily updated, or 
\h' DBMS performance has degraded. 

In this document we do not pretend to give the solution for such a tool. We only 
want the reader to get an overview of the major aspects related to physical database 
tuning and how they interact with one another. All recent DBMSs and CASE tools 
integrate features that help the database designer to model an efficient database. 

Remember, that the major problem during physical design is the definition of an 
optimal set of access paths (indexes) according to the user requirements. 

Data in a table can be accessed by scanning the entire table (brute force table 
scan). The execution of a given statement may be speeded up by using auxiliary 
access paths, such as indexes. However, the existence of certain index, although 
improving the performance of some statements, may reduce the performance of other 
statements (such as updates), since the indexes might be modified when tables are. In 
relational systems, some indexes, called clustered index, enforce the ordering of 
records in the table they index. All other indexes are called n onclustered index. The 
overall performance of the system depends on the set of all existing index, as well as 
on the way the tables are stored. 

Given a set of tables and a set of statements, together with their expected 
frequencies of use and their filter factor or selectivity, the index-selection problem 
involves selecting for each table. 

� The physical ordering for records ( clustered index), and 
� a set of secondary access paths (nonclustered index), 

To minimize the total processing cost, subject to a limit on total index space. 

Defining the total processing cost as, the frequency weighted sum of the expected 
costs for executing each statement. Including access, record update, and index 
maintenance costs. A weighted index space cost might also be added in. 
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Clustered indexes often provide excellent performance when they are on attributes 
referenced in a given statement. This might indicate that the solution to the design 
problem is to have a clustered index on every attribute. Such a solution is not 
possible, since records can be ordered only one way. On the other hand, nonclustered 
index can exist on all attributes and may help to process some statements. A set of 
clustered and nonclustered index on tables in a database is called an index 
c onfigurati o n. An index configuration3 is defined as, as set of indexes so that no table 
has more than one clustered index and no attributes have at same time clustered and 
nonclustered index. We will only be interested in index designs which are 
configurations. Let us call index s oluti on  the configuration proposed for a particular 
index selection problem. 

It might seem that finding solutions to the design problem consists of choosing 
one attribute from each table as the ordering attribute, putting a clustered index on 
that attribute, and putting nonclustered index on all other attributes. This however, 
fails for three reasons. 

� For each additional index, auxiliary maintenance cost is induced, every time 
updates are made upon an indexed attribute (inserting or deleting records, 
updating the value of the indexed attribute ). Because of the maintenance cost, a 
solution with indexes on every attribute of every table usually does not minimize 
processing costs. 

� Storage costs must also be considered even when there are no updates. According 
to [Finkelstein 1988] index use 5 to 20 percent of space used by the table indexes, 
so storage costs are not negligible. 

� A global solution can not generally be obtained for each table independently. Any 
index decision that is made for one table ( e.g. which index is clustered) may affect 
the best index choices for another table. 

These considerations show that the design problem presented at the beginning of 
this section has no simple solution. According to [Finkelstein 1988] even a restricted 
version of the index-selection problem is in the class of NP-hard problems. Thus, 
there appears to be no fast algorithrn that will find the optimal solution. However, we 
must question whether the optimal solution is the right goal, since the problem 
specifications and the problem the designer actually wants to solve are usually not 
identical. Input specifications to the design process are often rude estimation. 

Specifications may include: 

� Statements, as input to the problem, they usually represent estimations of actual 
load, that will be submitted to the system. 

� Activation frequencies associated to the statements. They are commonly rude 
estimations as well. 

� Statistics ( dynamic and static) based upon the data, as it exists at a given time, are 
estimations that may not reflect future changes. 

3 [Finkelstein 1988] 
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� Statistical models used by the optimizer to estimate I/O costs. However, it is only 
correct for some given data distributions. 

For these reasons, instead of striving for the optimal solution in the index design 
problem. We would like to get a set of reasonable models, each of which has a 
relatively low performance cost. From this set the designer can choose the one he 
thinks best, based on considerations that may not have been completely modeled. By 
an appropriate use of some heuristics and guidelines, combined with more exact 
techniques, the database designer can find rapidly a set of reasonable solutions. 
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1 .3.  Objective of the paper 

Remember that an index represents a data structure that allows to increase the 
access performances to a set of given records. Therefore, proper index tuning is a 
must for performances hungry applications and reasonable query response times. 
Improper index definitions may lead to the following mishaps. 

t:!:> Index that are maintained but never used. 
t:!:> Tables that are entirely scanned in order to return a single record. 
t:!:> Joins that take forever. 
t:!:> Concurrency bottlenecks. 

At the end of this paper the reader should be able to display and analyze an access 
plan chosen by the database system for specific queries and specific access 
structures. He should also understand what makes up a "good" or "bad" access 
structure (index solution). As a result, he will have a much better understanding of 
what "tuning" steps he can undertake to improve query execution and I/O costs: 
where and which kind of index can be added to improve access performances. Later 
on, we will give some guidelines in choosing, maintaining and using the right index 
structures for reasonable data access. All hints apply directly to the relational systems 
and can in most cases be applied to any commercial relational database system. 
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Chapter 2.  Data Operations 
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In the chapter 1 we have seen that a major input to physical data modeling and 
tuning is based on requirements collection and analysis. Let us go further and say 
that physical database tuning used as input analysis and statistics on data requests, 
the so called queries. When tuning a database, we should define what tables the 
queries access. What are the query types, how many data do they qualify and how 
often are they activated? 

It seems obvious that the usefulness of a:n index depends on how the queries use 
the index. For example, if there is an index on attribute A, but no query ever mentions 
A, then the index entails overhead (for maintenance on inserts, deletes and space 
usage) without yielding any benefit. This is obviously not correct. Less obvious 
misleading sources can result from placing the wrong kind of indexes on wrong 
attributes, however, with respect to the queries performed on those attributes. Placing 
the right index on the right attributes is not an easy job, because an infinite number of 
queries are possible and can be performed on a given database. Therefore, let us 
abstract the transactions and the queries into of classes or types. 

Data operations, generally expressed in the Data Manipulation Language (DML), 
act upon data within the database. Relational DBMSs use Structured Query 
Language (SQL) as DML. Using SQL we can execute two major kind of operations, 
data requests (SELECT) and data updates ( INSERT, UPDATE, DELETE). A third kind, 
is possible, the macro operations, they combine queries and updates, and in most 
cases are related to the notion of data integrity (protection against incidents, 
concurrency regulation, etc ... ). 

Data operations are based on three major concepts. 

� The database. Representing the data. It is a mapping of the conceptual, the logical 
and the physical schema into real world. For relational DBMSs, databases are 
composed of tables and access structures, like indexes. 

� The data object (or table record). Is a description of logical table entities. For 
example, it is possible that the object represents a record of a conventional file 
system or a table record in a relational system. An object stands also for an 
elementary unit of information asked by the user or retrieved by an application. Its 
content and composition varies corresponding to the data operation. For example 
the object corresponding to the data request "Select al! employees " is the record 
type EMPLOYEE itself, whereas the object corresponding to the query "Select al! 
employees and their departments " is composed of the record type EMPLOYEE and 
DEPARTMENT. 
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� The attribute and its value. Attributes are proprieties given to an object, they 
define the record type. They have associated values, which are elements of a data 
within a data domain. It is possible to access the values of attributes throughout its 
associated object. At any time 0, 1 or many values can be attached to one object. 
The value is typically a sequence of symbols that can be assigned to application or 
user variables. For example the record type EMPLOYEE having the following 
attributes EMPID, EMPNAME, EMPADR, EMPDEP, etc .... A specific object can be 
identified by the attribute values : EMPID = 1234, EMPNAME = ' Dupond Jean', 

EMPADR =' 14 Place Wiertz, B-5000 Namur' ,  EMPDEP = 'COM'. 
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2.1. Data Access Operations 

To understand the importance of the query classification for the physical database 
tuning, we first have to understand the concepts and the basic algorithms that take 
place when executing data access operations. We shall define two classes of query 
operations, depending on the size of the data object they reference, more precisely 
the number of records they qualify. After what we are able to abstract the queries into 
significant query "types"4. 

2.1 .1 . Data Access Processing 

When a database system receives a query, i t  goes through a set of query 
compilation steps, before it begins execution. In a first phase, we have what we call 
the syntax-cltecking. The system analyses the query and checks its syntax, then it 
matches elements of the query syntax with views, tables, and attributes listed in the 
database system catalog, and performs appropriate query modification. During this 
process the system validates that the user has privileges and that the query does not 
disobey any relevant integrity constraints. A second phase, called the query 
optimization pltase takes care of examining existing statistics for the tables and 
attributes. How many rows exist in the tables, how big are the records and how many 
records can an I/O block hold. Relevant access structures (indexes) are located 
within the database, and memory buffers are scanned for already existing data. After 
what, a complex procedure, which we can think of as ''figuring out what to  do ", 
produces a procedural access plan, the executi on  plan. The access plan is then 
executed during a third step, the execution pltase, wherein the indexes and tables are 
scanned to extract and/or derive the requested data object from the database. 

2.1 .2. Basic Algorithms for Executing Query Operations 

A relational DBMS with a high-level query language interface (like SQL and 
Embedded-SQL) includes algorithms that translate the types of relational operations, 
which can appear in a query execution strategy. These strategies include the basic 
relational algebra operations (restriction, projection, product, union, intersection, 
difference, join, di vide) [Date 1990] [Elmasri 1994] and in many cases combinations 
of these operations. The database system must also have algorithms for processing 
special operations such as aggregation and grouping fonctions. An algorithm may 
apply only to a particular storage structure and/or access path; if so, it can only be 
used in case where the tables involved in the operation include these specific storage 
and/or access structures. 

4Keeping in mind that there exists an infinite number of query types. 
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There are many options for executing a SELECT statement. They depend on the 
table access paths and may apply only to certain types of select predicates. The 
database optimizer chooses the best execution plan during the query optimization 
phase depending on database statistics and on the data structures. The next sub­
section will present some of the typical algorithms used by the database system to 
implement a SELECT statements. 

2.1 .3. Search Methods for Selection 

Numerous search algorithms are possible for qualifying records within a table. 
One of the simplest is known as brute force table scan, it scans all the records in the 
table to search and retrieve records that satisfy a given predicate. An other one 
involves the use of indexes, called the index scan. Literature lists the following 
search methods (Ml through MS) to implement the data retrieval. Note that these are 
examples, to illustrate some of the major search methods that can be used by any 
commercial database system, to implement and execute queries. 

M l .  Linear search (or brute force). Scans all the data pages to qualify all records that 
satisfy the select filter ; hence Np page5 accesses. In case, we have an equality 
predicate on a unique key attribute, only half of the data pages are searched on 
the average before finding the records, do Np/2 accesses [Baudoin-Meyer 1984]. 

M2. Binary search. Can only be used if there is a physical ordering constraint on the 
data records. It is often used when the filter involves a comparison predicate. 
Assuming that the physical data page addresses are available in the file header, 
the binary search can be described by algorithm 2. 1.. A binary search usually 
accesses log2N p  pages, whether the record is found or not. Thus an improvement 
over brute force search, where in best case (when the record is found) an average 
of N p/2 pages are accessed and in worst case (when the record is not found) all 
N p  pages are accessed [Date 1990] [Baudoin-Meyer 1984]. 

left = 1 ;  right = Np 
middle = L(left+right)t2J 

if k < key value of first no 
record in middle page >-----� 

yes 

right = midle - 1 if k > key value of tirs no 
record in middle page >--- - �  

yes 

left = midle + 1 
1f exist record with ke 

value = k in middle 
page 

yes 

found 

algorithm 2. 1. : Binary search on an (unique) ordering key 

not found 

5 Np is the number of disk pages required to store Nr records. Later one we see how to calculate 
the number of pages required for the data file. 
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M3. Using a primary index6 to retrieve a single record. If the select condition 
involves an equality predicate on an attribute with a primary index then the 
primary index structure is used to retrieve the record. 

M4. Using a prima,y index to retrieve multiple records. If the comparison condition 
is <, s;, > or ;::: on a key attribute with primary index7 then the index will be used 
to find the records satisfying the condition . 

MS. Using a secondary (B+ -tree) index. On an equality predicate, this search can be 
used to retrieve a single record, if the indexing attribute has unique values (is a 
key) or to retrieve multiple records, if the indexed attribute is not a key. In 
addition, it can be used to retrieve records on conditions involving <, s;, > or ;:::. 

Method Ml  applies on all kind of tables, whereas all other methods depend on the 
attribute access path involved in the select_filter. Methods M4 and MS can also be 
used to retrieve records in a certain range. For example: 

SELECT Name 
FROM Employee 
WH ERE Salary > 30000 AND Salary < 50000. 

If the condition of a SELECT operation is a conjunctive condition; that is when it is 
made up of several simple predicates connected with the logical operator AND, then 
the DBMS can use one of the following additional methods to evaluate the operation: 

M6. Conjunctive selection. If on of the predicates involves an indexed attribute, the 
DBMS chooses first this predicate to access the table records using one of the 
above described methods. After retrieving the qualified records the DBMS 
checks the remaining predicates on those records. 

M7. Conjunctive selection using a composite index. If many attributes are used by on 
of the connected predicates and a composite composite index, or hash structure 
exists on the concerned attributes, then the DBMS uses the index directly. For 
example in case where the index was defined on the composite index ( Id ,  Name) 
of table . 

M8. Conjunctive selection by intersection of record pointers. This method may be 
used when secondary indexes are available on all ( or some of ) the attributes 
involved in on of the connected predicates and when the indexes uses record 
pointers rather than block pointers8 . Each index can be used to retrieve the record 
pointers that satisfy the individual predicates, then the intersection of the sets of 
qualified record pointers is used to retrieve the qualified records. Note that if 
only part of the predicates have secondary indexes, each retrieved record 1s 
further tested to determine whether it satisfies the remaining predicates . 

6 A primary index is an index in which the record placement in the table is determined by the 
index values. Examples of primary indexes are clustered B-tree, ISAM indexes [O'Neill- 1 994] and 
hash index. 

7 Excluding the hash index. 
8 Note that, it is not necessary that the index uses record pointers it also work with page pointers. 

However, the retrived pages still has to be scanned for the records satifying ail predicates, as the set of 
qualifed pages includes ail pages that satisfy at least on of the predicates. 
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Whenever a single predicate specifies the selection, we can only check whether an 
access structure exists for the attribute involved in the predicate. If an access path 
exists, one of the access path methods is used, otherwise the brute force table scan 
method is used. 

In all recent DBMSs, a module known as optimizer chooses the query execution 
plan based on the access structures, to retrieve data in the most efficient way. 
Therefore, during physica l tuning, we need the notion of predicate filter factor, 
selectivity to helpful in the search for the right indexes. It allows us to foresee and to 
estimate approximations of the query I/O cost. 

2.1 .4. The Database Optimizer 

T o get a better understanding on data access costs, we have to shed some light on 
the database optimizer module. We already know that the optimizer cornes into play 
during the query optimization phase. Out of this phase there are normally a large 
number of competing access plans, that can be executed to fulfill a given query, just 
as there are large number of ways to play a chess game with the object of winning ( or 
at least not losing). The system query optimizer tries to choose an access plan with a 
minimal access cost plan, based on minimizing run time as well as various other 
resources, such as CPU time, number of disk I/Os, and so on. The optimizer uses a 
set of information and statistics that human programmers typically do not have or of 
which they only have rude approximations. The optimizer uses statistical 
information, such as the cardinality of each attribute domain, the cardinality of each 
table, the number of values for each attribute, the number oftimes each value occurs 
for each attribute, and so on. This information is kept in the system catalog [Date 
1990]. Nevertheless, the query optimizer will probably not choose the optimal 
execution plan for complex queries, no more than a chess player plays the perfect 
game. 

The query optimizer attempts to minimize the use of certain resources by choosing 
the best query execution plans. The resources are CPU time and physical accesses 
(the number of I/O required to execute the query). Though computer memory is an 
important resource, memory capacity for various purposes is not taken into account 
here, because normally buffer size is determined at system initialization by the DBA. 
Since the optimizer can have no affect on this feature, it usually reacts in a relatively 
simple way by choosing different types of behavior in query plans at various 
thresholds of memory availability. 

The CPU and I/O resources are under control of the optimizer. For each 
alternative execution plan there is an associated CP U cost, noted COST cpu(PLAN), 
and an J/O cost, noted COST110(PLAN) .  Whenever, there are two incomparable costs it 
is possible that two query plans, PLAN 1 and PLAN2, will be incomparable in resource 
usage. See figure 2. 1.. 
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PLAN2 

Costcpu 

9.2 CPU sec 1 03 1/Os 

1 .7 CPU sec 890 1/0s 

figure 2. 1. : Two execution plans with incomparable CPU and 1/0 cost pairs9 

Clearly PLAN 1 is superior to PLAN2 in terms of CPU costs, but PLAN 1 is superior in 
terms of I/O costs. To provide a single measure that can be minimized 
unambiguously, the optimizer defines the total c ost of execution plans, COST(PLAN), 
as the weighted sum of 1/0 costs and CPU costs. 

COST(PLAN) = W1 * COST1,o(PLAN) + Wz * COST cpu(PLAN) 

Where W1 and W2 are positive numbers, weighting the relative importance of each 
measure within the total cost. 

The optimizer chooses the lowest COST(PLAN) value within all alternative 
execution plans that can answer the query. In chapter 4 we discuss how to analyze 
alternative àccess plans to derive relatively accurate associated 1/0 costs. It is not 
easy from a theoretical point of view to determine the associated CPU usage, as this 
feature depends strongly on details of CPU instructions, the efficiency of database 
system implementation and OS features. Of course, the optimizer for a specific 
DBMS an OS is able to compute CPU costs, using CPU statistics measured for 
internal fonctions. As a rule of thumb, we assume that CP U c osts do  n ot vary as 
much .from one access plan ta an other. Note that in many situations CPU costs are 
linked to I/Os, so we can assume with no great harm that minimizing I/Os minimizes 
CPU as well. Thus implying that situation, for I/O and CPU costs, like the one in 
figure 2. 1. are quiet unusual. 

2.1 .5. F i lter Factor, Selectivity and Database Statistics 

To define the selectivity let us use the definition made by [ORACLE 7.0]: 

'Selectivity is the percentage of rec ords in a table that the query selects. Queries 
that select a small percentage of a table 's rec ords have go od selectivity, white a 
query that selects a large percentage of rec ords has po or selectivity. 

Throughout this document we assimilate to the notion of selectivity, s, the term of 
filter factor, ff. 

Before we can give estimations of the filter factor we have to make the following 
assumptions. 

� Uniform distribution of individual attribute 
� Independent join distribution of values from any two unallied attributes. 

To determine the filter factor of a query predicate the optimizer uses the following 
sources of information. 

9 [O'Neil 1994] 
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� Operators used in the WHERE clause. 
� Key and non-key attributes uses in the WHERE clause. 
� Table and data statistics. 

Let us go through some examples, to paint out how to estimate the filter factor for 
different predicates. 

Consider an attribute A1 , with 100.000 distinct values, noted CARD(A1 )  = 1 00.000. 
Assuming that all A1 values are equally distributed within table T1 (the uniform 
distribution assumption), we estimate the filter factor for the equality predicate, A 1 = 
5, to: 

ffT 1 .A1 = 5  = 1 /1 00.000 = 0 .00001 

Making the same considerations, we are able to estimate the filter factor of a 
between predicate, A1 between 5 and 505 : 

ffA1 between 5 and 505 = 501 * ( 1 /1 00.000) = 0.005 

Similarly consider the key attribute A2, having 100 distinct values CARD(A2) = 1 00. 
And the predicate, A2 = 20, having a filter factor of: 

ffA2 = 20 = 1 /1 00 = 0 .01  

Let us assume that the join distribution of values from two unallied attributes is  
independent, meaning that the filter factor for compound AND predicates multiply, so: 

ffA2 = 20 And A1 between 5 and 505 = ( 1 /1 00) * (500/1 00.000) = 0.00005 

Note that we borrowed the filter factor terminology from DB2 and [O'Neil- 1 994] , 
which base there optimizer filter factor estimations on statistics gathered by the DB2 
RUNSTATS utility. 

Figure 2.2. lists some of the statistics given by the RUNSTATS utility 1 0 • For each 
statistic we list its name, the DB2 catalog table and the attribute which holds it. Each 
of these statistics have default values in case where RUNSTATS has not been run. 

Catalog Name Statistic Name 
SYSTABLES CARO 

SYSCOLUMNS 

SYSINDEX 

NPAGES 

COLCARD 
HIGH2KEY 
LOW2KEY 

NLEVELS 
NLEAF 
FIRSTKEY-CARD 

FULLKEY-CARD 

CLUSTERED­
RATIO 

Default Value 
1 0.000 
Ceil(1 +CARD/20) 

25 
N.A. 
N .A. 

0 
CARD/300 
25 

25 

0% if non-clustered 
95% if clustered 

Description 
Number of records in the table 
Number of data pages that contain rows 
of the table 

Number of distinct values for this attribute 
Second highest value for the attribute 
Second lowest value for the attribute 

Number of levels of the index 
Number of leaf pages 
Number of distinct values in the first 
attribute, A 1 ,  of the key 
Number of distinct values in the full key, 
(A1 ,A2,A3) 
Percentage of records of the table that 
are clustered by the index values 

figure 2.2.: Statistics given by R UNSTATS utility for Access Plan Determination 

IO Similar statistics can be gather by similar statements for different database system, for example 
the EXPLAIN statement in ORACLE 7. 
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Note that these statistics can only be used on existing databases, however, they 
give us reference of what we have to consider when estimating the filter factor and 
I/O costs. 

Considering the above statistics, DB2 considerations and our reference to [O'Neil 
1 994], we can give a list, in relation 2. 1., of different predicates and their 
corresponding relations for filter factor estimations. 

Predicate Type Filter Factor Notes 
Attr = const 1 /COLCARD 'Attr <> const' is equal to 'Not( Attr = const)' 

Attr 0 const Interpolation relation 0 is a comparison predicate other than equality. 

Attr < const or (const - LOW2KEY) LOW2KEY and H IGH2KEY are estimations for 
Attr > const extreme points of range of Attr values 

(HIGH2KEY - LOW2KEY) 

Attr BETWEEN (const2 - const 1 )  'Attr NOT BETWEEN const1 AND const2' i s  equal to 
const1 AND const2 (HIGH2KEY - LOW2KEY) 'NoT(Attr BETWEEN const1 AND const2)' 

Attr in list size(liste) / COLCARD 'Attr NOT in list' is equal to 'NoT(Attr in list)' 

Attr is Null 1 /COLCARD 'Attr is NOT Null' is equal to 'NoT(Attr is Null)' 

Attr like 'patern' Interpolation relation Based on the alphabet 

Pred1 and Pred2 ff Pred1 * f f Pred2 As in probabil ity 

Pred1 or Pred2 (ff Pred1 + f f Pred2) - (ff Pred1 * As in probability 
ff Pred2) 

NoT Pred1 1 - ffpred1 As in probability 

relation 2.1.: Fi/ter Factor relations for Various Predicate Types 

Knowing the estimation of the filter factor, for a given SQL query predicate, we 
are able to estimate, per se, the average number of records qualified by the predicate, 
k, by multiplying the filter factor and the number of records in the table. 

k = ff * Nr  
where 
ff: Filter Factor for predicate P 
Nr: Number of records in table 
relation 2.2.: Number of Records Qualijied knowing the Fi/ter Factor 

It is obvious that the lower the value of the filter factor is the fewer records the 
predicate qualifies. It is also true that the lower the filter factor is the higher is the 
probability that the predicate will be used first during query execution. 
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At the beginning of the section we made the assurnption of uniforrn distribution, 
however, this assurnption is not always valid. For exarnple, take an extrerne situation 
where we have a sex attribute in a table containing all residents at a boy school. 
Although there are occasional residents with sex = 'F', staff and faculty rnernbers for 
exarnple, it is clear that a filter factor estirnated in terrns of 1 /CARD(sex) = 1 /2 is 
rnisleading. A query optirnizer that uses this assurnption rnay very well rnake 
incorrect decisions. For this reason, D82 and a nurnber of other database systems, 
such as INGRES, provide statistics on individual attribute values that deviate 
strongly frorn the uniforrn assurnption. It is therefore important to locate and to note 
such attributes during the requirernents collection phase. 

Note that for the rest of the paper we assume that all attribute values are uniforrnly 
distributed arnong the data pages. Note also that it is easy to imagine that exact 
estimations of the filter factor for all predicates are not available per se. They are 
often kept in the DBMS catalog tables. Thus, for databases at conceptual level, 
estimations have to be perforrned. The database designer uses its requirernent 
collection to foresee the query predicate filter factors. 

2.1 .6. Description of SQL Select Statement 

Before we start classifying the query data operations into classes, we should 
examine the structures and the possibilities of the SQL Select staternent. Figure 2.3, 
gives a general forrn of the Select staternent, and we will develop its syntactic 
elernents within the following lines. 
Subselect Statement 
SELECT [ail ! distinct] expression {, expression} 
FROM tablename [corr_name] {, tablename [corr_name} 
[WHERE select_filter] 
[GROUP BY column {, column}] 
[HAVING select_fi lter] 

Ful l  Select Statement 
SUBSELECT 
[UNION [ALL] SUBSELECT] 
[OROER BY result_column [asc I desc] {, result_column [asc I desc]} 

The OROER Bv clause allows us to place qualified records in order by one or more 
result_colurnn values appearing in the target list. The [asc I desc] choice enables us to 
place records in ascending or descending order ; asc is the default and rneans that 
srnaller values are placed before higher values. 

Note, that the UNION clause cornes before the OROER BY clause. The order of clauses 
within the Select staternent allows us to define a conceptual order of query 
evaluation. Rernind that the following order of evaluation rnight be different frorn the 
actual order chosen by a DBMS optirnizer. 

04.09.1996 

Step 1: First the Cartesian product of all tables in the Frorn clause is forrned. 
Step 2 :  Frorn this, records not satisfying the Where condition are elirninated. 
Step 3: The rernaining records are grouped according to the Group By clause. 
Step 4 :  Groups not satisfying the Having clause are then elirninated. 
Step 5 :  The expressions of the Select clause are evaluated. 
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Step 6 :  If the key word Distinct is present, duplicate records are eliminated. 
Step 7 :  The Union is taken after each Subselect is evaluated. 
Step 8 :  Finally, the set ofretrieved records is sorted if an Ortler By is present. 

2.1.6. 1 .  Expressions, Predicates and select_filter 

The select filter is the condition used in the WHERE clause to eliminate records 
and in the HAVING clause to eliminate groups :  records are retained in step 2 and 
groups in step 4 when the corresponding select_ filter evaluates to TRUE. 

Let us start, by describing the syntax element known as an expression (expr); that 
is either an arithmetic or a character expression (expr = aexpr I cexpr). An expression 
occurs in a select_filter, for example, when we compare an attribute value to a 
constant : T1 .A1 > 1 00 :  both T1 .A1 and 1 00 are simple expressions. Note, that 
expressions, as we define them here, can also appear in the target list of the select 
statement. 

An aexpr is an arithmetic expression, made up of constants, table attributes, 
arithmetic operators, built-in arithmetic fonctions, and/or set of fonctions. Figure 2.4. 
gives the definition of an arithmetic expression. 

aexpr Examples 
constant 6, 7.00 

column_name Dollars, Price, Percent 

qualifier.column_name Orders.Dollars, P.Price 

aexpr arith_op aexpr 7.00 + Product.Price 

(aexpr) (7.00 + Price) 

function(aexpr) sqrt(?.00 + Price) 

set_function(aexpr) sum(Price) 

figure 2.4.: Recursive Dejinition of the Arithmetic Expression (aexpr) 

Similarly as for the arithmetic expression figure 2.5. gives the definition of a 
character expression, cexpr: 
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cexpr 
constant 

column_name 

qualifier.column_name 

cexpr op cexpr 

(cexpr) 

function( cexpr) 

set_function( cexpr) 

Examples 
'Namur', 'Dupond' 

Id, Salary, City 

Employee. ld ,  City 

Employee. ld + 'Namur' 

(Employee. ld + 'Namur') l 'I 

right ('Namur',4) 12 

count( distinct Employee.Salary) 

1 1  concatenate two strings with a + operator 
12 result = 'amur' 
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figure 2. 5.: Recursive Definition of a Character Expression (cexpr) 

Out of the SQL standards we can group (figure 2.6) seven kinds of predicates, 
which is the simplest form of logical statements. 

Predicates Form Examples 
comparison predicate expr1 0 13 (expr2 1 SUBSELECT) Employee.Salary > (SUBSELECT) 

between predicate expr1 [not] between expre2 and expr3 Salary between 40000 and 70000 

quantified predicate expr 0 [all I any] (SUBSELECT) Salary >= ail (SUBSELECT) 

in predicate expr [not] in (SUBSELECT) Id in (SUBSELECT) 

expr [not] in (val (, val)) City in ('Namur', ' Liège') 

exists predicate [not] exists (SUBSELECT) exists ((SUBSELECT) 

is nul l predicate column_name is [not] null disent is nul l 

l ike predicate column_name [not] like 'pattern' Employee.Name like 'A%' 

figure 2.6. Predicate of Standard SQL 

Given these predicates, we define the select_filter as it is in figure 2.7. : 

select filter Examples 
predicate Employee. ld = 1 2345, exists (SUBSELECT) 

(search condition) (Employee. ld = 1 2345) 

not select_filter not exists (SUBSELECT) 

select_filter and select_filter not (Employee. ld = 1 2345) and Dep = 'C001 ' 

select_filter or select_filter not (Employee. Id = 1 2345) or Dep = 'C00 1 '  

figure 2. 7.: Recursive Definition Select _Fi/ter 

2.1 .7. Two Query Classes 

Now that we have defined and described the Select statement, and its aspects of 
referencing data objects (records) within the database, we will classify the query 
operations. 

The access is  often only part of a general step which leads to data extraction or 
data modification. In general the data access operation can be defined as the access to  
abjects of a sequence. All possible and imaginable data accesses can be based upon 
this definition. 

Note that we point the data access definition on the notion of sequence. A 
sequence of records can be defined as a set of records following a logical ordering. 
However the ordering is not mandatory. The set of qualified records is defined by a 
select_filter, predicate within the WHERE clause. The ordering of the records is often 
the natural ordering of the database (the order of a table or the order of an access 
key). But it can also be explicitly specified in the Select statement using the 0RDER 
BY clause. On a more common way, the user can specify an implicit or explicit 
ordering of the qualified set of articles. 

1 3  The comparison operator belongs to the following set of operators {=, <>, >, >=, <, <=} 
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A set of qualified records is defined by a group expression, a select condition, a 
predicate. The set of records can be qualified using an access mechanism, like index 
or hash structures, or by afilter, like "brute force" table scans. Both mechanisms and 
there respective cost estimations will help us to understand and solve the index 
selection problem. 

In practice we encounter two kind of access classes: 

� First kind, is the access to a set of records: this operation gives access to a set ( or 
sequence) of records. The requested set of records can be ordered in an implicit or 
explicit way. 

� Second kind, is the access to one record: this operation gives access to one and 
only one record of a given set of records. The access is specified by a sequence, 
embodying the questioned record, and a position of the record. 

2.1 .8. Abstract the Queries into a Few Query "Types" 

The preceding sections have revealed that there exists an infinite number of 
queries that can be constructed using predicates as building blocks. Therefore, it is 
helpful to abstract the queries into the 8 most used query types [Shasha 1992]. Later 
on, we will examine the strengths and the possibilities of each kind with regard to the 
diff erent data access structure that we will encounter. 

1. Point query. The query returns at most one qualified record (or part of a record), 
based on an equality comparison predicate (=). If we assume that attribute A1 is a 
key (uniqueness of values) then the following query is a Point Query : 

SELECT A 1 ,  A2 
FROM T1 
WHERE A1 = 5 

2. Multipoint query. The query returns a list of qualified records based on an equality 
predicate. The list of records can be order depending on an implicit or explicit 
ordering logic. If we assume that attribute A2 is not a key (non-uniqueness of 
values) then the following query is a Multipoint Query: 

SELECT A 1 ,  A2 
FROM T1 
WHERE A2 = 20 

3. Range query or Between query. The query returns a set of qualified records where 
A2 values lie within an interval or half-interval. Assuming that attribute A2 is not a 
key the following queries are Range Queries : 

SELECT A 1 ,  A2 
FROM T1 
WHERE A2 BETWEEN 20 AND 60 

SELECT A 1 , A2 
FROM T1 
WHERE A2 >= 20 

4. Preftx match query. The query returns a set of qualified records based on a set of 
attributes, A, by specifying a prefix on A. For example, consider the sequence of 
attributes A3, A4, A5 (with respect to the ordering). The following are prefix match 
predicates for the set of attributes: 
A3 = 'Gates', 
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A3 = 'Gates' AND A4 = 'Bil l ' 
A3 = 'Gates' AND A4 LIKE 'Bi%' 

5. Extrema! query: the query returns a list of qualified records (or parts of records) 
whose attribute values ( or set of attributes values) are a minimum or maximum. 
SELECT A 1 ,  A2 
FR0M T1  
WHERE A2 = MAX(SELECT A2 FR0M T1 ) 

6. Ordering query. The query includes the OROER Bv clause, it returns a set of 
qualified records in ascending or descending order ( asc I desc) of a set of specified 
attribute. 
SELECT A 1 ,  A2 
FR0M T1 
ÜRDER BY A2 

7. Grouping query. The query uses the GR0UP Bv clause, it partitions the results of a 
query into groups. This kind of queries is often used during report generation and 
applies many cases a fonction to each set of grouped values, records. For example, 
find out the average salary for each department. 
SELECT A1 , AVG(A2), A3 
FR0M T1 
GR0UP BV A1 , A3 

8. Join Query or Query involving one ore multiple Subselect(s). The query links 
two or more tables. Loosely spoken, the query retrieves data from more than one 
table. The evaluation of join queries is explained during a future section. Note that 
join queries represent one of the most powerful features of the relational system. 

If the predicates linking the table are based on an equality comparison predicate, 
the join query is called an equijoin query. 

SELECT T1 .*, T2.* 
FR0M T1 , T2 
WHERE T1 .A 1 = T2.A7 

The result of this query is said to be a join of table T1 and T2 over matching 
attributes T 1 .A1 and T2.A7 values. The equijoin by definition must produce a result 
containing two identical attributes, if one of those two attributes is eliminated we 
speak about natural Join. 

There is no need that the comparison predicate within a join condition is an 
equality comparison predicate, though, in most cases it will be . 

Many additional predicates can exist in concordance with a join predicate. The 
following query is an example: join table T1 and T2 with over attribute T1 .A 1 and 
T2.A7, but omitting all T1 records with A2 = 20. 

SELECT T1 .* ,  T2 .*  
FR0M T1 , T2 
WHERE T1 .A1 = T2.A7 
AND T1 .A2 <> 20 

2.1 .9. Methods for Join ing Tables 
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The join query is one of the most powerful features of relational systems. 
Therefore, it is important to study the meaning of joining and the algorithms 1 4  for 
joining two tables. First, let us give an accurate definition [O'Neil 1 994] of the Join 
operati on. 

We define a join oftwo tables to be a process in which we combine records of one 
table with records of another to answer a request. In the following definition we 
represent the join operation by the symbol EB. 

Consider the table R and S, defined as 
T1 = A1 . . .  An B1 . . .  Bk 
T2 = B1 . . .  Bk C1 . . .  Cm 
where n, k ,m 2: O. Note that B 1 . . .  Bk is the complete subset of attributes shared by 

the two tables 1 5 . The join of the table R and S is the table represented as R E9 S, 
defined as 

T1 E9 T2 = A1 . . .  An B 1 . . .  Bk C1 . . .  Cm, 
A record is in the joined table, if and only ifthere are two records u in R and v in S, 

such that u[Bvl = v[Bul for all v, 1 s v s k; then attribute values on the record t are 
defined as follows: 

t[Aj] = u[Aj] for 1 s i s n, 
t[B j] = u[B j] for 1 s i s k, 

and t[C j] = u[C j] for 1 s i s m. 

When the record u in T1 and v in T2 gives rise to a record t in T1 E9 T2, the two 
records are said to bejoinable. 

By this definition, a join occurs whenever two or more tables appear in the FR0M 
clause of a Select statement . Even if we are taking a simple cartesian product of 
records from two tables (a table product); we refer to it as a join. As we will see, a 
Select statement with a single table in the FR0M clause, and a WHERE clause that 
contains a SUBSELECT from a different table, is often converted by the query 
optimizer to an equivalent query statement that joins tables. 

Now that we have seen a definition of joining tables, let us examine three 
algorithms used to join tables. The algorithms are known as nested loop join, merge 
scan join, and hybrid join [O'Neil 1 994] .  Each of these methods has performance 
advantages in a certain class of situations that can arise during join query evaluation. 
Other methods have been developed for performing joins 1 6, they surely have 
performance advantages in special circumstances, but we will restrict our attention to 
the three denoted join methods. 

To begin with, we consider the situation where exactly two tables appear in the 
FR0M clause. 
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14 We concentrate on three algorithms used by DB2. 
1 5 This subset may be empty ifk = O. 
16 A special method for example is the hash join. 
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A join of two tables usually occurs in two steps. During the first step, only one 
table is accessed; this is referred to as the outer table. In the second step, records of 
the second, inner table are combined with records of the first, outer table. Other 
predicates, involving attributes of the two tables that have not been retrieved through 
an access structure, are used to qualify records as they are scanned. As a result of all 
this, a composite table is generated that contains all the qualified records of the join. 
If a join with a third table is now necessary, the composite table becomes the outer 
table for the succeeding join step. Otherwise, specified attributes of the composite 
table provide the result of a join being fully materialized in a disk work file, it is 
important to realize that we may be able to avoid such wasteful materialization. For 
example, if the user is only likely to look at the first 20 or 30 records of the resulting 
output, in this case it would be terribly inefficient to put to disk all records of the 
composite table. Thus in Embedded SQL, when a cursor on a join query is first 
opened and the first record is retrieved, we avoid materializing tables whenever 
possible. 

2.1.9.1 .  Nested Loop Join 

Consider the following query: 
SELECT T1 .A 1 , T1 .A2, T2.A3, T2.A4 
FROM T1 , T2 
WH ERE T1 .A 1 = 5 AND T1 .A2 = T2.A3 

In a nested loop join, the table referred to as the outer table corresponds to the 
'outer loop ' in a nested pair ofloops, as we see in figure 2. 7 .. Assuming that table T1 
is the outer table, the first step of the nested join determines records in T1 that verify 
predicate T1 .A1 = 5. We are able to retrieve the requested records from table T1 using 
one of the search methods seen in section 2. 1.3 .. 

Now that the records of the outer table have been qualified (note that they have 
not actually been extracted), a loop is performed to retrieve each of these records. For 
each qualified record of the outer table, a request is performed on the second table, 
T2, and all records that satisfy the join predicate, T1 .A2 = T2.A3, are retrieved. 

Note that because the record of T1 is fixed for this request, we can treat the value 
T1 .A 1 as if it were a constant, K. Therefore, the records retrieved from T2 are exactly 
those that satisfy a predicate of the form, T2.A3 = K, and an index on attribute T2.A3 
would probably make the retrieval more efficient. 

R1 : FIND ALL RECORDS T1 .* IN THE OUTER TABLE T1 WHERE A1 = 5; 

FOR EACH RECORD T1 .* FOUND IN THE OUTER TABLE; 

R2: FIND ALL RECORD T2.* IN THE INNER TABLE WHERE T1 .A2 = T2.A3 

FOR EACH RECORD T2.* FOUND IN THE INNER TABLE 

RETRIEVE: T1 .A 1 ,  T1 .A2, T2.A3, T2.A4 

END-FOR; 

END-FOR; 
algorithm 2. 2.: Algorithm for Nested Loop Join 
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Note that label R1 and R2, in algorithm 2.2., designated retrievals in join 
processing. Additional predicates limiting the records of either table can be added to 
the relevant retrieval. Either retrieval can be performed using an index scan or a table 
scan. The outer table has only one retrieval, while the inner table has a number of 
retrievals equal to the number of qualifying records in the outer table. The I/O cost of 
the join operation is therefore given by relation 2.4 .. 

C0ST110 (NESTED L00P JOIN} = C0ST 110 (OUTER TABLE RETRIEVAL} + 

NUMBER OF ÜUALIFYING RECORDS IN OUTER TABLE * 

C0ST 110 ( INNER TABLE RETRIEVAL) 
relation 2. 4. : Cast estimation for Nested Loop Join 

Figure 2.8. illustrates the method of nested loop join for the above query using 
table T1 and T2. 

OUTER TABLE 
T1 

A l  A2 

5 1 9  

5 1 3  
5 1 5  
5 1 7  

5 1 2  

5 1 9  
5 1 8  

- -

,._ 

--

,.__ 
·····-··-·-l 

INNER TABLE 
T2 

A3 A4 

1 7  22 

1 9  24 
1 5  28  

1 9  27 

1 2  29 

1 4  3 1  
1 3  25 

COMPOSIT {JOIN) 
TABLE 

Al A2 A3 A4 

� 5 1 9  1 9  24 
5 1 9  1 9  27 
5 1 3  1 3  25 
5 1 5  1 5  28 
5 1 7  1 7  22 
5 1 2  1 2  29 
5 1 9  1 9  24 
5 1 9  1 9  27 

figure 2. 8. : Illustration of Nested Loop Join 

To speed up the execution of the nested loop join it is helpful to define an index 
on the matching attributes of the inner table. Nested loop join is particularly efficient 
when only a small number of rows qualify from the outer table after the limiting 
predicates are applied. This means that the predicate on the outer table should have a 
small filter factor or a large selectivity, or when the inner table is small enough so 
that the entire index and data disk blocks could be held in memory buffers after they 
have been accessed once during the join. 

2.1 .9.2. Merge Join 

To examine the merge join method, let us consider the following query : 
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SELECT T1 .A 1 ,  T1 .A2,  T2.A3, T2.A4 
FR0M T1 , T2 
WHERE T1 .A1 = 5 AND T2.A4 = 6 and T1 .A2 = T2.A3 
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The merge join scans the two tables, T1 , T2, only once, in the order of their join 
attributes . The execution plan starts by applying the two non-join predicates and 
creating two intermediate tables, IT1 , IT2 . In the execution plan, we first evaluate 
'SELECT A 1 ,  A2 FROM T1 WHERE A 1 = 5 OROER BY A2',  placing the requested records in 
the intermediate table IT1 with attributes A1 and A2, and in sorted order of A2. Then 
we evaluate 'SELECT A3, A4 FROM T2 WHERE A4 = 6 OROER BY A3', to get the 
intermediate table IT2 with attributes A3 and A4, and sorted on A3'. Note that these 
intermediate tables are usually written to disk work files as temporary tables, as they 
are generally too large to be hold in memory buffer . 

Now that we have two smaller tables, than the original tables, we are prepared to 
perform the merge join. To perform the merge join on IT1 and IT2, we associate a 
pointer to the first records for each intermediate table . As the algorithm proceeds, the 
two pointers move forward in a way that any matching (A2, A3) values for records in 
both tables are detected . Except for cases where multiple A2 identical values in IT1 
match multiple A3 identical values in IT2, both pointers move steadily forward 
through the records of both tables, and detect all matchings, IT1 .A2 = IT2.C3, that 
exist. The pseudo-code of algorithm 2 .3. describes the execution algorithm of the 
merge join method, the A2 value of record in table IT1 pointed to by pointer P1 1s 
represented by of P1 ➔ A2, and similarly for P2 ➔ A3 in table IT2 .  

CREATE ÎABLE ITL As: SELECT A 1, A2 FROM TL WHERE A 1  = 5 OROER B Y  A2; 
CREATE TABLE IT2 As: SELECT A3, A4 FROM T2 WHERE A4 = 6 OROER BY A3; 
SET P1 POINTER TO FIRST RECORD OF lî1 ; 
SET P2 POINTER TO FIRST RECORD OF lî2; 

I" OUTER TABLE 
I" INNER TABLE 

*/ 
*/ 

MJ: WHILE (TRUE) { /* LOOP UNT/L EXIT MJ LOOP */ 

WHILE (P1 ➔ A2 > P2 ➔ A3) { 
SET P2 TO NEXT RECORD IN lî2; 
IF  (P2 PAST LAST RECORD) EXIT MJ LOOP; 

} 

WHILE (P1 ➔ A2 < P2 ➔ A3) { 
SET PL TO NEXT RECORD IN lî1 : 
IF (PL PAST LAST RECORD) EXIT MJ Loop; 

} 

IF (P1 ➔ A2 == P2 ➔ A3) { 
MEMP = P2; 

} 

WHILE (P1 ➔ A2 == P2 ➔ A3) { 

} 

RETRIEVE: ITL.AL, ITL.A2, IT2.A3, IT2.A4; 
SET P2 TO NEXT RECORD IN 1 î2; 

I" IF P2 NEEDS TO ADVANCE */ 
I" ADVANCE IT */ 
I" OUT OF ROWS, EXIT */ 

I" IF P1 NEEDS TO ADVANCE */ 
I" ADVANCE IT */ 
I" OUT OF ROWS, EXIT */ 

I" FOUND MATCH ON JOIN */ 
I" REMEMBER P2 START POINT */ 
I" LOOP */ 

I" ADVANCE P2 */ 
I" LOOP CONTINUES IF P1 ➔ A2 */ 
I" UNCHANGED */ 

I" DONE WITH JOIN MATCH */ 

I" SINGE FELL THROUGH, P2 ➔ A3 IS NEW OR BEYOND END OF TABLE */ 
SET PL TO NEXT RECORD IN ITL; I" ADVANCE PL */ 
IF (PAST LAST RECORD) EXIT MJ Loop; I" OUT OF ROWS, EXIT */ 
IF  (P1 ➔ A2 == MEMP ➔ A3) I" IF NEXT P1 ➔ A2 IS SAME */ 

P2 = MEMP; I" START OVER WITH P2 */ 

/* END OF MJ LOOP */ 
algorithm 2. 3.: Algorithm for the Merge Join Method 
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Once a match has been found during execution, we keep P1 fixed and advance P2 
through all duplicate values. Then we advance P 1 ;  if we find a duplicate, this is the 
only situation in which a pointer moves backward, we set P2 = MEMP to run through 
all duplicates of P2 again. Clearly if there are a lot of occurrences where A2 and A3 
have the same values, a large number of records will be joined. However, it is more 
common that there will be a small number of records in one table matching more 
than one record with another, since we normally do not perform joins on attributes 
with a large number of duplicate values. In any event, the query optimizer can 
determine the likely number of duplicates facing each other using statistics, and it is 
likely that most computer resources will be used in finding any match at all. 

Note that it is not always necessary to extract the records from table T1 or T2 into 
intermediate tables. If for example, there was an index on attribute A 1 of table T1 , 
which allows us to qualify the records with predicate 'T1 .A 1 = 5', the execution plan 
would use an intermediate table as it can access the qualified records in order by 
T1 .A 1 .  This would be possible, for our Select statement, if T1 had an index on (A 1 ,  
A2): the matching scan through the index with the given predicate would provide all 
records of T1 in order by A2. The same consideration holds for table T2. 

2.1 .9.3. Hybrid Join 

The hybrid join method is used less frequently than both other join methods, and 
to avoid confusing the reader the reader we shall give only a short description of the 
method. 

The hybrid join uses also an outer table and an inner table as the nested loop and 
the merge join. The first step is the same as that of merge join for the outer table. The 
table is scanned once according to the join attribute order, either through an index or 
after extracting a set of records, qualified by a predicate, into an intermediate table 
IT1 . As records of the outer table are being scanned in the join attribute order, 
matching join attribute values of the inner table are looked up through an index on 
the join attribute. The records of the inner table are not accessed yet, however; 
instead the records from the outer table, with an additional attribute giving the RIO 
value of each matching join record in the inner table, are written to an intermediate 
table IT2. Records of IT2 are stored in record pointer (RIO) order, and the technique of 
list prefetch can be used to retrieve records from the inner table to join with the outer 
table records. 

The advantage gained over the nested loop join arises from the fact that all records 
from the inner table can be performed using list prefetch I/0 with large I/0 pages. 
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2.1.9.4. Example17 of cost estimation for Nested, Merge and Hybrid Join 

Assume that we have two tables T1 with attributes A 1 and A2, and table T2 with 
attributes A3 and A4, each with a cardinality of 1.000.000 records of 200 bytes each. 
We are going to estimate the I/0 cost of the query, in figure 2.9 and 2. 10. for all three 
join methods. We will measure the estimations in terms of elapsed time in seconds 
and pages requested, broken clown into random (R), sequential (S) and list prefetch 
I/Os (L) l 8. 

SELECT T1 .A 1 ,  T1 .A2, T2.A3, T2 .A4 
FROM T1 , T2 
WHERE T1 .A1 = 5 AND T2.A4 = 6 AND T1 .A2 = T2.C3 

figure 2.9.: Query used ta Estimate 1/0 Cast for Nested Loop, Merge Join 

Let us make some assumptions on the tables. We assume that a non-clustering 
index A 1 X exists on attribute A 1 of table T1, and an index A3X and A4X on table T2 
respectively on attribute A3 and A4. Assume that the fil ter factors for these predicates 
are given as follows : 

th- ffA1 = const = ffA4 = const = 1 / 1 00; 
th- ffA2 = const = 1 /250.000; and 
th- ffA3 = const = 1 /500.000. 
We will estimate the I/0 cost in terms of elapsed time for a nested loop, a merge 

and an hybrid join plan to answer the query, where the outer table is T1 and the inner 
table is T2. 

2. 1 .9.4. 1 Estimating 1/0 cost for Nested Join Method 

For the merge join plan we consider the following three steps 1 9 : 

( 1). Using index A1X, retrieve all records from table T1 which verify predicate 
T1 .A1 = 5. 

(2). Think of T1 .A2 as being a constant, K. For each record retrieved from the outer 
table T1 all records using index A3X from the inner table T2 such that T2.A3 = 
K. As the records from this index scan are retrieved, further restrict the 
records using predicate T2.A4 = 6. 

(3). Print out T1 .A1 and T1 .A2 from outer table record and T2.A3 and T2.A4 for the 
qualified inner table record. 

1 7  [O'Neil 19994] 
1 8  Rules of thumb for I/ rates, Random I/0 40 pages/sec, Sequential I/0 400 pages/sec, List 

prefetch I/0 1 00 pages/sec 
19 [O'Neil 19994] 
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Using the filter factor and the number of records in Tl,  we are able to estimate the 
number of records retrieved from table Tl in step ( 1 ) :  ( 1 /1 00) * 1 .000.000 = 1 0. 000 
records, likely to be all on different pages (because of the non-clustering 
assumption). We can assume that the optimizer will use a list prefetch20 to retrieve 
the qualified records. The index I/O cost for this retrieval is assumed to be 
insignificant next to the data page I/O cost. We therefore assume that COST110(OUTER 
TABLE RETRIEVAL) = 1 0. 000 L, where L is the fraction of time need to perform a list 
prefetch read2 1 . Thus the elapsed time is equal to 10.000/100 seconds. 

For each outer table record qualified, we assume that the value T1 .A2 is in the 
range of values for attribute T2.A3. Since f(A3 = const.) = 1 /500.000, we expect to 
retrieve 2 records out of a table with CARD(T2) = 1 .000.000 records. This requires for 
each new value of T2.A3 one random I/O to the leaf level of index C3X, assuming that 
upper-level nodes are in memory buffers. Plus two I/Os, on average, to retrieve the 
two pages containing the two qualified records. Thus, the I/O cost for the 10.000 
different inner loop steps is 1 0. 000 * ( 1 R  + 2R), where R is the fraction of time need to 
proceed a random read22 . We would normally perform a list prefetch I/O to retrieve 
the data pages in this situation, but recall that it is quiet misleading to think of a list 
prefetch of two pages as taking place in 2/100 seconds, since there are too few pages 
retrieved to amortize the retrieval as equivalent to 2R, and therefore the elapsed time 
for inner loop is calculated from 1 0 .000 * 3R, or 30.000/40 = 750 seconds. An 
approximation of the elapsed time is 100 sec + 750 sec = 850 seconds. 

Now to determine how many records are retrieved in the query, we see that there 
are 10.000 records retrieved from T1 and for each qualified records in T1 there are 
two records joined to it, on the average, from table T2. Therefore, there are about 
20.000 records retrieved at this point, after which a qualification test takes place to 
see if predicate T2.A4 = 6 is verified. With a filter factor of 1/100, the final number of 
records retrieved is ( 1 / 1 00)*20.000 = 200 records. 

2.1 .9.4.2. Estimating 1/0 cost for Merge Join Method 

We consider the same assumptions than for the nested join example. The strategy 
for answering the query in figure 2.9. with a merge join consists of following steps. 

(1). Using index A1X, retrieve all records from table T1 which verify predicate 
T1 .A1 = 5. Again, there will be 10.000 records retrieved. Output the A1 and A2 
values to an intermediate table IT1, and sort the result by A2 values. 

(2). Using the index A4X, retrieve all records from T2 where predicate T2.A4 = 6 is 
verified, there are 10.000 qualified records, output the resulting A3 and A4 
values to intermediate table IT2, and sort them by A3 values. 

Now that two intermediate tables have been created, the merge join step may take 
place, following algorithm 2.3. 

20 Note that the list prefetch is an access techniques used to speed up data retrieval. It wil l  be 
given a deeper look in section 3 . 1 .2 .. 

04.09. 1 996 

21 In section 3 . 1 .2 .  we see that the a list prefetch fraction, L, is valuated to 1/ 1 00. 
22 See section 3 . 1 .2 . .  
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As for the nested loop join, step (1) requires a read of 10.000 entries from the 
T1 .A 1 index leaf level, which we treat as insignificant, followed by an I/O cost of 
10.000 accesses to retrieve the indexed records in the different data pages. If we 
assume that each of the A 1 and A2 values extract requires 10 bytes , the materialized 
table IT1 requires 200.000 bytes, or about 50 data pages. Without no great harm we 
can think of performing the sort in memory, so the total I/O cost of step ( 1) is equal 
to 1 0.000L. The same considerations apply to step (2). The total cost for the plan is 
therefore 20.000L, with an elapsed time of 200 seconds, an improvement over the 
nested loop join, which required 850 seconds. The advantage cornes from using the 
index A4X in the merge join for more efficient batch retrieval from table T2. 

We saw that in this case the merge join is better in I/O performance than the 
nested loop join. However consider the query in figure 2. 10. where predicate T2.A4. = 
6 does not exist. 

SELECT T1 .AS, T1 .A2, T2.* 
FROM T1 , T2 
WHERE T1 .A5 = 5 and T1 .A2 = T2.C3 

figure 2. 1 O. : Que,y used ta Estimate 1/0 Cast for Nested Loop, Merge and Hybrid Join 

We assume that indexes, A2X, A3X and ASX exist on the corresponding attributes 
of table T1 and T2. The filter factors are the same than the preceding ones, plus a new 
filter factor ffT1 .A5 = const = 1/1 000. 

The I/O cost for a nested loop join with T1 as the outer table can be calculated as 
follows. With 1000 records to look up in table T1 verifying predicate T1 .AS = 5, we 
have an index look up cost of I R  access for the index and l000L accesses for the 
data pages. For each record in the outer table T1 , we set T1 .A2 = K, then look up 
records in the inner table T2 having T2.A3 = K, about two records, requiring I R  access 
for the index leaf entry look up and 2R accesses for the record retrieval. The I/O cost 
for the inner loop is calculated as 1 000*3 = 3000R accesses. Thus the total nested loop 
join cost is 3001 R + 1 000L, with elapsed time of 3001 /40 + 1 000/1 00, or approximately 
85 seconds. 

For the merge join, we calculate costs as follows. We can easily calculate that the 
extraction of IT1 requires 10 seconds for I/O, but as we will see, this is insignificant 
in comparison to the elapsed time for the nested loop join. Since there were no 
independent limiting predicate on T2, such as T2.A4. = 6, we have the choice between 
accessing the records from T2 in order by the index A3X to perform the merge, or 
materializing and sorting the entire table T2 as an intermediate table IT2. In the first 
case, we would access all records of T2 through an non-clustering index, at a cost for 
data page access alone of 1.000.000R, clearly a folly strategy. In the second case, we 
need to materialize a table IT2 with 1 million records of 200 bytes each and sort the 
resulting records by A3. We defer consideration of disk sort, but it is reasonable to 
point out that a disk sort of these records would probably require two passes through 
disk pages, writing out the results of the first pass and then reading in these results 
for the second pass, an I/O cost of over 1 00,000S, with an elapsed time of 1 00,000/400 

= 250 seconds. Clearly the nested loop strategy is superior in this case. 

2.1 .9.4.3. Estimating 1/0 cost for Hybrid Join Method 

04.09.1996 Database Performance Tuning 40/162 



Consider a gain the query in figure 2 . 10. and the assumptions on indexes and filter 
factors of the last example. The I/O cost for the hybrid join with table T1 as the outer 
table can be estimated as follows. With 1000 records to look up in T1 having T1 .A5 = 
5, we see an index look up cost of 1 R, for the index, and 1 000L, for the data pages. 
We only need to extract A2 and A5 from T l  for each of these 1000 records and write 
them into an intermediate table IT1 , of about 800 bytes big, and sort it by A2. For 
each record in the outer table IT1 , we set T1 .A2 = K, then look up index entries in the 
A3X index for T2.A3 = K, requiring l R  of index leaf I/O for each entry, at a cost of 
l000R. 

As we perform this look up, we create records of the form (T l.A2, T l .CS, RID) in 
the intermediate table IT2. This table will contain about 2000 records of 12 bytes 
each, about 24.000 bytes or buffer space for six disk pages, so once again we assume 
that no I/O is needed for creating IT2 and following sort by RID values. Finally, we 
pass through the records of IT2, using the sorted RID values in IT2 as a kind of RID 
list to retrieve the records from the inner table T2, and matching the AS and A2 
values of T l  with all attributes of T2 to generate the target list records. We are 
retrieving 2000 records from T2, likely all to be on separate pages, at an I/O cost of 
2000L. Therefore, the total I/O cost for this method is 1 000L, extracting records from 
T l, and 1 000R , index entries from index A3X, and 2000L, extracting records from 
T2. The elapsed time is (1000 + 2000)/100 + 1000/40 = 55 seconds, an improvement 
over the nested loop join calculated some lines up here. 

2.1.9.5. Multiple Table Joins 

In most database systems, joins of three or more tables are performed by joining 
two tables at a time; the composite result of the first two joins is written to an 
intermediate table and then joined with the third table. The resulting composite may 
be joined with a fourth table, and so on, the order of joins is not determined by the 
SQL Select statement, but is left to the query optimizer. The proper choice is very 
important. 

Consider a three table join of the form : 
SELECT T1 .A 1 ,  T1 .A2, T2.A3, T2.A4, T2.A5, T3.A6, T3.A7 
FROM T1 , T2 , T3 
WHERE T1 .A1 = 20 AND T1 .A2 = T2.C3 

AND T2.A4 = 40 AND T2.A5 = T3.A6 
AND T3.A7 = 60 

The execution plan available for such a join has different degrees of freedom. We 
can start by performing either of the joins T1 EB T2 or T2 œ T3. Assuming that we start 
with T1 œ T2, we can use a nested loop join or hybrid join with either T l  or T2 in the 
outer loop , or a merge join. Once the intermediate table T4 :=  T1 œ T2 has been 
created, we need to perform the join T4 œ T2, once again using one of the join 
strategies. The query optimizer needs to consider all such plans to find out the most 
efficient one, and it is here that efficient algorithms for query optimization begin to 
become important. For joins involving multiple tables, query optimization can 
require a great deal of computational effort. 
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Note that in the plan just mentioned, joining T1 and T2 to create T4 then joining 
T 4 to T3, if the query optimizer decides to perform the join T 4 EB T3 by a nested loop 
algorithm, the intermediate table T4 := T1 EB T2 does not need to be physically 
materialized before starting the final join step. As each record of T4 is generated from 
T1 EB T2, the next iteration of the nested loop join T4 EB T3 can be immediately 
performed. The technique whereby successive record output from one step of an 
access plan can be fed as input into the next step of the plan is known as pipelining. 
Pipelining minimizes the physical disk space needed for materialization. Even more 
important, in cases where only small fractions of initial records are required, because 
for example the terminal user ceases scrolling through the list of qualified records, 
minimal materialization by pipelining often saves great deal of effort. However, 
pipelining is not always possible: if the query optimizer chooses a merge join to 
evaluate T4 EB T3, where the T4 EB T3 join attributes dictate a different sort order than 
the join before the initial sort of the next join step can be performed. 

2.1.9.6. Transforming Nested Queries to Joins 

It is possible to transform most nested queries into equivalent queries involving 
only table joins. This is an important technique for the query optimizer. 

To illustrate the query transformation technique, let us start by considering an 
example of a Select statement using a nested subque,y 

Consider the query: 
SELECT * FROM T1 
WHERE A 1 = 5 AND A2 in (SELECT A3 FROM T2 WH ERE A4 = 6) 
We can think of the query as being executed in two steps. First, we evaluate the 

subquery, extracting a set of values for the A3 target list into an intermediate table 
IT1. Second the outer query, 'SELECT * FROM T1 WH ERE A 1 = 5 And A2 in IT1 ', is 
evaluated with regard that the values of A2 are within the list of values of IT1. The 
most efficient way to do this, given that there is no index created on IT1, is probably 
as a merge join: ' SELECT * FROM T1 WHERE A1 = 5', is extracted into an intermediate 
table IT2, the records are ordered by the T1 .A1 values, and then the merge join process 
is performed between IT2 and IT1. Possible duplicate records must still be removed 
from the final list. This procedure reminds us much of the following query join form: 

SELECT * FROM T1 ,T2 
WHERE T1 .A 1 = 5 AND T2.A4 = 6 AND T1 .A2= T2.A3 
The subquery at the beginning and this join query give identical results and the 

equivalent join form allows the query optimizer to use other algorithms that are not 
obvious in the nested form. For example, it is now possible to perform a nested loop 
join with table T2 as the outer table. 
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The need for the DISTINCT keyword in transforming nested query into a join is due 
to the following observation. If a records r1 of T1 obeys the predicate of the join 
query, then r1 .A 1 = 5 and there must exist a record r2 in T2 so that r2.A4 = 6 and r1 .A2 = 
r2.A3. But nothing is said about the attributes A3 and A4 forming a relational key of 
T2, so it is perfectly possible that there is a second record r3 in T2 that has the same 
values for A3 and A4 as r2 . Then in the target list of the join query without a DISTINCT 
keyword, the record r1 would appear twice. This would clearly not happen in the 
original nested form of the query, since each single record of T1 is conceptually 
considered only once and qualified or not by the predicate A2 = 5 and A2 in IT1 . Thus 
the DISTINCT keyword in the join form merely casts out duplicates that would not 
appear in the nested form. 

The aim of a transformation such as the one described is that it reduces the 
number of different types of predicates the query optimizer needs to consider to get 
optimal efficacy. Once the nested query has been rewritten as an equivalent join 
query, it is reduced to a problem previously solved, and the query optimizer can use 
any of the join strategies we have introduced. To complete our analysis on query 
transformation for ef:ficacy purposes, let us consider an other example. We consider 
the case of a correlated subquery. 

Consider the query : 
SELECT * FROM T1 
WHERE A 1 = 5 AND A2 i n  (SELECT A4 FROM T2 WHERE AS = 6 AND A6 > T1 .A3) 

As this nested form contains a correlated subquery,  it is not possible to evaluate 
the subquery until the outer records are fixed so that T l  .A3 can be evaluated. From 
this consideration, it seems that the only valid approach is to start by looping on 
records of T 1, then for each records in T 1 find all records in T2 through an index on 
A4, where T2.A4 is equal to the outer T l  .A2, and then resolve the predicate clause 
T2.A6 > T l.A3. Now, notice that the nested query above gives the same result as the 
following join query: 

SELECT * FROM T1 , T2 
WHERE A 1 = 5 AND T1 .A2 = T2.A4 AND T2.A5 = 6 AND T2.A6 > T1 .A3 

It is much easier to picture the strategy of performing a merge join with the query 
in this form. Extract records from T l  where T l.A l = 5 into an intermediate table IT l ,  
and sort it by T l  .A2 values. Then sort T2 in order by attribute A4 into an 
intermediate table IT2. Now merge join IT l and IT2 on matching values for T l.A l 
and T2.A4, casting out duplicates, and qualify records matched by verifying 
predicate T2.A6 > T l.A3. This strategy might be superior to the nested loop join that 
seemed most natural for the query in nested form. 

Out of both examples we are able to define the following theorem. 
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The following two query forms give equivalent results: 

SELECT T1 . C 1 FROM T1 
WHERE [SET A OF PREDICATES ON T1 AND] 

T1 .A2 IN (SELECT T2.A3 FROM T2 [WHERE SET 8 OF PREDICATES ON T2, T 1 ]) 

is equivalent in result to 
SELECT DISTINCT T1 .C1  FROM T1 , T2 
WHERE T1 .A 1 = T2.A3 [AND SET A OF PREDICATES ON T 1 ]  

[AND SET 8 O F  PREDICATES O N  T2, T1 ] 

Note that SET A of predicates can be empty, as well as SET B. Note also, that if no 
predicate is in SET B from the nested query referring to table T1 in the outer query, the 
entire nested query is non correlated. 

DBMSs perform this kind of transformation only under certain conditions, 
including the following. 

� The subquery target list is a single attribute, guaranteed by a unique index to 
have unique values. 

� The comparison operator connecting the outer query to the subquery is either IN 
or = ANY (with the same meaning). 

Therefore all nested queries involving the not exist predicate are not transformed 
into join predicates. But most nested queries have equivalent join forms, ant it turns 
out that the query optimizer usually finds a more efficient execution plan if the query 
is posed in the join form. This is true even if the transformation into a join plan 
doesn't take place under DBMS rules of transformation and implies that the person 
writing queries should make some effort to create a join form rather than the 
equivalent nested form query if possible. Given that a nested form query is used, it is 
possible in nearby all DBMSs to tell from the output of the EXPLAIN command if 
transformation into join form has been performed by the query optimizer. 
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2.2. Data Update Operations 

Three SQL statements, INSERT, DELETE and UPDATE, are used to modify data 
upon table data. The Insert statement is used to insert new record(s) into a table. 
Whereas the Delete statement is used to delete records from a table. The Update 
statement is used to change the values of some attributes. These three statements are 
often referred under the name of update operations, since they all serve to update 
table data. There is some risk of confusion here, because the Update statement is the 
specific name of one of these three operations, and we need to take care to 
differentiate the two. 

Whenever update operations are applied, the integrity constraints specified on the 
database schema should not be violated. Therefore the update operations have the 
property of atomicity, that is that the operations are executed entirely or not at all 
leaving the database in a consistent state. 

2.2. 1 . INSERT Operation 

As for the Select statement, let us see the general syntax of the I NSERT statement. 
I NSERT INTO tablename [column {, column}] 
[VALUES (expression {, expression}] 1 [SUBSELECT] 

The insert statement inserts records into a given table. One of both form must be 
used: either the values form, where a single records is inserted with given values, or 
the Subselect form, where all records that result from the Subselect are inserted. 

The ability to use a Subselect to create input to an Insert statement adds a great 
deal of power. Only one table receives new records in an Insert statement, but the 
Subselect can be on any number of tables, as long as it produces the right number of 
attributes of the right type to serve as new input record. 

The insert operation provides a list of attribute values for a new record r that is to 
be inserted into table T1 . Inserts can violate any of the four types of constraints 
[Elmasri 1994]. Domain constraints can be violated if an attribute value is given that 
does not appear in the corresponding domain. Key constraints can be violated if a key 
value in the new record already exists in another record in table T1 . Entity integrity 
can be violated if the primary key of the new record r is null. Referential integrity can 
be violated if the value of any foreign key in record r refers to a record that does not 
exist in the referenced table. 

2.2.2. DELETE Operation 

The syntax of the Delete statement is : 
DELETE FROM tablename 
[WHERE search_condition] 
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The delete statement removes record(s) from a table and makes them inaccessible. 
There are two types of delete operations: delete without condition and delete with 
condition. The delete with out any delete c onditi on deletes all records from a table, 
whereas the delete with conditi o n  deletes a set of qualified records from the table. In 
the second type we see that a delete operation includes a data access operation to 
locate the records to be removed. This makes the delete statement more expensive in 
terms of I/O costs than the select statement, because it needs a search for the records 
before it can remove them. 

Delete operations can violate referential integrity, this happens when the record to 
delete is referenced by foreign keys. Three options are available, to keep atomicity, 
when a delete causes a violation. The first option is to reject the deleti on. The second 
option is to attempt t o  cascade ( or propagate) the deletion by deleting records that 
reference the record that is being deleted. A third option is to m odifj; the referencing 
attribute values that cause the violation; each such value is either set to null or 
changed to reference another valid record. Note that, if a referencing attribute that 
causes a violation is part of the primary key, it cannot be set to null ; otherwise, it 
would violate entity integrity. 

2.2.3. UPDATE Operation 

As for both other update operations we give the Update statement syntax. 
UPDATE tablename 
SET column = {expression I nu l l} { ,  column = {expression I nu l l}} 
[WHERE search_condition] 

The update operation changes information in existing records of a given table. It 
replaces the values of the specified attributes with the values of the specified 
expression for all records of the table that satisfy the search _ condition. 

Modifying the values of an attribute that is neither a primary nor a foreign key 
usually causes no problems; the DBMS need only to check that the new value is of 
the correct data type and domain. Modifying a primary key value is similar to a 
delete operation followed by an insert operation, because we use the primary key to 
identify the records. Hence, the issues discussed under both Insert and Delete corne 
into play. If a foreign key attribute is modified, the DBMS must make sure that the 
new value refers to an existing record in the referenced table. 

Note, that only one table can be object of the Update statement. The limitation of 
the Update statement, compared with Insert statements, is that we can not compute 
values using references to other tables. 
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2.3. Data Macro Operations 

Transactions, also known as macro operations are contain a sequence of data 
access and/or update operations. Their execution reflects also the property of 
atomicity, such as if the database had been in a consistent state before execution, it 
still is after execution. However it is possible that within the sequence of operations 
integrity constraints are violated. This mechanism allows us to create high level 
operations, insuring the respect of integrity constraints. The macro operations play 
also the role of integrity operations in case of-incident and/or concurrency. 

As macro operations are composed of various data operations, we might split 
them into their elements without great effect on our future reasoning. Within the 
scope of this paper we shall not examine in more details data macro operations. 
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Chapter 3.  Data Access Structures 

Computers have been getting faster and cheaper during the last decades. A 
relatively inexpensive computer today can execute program logic with CPU at a rate 
of 25 million instructions per second (25 MIPS). Of course different instructions take 
different execution delays, but this rate is a rough measure of the average speed for a 
"standard" mix instruction set. 

The data structures of a database often influences the way the data and access 
structures are stored upon physical devices. There exists a wide range of direct access 
devices, like magnetic hard disks, drums and/or optical disks. For simplicity, we use 
the term disk to denote all those devices and assume that the whole database fits on a 
single disk. 

Disk access speed, though an extremely important aspect of database system 
performance, has not kept pace with the enormous improvements in CPU execution 
speed. A disk is a rotating magnetic recording device, with several platters stacked 
one above the other moving at the speed of 60 rotations23 per second (rps), and a disk 
arm that moves in and out like an old-style record player arm. The disk arm 
terminates in a set of read-write heads that sit on the surfaces of the various platters. 
As the arm moves through its range of positions, the heads all move together to 
address successive concentric cylinders of data, made up of circles or tracks on the 
stacked set of surfaces. A track is broken up into a sequence of blocks. In order to 
read or write data on disk, the arm must first move in or out to the appropriate 
cylinder position, then wait for the disk to rotate until the appropriate block is just 
about to pass under the read-write head. At this point the disk head reads the data 
from a sequence of blocks. A disk access cost usually includes three phases, based on 
its physical components: 

� Seek time. The disk arm moves in or out to the right cylinder position. 
� R otati onal latency. As the disk rotates the read-write head has to wait until the 

right block of data passes by. 
� Transfer time. The disk arm reads or writes the data on the right disk surface. 

Because disk accesses require physical actions, the time needed to read in a 
random piece of data is important, about 1/40 of a second. This is usually divided 
into the three phases as follows. 

04.09. 1 996 

Seek time: 
Rotational time: 
Transfer time: 

0 ,01 6 seconds 
0,008 seconds 
0,001 seconds 

23 A new rotation speed of 90 rps is becoming the standard, but we assume 60 rps in what follows. 
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The seek time is highly variable, depending on the starting position of the disk 
arm and how far the arm has to move to the corresponding cylinder . If two 
successive reads from disk are physically close to one each other, the seek time might 
be very small . The average seek time of 0,0 16 sec is based on a model where 
successively accessed pieces of data occur with equal likelihood at any cylinder 
position between the two extreme disk arm positions . The average rotational latency 
time takes about half a disk rotation time at 60 rps. This average value assumes that 
the start sector can be anywhere on the track after the disk arm seek is completed. 

Once the data has been brought into memory, it can be accessed by an instruction 
in 0,04µs by a machine with a speed of 25 MIPS. The disparity between time for 
memory access and disk access is enormous: we can perform about 650.000 
instructions in the time it takes to read or write a disk page. Clearly we want ta avoid 
performing more disk reads than are absolutely necessary. 

As the disk represents the latent cost in the search for data it is helpful to 
understand how the database designer can model, tune or use data allocation 
parameters and data access structures to speed up data retrieval. 
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3.1 . Physical Data Al location Parameters 

3.1 .1 . Page Oriented Transfer Mode 

Considering the overhead time for each disk seek, the data read should be of a 
certain size. It takes very little time for each additional byte retrieved, because most 
of disk access time was spent by moving the arm on the right position. Once the arm 
is on the right place, the transfer rate is millions of bytes per second. As a result, we 
see that all disk accesses are "page-oriented ", a page I/O is a long contiguous 
sequence of bytes : 2 Kb, is the standard page size for database systems running on 
UNIX, while 4 Kb is the standard on IBM mainframes. 

3.1 .2. Assumptions about I/0s 

Recall that a random disk access on a normal disk takes an expected elapsed time 
of approximately 0,025 seconds ( 1/40 of a second). But that does not mean 
necessarily that N successive ( 1 4.000R) random page I/Os require a total elapsed time 
of N/40 ( 14 .000R/40 = 350 seconds) seconds. It is quite possible that these N ( 1 4.000) 
pages could be spread out over separate disks (say 1 0) and the system could then 
enlist the service of all disk arms moving concurrently, so that each disk reads only 
uses a fraction of all pages ( 1 400R pages per d isk), in a fraction of the elapsed time (35 
seconds). This approach of multiple disk arm acting simultaneously in an execution 
plan of a query is known as I/0 parallelism. 

The feature of I/O parallelism is nowadays offered by a number of database 
systems. Technologies such as stripping offer the faculty of stripping data pages 
across several disks. For example, page 1 on disk 1, page 2 on disk 2, ... , page 1 1  on 
disk 1, page 12 on disk 2, and so on, with the N th page lying on disk ( (N- 1 )  MOD 1 0) + 

1 .  When stripping the pages this way, the system reading successive pages from a 
table can make multiple I/O reads and thus keeping all involved disk arms busy most 
of the time. Since we can easily predict future tablespace page requests when 
performing a table scan, we merely need an architecture that supports stripping, 
translating logical page addresses into disk addresses on multiple disks and passing 
I/O requests to the appropriate device. This is pretty easy to implement, since 
allocated extents in such a stripping architecture must span multiple disks in a well­
defined way. 

Note that disk stripping does actually not reduce the number of disk accesses, we 
require the same total number of random 1/0, even though the workload is splited 
upon separate disk devices. With parallelism we surely obtain better response times 
for query, they reducing wasted time and turnover caused by the frustration of 
waiting for the query responses. Despite, I/O parallelism still gains in importance in 
database systems, we generally assume that we are dealing with sequential I/Os. 
Where one I/O request must be completed before a second request is made during 
query execution. 
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Sequential I/Os has many tricks to offer, like the mutli-b/ock access, that will 
actually save a large amount of disk accesses during query execution. We will have a 
look at multi block access in chapter 4. 

Next to the mutli-block access there exists another kind of access technique, 
known as the list prefetch, in which the disk controller is given a list of pages, 
usually 32, that need to be read into memory buffers. However the pages are not 
necessarily in contiguous sequential order as with mutli-block access. With the 
technique of list prefetch, the disk arm is programmed in advance with the most 
efficient way to perform successive reads, so that the I/Os occur in a much more 
efficient way than they would with random I/0 requests. The elapsed time for a list 
prefetch access can not be smaller than the elapsed time for a mutli-block access, as 
this represents the optimum for disk accesses. The actual speed, for a list prefetch, is 
determined by how far apart the pages are on disk, but as a rule of thumb we can 
assume that the list prefetch proceeds at 100 I/Os per second. For future I/0 cost 
estimations we use the approximate time rates given in figure 3 . 1. Although these are 
rather rough figures, they usually give reasonable good cost estimations. 

Random 110 Mut/i-b/ock access //0 

40 pages/sec 400 pages/sec 
figure 3. 1 . :  Ru/es ofThumbfor 1/0 Rates24 

3.1 .3. Page Buffering 

List Prefetch 110 

1 00 pages/sec 

As disk access is very slow compared to memory access. It is worth, after bringing 
in a disk page to memory buffers, to make every attempt to keep it there in the hope 
that it will be referenced again in the near future. Once the page is in the buffer we 
will save disk I/Os. 

24 [O'Neil 19994] 
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To support buffering, the system uses an approach known as lookaside, which 
allows the system responding to a disk page read request to first try to hash to an 
entry for the page in the l o okaside table [O'Neil 1 994]. The technique of lookaside 
works as follows: The system reads disk pages through an interface which provides 
the disk page address, dp, and brings the data page into memory buffers. The dp 
values might be a logical succession of integers or a construction from the device 
number, cylinder, surface and starting sector position of the page on disk. Each page 
that is read in has its disk page address hashed, h(dp), into small entries of the hash 
lookaside table, which points to the buffer slot where the page is located (see figure 
3.2.). From this point pn, every time a new page is to be read we start by hashing the 
disk address and look in the hash lookaside table to see if the desired page is located 
in the buffer. If it is so then the system skips the disk access. The pages we want to 
keep in the buffer are the ones that are the most 'popular'. This can be accomplished 
with a method known as Least Recently Used, LRU, buffering. The idea is that 
database pages that have been read from disk into the buffer will remain there until a 
new read page requires the space and all buffer pages are occupied. At this point, the 
pages that have not been referenced for the longest time are dropped from buffer to 
free some space. 

Hash Lookaside Table 

h(dp) __ 

Memory Buffer (page size slots) 

- --+----+- -[� 
�l· Tl-

figure 3.2. : Disk Page Buffering and Lookaside Hash Table25 

Just as we want to keep pages in memory to be read over and over by different 
data access operations, we do not want to write back pages to disk every time it is 
updated by some operation. If it is a popular page for update, containing a set of 
records with bank branch balances for example, we might be able to allow hundreds, 
or even thousands, of updates without writing back to disk the page in question. 
Instead we generally allow popular pages to remain in buffer until either they become 
less popular and drift out of buffer on their own because LRU needs their buffer 
place, or else we force them to be written back to disk after some period of time has 
passed. 

Most systems allow you to define buffer sizes during system initiation, therefore 
the buffer size is a helpful tuning parameter. 

25 [O'Neil 1994] 
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As mentioned, the purpose of the buffers is to reduce the number of physical 
accesses to disk. The impact of the buffers on the number of physical page 1/0s 
(physical accesses) depends on three major parameters26. 

� Logical read and writes. These are the pages that the system accesses via 
system read and write commands. Sorne of these pages will be found in the 
buffer, while others will initiate physical reads or/and writes. 

� Data base system page replacement strategy. These are the physical accesses to 
a disk, when a page must be brought into the buffer and there is no free page. 
You ensure that the page replacement occurs rarely, by increasing the number 
of asynchronous paging daemons which write committed pages to disk [Shasha 
1992]. 

� Operating system paging. These are physical accesses to disk (swap disk) that 
occur when part of the buffer space lies outside random access memory. Y ou 
should ensure that such swapping occurs rarely. 

Assuming that swapping and page replacements occur rarely, the important 
question is how many logical disk 1/0s become physical disk !/Os when I access 
data? We call this the hit ratio, defined by the following relation : 

H IT RATIO = (Nal - Nap) / Nap 
where 

Nal: number of logical accesses 
Nap: number of physical accesses 
relation 2. 5.: Hit ratio 

The hit ratio is the number of logically accessed pages found in the buffer divided 
by the total number of logically accessed pages. 

By varying the buffer size you can directly influence the number of pages that can 
be hold in the buffer, the hit ratio varies therefore in correspondence with the buffer 
size, hence the number of physical I/Os varies also. 

According to [ Shasha 1992], increasing the buffer size is beneficiary to access 
pe1formances, as long as the buffer can be hold entirely in central memory. 

The best strategy, in buffer tuning, is to increase the buffer size until the hit ratio 
flattens out, while making sure that page replacement and swapping are low. Sorne 
systems, like ORACLE, offer utilities that will help you to find out what the hit ratio 
would be when varying the buffer size. 

Other systems, like DB2, give the possibility to dedicate a database buffer to some 
application X and a second one to other application Y. This feature is surely 
interesting in case where application X has higher response time requirements, than 
the application Y. And when both access different sets of data. However, if all 
applications have basically the same requirements, a rule of thumb is to use only a 
single memory buffer. 

26 [Shsha 1992] 

04.09.1996 Database Performance Tuning 53/162 



Note, that the buffer technique has dangers. As memory buffer is volatile, imagine 
the sudden loss of power or a system crash. Sorne of the pages on disk might be 
terribly out of date, because they were so popular that they have not been written out 
from buffer during the last thousand updates that took place. If all those updates 
existed only in memory, then it would seem they are now totally lost. How can we 
handle this problem, and be able to recover these lost updates, without going back to 
the approach of writing out every update as soon as it is committed? 

The answer is that all systems use redo log entries, each time an update occurs, 
the system writes a note to itself into a memory area known as the redo log buffer. 
The log entries contain information about updates to remind the system how to 
perform the update once again, or to reverse the updates if the operation involved 
needs to be aborted (atomicity of update operations). At appropriate times the log 
buffer is written out to disk, into a sequential file known as the redo log file, that 
contains all the log entries created for some interval of time into the past. In this 
way, if memory is lost at some point, the recovery process will be able to use the 
sequential log file to recover updates of records that are out of date on disk. One 
reason that this log method is preferable to writing out each update, as it happens, is 
that it is more efficient, the system only needs to write the log buffer out to disk at 
infrequent intervals, it is usually able to batch together a large number of page 
updates and thus save disk I/Os. 

3.1 .4. Tablespaces, Segments and Extents 

Although we will not the internai details of data resource allocation, we try to 
give an idea of aspects and considerations that can arise, based upon [ORACLE 7.0]. 
Most commercial database systems deal with data allocation in similar way, even 
though the details can be different. 
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Before creating a database, you might start by allocating a large number of 
operating system (OS) files on disk, with names like fname1 , fname2, and so on. 
These are ordinary sequential files, such as those that you encounter when you edit 
text. Various OSs give you the ability to specify the size of the file in bytes and the 
disk device on which the file is allocated. Note that we consider disk storage as being 
contiguous when it consists of sectors on disk that are as close together as possible27 . 

Keeping disk space contiguous minimizes seek time, and most systems try to allocate 
space to file in long contiguous chunks. At the same time, most OS files do not have 
the flexibility to span disk devices. Given these files, you might use a system 
command to create tablespaces. A tablespace is the basic allocation device of 
ORACLE database, out of which tables and indexes, as well as other elements 
requiring disk space, receive their allocations. A tablespace corresponds to one or 
more files and can span over one or more disks. Many ORACLE databases contain 
several tablespaces, including the SYSTEM tablespace, which is automatically built 
when the database is created. The system tablespace contains the data dictionary and 
may also be used to provide disk space for user defined indexes, as well as other 
elements. It is up to the database administrator to decide whether to create multiple 
tablespaces or not. The advantage of multiple ones on large systems is to have a 
better control over which devices are used for what purposes, and the ability to take 
some disk space off line without bringing clown the whole database. 

When a table or and index is created by the DBA, you have the possibility to 
name the tablespace, otherwise a default tablespace is used. When a table is created, 
its tablespace allocation is identified with a data segment, in case of an index, it is 
identified with an index segment. When a data or index segment is first created, it is 
allocated to an initial extend. Each time a data segment cornes close to running out 
of space, it is given additional allocation of space, known as a next extent. Figure 3.3. 
gives a graphical representation of the logical structures just explained above. 

figure 3. 3. : Data base Storage Structure28 

Database 

Tablespaces 
made out of 
OS files 

Tables, indexes, etc . . .  

Segments 

Extends 

An extend must consist of contiguous disk space, and is therefore usually within a 
single file making up a tablespace. The creation of a tablespace allows you to specify 
default parameters, governing how space allocation of disk extents is to be handled 
by the database system. Here below is a short description of these parameters. 

27 Successive sectors on successive surfaces of a cylinder within a succession of adjoining 
cylinders. 

28 [ORACLE 7.0] 
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� initial n. The integer n specifies the size in bytes of the initial extent to be 
assigned. 

� next n. The integer n specifies the size in bytes of the next extent numbered 1 ;  
the size of subsequent next extents may increase (but not decrease) if a positive 
pct-increase value is specified. 

� maxextents n. Specifies the maximum number of extents, including the initial 
extend, that can ever be allocated. 

� minextent n. Specifies the number of extents to be allocated initially when the 
segment is created. 

� pctincrease n. Specifies the percentage by which each successive next extent 
grows over the previous one. IA value of 0 means that there is no increase, 
whereas a value of 50 causes successive next extents to grow by a factor of one 
and a half over the preceding one. 

In case many queries tend to scan (large) portions of a table, it seems reasonable 
to specify sector-sized or larger-sized extents for good read performances . Write 
performance can also be improved by using extents. For example, redo logs and 
history files will benefit significantly from the use of extents. If access to files is 
completely random, then small extents are better, because small extents give better 
space utilization, due to contiguous space allocation. 

3.1 .5. Pctfree, Pctused and Fi l l  Rate 

The CREAT table command allows us to specify two more data allocation 
parameters, the pctfree and pctused parameters [ORACLE 7.0]. The pctfree and 
pctused clauses together determine how much space within each page can be used for 
new record inserts. 

The pctfi·ee value must be an integer from 0 to 99, where a value of 0 means that 
all space can be used for new inserts. A default value of 10, means that new inserts in 
the page stop when 90% of the page is full. The remaining 10% of space are used for 
future record size expansions. 

The pctused value, is an integer from 1 to 99, specifies where new inserts to a 
page will start again if the amount of space used by stored records falls below a 
certain percentage to the total. The default value is 40. 
Data Page 

pctused 

Space used for record size expansions 
of existing records 
�----� �--► 

pctfree 

- - - - -� -- - - �  
New inserts until used space 
reaches ( 100 - pctfree) 

'-clc-----
New inserts start again alter 
used spaces fall under pctused 

figure 3.4.: Illustration of pctfree and pctused29 

29 [ORACLE 7.0] 
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Note that the sum of pctfree and pctused values can not exceed 100. Together they 
determine a range in which the behavior with respect to inserts on the disk page 
remains stable, depending on the last percentage value encountered. Figure 3.4. 
illustrates the concept of pctfree and pctused. 

In some other systems, like INGRES, there are no parameters such as pctfree and 
pctused. They have a parameter called the Jill rate or Jill factor. It is comparable to 
the pctfree parameter in ORACLE, except that where pctfree gives the percentage of 
space that should remain unused during initial creation of the table, the fill rate 
defines the percentage of space that should be filled. For the rest of the paper we will 
refer to the fill rate of data pages. 

Using the fill rate, we are able to define the number of records that can be hold in 
a page. It is a direct fonction of the page size, the record size and the fill rate. For 
purpose of simplicity we consider that the record length is fix30 . 

where 

Nrp: Number of records per page 
Ps: Page size 
Hs: Page header size 
fr: fill rate 
Rs: Record size 
relation 2. 6.: Number of Records per Page 

Assumed that a page only contains data abjects of the same type. System like 
ORACLE, however allow multiple data object types per page. Relation 2.7. 
generalize relation 2.6. according to the different object types and the balanced 
average record size for all objects. Relation 2.7. brings into play the proportion of 
place used by the set of different data abjects. 

Nrp = l_N_a *_Rs_ JPs - Hs) * fr 1 

� Nai * Rs Rs 
j 

where 

i E{data object types present in the page} 
Nrp: Number of records per page 
Na: Number of records of a certain  type 
Ps: Page size 
Hs: Page header size 
fr: fill rate 
Rs: Balanced Average Record size 
relation 2. 7.: Number of Records per Page for Multiple data abjects 

Note that if all data abjects within the page are of the same kind then relation 2.7. 
simplifies into relation 2.6 .. 

30 If the lenght is variable, we take the average length of the records. 
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3.1 .6. Data Pages and Record Pointers 

Once a table has been created and the initial extend of disk storage allocated, we 
are ready to load or insert data into the table. In a typical data architecture for record 
placement, records are simply inserted one after another on the first page of the first 
extent. After the first page is all used up the next collocated page is used. When the 
initial allocated set of pages gets full, the DBMS allocates a new extent and 
continues its process until the maximum number of extend is reached. 

Figure 3.5. gives a graphical representation of a typical data storage page layout 
for N records . The header info section might contain fields to show what type of disk 
page it is, the number of the page within the database file, and so on. Each record is a 
contiguous sequence of bytes, starting at a specific byte offset within the page3 1 . 
Entries in the record directory point the record within a page and give the page offset 
to where each record begins . 

We assume that newly inserted records are placed right to left in the page, and 
directory entries from left to right, leaving free space for future inserts in the space 
between . This implies that if a record is deleted from disk page and its space is 
reclaimed, then the remaining records are shifted to the right and the directory entries 
to the left, so that all free space remains in between. However, systems like 
ORACLE can defer shifts, reorganizations ofthis kind . 
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figure 3.5. : Record Layout on a Disk Page 
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A record in the database table can be uniquely identified by its rec ord p ointer 
(RI D), this specifies the data page on which the record appears and the slot number of 
the record within the page. This is how indexes will use references to point the 
records that correspond to a given index attribute value. It turns out that we gain 
flexibility by pointing to a record using l ogical slot numbers within pages, because of 
the information hiding that takes place. If RID pointers use record byte offsets the 
system needs to change the index RID pointers in case where records are moved 
during reorganization. Therefore using logical slot numbers in record pointers, 
implies that external index references to records remain unchanged during 
reorganization. 

Note that the concept of record pointers is not part of any standard, however the 
general form explained up here is very common [O'Neil 1 994] . 

3 1  Note that because ofvarchar(n) datatypes, the records might have different lengths. 
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In DB2 and INGRES32, the record pointers encode the table page number and slot 
number into a 4 byte integer. Successive pages allocated to a table are assigned a 
page number, P, ranging from 0 to 223- 1, requiring 23 bit positions, a maximum of 
8.388.608 pages. We allow at most 5 12 records per page, so that a slot number, S, 
ranging from 0 to 5 1 1  can fit on 9 bits. A record pointer is computed from the page 
number, P, and the slot number, S, for the particular record using the following rule : 
RIO = 5 1 2  * P + S 

For example, the RIO value for a record with slot number S = 4 on page P = 2 a 
RIO value equal to 2 * 5 1 2  + 4 = 1 028. The slot number within a page is not permitted 
to exceed the value 5 1 1, so the relation for a RIO is always unique for records on 
different pages. The slot number fits in 9 bits and the page number in 23, so the RIO 
always fits in 32 bits, a 4 byte unsigned integer. 

In ORACLE33 , a record pointer34 specifies the page (block) number on which the 
record falls, the slot number within the page, and the number of the file within which 
the page exists. Multiple blocks can have the same page number within different files 
making up a tablespace. A record pointer requires 6 bytes of storage in a unique 
index. The record pointer can be displayed as a string of three hexadecimal numbers, 
like : BBBB.SSSS. FFFF. Where BBBBBB represents the page number within the file, 
SSSS the slot number, and FFFF the file number. 

Until here we assumed that a record can not extend over several pages, but we 
know that different systems use different rules about whether records can extend over 
pages. In DB2, the maximum record size is limited to the largest page possible, and 
each record lies entirely in a single page. Pages and buffer sizes of 4Kb and 32Kb are 
possible, although the 4 Kb size is much more common. INGRES allows a record 
size up to 2.000 bytes and each record lies on a single 2Kb page. However, ORACLE 
allows records to split between pages. If a record on a page grows to a point where 
no free space remains, then the record is splited. lts record pointer remains the same 
and it leaves a record fragment in the original slot position on its original page, but a 
pointer at the end of that fragment points to the RIO of the continuation fragment. The 
continuation part is placed, just as a record is placed, on a new page with a slot 
position and a record pointer. 

04.09.1996 

32 According to [O'Neil 1994] 
33 According to [O'Neil 1994] 
34 A record pointer is called ROWID in ORACLE database system. 
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Clearly, we would like to avoid fragmentation of records whenever possible . In 
ORACLE we minimize fragmentation by leaving extra free space on each page with 
the pctfree parameter to handle most record enlargements . However, since ORACLE 
permits records that cannot fit on a single page, extra free space on a page is not a 
general solution . When in DB2 and INGRES a record grows to a point that it can not 
fit anymore in its original slot together with neighboring records on the same page, it 
is moved entirely to a new page . A certain kind of fragmentation exists in at this 
point. A RIO forwarding pointer must be left on the original page, because we don't 
want to change all index entry RIO pointers to the new record position . Fragmentation 
arising from forwarding pointers often results in performance degradation and 
database reorganization. 

3.1 .7. Disk Contention 

Let us first explain the concept of disk contention. Disk contention occurs when 
multiple processes try to access the same disk space simultaneously . Most disks do 
have limits on both the number of accesses and the amount of data they are able to 
transfer per second. When these limits are reached, processes may have to wait to 
access the disk space . 

To reduce the activity on an overloaded disk, we can move one or more of its 
heavily accessed files to a less active disk . This principal of distributing I/O over 
disks can be applied until all disks have roughly the same number of I/Os . 

Within the scope of this paper we shall not explain in more details the concepts of 
distributing I/O. We will nevertheless give some guidelines for distributing I/O 
among several disks [ORACLE 7.0]. 

04.09. 1 996 

� Separate data files and redo log files on different disks. The DBMS 
constantly accesses data files and redo log files . If it happens that these files are 
located on the same disk, there is a potential for disk contention . 
It is helpful to place each data file on a separate disk, so multiple processes can 
access concurrently different files without disk contention . 
Note that the redo log files are sequentially written each time a transaction is 
committed. The sequential writing can take place much more faster if the redo 
log files are located on separate disks with no concurrent activity. According to 
[ORACLE 7.0] mirroring the redo log files, or maintaining multiple copies of 
the files does not considerably slow clown the writes, as they are clone in 
parallel to each disk and that the system waits until the parallel write is 
completed. However, dedicating separate disks and mirroring the redo log files 
considerably increased the security. The same way, dedicating separate disks to 
data and redo log files ensures that both files cannot be lost in a single disk 
failure . 

� Stripping table data on different disks. Stripping is the practice of dividing a 
large table into small data sets and storing them on different disks . This permits 
multiple processes to access different portions of the table concurrently without 
disk contention. Stripping is particularly helpful in optimizing random access 
to tables with many records. 
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� Separate tables and indexes on different disks. When knowing which of the 
database structures are often accessed, it is helpful to place these database 
structures on different files on different disks. This separation distributes the 
I/O to the table and the index across separate disks. 

� Reduce disk 1/0 not related to the DBMS. If possible, the database 
administrator should eliminate disk I/O not related to DBMSs on disks that 
contain the database. This action is helpful in optimizing access to redo log 
files. 
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3.2. Physical Data Access Structures 

When an SQL query, like those that we have seen in chapter 2, is submitted to a 
database system, a software module known as the optimizer analyses the non­
procedural prescription of the query to determine an efficient step-by-step method to 
retrieve the qualified records. Throughout this section we give the foundation of 
index tuning, by learning how indexes are structured and how query effectiveness 
depends on the existing indexes. 

3.2.1 . The Concept of l ndexing 

An index is a data access structure whose purpose i t  is to improve the efficiency 
of data retrieval by using a keyed access retrieval method. The indexes we are going 
to talk about have some familiarity with memory-resident structures that support look 
ups, such as the binary tree, 2-3 tree, and hash tables. The difference, however, is that 
our indexes reside on disk and are only made memory resident when they are 
accessed. 

An index consists of a sequence of index entries that are stored on disk, one index 
entry for each indexed attribute value. The indexed attribute(s) value(s) and a record 
pointer(s) (RIO) compose the index record. The index entries are placed on disk, in 
sorted order by index key values (although hashed access is also possible), and are 
used by the system to speed up certain Select statements. Standard look ups using 
indexes, locate a set of index entries for a given key value or range of key values. 
And follows the RIO pointers to its associated data records. The fact that the index 
normally resides on disk has an important effect on index structures as we will see. 

Y ou can best picture out an index to a table by analogy to a card catalog in a 
library, indexing the books on the shelves in various categories. One set of cards in 
the catalog might be placed in alphabetical order by subject name (several subjects 
are possible) another set of cards might be placed in alphabetical order by author 
name. Each card in the catalog contains a call number to locate the book indexed, so 
that once we find a catalog entry for a book with the title "Database Tuning: A 
Principal Approach", we can immediately locate the book on the shelves. Now, 
returning to the discussion about indexes, let us try to figure out what might happen 
when the system receives the following query. 

SELECT * 
FROM T1 
WHERE A1 = 'Namur' AND A2 > 1 2  AND A2 < 1 4; 

The query optimizer has now to decide how to access the requested records from 
table T1. One alternative that always exists is to perform a table scan, in which we 
successively accesses all records and discards the ones that do not satisfy predicate 
A1 = 'Namur' AND A2 > 1 2  AND A2 < 1 4. Sequential examination of the records is rather 
quick when we have a small sized table, or when selectivity is poor. This will be 
examined later on, when we describe the problem of index indecision. 
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However, consider that we have a large sized table T1, a good filter factor of 
predicate A1 = 'Namur' and that there is an index A1 X defined upon attribute A2. In this 
case, we probably decide first to locate records with predicate A 1 = 'Namur' , using the 
index A1 X. We can presume that the total number of records accessed is greatly 
reduced while limiting the query to the records having A1 = 'Namur' .  However, we 
still have to check the retrieved records for the remaining predicate A2 > 1 2  AND A2 < 

14. All in one we can consider that the index reduced our search for the qualified 
records. 

3.2.2. B-Tree I ndex 

Almost all commercial products support the index structure known as B-Tree. It is 
the only index structure available in DB2, and it was the only one provided by 
ORACLE until release 7, when a facility known as hash cluster was added. INGRES, 
on the other hand, has offered a wide set of different tree index structures for some 
time. It should be said that B-Tree provides a good deal of flexibility for different 
types of indexed access, and systems like DB2 implemented special features, such as 
mutli-block access I/O, that make the B-Tree competitive in performance for many 
types of queries. 

A B-Tree is a multilevel keyed index structure, with a root page at the top and the 
leafpages at the bottom, like in figure 3.6 .. We refer to all nodes above the leaf level, 
including the root, as index n odes. Index nodes below the root are sometimes called 
interna! n odes of the tree. The root node is also known as level 1 of the B-Tree, and 
successively lower levels are given successively larger numbers, with the leaf nodes 
at the highest level (level 3 in figure 3.6.). The total number of levels is called the 
deptlt of the B-Tree. Using this structure we can find our way down to any leaf level 
entry by first reading in the root page, then finding our way to successive internai 
pages, which ultimately directs us to the appropriate leaf page. We then examine the 
leaf page to find the leaf level entry we want, assuming that it exists. In figure 3.6., 
this means that we require a maximum of three I/Os to access the desired index entry, 
much fewer than a binary search as we will see. The leaf nodes are usually linked 
together to provide ordered access, on the indexed attribute, to the records. 

Note that a binary search requires I Log2 n 7 to access the requested data, where n is 
the number of index nodes at leaflevel. Assume that we have 1.000.000 entries at the 
leaf level, each entry has a size of 8 bytes ( 4 bytes for the RID and 4 bytes for the key 
value35). Ignoring pages overhead, the number of entries that can fit on a page is at 
most L2.048/8J = 256. So we get a total of 11.000.000/256 7 = 3.907 leaf page. The 
cost for the binary search is I Log2 3. 907 7 = 1 2  accesses, whereas the number of 
accesses throughout the B-Tree is three. 

35 This size is appropriate for an integer key value, however it could be much more for a character 
string index or for a composed index. 
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figure 3. 6.: Illustration of a Three level B-tree structure 

The relative I/0 efficiency of a B-Tree over a binary search results frorn the fact 
that the B-Tree is structured in a way that gets out the rnost of every page access . 
Each index entries references a lower-level node page. For our exarnple sorne 256 
low-level pages can be referenced, whereas during binary search only two nodes are 
referenced. If we look at the tree of page accesses resulting frorn a binary search, we 
notice that the B-Tree is bushy, whereas the binary search tree is sparse . The B-Tree 
is flatter as a result, because we can reach as rnany as 2563 leaf pages in a three level 
tree. The B-Tree is said to have fanout of 256, cornpared to the fanout of 2 for binary 
search. The leaf pages have their own fanout, with 256 entry RIO pointer values 
painting down to index records. The records of the table can be pictured as another 
level lying below the leaf level of a B-Tree . 

If we assume a B-Tree with a fanout of f, we can reference N entries at leaf lev el in 
1 Logf N l probes. Thus with the fanout of 256 we have been assurning, we can access 1 
million leaf level entries in I Log256 1 . 000.000 l = 3 probes cornpared to the 12 due to 
binary search . It is likely that frequently used nodes will rernain in rnernory buffer, as 
a rule of thurnb we can say that the root node always stays in memory buffers, this 
reduces the nurnber of probes to two. It can happen that even the second level, with 
its 16 nodes, rernains in rnernory, after all the proportion of space used is quiet srnall 
cornpared to the 3 .907 nodes for the leaf level, this would reduce the nurnber of 
accesses to one . But problerns occur when a lot of indexes corne into play, than it is 
possible that space usage could increase a lot. 

A nurnber of other access structures, such as hashing, also offer performance 
advantages for certain SQL queries . However, the B-Tree is the rnost cornrnonly used 
index type in database today . What we call B-Tree in this paper is precisely known as 
B+ -tree, and represents a more recent variation on the original published B-Tree 
structure . The difference between both is, that in B-Tree, every value of the indexed 
attribute appears once at sorne level in the tree, along with the RIO pointer [Elrnasri 
1994]. On the other hand, in B+-tree, record pointers are stored only at the leaf nodes, 
hence the structure of the leaf nodes is different to the one of interna! nodes. The leaf 
nodes, in case of a key attribute, have an entry for every value of the indexed 
attribute . For a nonkey or a seconda,y key attribute, the RIO pointer points to a page 
containing the record pointers (RIO), thus creating an extra level of indirection . 
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3.2.2.1 .  B-tree Definition 

This section gives a formal definition of the B-Tree structure [Date 1990] : 

The internai B-Tree page structure of order p is defined as: 
1 . Each internai page is structured l ike: 

<P1 , K1 , P2, K2 , . . .  , Pfo-1 , Kfo-1 ,Pfo,> 

where 
Pi is a po inter to an internai index page 
Ki is a indexed attribute value 
fo is the possible number of entries on an internai page. 

2 .  With in each internai node 
K1 < K2 < . . .  < Kfo-1 or K1 > K2 > . . .  > Kfo-1 
depend ing on the order defined du ring index creation. 

3. For al l search field values X in the sub-tree pointed at by P i , we have Ki-1 < X �  Ki for 
1 < i < fo, X � Ki for i = 1 , Ki_1 < X for i = fo. 36 

4. Each internai page has at most p index page po inters. 
5. Each internai page , except the root, has at least lfo/27 index page po inters. The root 

page has at least two po inters if it is an internai page. 
6. An internai page with fo pointers, has fo-1 search field values. 

The B-Tree Leaf Page Structure of order p, is defined as: 
1 .  Each leaf page has the fol low ing structure 

< <K1 , R ID1 > , <K2, R ID2> , . . .  , <Kfo-1 , R IDto-1 > , Pnext> 

where 
R ID i is a record pointer 
P next po ints to the next leaf page of the B-Tree 
fo is the possible number of entries on an leaf page 

2. Within each internai node 
K1 < K2 < . . .  < Kfo-1 or K1 > K2 > . . .  > Kfo-1 
depend ing on the order defined during index creation. 

3. Each RI  D i is a record pointer that points to the record whose search field value is Ki or 
to a fi le page cèntain ing the record_ in case of where the indexed attribute is a key. 
Otherwise, when the index attribute is not a key then the pointer references a page or 
RIDi pointers. 

4. Each leaf page has at least Lfo/2J values. 
5. all leaf nodes are at the same level. 

Figure 3.7. gives a graphical representation of the B-Tree structure. 

36 The definition follows the one give by Knuth. One can define the B-tree differently by 
exchanging the < and � symbols (Ki- 1 � X < Kj, X < Ki, Kj. }  � X), but the principal remains the 
same. 
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figure 3. 7.: The pages of a B+-tree of order p: Internai node and leaf node representation3 7  

3.2.2.2. Fan out and Depth of the B-Tree 

The depth of a B-Tree bears close relationship to the number of disk I/Os used to 
reach the leaf-level page, where record pointers are kept. It is common to estimate the 
fanout at each level, where the fanout, fo, represents the expected number of records 
that can appear in each node. Assuming that there are fo entries for each index page, 
the number of possible entries at the second level is equal to fo2 , the possible number 
of entries for the third level is equal to fo3 , and so on. For a tree of depth d, the 
number of possible leaf page entries is tod, when we assume that all index pages can 
hold up to fo entries. Putting this a different way, if we want to build a B-Tree with 
entries for N r  attribute values, we need to have an index of d levels: 

d = 1Logto(N r)l 
with 
fo: Fanout of index node pages 
Nr: Number of values to be indexed 
relation 3.1.: Depth of a B-Tree 

The depth of the tree bears a logarithmic relationship to the number of values to 
be indexed. The depth d is then taken to be the number of I/Os, that must be 
performed to locate an attribute value entry at leaf page level. However, it turns out 
that both of these statements are misleading, because of buffering. It is common to 
consider that an active B-Tree of depth three has the root page buffered, so the 
effective number of I/Os to locate an entry is two, rather than three. 

37 [O'Neill 1 994] 
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Note, that when creating an index, it is usually more efficient to first load the table 
with the initial set of records and then to create the index. This is advantageous 
because the creation process first extracts the index entries, then sorts them by key 
values, and finally loads them into the leaf pages. This process is extremely efficient 
compared to the dynamic reorganization of the B-Trees structure. The nodes of the 
B-Tree are loaded in a left to right fashion, so that successive inserts normally occur 
on the same leaf page, held constantly in the buffer. When the leaf page node splits, 
the successive leaf page is allocated from the next disk page of the allocated extent. 
Nocle splits at every level occur in a controlled way and allow us to leave just the 
right amount of free space on each page. On the other hand, as records are inserted 
after the initial index creation, this normally results in B-Tree entries that are inserted 
to random leaf-level nodes, requiring much more I/Os (because the leaf page affected 
is often not in memory buffer) and random page splits. 

3.2.2.3. Index Page Layout and Free Space 

An index page has a relatively simple structure. Figure 3. 7. gives a graphical 
representation of a possible leaf page layout, with unique key values. The layout for 
an internal page is similar, except that record pointers are replaced by page pointers 
and that there is no next page pointer (P nexD· 

A B-Tree leaf page can have up to fo1eaf index records of structure <Ki , R ID j> which 
we assume to fit on a single page. To determine the number of records a leaf page 
can hold, we use the following relation 3.2.: 

Let us illustrate this throughout an example. The fanout is sometimes referenced 
as the order of the tree. Consider an indexed attribute, As, of 9 bytes long, a page size 
Ps, equal to 2Kb (2.048 bytes), a record pointer, Rps, equal to 6 bytes and a page 
pointer, Pps, equal to 6 bytes. Consider also that the page header, Hs, is 24 bytes long 
and that the fill rate, fr, is equal to 70%, Relation 3.2. defines the fanout for a leaf 
page. 

to,eat * (Rps + As) :C:: (Ps -Hs) * fr ⇒ fo,eaf = l_(P_s_-_H_s_)_* f_rj Rps + As 
where 
foieaf Number of records that can be hold in a leaf page 
Ps: Page size 
Hs: Header size, we assume that the header contains the pointer to the next leaf page 
fr: Fill rate 
As: l ndexed attribute size 
Rps: Record pointer size 
relation 3. 2. : Fanout of a Leaf Index Page 

Similarly an internai B-Tree page can have up to fo page pointers and fo-1 search 
field values, which also have to fit in a single page. To determine the number of 
records an internal page can hold, we use the relation 3.3.: 
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* * * l ((Ps - Hs) * fr) + Asj (fe inter - 1) As + fo Pps :::; (Ps -Hs) fr <=:> fe inter = Pps + As 
where 
folea( Number of records that can be hold in an internai page 
Ps: Page size 
Hs: Header size 
Pps: Page pointers size 
fr: Fill rate 
As: l ndexed attribute size 
relation 3.3.: Fanout of an Internai Index Page 

We see that both relations are different, however, we will assume without no great 
harm that an internal page contains as much pointers as search fields, and that the 
size of a record pointer is the same than the page pointer size. Relation 3.4. defines a 
simplified relation for estimating the fanout. 

fo = l (Ps - Hs) * fr j Pps + As 
with 
Ps: Page size 
Hs: Header size 
Pps: Page pointers size 
fr: Fill rate 
As: lndexed attribute size 
relation 3.4.: Fanout of an Index Node Page 

For example, let us see how we can compute the number of index records an index 
page can hold (internal and leaf pages). Consider an index entry size of 8 bytes and a 
node page size of 2048 bytes. We allow 48 bytes for the header and assume that the 
average nodes below the root level is only 70% full. This implies 1400 bytes of 
entries per page, and 1400/8 = 175 index entries per index page. 

Assume that we have 1.000.000 entries at the leaf level, this means we will 
require at least 11.000.000/1757 = 5.715 leaf node pages. With 5.715 entries at the 
next-higher directory level, we will have 15.7 15/175 7 = 33 pages on that level. Thus 
we have 33 entries at the root level, and therefore have a B-Tree of depth three. In 
general, we encourage rather rough calculations in sizing of this kind ; a Header size 
of 48 bytes is probably incorrect for any particular product, but this gives us a round 
number for our calculations, and does not harm any of the principals. 

3.2.2.4. Duplicate Key Values in an Index 

Until now, we assumed uniqueness of the index attribute values, but to be 
accurate it often happens that we define an index on a non-unique attribute. The 
problem is than to determine how the system organizes its index leaf pages. We 
already mentioned that an extra level of indirection is needed to handle the multiple 
pointers. 
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In case the same key value is repeated for a large number of records, it is possible 
to list the key value only once with a pointer to a list of RIO values. The entry in a 
leaf page is of structure <Ki , P j > where the pointer Pi points to a block of record 
pointers (RI Os) . Each RIO itself points to one record with key value Kj . If some value 
Kj occurs in too many records, so that their pointers cannot fit in a single page, a 
linked list of blocks is used. This technique is illustrated in figure 3.8 .. 

As the key value is often a relatively lengthy character string and the RIO is 
usually quite short (4 to 6 bytes), this represents a large space saving. It is obvious 
that access performances are better, than in case where each occurrence entails an 
entry at leaf level of the B-Tree, because more entries can fit in a leaf page. However 
retrieval via the index requires at least an additional disk access, because of the extra 
level of indirection in the index. 
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figure 3.8.: Leafpage layout with non-unique key values38 

Leal Page 

Extra Level of lndirection 

In most database systems the number of RIO values in a block has an upper limit 
of 254, but clearly it is possible to create a list of blocks. Note that each additional 
block entails an disk I/O during access. The calculation of the fanout remains the 
same as in the section 3.2.2.3  .. 

3.2.2.5. Dynamic Changes in the B-Tree 

Let us consider the problem of insert, deletes and indexed value updates. Note that 
we will not explain the concept of the indexed value updates, we can consider these 
updates as a deletion followed by an insert. 

For inserts, note that a normal sorted list of entries on disk can always be 
reconstructed when a new entry is added. Only by moving all successive entries one 
position to the right, so to create space for the new insert, implying !/Os for about 
half the pages. Note that when there are frequent inserts such a technique is much to 
inefficient for large indexes. 

38 [O'Neill 1994 ] 
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We will explain, the means by which a B-Tree is kept ordered and balanced as 
new entries are added, using an example illustrated in figure 3.8. [O'Neil 1 994]. Let 
us assume that free space is left in the pages so that inserts are often possible to pages 
at any level without new disk space being required. When a new entry is to be added 
in the index, we follow the index structure down to the leaf page as if we were simply 
l o oking it up (search like for a query), so that after the insert, the index structure 
channels us to the leaf level for the new added record. But occasionally the leaf page 
is to o full to simply accept the new entry. In this case, for additional space the leaf 
page is split into two pages (the entries are kept in order, lower key values to the left 
split page and higher ones to the right). This means that the higher level index page 
must be modified so that a new separator exists, along with a new pointer to the new 
page (the other page has simply been reused). Occasionally, the modification of 
adding a new separator and pointer to the next higher level of index will exceed the 
space available on that index page. In that case the index page is split, in the same 
way than the leaf level, with possible resulting changes at the next higher level. 
Eventually an additional entry may be placed at root level. If the root splits, then a 
new root page is created at a higher level, having as its children the splited pages 
resulting from the former root. 

Now take a look at figure 3.8., we assume that the B-Tree leaf page accepts at 
maximum up to three entries39 , the leaf level is of order Pieaf = 2 . We also assume 
that internai pages have room for a maximum oftwo page pointers, so fo = 2. 

The B-Tree starts out empty. As the first two en tries ( 5 and 8) are inserted into the 
B-Tree, we have a simple structure, a leaf page that is also the root. No higher level 
index entries are needed, since all entries fit on that single page. As soon as more 
than one level is created, the tree is divided into its set of internai pages and leaf 
pages. Notice that every value must exist at leaf level, because all data pointers are at 
leaf level. However, only some values exist in internai pages to guide the search. 
Notice also that every value appearing in an internai page, appears also as the 
rightm ost value in the sub-tree pointed. 

When a leaf page is full and a new entry is inserted there, the page overflows and 
must be split. The first j = l(fo + 1 )  / 27 entries in the original page are kept there, and 
the remaining entries are moved to a new leaf page. The jth search value is replicated 
in the parent internai page, and an extra pointer to the new page is created in the 
parent. They must be inserted in the parent page in their ordered sequence. If the 
parent internai page is full, the new value will cause it to overflow also, so it must be 
split. The entries in the internai page up to Pj , ,the jth pointer after inserting the new 
value and pointer, where j = l(fo + 1 )  / 2J, are kept, while the jth search value is moved 
to the parent, not replicated. A new internai node will hold the entries from Pj+1 to 
the end of the entries in the page. This splitting can propagate all way up to create a 
new root page and hence a new level for the B-Tree. 

39 This is much smaller than is realistic for a disk page, but keeping it small simplifies example. 
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Note in particular that the only way in which the depth of a B-Tree can increase is 
when the root page splits. Immediately after a root split, all leaf nodes increase their 
depth by one, and it is clear that there is no way in which two leaf pages can ever 
become to be of different depth down from the root in a growing B-Tree. That is why 
the B-Tree remains totally balanced. 

ln sert Sequence: 8, 5, 1, 7, 3, 12, 9, 6 
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figure 3. 8. : Jnserts in a B-Tree 40 

Now, what happens when entries are deleted from the B-Tree in response to rows 
being deleted or attribute values updated in the indexed table? Figure 3.9. [O'Neil 
1 994] illustrates deletion from a B-Tree. 

4o [O'Neill 1994] 
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When an entry is deleted, it is always removed from the leaf level. If it happens to 
occur in an internal page, it must also be removed from there. In the latter case, the 
value to its left within the leaf page must replace it in the internal page. Because that 
page is now the right most entry in the sub-tree. Deletion may cause underjlow by 
reducing the number of entries in the leaf page to below the minimum required. In 
this case the system tries to find a qualified leaf page, a leaf page directly to the left 
or the right of the page with underflow. And redistribute the entries among the page 
and its sibling page so that at least both are hall full; otherwise, the page is merged 
with its sibling and the number of leaf pages is reduced. A common method is to try 
redistributing with the left sibling; if this is not possible, an attempt to redistribute 
with the right sibling is made. If this is not possible either, the three pages are merged 
into two leaf pages. In such a case, underflow may propagate to internal pages 
because one fewer tree pointer and search value are needed. This can propagate and 
reduce the tree depth. 

Deletion Sequence: 6, 12, 9 
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� tree page pointer 
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figure 3.9. : Deletionfrom a B-Tree41 

41 [O'Neill 1994] 
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An algorithm that performs the actions just outlined when entries are deleted from 
a B-Tree, could be used to keep a shrinking B-Tree balanced and all pages higher 
than the root at least half full. However, very few commercial database systems 
implement this algorithm, because they use to much disk I/Os. The logic to merge 
pages is somewhat more complicated, and requires extra I/0 to keep pages well 
populated. Since disk space is cheap, most systems architects have decided to allow 
pages to become depopulated without automatic reorganization. The major reason 
for concern with a sparsely populated index is not the disk space, but the extra disk 
I/Os entailed in a range search for some number of entries that are spread on an 
unusually large number of leaf nodes. To respond to such inefficacy, the various 
database systems provide utilities to reorganize B-Trees. Such utilities duplicate the 
work of the original index creation and result in a clean new copy of it, with efficient 
disk utilization. 

3.2.3. C lusters 

Throughout this section we are going to describe the aspect of table clusters based 
upon [ORACLE 7.0]. ORACLE 7.0 offers the possibility of clustering tables, it is an 
optional method of storing table data. In fact a cluster can be seen as a group of 
tables that share the same data pages, because they share common attributes and are 
often used together. For example, the EMP and DEPT table share the DEPTNO 
attribute. As we define a cluster on the EMP and DEPT table (see figure 3. 10.), all 
records for each department from both EMP and DEPT tables are physically stored in 
the same data page. 

CLUSTER f 
:

STER KEY 

PTNO 
DNAME LOG 
Sales Namur 
EMPNO ENAME 
1000 Dupond 
1321 Ferber 
1541 Mathon 

20 DNAME LOG 
Admin Arton 
EMPNO ENAME 
932 Hainaut 
1500 Smith 
1491 Dubois 

Clustered Tables 
Related data is stored 
together more efficently 

figure 3.1 O.: Clustered Tables42 

42 [ORACLE 7.0] 

EMP TABLE 

EMPNO ENAME DEPTNO--... 
--1 

932 Hainaut 20 .. . 
1000 Dupond 10 .. . 
1321 Ferber 10 

�

·· 
1491 Dubois 20 .. . 
1541 Mathon 10 .. . 
1500 Smith 20 .. . 

� , , DEPT TABLE \ \ 

\ \ 
1 DEPTNO DNAME LOG 

\ \ 10 Sales Namur 
\ \ 20 Admin Arton 
\ ' 
\ \ 
1 \ 
\ 1 1 \ 
1 \ 1 \ 1 1 1 1 1 \ 1 ' 1 \ 1 \ 1 \ 1 \ \ 1 1 \ 1 ' 1 1 

Unclustered Tables 
Related data is stored apart 
taking up more space 
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Two primary benefits can be brought to light when storing related records of 
different tables together in the same data page: 

� Disk 1/0 costs are reduced and access time improves for joins of clustered tables. 

� In a cluster, there is a key cluster value, which is the value of the cluster key 
attributes for a particular record. Each cluster key value is stored only once, each 
in the cluster and the cluster index, no matter how many records of different tables 
contain the value. Thus, less storage might be required ta store related tables than 
in a non-clustered table format. For example, notice that each cluster key (each 
DEPTNO in figure 3. 10.) is stored just once for multiple records that contain the 
same value in the EMP and DEPT tables. 

We already revealed two primary benefits of table clusters, but there are more 
performance considerations as we will see. 

It is obvious that clusters can reduce the performance of update statements 
( INSERT, DELETE, UPDATE) as compared to storing a table apart with its own index. 
As multiple table have data in each page, more pages are used to store a clustered 
table than if that table where stored non-clustered. Thus the performance 
disadvantage is related to the use of more space and the higher number of pages that 
have to be accessed to scan a table. 

To identify cluster tables, the designer must look for tables that are related via 
referential integrity constraints and tables that are often accessed together in a 
SELECT statement, which joins two or more tables. If we cluster tables on the join 
attributes, we reduce the number of data pages that must be accessed when execution 
the query, as all records needed for the join lie on the same page. Thus performance 
for joins is improved. Similarly, it might be useful to cluster an individual table as we 
are going to see later on. For example, the EMP table can be clustered on the DEPTNO 
to group the records for employees of a same department. This is obviously an 
advantage if data operation commonly process records department by department. 

For more details about Cluster we refer the reader to [ORACLE 7.0], however we 
give some guidelines for creating clusters. 

Choose Appropriate Tables ta Cluster: Use clusters to store table that are 
primarily queried (not predominantly I NSERT, DELETE, UPDATE), and for which 
queries frequently join data of many tables in the cluster or retrieve related data from 
a single table. 

Choose Appropriate Attributes for the Cluster Key: A good cluster key has 
enough unique values so that the group of qualified records to each value fills 
approximately one page. Not enough records per cluster value can waste space and 
result in bad performances. Cluster keys that are so specific, that only few records 
share a common values, can cause wasted space in pages, unless a small page size 
was specified at cluster creation time. Similarly, too many records per value can 
cause extra page accesses to qualify records for the given key. Cluster keys on values 
that have not enough cardinality (for example: male and female) result in excessive 
searching and can result in worse I/0 costs than with non-clustered. 

3.2.3.1.  Clustered and Non-Clustered Indexes (Primary / Secondary) 
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As we already mentioned, a cluster can be defined on a single table . During this 
section we are going to see the implications of a clustered and non-clustered index 
defined upon a single table . 

Placing records on disk ordered by some common index key value, is called 
clustering. An index with referenced records in the same order as its key values, is 
known as a clustered index, in some writings it is also referred to as a clustering 
index. A slightly more general concept is a primary index for a table, which 
determines the placement of the records, not necessarily the ordering, since there is 
no ordering in a hash index. The advantage of a clustered index is that certain query 
types are more efficiently answered, when the qualified records lie close to one each 
other. We think here about Range, Multipoint, Prefix match, Ordering, Grouping and 
Join queries . 

In case where records with common index key values are clustered together and 
we read in the page containing one of the records with the given value, other records 
with the same value are likely to reside on the same page . Thus in accessing those 
records, we don't have to repeat the disk I/Os required to access the next record. Even 
if our database access method is relatively simple and accesses records only one at a 
time, on the basis of their RIO values, we find that the second and successive records 
reside on the same page, already in the buffer . 

Clustering indexes are sparse in some systems; like SYBASE, and dense in 
others, like DB2 and ORACLE. In other systems, like INGRES, the clustering index 
is sparse if based on an ISAM or hash structure and dense if based on B-Tree [O'Neil 
1994] . Sparse clustering indexes hold pointers at leaflevel for every page of the table 
being indexed . Whereas dense indexes hold RIO pointers for every distinct attribute 
value . So sparse clustering indexes will often have fewer levels than dense ones . 
According to [Shasha 1992] sparse clustering indexes can reduce respond time by a 
factor of two or more. 

Notice, that because a clustering index implies a certain physical file organization 
and the data file can only be organized one way at a time, there can be at most one 
clustering index per table . 

A non-clustering index, sometimes called secondary index, is an index on an 
attribute ( or set of attributes) that puts no constraint on the table organization . They 
do not have the advantages of data proximity like the clustered once . Successive 
entries of a non-clustered index reference records on disk pages that are likely to be 
far apart, so there is no saving from one record to another . 

Let us make sure, we have well understood the distinction between both index 
organizations . In a library, books may be clustered by access number, for example 
the ISBN number . The access number is the book's address in the library . Books with 
close related access numbers tend to be physically close one to another . In addition, 
there may be several nonclustering indexes represented by use of card catalogues. 
These are non-clustering, because two books with the same index entry may be 
physically far apart. For example, the same author may write a book about database 
tuning and another about a mathematical detective, both of the books will most 
probably not be placed near each other . 
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3.2.3.2. Evaluation of Clustered Indexes 

We have seen the structure of the clustering index, know it is time to examine the 
advantages and disadvantages of clustered indexes in relation with the query types. 

04.09.1996 

A clustered index offers the following benefits compared with non-clustering one: 

!:!::> If the clustered index is sparse, then it will store fewer pointers than a dense 
index. Note that a non-clustering index is always dense. This can save disk 
access as more index entries can fit in a leaf page. 

!:!::> A clustered index is good for Multipoint queries. For example, equality 
predicate on a non-key attribute. A clustering index is useful for looking up 
names in a telephone book, because all people with the same last name are on 
consecutive pages. By contrast, a non-clustering index on the first three digits 
of subscribers phone number would be worse than useless for Multipoint 
queries. A query to find all subscribers in the 497 exchange might require an 
access to nearly every page. 
For the same reason, a clustering index will help perform an equality join on an 
attribute with few distinct values. For example, consider the equality join query 
on first names : 
SELECT Employee.ssnum, Student.course 
FR0M Employee, Student 
WHERE Employee.firstname = Student.firstname 

If the table Employee has a clustered index on firstname, then for each Student 
record, all corresponding Employee records will be packed onto consecutive 
pages. 
If the Employee and Student tables both have clustering index in firstname, then 
the database system will often use a processing strategy called a merge-jo in. 
Such a strategy reads both relations in sorted order, thus minimizing the 
number of disk accesses required to perform the query43 . This will also work if 
both tables have clustered index on first name, based on a hash structure that 
uses the same hash fonction. 

!:!::> A clustered index based on B-Tree supports range, prefix match, and 
ordering queries we/1. The pages of a telephone book provide a good example 
of the performance benefits. All names that begin with 'Ge%' will be on 
successive pages. The clustering index can also eliminate the need to perform 
the sort in an OROER BY query on the indexed attribute. 

!:!::> A clustered index on attribute or set of attributes can reduce I ock c ontenti on  in 
two ways. 

R::,, A retrieval of several records with the same value, a prefix match query, or 
a range query will access and Iock only a few consecutive pages of the 
table. If the table is non-clustered or clustered on some other attribute(s) 
then such queries may access many more pages. It can happen that we 
have a different page for each record. The fewer pages accessed, the fewer 
pages are l ocked in the systems that use page level locking. 

43 Each page of each table will be read in once. 
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\t::,- A clustering index can eliminate a c oncurrency c ontra! hot spot in 
intensive insert environments. Such environments make a hot spot of the 
last page of the heap organization. A clustering index based on a hash 
structure will always eliminate this hot spot on the table. A clustering 
index based on a B-Tree will also eliminate the hot spot provided the key is 
n ot sequential. 

The main disadvantage of the clustering index is that its benefits can diminish if 
there are a large number of overflow data pages. The reason is that accessing such 
pages will usually entail extra disk I/Os. Overflow pages can result from two kinds of 
updates. 

� Inserts may cause data pages to overflow, and they have to split with all known 
consequential effects on the index entries and/or levels. 

� Record replacements that increase the size of the record. For example, the 
replacement of a NULL value by a long character string, or that change the 
indexed key value will also cause overflows and/or underflow of data pages 
with effects on the index entries and/or levels. 

3.2.3.3. Evaluation of Non-Clustered Indexes 

Because non-clustered indexes on a table do not impose any constraints on the 
ordering, there can be many n on-clustering indexes o n  a given table. 

A non-clustering index can eliminate the need to access the table. For example, 
consider that there is a non-clustering index on attribute A 1 ,  A2 and A3 of table T1 . 
Then the following query can be answered completely within the index, without 
accessing the data pages. 

SELECT A2, A3 
FROM T1 
WHERE A1 = 5; 

If your system takes advantage of this possibility, non-clustering indexes will give 
better performance than sparse clustering ones. Of course, updates would need to 
access the data pages of table T 1 .  

Suppose the query must touch the table T 1  through a non-clustering index 
based on A1 . Let N r  be the number of records retrieved and N p  be the number of 
pages for T1 . If Nr < N p, then approximately N r  pages of T1 will be logically read. The 
reason is simple, it is likely that each record will be on a different page. If Nr > Np, 
then more than Np pages may be retrieved if the buffer pool is smaller than the table 
s1ze. 
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Thus, non-clustering indexes are good if each que1y retrieves significantly fewer 
records than there are pages in the file, in other words if the query has a good 
selectivity. For the moment we still use the word 'significant', but later on we see 
how the number of record to be retrieved behaves according to access performances. 
However the word is well chosen, because a table scan can often save time by 
reading many pages at a time, provided, the table is stored contiguously on tracks. 
For example, INGRES normally reads 8 pages at a time on a scan. Therefore, 
according to [ Shasha 1992], even if the scan and the index both read all the pages of 
the table, the scan may complete by a factor of 2 to 10 times faster. 

Consider a table T1 with 50 byte records and pages of 4Kb long. Assume further 
that attribute A1 takes 20 different values, which are evenly distributed among the 
records. The question is to know if a clustering index on A 1 a help or a hindrance? 

Each Multipoint query on attribute A1 will retrieve approximately 1/20 of the 
records. Because each page contains approximately 80 records, nearly every page 
will have a record for nearly every value of A 1 .  So, using the index will give worse 
performance than scanning the entire table. 

Consider the same situation, except that each record is 2Kb long. In this case, a 
Multipoint query on the non-clustering index will ·touch only every tenth page on the 
average, so the index helps at least a little. 

We can draw three guidelines from these examples. 

� A non-clustering index serves you best if it avoids touching a data page. This is 
possible for certain types of queries some Point or Multipoint queries, as well as 
Count, Join and Existence queries that depend on the key attributes of the non­
clustering index. 

� A non-clustering index is always useful for point queries. 
� For Multipoint queries, a non-clustering index may or may not help, depending on 

the selectivity. However a good rule of thumb is to use the non-clustering index 
whenever the following holds : 

number of distinct key values > c * number of records per page, 
where c is the number of pages that can be prefetched in one disk read. 
This inequality implies that the use of the non-clustering index would entail fewer 
disk accesses than scanning all the pages of the table. 

There are two situations when you should never use a non-clustering index. 

� When the activation frequency of update operations compared to the activation 
frequency of data access operations is high. As a rule of thumb [Shasha 1992], at 
least one-third as frequent. A update operation is either an insertion, deletion or 
update to one of the values of the index attributes. The reasons are, like we have 
seen, that modifications entail at least two disk accesses when not more, because 
of the dynamic index reorganization. 

� When lock escalation occurs. In some systems, a table with many non-clustered 
indexes may cause a transaction that does a substantial number of updates to 
escalate to table-level locking. Escalation occurs when a transaction acquires more 
than a predetermined threshold of locks [ Shasha 1992]. 
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3.2.4. Hash index 

As already mentioned earlier in this section, the hash index, same as the clustered 
index, determines the record placement on disk. We say that the hash index is a 
primary index, because the record placement in the table is computed out of the index 
values, as we will see. 

A hash primary index for a table provides look up by a method that is entirely 
different from the B-Tree structure. Note that hashing techniques can be used to 
construct the leaf level in an index, however we will not consider this structure in this 
paper. With a hash primary index, records inserted in a table are placed in a pseudo­
random data page determined by a hash function applied to the key value, and 
retrieved the same way, usually with a single I/0 operation. There is no key value 
directory (like the leaf level in B-Tree ), so look up depends on proceeding directly to 
appropriate pseudo-random data page slots by hashing the key value. 

There is no order by key value possible in such a structure. Normally in hashing, 
we can only ask for a specific key value, not for the sequent key values, as it is 
possible in a B-Tree structure. We would expect two records with successive key 
values to be located on entirely uncorrelated data pages, depending on the caprice of 
the hash function. As a result, Multipoint query is not well served by a hash index, 
because a brute force scan of the table is needed. This is a serious limitation, but the 
compensating value of hash indexes lies in rapid access to records in large tables by 
point queries. The ability to access a desired record with single I/0 is a great 
advantage when compared with B-Tree, which requires extra I/0 for directory search 
in large tables (in numerous cases 2-3 disk accesses) 

3.2.4. 1. Hash Function and Collisions 

As we noted earlier in this chapter, hash indexes exist in INGRES, and an 
alternative hash feature exists in ORACLE version 7, but hashing is not possible in 
DB2 at this time44 . We will illustrated the discussion on hash indexes by referencing 
the INGRES hash structures tables. 

Hashing, or sometimes called hash-addressing is a technique for providing fast 
direct access to specific stored records on the basis of a given value for some field. 
The field in question is usually, but not necessarily, the primary key of a table. In 
outlines the technique works as follows. 

Each stored record is placed in the table at a location, a slot, whose address (RID, 
or perhaps just page number) is computed as some function, the hash function, of 
some set of attributes of that record. So, hashing consists off applying a hash function 
H to the key45 values of records and determine this way the location of the record in 
the database. A common class of hash fonction can be called "division/remainder". 
For reasons that are beyond the scope of this paper, the divisor of such a hash 
fonction is usually chosen to be a prime number. 

44 According to [O'Neill 1 994] 
45 As with B-tree, we do not insist on unique key values unless the keyword unique is explicitely 

used. 
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To retrieve the record subsequently given the key value, the database system 
performs the same computation as before and fetches the record at the computed 
position. 

Figure 3. 1 O. illustrates the insertion of data records46 by using a hash fonction. 
Note that in the figure we only represent the key values and no the whole records, 
this simplifies the figure. Slots for a given key value might be determined in a 
number of different ways. One way is to hash a given key value to a given disk page 
and then find an empty slot somewhere on the page where the record can be stored. 
However, we assume in what follows that the precise slot on any page of the table is 
being determined by the hash fonction. If this slot is already in use, a situation known 
as hash collision occurs, and collision resolution is performed in some deterministic 
way to locate an empty slot. 

Hash collisions occur when the hash field value of the new added record hashes 
to an address that already contains a different record. In this situation we must insert 
the new record in some other slot position, as its hash address is occupied. The 
process of finding another position is called collision resolution. There are numerous 
methods for collision resolution, including the following: 

':!::> Open addressing: simply consist of looking at all other slots on the same page 
in some predetermined order until an empty one is found. In open addressing, 
eve1y attempt is made to find a new slot on the same page, to minimize the 
number of I/Os needed to search through a chain collision. Only if we run out 
of space in a page, then a slot on a succeeding page is used47 . 

':!::> Chaining: various overflow locations are kept, usually by extending the initial 
number of pages with a number of overflow pages and their slots. The collision 
is resolved by placing the new added record in an unused overflow slot and 
setting a pointer, of the occupied slot, to the address of the overflowing slot. A 
linked list of overflow records for each hashed slot is maintained. 

':!::> Multiple hashing: the system applies a second hash fonction if the first results 
in a collision. If another collision results, the system uses open addressing or 
applies a third hash fonction. 

Each of the above collision resolution methods requires its own algorithms for 
inserts, retrieval and deletion of records. The algorithms for chaining are the 
simplest. Deletion algorithms for open addressing are rather tricky, because the 
system does not remove the record physically from its position but only lists it as 
deleted. 

In figure 3. 10. we illustrate the insertion of the record with the given key value 55 
in the slot that has been determined by hash fonction, H, and then rehashed. We see, 
that the record with key value 55 has collided in slot 66 with a record already stored 
there, and then has been rehashed to slot 69. 
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46 Note that we used the same values than those in figure 3 .7. for the B-tree 
47 [O'Neill 1994] 
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figure 3. 1 O. : Hash Structure Table. Record Insertion 55 with Collision48. 

The goal of a good hashing fonction is to distribute the records uniformly over the 
slots so as to minimize collisions, while not leaving many unused slots. Simulations 
and analysis have shown that it is usually best to keep a hash table between 70% and 
90% full so that the number of collisions remains low and that space is not wasted. 
Hence, let us see how the database system determines number of slots and data pages 
necessary for a given table. At the time the hash structure is created49, a certain 
number of slots, Ns, on a known sequence of pages is set aside for usage. Consider 
that there are Nr records in the table, and that we defined a fill rate of fr (an integer 
from 1 to 1 00), then the number of slots set aside by the system can be expressed by 
the following relation: 

Ns = 1(Nr * ( 1 00/fr)7 

For example, if we have 1 00.000 records in the table and a fill rate of 70%, we 
would set aside Ns = 11 00.000 * ( 1 00/70)7 = 1 42.858 record slots. 

Next let us calculate the number of pages N p  required for the estimated number of 
slots. We assume that we can guarantee placing at least Nrp records per page. The 
number of pages used will be given by the following relation: 

Np = 1 (Ns / Nrp)7 

In the above given example with 143.858 slots, consider that 20 records can fit on 
a page, then the number of pages required is equal to N p = 1 142.858/207 = 7. 1 43 pages. 

04.09. 1 996 

48 [O'Neill 1 994] 
49 INGRES used a Modify command to give a table a hash structure. 

MODIFY tablename I indexname 
TO HASH [UNIQUE] [on columnname {, columnname}]  
[WITH [LOCATION = . . .  ] 

[MINPAGES = n] [, MAXPAGES = n] 
[FILLFACTOR = n] ] ;  
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3.2.4.2. Fixed Number of Slots 

It is important to realize that once the number of slots Ns specified, it cannot be 
enlarged, as it can with B-Tree node splitting. The reason for this limitation is that 
the hash fonction is a two phases calculation. The first phase generates a pseudo­
random number based on the key value, x = r(keyvalue), where x might be a floating 
point number, uniformly distributed in the range of O < x < 1 .  Throughout the second 
phase the slot number H(keyvalue) resulting from the hash fonction can be generated, 
for example with the following relation : 

H(keyvalue) = LNs * r(keyvalue)J 

The relation results in a random slot number from sequence 0, 1 ,  . . .  , Ns-1 . We 
consider this two phases approach because in this way the generic fonction r can 
easily lead to a uniform distribution of integers ranging from O to Ns-1 , for any given 
value of Ns. However, if the total number of slots was changed, say to Ns', we would 
find that the hash fonction 
H'(keyvalue) = LNs' * r(keyvalue)J 

might give the same slot number for all slot placements previously calculated. 

For example, if r(keyvalue) is 0,33334, and Ns is 2, then 
H(keyvalue) = L2 * 0, 33334J = 0 

However, if Ns is 3 we would have 
H'(keyvalue) = L3 * 0 ,33334J = 1 . 

This is the reason why we cannot enlarge the number of pages within a hash 
organization. It is helpfol and even necessary to reorganize the table completely 
when the average length of collision chains begins to enlarge, because performance 
decreases rapidly as the pages fill up. Most database systems offer statistics on 
collision chains length to aid the DBA in tuning. 

3.2.4.3. Collision Chain Length and Page Overflow 

The major advantage of the hash structure is that it is usually possible to go 
directly to the qualified page, where the qualified records are located. This .is likely if 
we can use a lot of disk space to specify a very low fill rate, but there is an enormous 
waste of space. In such a situation the occupancy of the pages tends to be low, and 
the collision chains short. Therefore, the probability to find each record on its 
originally hashed page it high. 

Recall that there exists various techniques to solve the problem of hash collisions. 
One of the techniques is the known as open addressing, a second is known as 
chaining and a third is known as multiple hashing. Figures 3. 1 1  and 3. 12 [Hainaut 
1994] show the evolution of the average I/0 cost (number of physical access) 
depending on the page's fill rate, fr, and the number of records to be stored, thus on 
the number of records within a data page, Nrp, and the number of pages, Np.  
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Note that these figures confirm the fact that the more a page fills up, the more the 
fill rate increases, the more there are hash collisions, thus the higher the I/O cost is. 
However, we can also observe that for a small fill rate the more a page can hold 
records the better the I/O cost is, but the more space is wasted. 
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figure 3.12. : Average Cast Evolution for Chaining. 
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Throughout the next lines we  will try to determine the average collision length for 
the open addressing, given a fill rate [O'Neil 1994]. 

First we want to estimate the probability, P, that the last hashed record, as it is 
added, encounters a filled slot in its first probe. Consider a given fill rate, fr. The 
likelihood that any given hash page is occupied is P = (fr/1 00), assuming that the 
records are randomly distributed among the slots. This means that the probability that 
the slot is empty is 1 -P, this is also the probability that we will be able to place the 
new added record in the first position we corne to. We call this 'a co llisi on  chain of 
length J ', because only one probe is necessary, and write it as: 
Pr( collision chain length 1 )  = ( 1 - P) 
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On the other hand, in order to have a collision chain of length 2, the first position 
hashed to must be full, with probability P, and the second position that we reach in 
the rehash sequence must be empty, with probability 1 -P. Using the principle of 
multiplication by which we calculate the probability of two or more independent 
events happening together : 
Pr(coll ision chain length 2) = ( 1  - P) * P 

Now for a collision chain of 3, we must start with full slots in the first two 
positions we reach, with probability P * P = P2, and then an empty slot in the third 
with probability P. Simple extension of this argument gives: 
Pr(coll ision chain length 2) = (1 - P) * P2 

Pr(col l ision chain length 2) = ( 1  - P) * P3 

Pr(coll ision chain length 2) = (1 - P) * pK-1 

Now the expected length of the collision chain, E(L), is given by the sum of all 
these probabilities times the associated lengths : 
E(L) = ( 1  - P) + ( 1  - P) * P + (1 - P) * P2 + . . .  + ( 1  - P) * pK-1 
or factoring : 
E(L) = ( 1  - P) * ( 1  + 2P + 3p2 + . . .  + KpK-1 ) 
where the sum extends to some large number, K, of terms, proportional to the 
maximum number of possible collision in the table. Now we would like to be able to 
give a simple formula for this sum. To see how to do, start by considering the 
fonction f(x) given by the infinite series: 
f(x) = x + x2 + x3+ x4 + . . .  

This is the well known infinite geometric progression, a + ar + ar2 + ar3+ . . . , with a 
and r forming x. The formula for the sum is known from algebra, a/(1 - r), so we can 
give a closed firm solution for the infinite series f(x) : 
f(x) = x + x2 + x3+ x4 + . . .  = x /(1 - x) 

Now, taking the derivative of all terms in the equations, we get : 
f(x) = 1 + 2x + 3x2 + 4x3 + . . . = 1 /( 1  - x)2 

Rewriting the relation for the expected length E(L) of collision chain, we see that 
we can represent the infinite sum on the right with f(P), replacing x with P in the left 
hand equality of equation f(x): 
E(L) = (1 - P) * (1 + 2P + 3P2 + 4P3 + . . . ) = (1 - P) * (f(P)) 

Now using the right hand equality of equation f(x), we can replace f(P) with 1 /( 1  -
p)2, to get : 
E(L) = ( 1  - P) * (f(P)) = ( 1  - P) * ( 1 /( 1  - p)2) = 1 /( 1 -P) 

Thus we see that the expected length of collision chain is the reciprocal of (1  - P). 
Recall that P = (f/1 00) and consider a few examples. If the hash structure is 50% full 
then P = 0,5, and E(L) = 1 /0,5 = 2. If the table is 90% full, then P = 0,9 and E(L) = 1 O. 
The graph of this relationship is given in figure 3 . 12 .. 
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figure 3.11.: Relationship between E(L) and the fil! rate, fr. 
Fillfactor in %, ff 

As we would expect, the more full we set the table, the more there will be 
collisions and the longer the average collision chain will be. What might be 
surprising, is how quickly the chain increases in length once the fill rate cornes close 
to 1 00. 

Assume that we can fit 20 records on a page and set and load a table half full, fr = 
50%, it seems quite unlikely that a collision chain of average length 2 will grow long 
enough (L=21 )  to continue to a successive page. However, if the fill rate is 95%, the 
average length of a chain is 20, so about half the collision chains will continue to a 
new page, and cause a supplementary page access during retrieval . The point of all 
this is to show how important it is to keep the fill rate small relative to 1 00. On the 
average, we will be able to find a record associated with a unique key value half-way 
through a collision chain, which entails only a single disk access. Significant 
overhead, and supplementary disk accesses, start to occur when a significant number 
of entries start to hash to position 2 1  or later of the chain. 

A hash table containing duplicate key values tends to have longer collision chains, 
since equal value records are certain to collide. In our derivation, we assumed 
independent random positions for separate hash entries, which is obviously not the 
case when duplicate entries exist. 

3.2.4.4. Evaluation of Hash Primary Index 

To begin with, it should be clear that hash primary index is extremely efficient 
with equal predicates in key attribut es ( example id = 1 2345), such as Point queries. 
AU other query types, like Range, Prefix Match, Extreme, Grouping, Ordering etc . . .  
queries, can not be solved efficacy by a hash index. The system falls back on another 
access method, such as table scans or B-Tree, to solve these queries . Assume that the 
hash index is the only access structure present for a given attribute, and the range 
predicate is the only predicate present in the Select statement, then the table scan 
seems the appropriate access method. Since slots of a hash table are rather sparsely 
filled to restrain collisions, a table scan on a hashed table entails more I/Os than usual 
in a sequential structure. 
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Another disadvantage of the hash primary index is that we have to leave room for 
expansion in the initial layout of the table, rather than depending on incremental 
expansion for later insert. Given normal uncertainty about table expansion, we 
usually tend to overestimate the extra space needed, and therefore waste disk space. 

A third point is that if we use non key values (Multipoint queries) in the predicate, 
the retrieval routine will need to go through the entire collision chain for a given 
value. It should also be clear that if we sometimes have a large number of duplicate 
values or a poor selectivity there could be a very long collision chain, which detracts 
seriously from the efficacy of the structure. Note that 'NULL' values count as 
duplicate values. 

Let us see throughout a small example how consideration arise in selecting a hash 
index structure or a clustered B-Tree structure. Consider the following two tables 

autodeposit 
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The autodeposit table, is a single-column list of employees ( eid) for individuals 
who have asked that their weekly checks be automatically deposited. The table 
employees is constituted of the employee's number ( eid), the deposit bank (bank), the 
account number (acctid) and the weekly salary for each employee (weeksal). 

A common type of application program, performed once a week, would read the 
eid values to access the records of the employees table and make the desired automatic 
deposit in the appropriate account. 

This appears to be a long sequence of indexed access to the employees table 
throughout an index on eid . We might decide to use a primary hash index on eid for 
the employees table, since this will give us the most efficient I/0 access to these 
records. However, this approach would be a mistake. If instead we give the 
employees table a clustered B-Tree index on eid, the resulting table would be 
clustered by eid value. Now if we also cluster the records in autodeposit table by eid 

values, we would find that the application, looping through the autodeposit records, 
makes all accesses to the employees table in order by the clustered key. In general, 
successive accesses to the employees table pass clown through index nodes, that 
always remain in memory buffer from prior access, and then to a record on a page 
that is already in memory buffer. 

The total number of employee pages involved in I/0 is equal to the number of 
pages in the table. If we assume that a large portion of employees receive 
autodeposit, so most employee table data pages will be involved. On the other hand, 
in the hash case, as each new record is accessed it lies on a random page, unrelated to 
the previous one, even if it was accessed by contiguous key. If there are, say, an 
average of 10 records on each hash page, that desire direct deposit, there will be 20 
times as many I/Os in the hash primary index case than in the B-Tree clustered index 
case. We are between accesses, and that the B-Trees index page are few in number 
compared with the data pages, both common assumptions. 
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Thus we see an example where the hash structure is not as I/O efficient for record 
access as another ordered structure. Of course we stacked the deck, since the eid 
references are not actually random. On the other hand, this is a common situation, 
and one should be aware of how the record order within the table can 1mprove 
resource saving in accessing the table. 
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Chapter 4. 1/0 Cost Estimations 

In chapter 2 we examined the data operations and classified them into a set of 
query types, whereas in chapter 3 we described some of the different data structures 
that allow us to structure and to access data. We arrived at a point where we have to 
combine both features and find out how we can estimate I/O cost estimations for 
different types of query, according to different access structures and search 
techniques. In this chapter we will see if we can shed some light on the I/O cost 
estimations. We will try to estimate the I/O cost, by using some simplified relations. 
Note that if we use pessimistic estimations we can assume that in real life, access 
performances are generally better than the one we estimate. The fact that real life 
performances will surely be better then the one we estimate does not influence our 
search for the optimal index solution. 

Given the multitude of parameters that influence I/O cost estimations, first it is 
helpful to understand the influence of the different parameters upon the cost 
estimation, second it is helpful to compare parameters between on each other. 
Throughout this section we will see that the filter factor plays an important role 
during cost estimation, for this reason we will only compare the filter factor to other 
parameters, such as the fill rate, the page size, the number of records and the fan out. 
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4.1. Brute Force 1/0 Cost 

A brute force table scan is an algorithmic step, where all records in the table are 
scanned and only the records qualified by the select_filter, WHERE clause, are 
retrieved. In many database architectures there are situations in which distinct record 
types can be mixed on common extents of a tablespace50. However, in what follows 
we assume that all pages referenced in a tablespace contain only one type of record 
type. 

Recall the relation, from chapter 3, for estimating the number of pages needed to 
store all records : 

Np
. r l (Ps -!w rc j 

1 

where 
Np: Number of data pages 
Nr: Number of records to store 
Ps: Page size 
Hs: Page header size 
fr: fill rate 
Rs: Record size 

Assume that we are given an Employee table with N r  = 200.000 records, each 
record is of fixed length Rs = 200 bytes, and data pages have a fill rate fr = 70%. We 
assume that each 2-Kb data page uses roughly Hs = 48 bytes of overhead, leaving 2000 
bytes, and with data pages loaded 70% we have 1 400 available bytes. So a data page 
can hold up to a maximum of N rp = 7 records. Thus, the total number of data pages 
needed for storing 200.000 records is equal to N p = 28.572 pages. 

Consider the following point query (predicate on a key attribute): 
SELECT eid, ename 
FROM Employee 
WHERE socsecno = 1 23456789; 

where we search for the identification number, eid, and the name, ename, of an 
employee with a given social security number, socsecno.  

Assuming that we do not have an index on attribute socsecno, our only technique 
to retrieve the requested employee, is to look at all N p  data pages to find the record 
that satisfies the predicate. We are calling this technique the brute force table scan or 
the sequential table scan. Note, that we might know, at priory, that there is only one 
record satisfying the predicate, however the optimizer probably will not, since 
socsecno has no index, and statistics usually do not include such details for all 
attributes. 

For our example, as there are 28.578 data pages that have to be scanned. The I/O 
cost is equal to COST110(PLAN) = 28.578 random I/Os. Recall that we do not try to 
estimate the time needed by the CPU to execute the query, COSîcpu(PLAN), however 
we assume that the total I/O cost is, normally, proportional to the I/O cost. 

50 Because of this feature we should speak about tablespace scan and not about table scan. 
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4.1 .1 . Brute Force 1/0 Cost Estimation 

Following the above example, the COST 110(PLAN) for a brute force table scan, 
based on random page accesses, can be estimated by the following relation : 

CosT110(PLAN) = Np  * R 

where 
Np: number of data pages 
R: fraction of lime necessary to perform a random read (generally 1 /40 seconds) 
relation 4.1.: Cast estimation for Brute Force Table Scan 

However, as already mentioned, in chapter 3., the table scan has some tricks to 
offer, like the mutli-block access 1/0. Until now, we assumed random access and 
estimated that 28.578 accesses are needed. Considering that they are performed one 
after the other, they require 28. 578 times as long as a single random access. 

The idea behind the multi-block prefetch access is that the system speci:fies a large 
number of data pages, in sequence, to be accessed, most commonly 32 pages. This 
sequence of requests is communicated to the disk controller in a manner that allows 
the controller to read successive pages on a track. As a result, the database system is 
able to perform 32 page reads in sequence at full rotational transfer rate of the disk. 
Therefore at a much lower cost in terms of elapsed time during which the disk arm is 
employed. Figure 4. 1. [O'Neil 1994] gives a comparison between a the multi-block 
access of 32 disk pages in sequence and 32 random accesses. Assuming that a 
random access needs 0,025 second. 

Random Access Multi-Block Access 
(in seconds) (in seconds) 

Seek time 0,01 6 0,016 
Rotational latency 0,008 0,008 
Transfer time 0,001 0,048 (32 pages) 

Total access time 0,025 0,072 

Total for 32 pages 0,800 0,072 

figure 4.1.: Time Comparison between Mutli-Block and Random Access time of 32 pages 

The value of 0,800 sec. for 32 random reads is approximately ten times larger than 
the value of 0,072 sec. for a multi-block access of 32 pages. In general, we can use 
the rule of thumb that multi-block access proceeds ten times faster than single 
random accesses, defining a rate of 1/400 sec. per page access. 

We estimated for the above Select statement an 1/0 cost of 28.572 random reads, 
which needed 28.572/40 = 7 14,3 seconds. Ifwe assume that we can use the technique 
of the multi-block access to access the 28.572 data pages, then the query requires 
28.572/400 = 7 1,43 seconds 

Given the technique of the multi-block or mutli-block access, we can de:fine the 
following relation for a brute force table scan : 
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CosT11O(PLAN) = Np *  S 

where 
S: fraction of time necessary to perform a mutli-block access ( 1 /400 sec) 
relation 4.2. : Cast estimation for Brute Force Table Scan using Mutli-block access 

There exists also another kind of prefetch, known as the list prefetch, which we 
already described in section 3 . 1.2 .. Recall that the list prefetch provides a list of 
pages (usually 32), to the disk controller, that need to be retrieved from disk. It is 
obvious that the list prefetch is more efficient than the random I/O request, because 
the disk arm is programmed to retrieve all pages in the most efficient way. However, 
the list prefetch is not as efficient as the mutli-block prefetch, which is an 
unachievable optimum. The speed of the list prefetch is determined by how far apart 
the pages are on disk, but we can consider as a rule of thumb [O'Neil 1994] that the 
list prefetch proceeds at 100 I/Os per second. It is obvious that the list prefetch is not 
an I/O technique which is used with the brute force table scan, it is more accurate to 
use it in an index scan to retrieve that qualified data pages. 

If we use the list prefetch to retrieve the qualified pages the I/O cost results in 
28.572 list prefetch reads. Based on list prefetch total access time, the query requires 
28.572/100 = 258.72 seconds. 

Given the technique of list prefetch, the following relation gives us the I/O cost, 
in terms of seconds, to retrieve a set of qualified data pages: 

CosTI10(PLAN) = Np * L 

where 
L: fraction of time necessary to perform a list prefetch read ( 1 /1 00 sec) 
relation 4. 3. : Cast estimation for a List Prefetch Read of Np pages 

The I/O cost estimations, we just explained do not consider the predicate filter 
factor. Recall that the filter factor, of a select_filter is defined as the product of all 
predicate fil ter factors that compose the select_ fil ter. The reader finds formulas to 
estimate the filter factor in section 2. 1.5 .. However, recall that the average number of 
rec ords to  be retrieved, k, by an SQL statement is inferred by the filter factor, as 
shown by relation 4.4. 

k = ff * Card(T) 

where 
ff: Filter Factor for predicate P 
CARD(T): Number of records in table T 
relation 4. 4. : Number of qualified records of a given select _Ji/ter 

Same as, the number of records to be retrieved, the selectivity, s, is inferred by the 
filter factor, as shown by relation 4.5 .. The selectivity defines the percentage of 
records that are n ot qualified by the select_filter. 

s = (1 - f(P)) 

where 
ff: filter factor of predicate P 
relation 4. 5. : Selectivity of a select _Ji/ter 

04.09.1996 Database Performance Tuning 91/162 



Throughout all our examples and descriptions, we assumed that the k records, are 
randomly distributed among a set of Np pages. Making this assumption, we are able 
to foresee the number of pages that contain the k records. If we also assume, that the 
probability that a record is located within a page is independent of the probability 
that another record lies within the same page, then the probability that no record is 
located in a page is equal to (1 -ff)Nrp. The probability that a page contains one of the 
qualified records is equal to (1 - (1 -ff)Nrp). Multiplying this probability by the number 
of pages and rounding it up to the next higher integer we get, per se, the number of 
pages that contain all the qualified records. 

Consider the above probability and a data page of N rp records. Relation 4.6. gives 
a rude approximation of the number of pages, K, that hold the k records: 

where 
Nrp: number of records per data page 
Np: number of data pages 
ff : filter rate 
relation 4. 6. : Number of Pages that contain the qualified records 

Although we know, per se, the number of pages that hold the qualified records, the 
DBMS execution plan does not know, per se, which pages contain which records, 
qualified or non-qualified ones. Therefore we can not induce, for a brute tables scan, 
that the I/O cost is equal to the number of pages that hold the qualified records. 

Thus, we should use relation 4. 7. to estima te I/O cost in case of a brute force scan. 
Relation 4.7. defines a pessimistic cost estimation, where all data pages have to be 
consulted to retrieve all qualified records. In the next section, where we bring the 
relation face to face with the query types, we will see that this estimation is too 
pessimistic. 

COST110(8RUTE FORCE) = N p  * p 
where 
� : time fraction R, L or S, depending on whether we use Random, Multi-block prefetch or Sequential reads 
relation 4. 7. : Pessimistic Cost Estimation for Brute Force Table Scan 

4.1 .2 .  Brute Force 1/0 Cost Estimation and Query Types 

First, let us see what happens to the I/O cost estimation when a po int que,y is 
committed and we use a brute force table scan. Recall that a point query returns one 
and only one record from the table. We can say, without no great harm, that not all 
data pages are scanned to find the qualified record, but as a rule of thumb we can say 
that on the average half of the pages are scanned. The following relation holds for a 
brute force scan related to a point query. 

COST110(8RUTE FORCE) = N p/2 * p 

where 
Np: Number of data pages 
� : time fraction R, S or L, depending on whether we use Random, Multi-block prefetch or Sequential reads 
relation 4.8. : Cost Estimation for Brute Force Scan ,vith Point Que,y 
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All other types of queries, like Multipoint, Range, Prefix Match, Extremal, 
Ordering, Group by and Join queries, involve more than one record in the list of their 
qualified records. Let us group the Multipoint, Range, Prefix Match, Extremal, 
Ordering, Group by and Join queries into one single type of queries, named 
mutlirecord queries. As mutlirecord queries retrieve more than one record the whole 
set of table pages has to be scanned for query evaluation. Relation 4.9. give a 
pessimistic estimation of I/O costs for multirecord queries. 

COST11o(BRUTE FORCE) = Np * � 

where 
N p: Number of data pages 
� : lime fraction R, S or L, depending on whether we use Random, Multi-block prefetch or Sequential reads 
relation 4. 9. : Cost Estimation/or Brute Force Scan with Multirecord Queries 

By making the distinction between point queries and multirecord queries we 
defined to relation for estimating the I/O cost in case of a brute force tables scan. 
However, according to different writings we can say that on the average the DBMS 
accesses half of the pages to retrieve the qualified data. So relation 4.8. can be used 
as a general form for brute force I/O cost estimation. 

We did not group Join queries with the Multirecord queries, as Join queries, in 
general, involve more than one table. Recall that the most used techniques to join two 
tables are the nested loop join and the merge join. As already defined in section 2. 18., 
the nested l o op Join has the following relation to estimate I/O costs, 

COST110 (NESTED LOOP JOIN) = COST 110 (BRUTE FORCE OUTER TABLE) + 

(NUMBER OF OUALIFYING RECORDS I N  OUTER TABLE * 

COST 110 (BRUTE FORCE I NNER TABLE)} 
relation 4. 1 O. : Cost Estimation for Nested Loop Join using Brute Force Sc ans 

whereas, the merge Jo in has the following I/O cost estimation 

COST110 (MERGE JOIN) = COST 110 (BRUTE FORCE OUTER TABLE) + 

COST 110 (BRUTE FORCE INNER TABLE) 
relation 4. 1 1. :  Cost Estimation/or Merge Loop Join using Brute Force Scans 

To get better understanding of these two relations, we refer the reader to section 
2.8.4., where we give an explicit description of joining techniques and examples of 
their cost estimations. 
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4.2. Index 1/0 Cost 

In the preceding section we recalled the relation for estimating the number of 
pages needed to hold the data records, Nrp, the notion of filter factor, ff. We also 
defined relations for brute force table scan I/O cost estimation related to the different 
query types. Knowing, that indexes are used to speed up data retrieval for a given set 
of queries, we first have to see how we can estimate I/O costs for the different kind of 
indexes, before we can decide if an index speeds up retrieval for a given set of 
queries. We will give rude approximations for clustered and non-clustered B-Tree 
I/O costs. We will also give a cost relation for Hash index. 

4.2.1 . B-Tree 1/0 Cost Estimations 

Recall that the structure of a B-Tree index is made of three parts. First, the tree 
structure grouping the index interna! pages into a structure, which will guide the 
search for the qualified records to be retrieved. Second, the index leaf pages 
structure, also known as the index dictionary, which holds the references, R IO 
pointers, to the qualified records and/or data pages. Recall that the index dictionary 
can be dense or non-dense. As a rule of thumb, we note that the non-clustered B-Tree 
index has a dense index dictionary, whereas in a clustered index the dictionary is 
non-dense. The third part in the index structure is known as the data pages, which 
hold the data records and is organized as in a sequential file. Figure 4.2. gives us a 
rude graphical representation of the B-Tree index structure, where we can figure out 
the three different parts which make up I/O cost estimation in a B-Tree index. 

/ D 
/ 

/ 
/ 

/ 

" k " " " 
□ " 

D 
COST110(1NTERAL PAGES) COST110(LEAF PAGES) COST110(0ATA PAGES) - COST110(B-TREE INDEX) 

figure 4.2. : Cast Structure for B-Tree index access 

The I/O cost estimation for of B-Tree indexes is given by the following relation: 

COST11o(B-TREE I NDEX) = COST11o( INTERNAL PAGES) + COST11o(LEAF PAGES) 

+ COST11o(DATA PAGES) 

relation 4. 12. : Cast estimation for an B-Tree index scan 
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In our cost estimation model we assume that the cost estimation for traversing 
internai pages, CosT110( 1NTERNAL PAGES), does not include the access to the first page 
of the index dictionary. 

Before we give relations to estimate the I/O cost for the three components of the 
B-Tree index scan, we recall the notion offan out and depth of a B-Tree. The fanout 
is the expected number of records that appear in an index (nodes) page. In section 
3.2 . .2., we already made the assumption that the leaf pages and the internai pages 
will share the same structure, therefore they hold the same number of index entities. 
The fanout of a B-Tree index is given by the following relation: 

fo = l
(Ps - Hs) * fr

j As + Pps 

where 
Ps: 
Hs: 
Pps: 
fr: 

Page size 
Header size 
Page pointers size 
Page fullness rate 

As: lndexed attribute size 

relation 4.13.: Fanout of an index node page 

Knowing the index page fanout and the number of values to be indexed, the 
following relation can be used to estimate the depth of a B-Tree index, in other words 
the number of index levels needed for a given number of records. Looking back at 
the definition of the B-Tree index structure, we assumed that at leaf page level only 
holds as much records as their are number of distinct values, Ndv, for the indexed 
attribute. 

where 
fo: Fanout of index node pages 
Ndv: Number of distinct records for the indexed attribute 

relation 4.14.: Depth of a B-Tree 

Recall that the difference between a non-dense (non-clustered index) and a dense 
( clustered) index, at leaf page level, is that the non-dense index does not hold all 
distinct values for the indexed attribute, but holds only a table reference, RID pointer, 
per table page. Thus, the number of distinct attribute values, Ndv, has to be replaced 
by the number of data pages, Np.  

4.2.1 . 1 .  Internai Page 1/0 Cost Estimation 

Making the assumption that in the r o o f level is held in m ost cases within the 
buffer. Knowing that each traversed index level represents a disk I/O. Recall that the 
cost for internai page navigation does not include the access to the index dictionary. 
Relation 4. 15. estimates the number of access need for navigating through the 
internai pages. 

CosT110(1NTERNAL PAGES) = ( 1Logfo(Ndv)l - 2) * R 
where 
fo: Fanout of index node pages 
Ndv: Number of distinct records for the indexed attribute 
R: lime fraction of lime necessary to perform a random read ( 1 /40 sec) 
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relation 4. I 5.: Cast estimation for navigating though the Internai Index Levels 

4.2.1.2. Leaf Page 1/0 Cost Estimation 

The estimation of the I/O costs for navigating within the leaf pages depends on the 
number of distinct records values to be retrieved, kNdv, and the fanout, fo, of an index 
page. Within the leaf page navigation, we have to differentiate between two types of 
leaf page navigation . Thefirst type is where the index is defined on a key attribute, in 
other words the attribute values are unique . In different writings the key index is also 
referenced as being the primary key . Considering the filter factor and the fanout, the 
next relation estimates the I/O cost for this first type of leaf page navigation. 

COST11o(LEAF PAGES KEY ATTRIBUTE) = 1 * R + ( L kNdv / toJ ) * S 
where 
fo: Fanout of index node pages 
kNdv: Number of distinct records values to be retrieved 
R: fraction of time necessary to perform a random read ( 1 /40 sec) 
S:  fraction of time necessary to perform a mutli-block access read ( 1 /400 sec) 
relation 4. I 6.: Cast estimation for navigating though the Leaf Pages of a Key Index 

The second type is where the index is defined on a non-unique attribute, non-key 
attribute. In different writings the non-key index is also referenced as being the 
secondary key . The multi-valued character of the attribute can be materialized by an 
extra level of indirection (section 32 .2 .4 .) .  Recall, that the leaf page records refers to 
a page which contains all qualified RIO pointers, Nrid, for a given attribute value . Jt is 
common to consider, that a page of indirection can hold up to 254 RIO pointers 
[O'Neil 1994] . Each page of indirection, which has to be consulted, needs a disk 
access. Given these considerations and the fact that kNdv record values are to be 
retrieved, relation 4 . 17 .  defines the cost estimation for the secondary key leaf page 
navigation . 

Note that we will use relation 4 . 17 .  as a general form of cost estimation for 
navigating through index leaf pages, though estimations for primary key indexes is 
wrong . Note, that for primary key indexes cost estimation is incorrect up to, a 
maximum of 1 random read, due to the second member of the sum, which is 
maximized by 1 in case of a key attribute (lk / 2547 = 11 / 2547 = 1 ). 
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CosTI10(LEAF PAGES NON-KEY ATTRIBUTE) = 1 * R + LkNdv / foJ * S + 1k / N ridl * R 

= ( 1  + 1k t N ridl) * R + L kNdv / toJ * S 

where 
Nrid: number of RID pointers hold in a page of indirection (rude approximation 254) 
fo: fanout of index node pages 
k: number of records to be retrieved 
kNctv: number of distinct records values to be retrieved 
R: fraction of time necessary to perform a random read (1/40 sec) 
S:  fraction of time necessary to perform a mutli-block access read (1/400 sec) 
relation 4. 1 7. :  Cast estimation for navigating though the Leaf Pages of a Non-Key Index 

4.2.1.3. Data Page 1/0 Cost Estimation 

Until now, we defined relations to estimate I/O cost which are related to the index 
navigation, but we still did not estimated the cost for retrieving data from the table. 
Thus, we have estimate the number of accesses needed to retrieve the data records, in 
other words the number of data pages to be consulted. Recall that relation 4 .6. gives 
us an approximation of the number of pages which probably have to be retrieved 
from the table. This estimation is based upon probabilities . Let us abstract from the 
notion of probability that a data page contains at least one of the qualified records, 
and assume that the records are randomly distributed over the set of data pages, the 
maximum number of pages to be retrieved is the following. 

MAXCosTI10(DATA PAGES) = k * � 

where 
k: number of records to be retrieved 
P : time fraction R or L depending on whether we use Random or List prefetch 
relation 4. 18. :  Pessimistic Cast Estimation for Data Pages Access 

Considering the above named probability, we are able to define a more optimistic 
cost relation . Note however, that the best I/O cost is attained, when all qualified 
records are collocated on consecutive pages, because at this moment we are able to 
perform a multi-block access . The I/O cost, for such situations, is equal to rk/Nrp 7, 
where k is the number of records retrieved and N rp defines the number of records per 
data page (section 3 . 1 .5). Situations like these are not very common in real world 
production, thus we define a more realistic relation, using the above named record 
page probability, to estimate the best 1/0 c ost. 

M,N CosT110(DATA PAGES) = K * � 

with 

K = 1(1 - (1 -ff) Nrp) * Np 7 

where 
Nrp : number of records per data page 
Np: number of pages for the table 
ff : selectivity 
k : number of records to be retrieved 
p : time fraction R or L depending on whether we use Random or List prefetch 
relation 4. 19. : Optimistic Cast Estimation/or Data Pages Access 

Note that for B-Tree cost estimation we defined a pessimistic or worst 1/0 c ost 
estimati on, using relation 4 . 1 8, and an optimistic or best 1/0 c ost estimatio n, using 
relation 4. 19. 
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4.2.1.4. Global B-Tree 1/0 Cost Estimation 

Grouping all three parts of the B-Tree cost estimation, we deduce the two 
following relations, one for pessimistic cost estimation and one for optimistic cost 
estimation of a non-clustered B-Tree index (B-TREENc) ,  Relation 4.20. and 4.2 1. will 
help us introducing and analyzing the concept of index indecision. The index 
indecision problem can be seen as being the zone, during index placement, where we 
are not able to state that an index improves performance over a brute force table scan. 

MAXCosr11o(B-TREENc) = ( r Logfo(Ndv) 7 - 2 )  * R + (1 + r k / Nrid7) * R + L kNdv / foJ * s + k * p 

= ( f(Logfo(Ndv) - 1 )  + (k / Nrid)7) * R + L kNdv / foJ * S + k * P 

MINCOST11o(B-TREENc) = ( fLogfo(Ndv) 7 - 2 )  * R + (1 + fk / Nrid7) * R + L kNdv / foJ * s + K * p 

= ( f (Logfo(Nrdv - 1 )  + (k / Nrid)7) * R + L kNdv / foJ * S + K * p 

where 
fo: Fanout of index node pages 
Ndv: Number of distinct records for the indexed attribute 
Nrid: number of RID pointer hold in a page of indirection (rude approximation 254) 
k: number of records to be retrieved 
kNdv: number of distinct records values to be retrieved 
R: fraction of time necessary to perform a random read (1/40 sec) 
S:  fraction of time necessary to perform a mutli-block access read (1 /400 sec) 
� : time fraction R or L depending on whether we use Random or List prefetch 
relation 4.20. : Worst and Best 1/0 Cast estimation using Non-clustered B-Tree 

Until here, we considered the situation of a non-clustering index, which implies a 
dense index dictionary. During the next lines we will consider the situation where the 
index is clustered (B-TREEc). Recall that a clustered index is said to be non-dense or 
spare and that it forces a physical order upon the records location within the data 
pages. We can look at that data pages as being similar to the index dictionary on a 
non-clustered index, all qualified records are collocated within consecutive pages in 
the table file. This enables us to use mutli-block access for data page retrieval. As the 
index dictionary is non-dense, each leaf page includes only one index record per data 
page. This implies that the number of index levels is probably smaller than the 
number of index levels in a non-clustered index, but not always the case, because it 
depends on the number of data pages and the number of distinct values to be indexed. 
However, we can consider, without no great harm, that the access using a secondary 
index, costs more than the access using a primary index, because of the extra level of 
indirection. Knowing that a clustered index has a similar structure than a non­
clustered and that the number of distinct records values, Ndv, in relation 4.20., is 
replaced by the number of data pages, Np, we defined relation 4.2 1. which defines an 
optimistic and pessimistic cost estimation for clustered B-Tree indexes. 
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CosT110(B-TREEc) = ( ILogfo(Np)l - 2 + 1 )  * R + 1 * R + Lk / NrpJ * S 

= !Logfo(Np)l * R + Lk / N rpJ * S 
where 
fo: fanout of index node pages 
k: number of records to be retrieved 
Np: number of data pages 
Nrp: number of records per data page 
R: fraction of time necessary to perform a random read ( 1 /40 sec) 
S: fraction of time necessary to perform a mutli-block access read ( 1 /400 sec) 
relation 4.21 . :  1/0 Cast estimation using Clustered B-Tree 

Note, that in case of a clustered index, we no more make the difference between 
an optimistic and pessimistic cost estimation, as the random or list prefetch access to 
the data pages is replaced by a mutli-block access to the data. 

4.2.2. 8-Tree 1/0 Cost Estimation and Query Types 

Note that we defined relation 4.20 and 4.2 1  by abstracting them to all kind of 
query types. However, we made a distinction on the physical ordering of the data 
records by defining a relation for a clustered and a non-clustered access structure. As 
we apply different query types to these relation, we will see that they simplify. 

First, let us se how the relations simplify when they are related to a point que1y. 
Recall that a point query qualifies one and only one record, so k = 1, most of the time 
this happens when the index is defined on unique values, key attribute(s). As we 
assumed that a single record can not split over data page, the number of pages that 
hold the single qualified records is equal to K = 1 .  Note that there is no more a need to 
differentiate between an optimistic and pessimistic cost estimati.on in relation 4.20. 
The fact that only one record is retrieved by the query simplifies some of the terms of 
relation 4.20; the mutli-block access at index leaf page level becomes LkNdv / foJ = 0 
and the fact that most of the time the point query is based on the uniqueness of the 
index values, implies that no extra level of indirection is needed to guide the query, 
lk / N ridl = O. The relation 4.20 becomes simplified as follows for a non-clustered 
index related to a point query: 

CosT110(B-TREENc) = ( 1Logf0(Ndv)l - 2 ) * R + 1 * R + 0 * S + 1 * R 

= llogfo(Ndv)l * R 
where 
fo: fanout of index node pages 
Ndv: number of distinct records for the indexed attribute 
S: fraction of time necessary to perform a mutli-block access read ( 1 /400 sec) 
R: fraction of t ime necessary to perform a random read ( 1 /40 sec) 
relation 4.22.a. : 1/0 Cast estimation for Non-clustered B-Tree related to a Point Que,y 

For a clustered B-Tree index the above consideration also remains true, except 
that the mutli-block access takes place at data page level and not at index leaf page 
level, so expression Lk / N rpJ becomes equal to zero, and relation 4.2 1 can be 
simplified as follows when related to a point query: 
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CosTI10(B-îREEc) = ( 1Logfo(Np)l - 2 + 1 )  * R + 1 * R + 0 * S 

= 1Logfo(Np)l * R 

where 
fo: fanout of index node pages 
Np: number of data pages 
S: fraction of lime necessary to perform a mutli-block access read ( 1/400 sec) 
R: fraction of lime necessary to perform a random read ( 1 /40 sec) 
relation 4.22. b. : 1/0 Cast estimation using Clustered B-Tree related to a Point Que,y 

Sec ond, let us see how relation 4.20. and 4.2 1. simplify when related to a multi­
rec ord queries. Recall that a multi-record query qualifies more than one record in the 
set of data records. The fact that more than one record is qualified by the query 
includes the case where the index is defined on non unique values, non-key 
attribute(s) and that the qualified records are spread over more than one page. 

ln case where the index is defined on n on-key attribute(s), the index navigation 
needs an extra level of indirection to access the qualified data pages. The fact that 
more than one page can hold the qualified records involves that we fall back in the 
situation of an optimistic and pessimistic cost estimation. When putting all these 
things together, relation 4.20. gives us simplified estimations for multi-record 
retrieval. 

MN<COST11o(B-TREENc) = ( 1 (Logfo(Ndv) - 1 )  + (k / Nrid) l) * R + L kNdv / foJ * s + k * p 

MINCOST11o(B-îREENc) = ( 1 (Logfo(Ndv) - 1 )  + (k / N rid) l) * R + L kNdv / foJ * s + K * p 
where 
fo: Fanout of index node pages 
Ndv: Number of distinct records for the indexed attribute 
Nrid: number of RIO pointer hold in a page of indireclion (rude approximation 254) 
k: number of records to be retrieved 
kNdv: number of distinct record values to be retrieved 
R: fraction of lime necessary to perform a random read ( 1 /40 sec) 
S: fraction of lime necessary to perform a mutli-block access read ( 1 /400 sec) 
13 : fraction R or L, depending on whether we use random or list prefetch reads 
relation 4. 23. a. :  1/0 Cast estimation usingr Non-clustered B-Tree related to a Multirecord Query on a 

seconda,y index 

In case where the index is defined on a key attribute(s), the navigation through the 
extra level of indirection falls apart, 1k / Nridl = O. Again the fact that more than one 
page can hold the qualified records involves that the situation of an optimistic and 
pessimistic cost estimation. Relation 4.20. in accordance with a Multirecord query 
and a primary index simplifies as follows : 

04.09.1996 Database Performance Tuning 100/162 



MAJ<CosT110(8-TREENc) = ( 1 (Logfo(Ndv) - 1 )  l) * R + L kNdv / foJ * S + k * 13 

MINCOST11o(B-TREENc) = ( 1 (Logfo(Ndv) - 1 )  l) * R + L kNdv / foJ * s + K * 13 

where 
fo: Fanout of index node pages 
Ndv: Number of distinct records for the indexed attribute 
k: number of records to be retrieved 
kNdv: number of distinct records values to be retrieved 
R:  fraction of  lime necessary to perform a random read (1/40 sec) 
S: fraction of time necessary to perform a mutli-block access read (1/400 sec) 
� : fraction R or L, depending on whether we use random or list prefetch reads 
relation 4.23. b. : 1/0 Cast estimation using Non-clustered B-Tree related ta a Multirecord Que,y on a 
primmy index 

In case of a clustered index, relation 4.2 1. does not simplify when related to a multi­
record query. Note that it does not matter if we consider a primary or secondary 
index key type. 

CosT1/0(B-TREE0) = 1Logfo(Np)l * R + Lk / NrpJ * S 

where 
fo: fanout of index node pages 
k: number of records to be retrieved 
Np: number of data pages 
Nrp: number of records per data page 
R: fraction of time necessary to perform a random read (1/40 sec) 
S: fraction of lime necessary to perform a mutli-block access read ( 1 /400 sec) 
relation 4.23.c. : 1/0 Cast estimation using Clustered B-Tree related ta a Mufti-record que,y 

Third, let us see what happens during Join queries. To evaluate the I/O cost we 
have to go back and look at section 2. 1.8. and section 4. 1., where the cost estimation 
is clone for the outer and inner table based on one of the above explained relations. 

To resume the cost estimations for a query using B-Tree indexes as access 
structure we establish the following table resume. 

Non-Clustered B-Tree Clustered B-Tree 

Point query 1 Logfo (Nr) l * R 1 Logfo (Np) l * R 
or 
Key attribute(s) 

Multi-record query Pessimistic estimatio11 1 Logfo (Np) l * R + Lk l NrpJ * S 
on Non-Key attribute Non-Key and Key 1 (Logf0(Ndv) - 1 + (k / Nrid) l * R attribute(s) 

+ L kNdv / foJ * S + K * P 

Key attribute 
l(Logfo (Ndv) - 1 )7 * R + L kNdv / foJ * S 
+ K *  p 

Ou_timistic Estimatio11 

Non-Key attribute 
1 (Logfo(Ndv) - 1 + (k / Nrid) l * R 
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Key attribute 

i(Logfo (Ndv) - 1 )7 * R + L kNdv / foJ * S 

+ k * P 

4.2.3. Hash index 1/0 Cost estimations 

Based upon a made by [Hainaut 1994] we are able to give a rude approximation 
for hashed access costs. As we already seen in section 3 .2. the hash index is 
extremely beneficiary for · point queries, for example queries involving equality 
predicates, as in most cases the retrieval does not include the search within the 
collision chain. It is even more efficient when it is used with a key attribute (unique 
values). Thus throughout this section we will not make cost estimations for the 
different query types. 

Recall that in section 3.2.4 we already described the notion of hash indexes. We 
have seen, that there exists multiple techniques to solve the problem of hash 
collisions. One of the techniques is the known as open addressing, a second as 
chaining and a third as multiple hashing. We also stated that access costs increase the 
more a page fills up, as the collision chains get longer. We might be surprising, is 
how quickly the collision chains increases in length once the page fill rate cornes 
close to its maximum. 

Within this section we do not give estimations for all collision chain techniques, 
but we will try to define a relation and to illustrate technique of chaining [Hainaut 
1994]. Note that in [Hainaut 1994] this technique is referenced as independent zone 
chaining. This means, that there exists two types of chaining, the primary zone 
chaining and the independent zone chaining. The difference is that the primary zone 
chaining tries first to store the new added record within the referenced page, whereas 
the independent zone chaining directly goes on a secondary page. 

Assume that the records are randomly distributed among the set of data pages, and 
that the DBMS uses the technique of independent chaining to solve the problem of 
hash collisions. 

The probability that a given page holds k records can be Binomial or Poisson. 

Binomial: P(k) = ck · (-1 )
k 

·(1 - �)
Nr-k 

Nr Np Np 

Poisson: 

with 
k : Number of qualified records 
Nr: Number of records in the table 
Np: Number of pages 
Nrp: Number of records per page 

note: en = N! 
N n!(N - n) !  

According to these probabilities, we define the number of pages that hold the k 
records, n(k), the number of pages that are empty n(O), as well as the number of pages 
that are not empty, n(> 1 ) :  
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n(k) = Np *  P(k) 

n(O) = Np * P(O) 

n(> 1) = Np * (1 - P(O)) 

The probability that a page overflows, P over, is equal to : 
Nr 

Paver = L P(k) 
k=Nrp+1 

Given the probability that a page overflows, we define the number of pages that 
have overflows, NPaver, as well as the number of pages that have no overflow, NPno-over: 

NPover == Np *  Paver 

NPno-over == Np * (1 - P over ) 

To estimate the I/O cost for a hash access, we have to estimate the number of 
records within primary pages, Nrprim, and the number of records within independent 
pages, Nrindep, ·  

Nrprim == Np • ffiprim 

Nrindep == Nr - Nrprim 

with 

Nrp Nr 
mprim == L k * P(k) + Nrp * L P(k) : average number of records per primary page 

k=1 k=Nrp+1 

The probability that a record is within independent pages is equal to 

Nrindep 
Pindep == Nr , 
and the average length of a the collision chain is given by, 

Nrindep Nrp - Nrprim 
E(L) == -- == --� . 

NPover Paver 

The average cost for accessing records, with success, has to be splited into two 
terms, one for the access costs within primary pages and a second for access costs 
within independent pages : 

pnmary pages : 

independent pages : 

Nr 
Cost5ucc (Hash · ) = � * 1R pnm Nr 

Costsucc (Hash· ) =  
Nrindep * (1 + 1 + E(L))R mdep Nr 2 

All together the average I/O cost for accessing records using a hash index is 
estimated by the following relation : 
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Costsucc (Hash) = Costsucc (Hashprim) + Costsucc (Hashindep) 

C t succ (H h) - (
N rprim Nrindep * (1 1 + E(L) ))R - (1 P· * 1 + E(L) )R os as -
Nr + � +-2- - + mdep -2-

where 
N rpnm: number of records in primary pages 
Nr;ndep: number of records in independent pages 
N r: number of records 
E(L): average length of the collision chain 
P;ndep: probability that a page overflows 
R: fraction of time necessary to perform a random read (1/40 sec) 
relation 4.24.: 1/0 Cast estimation, with success, for a Hash index using 1ndependent Chaining. 

Same as for the access cost, with success, we define the access cost in case were 
no record is qualified by the predicate. 

pnmary pages: Costno-succ (Hashprim ) = (1 - Pover )  * 1R 

independent pages: Costno-succ (Hashindep ) = Pover * (1 + E(L))R 

All together, the average I/O cost for accessing records using a hash index is 
estimated by the following relation: 

Costno-succ (Hash) = Costno-succ (Hashprim )  + Costno-succ (Hashindep ) 

Costno-succ (Hash) = (1 + Pindep * E(L))R 
where 
E(L): average length of the collision chain 
P;ndep: probability that a page overflows 
R: fraction of time necessary to perform a random read ( 1 /40 sec) 
relation 4.2 5 .. : 1/0 Cast estimation, with no success, for a Hash index using 1ndependent Chaining. 

To illustrate the relations for hash index cost estimation, let us consider a small 
example. 

Consider the following: 
R:-- Number of records NR:  500.000 records 
R:-- Record size, RS: 200 bytes 
R:-- Page size, PS: 2000 bytes (note that header space is not included) 
R:-- Fil l  rate, fr: 90% 
R:-- Number of qualified records ,  k: 1 0 records 

Assume that the probability that a given page holds the k records is of Poisson. 
Assume also that the number of records is fix, thus the fill rate can be considered as 
fix. 

According to this input we can determine the number of records that can hold 
within on page, Nrp, and the number of pages, Np :  

Nrp = ---- = 9 records/page l2000 * 0.9j 
200 

r 500000l Np = 
9 

= 55.556 pages 

Knowing the number of records per page and the number of records qualified, we 
determine the probability that the k records are within one page. 
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P(k) = 9 1 0  * -1- * e-9 = 0.1 1 85 
1 0! 
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Assume that the average number of records per primary page, mprim, tends to 8. 
Now we can determine the number of records in primary pages, N rprim, and the 
number ofrecords within independent pages, N rindep, are equal to : 

Nrprim = 55.556 * 8 = 444.448 records Nrindep = 500.000 - 444.448 = 55.552 records 

Thus, the probability that a record is within independent pages is equal to: 
55.552 . 

Pindep = 
500.000 

= 0.1 1 

We still need to determine the average length the collision chain, to compute an 
approximation of the access cost. 

The probability that a page overflows tends to: 

Pover = 0.41 

Given this probability we determine the number of pages that have overflows, 
nover, as well as the number of pages that have no overflow, nno-over: 

NPover = 55.556 * 0.41 = 22.778 records NPno-over = 55.556 * (1 - 0.41) = 32 .. 778 records 

Knowing the number of pages with overflow we determine the average length of 
the collisions chain. 

E(L) = 55.552 
= 2 43 

22.778 

Thus, the access cost for a success, using a hash index, in terms of l/O is equal to: 

Costsucc (Hash) = (1 + Pindep * 
1 + E(L) ) = (1 + 0.1 1 * 

1 + 2.43) = 1.1 8 = 2 accesses 
2 2 

If we consider that the accesses are random, we can determine the following time 
used to access data: 

Costsucc (Hash) = 2 / 40 = 0.05 sec 
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Chapter 5. Index Selection 

In this chapter, we describe a methodology of index selection based on a study 
made by [Finkelstein 1 988]. Methodologies for index selection are based on models of 
data retrieval and updates, as the one we defined in preceding chapters. Sorne solve 
the problem in an analytic way. Whereas, others use heuristic searches to find a quasi 
optimal solution. Since we assumed that the database management system uses an 
optimizer to choose an access strategy. It makes sense to use the optimizer itself to 
provide the estimated I/O costs given SQL statement, when the database already 
exists. However, if we are only at the phase of database conception, then we have to 
use the cost relations defined in chapter 4. The estimations use general forms of cost 
estimations, independent relational DBMSs, however, it is always a good thing to 
certify our index solution by using optimizer cost estimation when the database is 
implemented. The optimizer examines the set of access structures that exist and 
computes the best expected cost for a statement by evaluating different join orders, 
join methods, and access choices. 

Using the optimizer, we might guarantee that any retained solution is one the 
optimizer might use to its full advantage. Working with an external model, might 
result in a solution that has good theoretical performance. However, when the 
optimizer is faced with the set of indexes, it may choose an execution plan different 
from the one predicated by the model, which may result in poor performance. 

To describe the methodology for index selection, we reference to the design tool, 
DBDSGN, defined by [Finkelstein 1 988]. This design tool has five principal steps. 
Figure 5. 1. represents the steps and the tools major interactions with the database 
designer and the DBMS. 

The design tool as well as the DBA can internet with the DBMS to collect 
information without physically running a statement by using the SQL EXPLAIN 
facility. EXPLAIN causes the optimizer to choose an execution plan, including 
indexes, for a given statement and stores the information into an interna! tables. 
These tables can be accessed and abstracted using ordinary queries. 

04.09. 1 996 

The EXPLAIN command has four options: 

t:!::> EXPLAIN REFERENCE. Identifies the statement type (Query, Update, Delete, 
Insert). The tables and the attributes referenced in the statement in ways that 
influence their plausibility for indexing. 

t:!::> EXPLAIN STRUCTURE. Identifies the structure of the subquery tree in the 
statement. The estimated number of record qualified by the statement and its 
subqueries. And the estimated number of time the statement and its subqueries 
are executed. 
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� EXPLAIN CosT. Indicates the estimated cost of execution of the statement and 
its subqueries in the plan chosen by the optimizer. 

� EXPLAIN PLAN. Describes aspects of the access plan chosen by the optimizer. 
Including the order in which tables are accessed for executing the statement, 
the indexes used, the methods used to perform joins (nested loop, merge or 
hybrid), and the sorts performed. 

DBMS 

Catalogs 

logical DB schema 

tables and attribute 
statistics 

Optimizer 

EXPLAIN 
Reference 

Catalog 
Lookup 

EXPLAIN 
Cost 

N 

Input Expected Workload 

Find Referenced Tables and 
Plausible Attributes 

Collect Statistics on Tables 
and Attributes _ __,___ _ _, 

Evaluate Atomic Costs DBA 

Heuristics 

y 

Index Elimination 

Index Solution 

DBDSGN 

figure 5.1.: Architecture of [Finkelstein 1988Js DBDSGN Tao! 
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� The first step of the methodology involves the identification of referenced 
tables and plausible attributes. Based on an analysis of the structure of the 
input statements, we should only allow attributes that are 'plausible for 
indexing ' to enter the index solution set. 

� Second step consists in collecting statistics on tables and attributes. Statistics 
are either provided by the database designer or extracted from database 
register. 

� During the third step 1/0 costs are evaluated using relations defined in chapter 
4 and/or the Explain facility. 

� Fourth step is called the index elimination. If the problem is large, a heuristic­
based dominance criterion can be invoked to eliminate indexes and to reduce 
the search for the solution during last step. 
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� Fifth step consists in generating an index soluti on. A controlled search of the 
set of intermediate index configurations leads to the discovery of a good index 
solution. The database designer uses its knowledge to control and to guide the 
search. 
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5.1. Setting up a Cost Model 

5.1 .1 . Workload Model 

When a database designer is asked to supply an index design solution for a given 
database, he must determine the workload that is expected for that system over a 
specified time period. The expected workload during that time period is characterized 
by a set of pairs 

W =  {(qh wi) , 1 = 1 ,  2, . .  , q}, 

where 
each q i is an SQL statement and 
wi is its assigned weight. 

The SQL statements are queries on single tables and multi-table joins as well as 
updates, inserts and deletes. The q i are statements that the designer expects to be 
relatively important during database implementation and running. The statements in 
the workload W may initiate from different sources: 

� predictable ad hoc statements that will be issued from terminais, 
� old application, or 
� new application programs that will be executed during the database live or a 

given time period 

The weight associated to each of the statements is a fonction of 

� the frequency of execution of the statement during a given period, and/or 
� the system load when the statement is executed. Statements that can be run off­

line may be given a smaller weight than critical statements which require fast 
response time. 

Different statements that are treated identically by the optimizer could be 
combined, although this requires deep knowledge of the optimizers internai 
architecture. For example, consider the query with predicate CLIENTID = 1 23, we are 
able to combine this query with the one that uses predicate CUENTID = 456 since they 
have the same filter factor, ff. Either query might be included in the workload, with 
the sum of the original weights specified. However, a query with predicate CUENTID 
BETWEEN 1 23 AND 456, could not be combined with one requesting CUENTID BETWEEN 1 0  
AND 20, since they associate different filter factors. 

For application programs, the search for the weights is quiet a difficult problem. 
In general, frequencies must be approximated. Designers may perhaps know how 
often an application will be run, but may find it difficult to predict the frequency of 
execution of a statement due to the complexity of the program logic. 
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5.1 .2. Atomic Costs 

This section will give us another glance at the behavior of the database optimizer. 
We should be aware that some principles are to be verified to use and/or to predict 
the optimizer behavior. It is not our aim in this section to describe how the optimizer 
makes its decisions, but to help understand the principles vehiculated by the 
optimizer. The basic principles used by the optimizer in executing a given statement 
are as follows: 

Optimizer principles 

� Pl :  Exactly one index is used for each appearance of a table in the statement. 
� P2 : The costs of all combinations using one index per table appearance are 

computed, and the one with the minimal cost is chosen. 

Principle, Pl, would not be true of a system that used conjunction of indexes on a 
single table, such as RIO intersection, which we do not assume to exist for our 
considerations. Principle, P2, might not be true for an optimizer that uses heuristics 
to limit its search for the plan with the smallest expected execution cost. We can 
slightly relax principle, P2, as it is not necessary for the optimizer to compute all 
possible costs, as long as it finds the plan with the smallest expected cost. 

The cost of executing a statement can consist of three components: record access 
cost, record maintenance, update cost and index maintenance cost. Throughout the 
following lines we will only consider access costs, update costs will be aborted in a 
next section. 

To illustrate the above principles, let us consider a statement on a single table that 
has n indexes. The optimizer computes at least n+1 access costs, n using each single 
index, and 1 using brute force scan, an chooses the index with the minimal cost. The 
access costs are computed independently, since the presence of a given index cannot 
influence the cost computation of accessing the records by using another index 
(principal, P l , only one index per table can be used). 

Now consider a t-table join statement, q, with li a set of indexes on the j'h table. Let 
Cq(a1 , a2 , . . .  , a1

) be the optimizers best cost execution plan of q when the indexes a1 , 

a2 , . . .  , a1 are used, where ai is either one of the indexes in li or the brute force scan p.  
The tables may be accessed in many different orders, and many join methods (section 
2. 1.8.) are possible even when the indexes are fixed. Considering the optimizer 
principles, we can think of the optimizer as if it computes each Cq(a 1 , a2 , . . .  , a1) 

independently. The choice it selects for execution is one with the minimal estimated 
I/O cost, so we define : 
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CoSTq( I 1 , 12, . . .  , 11) represents the minimum I/O cost estimation which can be 
computed. Let ISET be a collection of indexes that exist on a set of tables. For this 
index configuration ISET, we write COSTq[ ISET] to represent COSTq( I 1 , 12, • • •  , 11), where li 
is the set of indexes in ISET that are on the r table. Indexes in ISET on tables not 
referenced in the statement do not affect COSTq[ ISET]. For a single table statement 
against a table with n attributes, we can build n2n-1 + 2n different index configurations. 
There are n clustered choices, and for each of these, there are 2n-1 different non­
clustered sets. If no clustered index is chosen, there are 2n sets of non-clustered 
indexes. For a j oin query, the number of configurations is the product of the number 
of configurations for each table. Which is exponential in the total number of 
attributes in the table. 

Configurations with at most one index per table are called atomic configurations, 
and their costs are called atomic costs, since costs for all other configurations can be 
computed from them5 1 . Atomic configurations for a table(s), are atomic 
configurations where indexes are only on that (those) table(s). Atomic configurations 
for a given statement are configurations that are atomic for the tables in that 
statement. 

Proposition 1: 

The cost of a query, single table or Join, for a configuration is the minimum of the 
costs for that query taken over the atomic configurations that are subsets of the 
configuration. More formally, 
COSTq[ ISET] = min ASET E isEr COSTq[ASET] 

where ASETs are atomic configurations 
This proposition follows from the definition of CosTq. CosTq[ ISET] is the minimum 

of the Cq(a 1 , a2 , . . .  , a1) values, where the a5 are indexes over appropriate tables, and 
any a can be the brute force scan. Similarly COSTq[ASET] replacing by its definition, 
Cq(a1 , a2 , . . .  , a1) each appears in the right-hand sicle minimum at least once, and the Cq 
terms involving brute force scan appear more than once. Since both minimum are 
over the same set of Cq terms, they are equal, verifying the proposition. 

Performing EXPLAIN CosT only for atomic configurations significantly reduces the 
number of cost inquiries that have to be fulfilled. For a query on a table within 
attributes, there are 2n+1 atomic configurations, n with 1 clustered index, n with 1 
non-clustered index, and the configuration with no index at all, so the number of cost 
estimations is reduced from exponential to linear in the number of attributes. For a t­
table join, recall that the number of configurations is exponential in the total number 
of attributes in the joined tables. The number of atomic configurations for a join 
equals the product of the number of atomic configurations for each single table. That 
is, if we let ni be the number of attributes in the /h table of the join, there are Tit

j=l (2ni 
+ 1 )  atomic configurations for the join. Despite this significant reduction, the 
computation of all atomic costs may still be impractical for large ni and t. Later on we 
describe methods to reduce the number of plausible indexes. 

5 1  Configurations with more than one index per table are admitted to evaluate statements with 
self-joins, when a table is joined on itself, but for simplicity we omit discussion of this case. 
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5.1 .3. Update, Maintenance Costs 

In section 2.2., we already discussed the problems of I/O cost estimations for 
update operations. In here we will not go in much more details, however we will see 
how we can integrate the cost estimations in the cost model. 

Let us assume that update operations involve only one single table at the time. 
However, update statements may have subqueries, but the DBMS handles them 
separately from the root of the subquery tree on, just as it does when the root is a 
query on its own. During execution the update statements follow tree steps : 

� Using some access path(s), the records acted upon are found or the locations 
for inserted records are found. 

� The records are updated, deleted or inserted. 
� If necessary, table indexes are updated. 

The cost of index updates may be substantial, so we have to care about these costs 
when evaluating a physical design. Furthermore, as mentioned by [Finkelstein 1988], 
the update cost can not be considered as a constant for every index, because of two 
things. 
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� The update cost depends highly on the form of the statement, such as the 
predicates in the Where clause, and/or the contents of the Set clause for the 
update operations. 

� Another distinction in cost estimation, must be made based on the way the 
records and indexes to be modified are accessed. In particular, the access path 
determines the order in which the records in the data pages are scanned. 
Different formulas apply based on whether or not these objects are scanned in 
the same order they are stored. 

We separate the costs for update operations into two components: 

� The cost of accessing and modifying records, and 
� the cost of maintaining indexes on attributes that are affected by the statement. 
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The notion of atomic cost holds also for update statements. We will make a 
difference between the atomic access costs, which are defined as the sum of the costs 
of accessing and updating the qualified records. And the atomic index update costs. 
F ortunately, a small set of atomic index update costs determine the costs of update 
operations, for any set of indexes in the database. We must estimate the cost of 
updating any index, no matter what index is used to access the records. The 
important distinction is not which index is used, but whether the access index and 
updated index are ordered in the same way. When they are, we call this an ordered 
scan, however, when they are not , we call it an unordered scan. For example, for a 
clustered index the scan is ordered if the index is either the same, which often occurs 
for inserts and/or deletes, or brute force scan52 ; in this case, the modifications follow 
the order in which the RIDs are stored at index dictionary level. If the clustered index 
is updated following a scan on a non-clustered index instead, the RIDs may be hit in 
an unordered way, incurring a higher cost. For updating a non-clustered index, the 
only ordered scan is the index itself. 

Let us assume that ISET is a set of indexes and q an update operation (Insert, 
Delete, Update ). Since q can involve only one table, although subqueries can mention 
other tables, we assume without loss of generality that ISET is only on the modified 
table. Because of the optimizer principles, defined in section 5. 1.2., the optimizer 
costs estimated for executing update operation q in configuration ISET is: 

COSTq[ lSET] = min a E  JSET u {Pl  [Cq(a) + L JlE ISET Uq(p,a)] 
where Cq is the I/O cost of accessing and modifying records using index a, and 

Uq(P,a) is the I/O cost of updating index p if index a is used as an access path to the 
table. 

As with queries, indexes in ISET on tables not referenced in an update operation 
do not affect, CoSTq[ lSET], I/O cost. The definition of COSTq in the relation above here 
is consistent with the definition of CoSTq in section 5. 1.2. for single-table queries. 

Let q be a statement on a single table, including updates, deletes, and inserts, as 
well as queries on a single table, and let AP q(ASET) be the index chosen by the 
optimizer to process statement q in atomic configuration ASET, which is either the 
brute force scan p or the one index in ASET that is on the referenced table. The 
following proposition decomposes the I/O cost of q for configuration ISET into the 
I/O costs Cq and Uq for atomic configurations ASET included in ISET. 

Proposition 2: 

The cost of a query, single table or Join, for a configuration is the minimum of the 
costs for that query taken over the atomic configurations that are subsets of the 
configuration. More formally, 

CosT 'q [ ISET] = min AsEr E 1sEr [cosTq[ ISET] + Z: P E  1sEr Uq(p, APq(ASET))] 

52 Recall, when an indexed attribute in a given record is updeted, the RID pointer associated with 
the record is deleted from the index dictionnary following the old key value and inserted in the 
dictionnary of new key values. Accessing the tuples through an index that is currently updated may 
lead to hitting the same RID more than once. 
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where ASETs are atomic c onfigurati ons. Then, 

C0ST 1q [ ISET] = CosTq[ ISET] 
The above proposition is proved by the following. 

Let the n indexes in ISET be a1 , a2, . . .  , an . By definition, CoSTq[ ISET] 1s the 
minimum of the following I/O costs : 

c0 = Cq (P) + I:\ = 1 Uq(a;, p) , 

C1 = Cq(a1 ) + 1:n i = 1 Uq(a;, a1) , 

Cn = Cq( an) + I:n 
i = 1 Uq( a;, an). 

And CosT 'q [ ISET] is the minimum of the following I/0 costs 

c'o = COSTq[ { p} ]  + I: flE 1sET Uq(p, p) = Co 

c' 1 = CosTq[ {ad] + I: flE ISET - {a1 J Uq (p, APq( {ad)) = min(co, c1 ), 

c'n = COSTq[ {an} ]  + L pE ISET - {cm) Uq(p, APq( {an} )) = min(co, Cn) ­

Hence, CosT 'q [ ISET] = min(c0 , c1 , . . .  , Cn) ,  demonstrating the proposition. 

As we mentioned earlier in this section, for an index p the maintenance cost Uq(p, 
a) depends on whether the access to p is an ordered or an unordered scan and is 
otherwise independent of a's attributes . This remains true even if a is p. Thus, there 
are only two costs to be computed for p. Let U'q(p) be the cost of updating p if a 
determines an ordered scan of p, and let U"q(p) be the cost of updating p if a 
determines an unordered scan of p. Then Uq(p, a) is either U 'q(p) or U"q(p). 

Performing I/O cost estimations, EXPLAIN CosT, for atomic configurations, we 
collect the maintenance cost of a given index for both ordered and unordered scans. 
For example, assume q being an UPDATE statement. We want to evaluate the 
maintenance cost for index p. The atomic configurations with p that are of interest for 
q, depend on whether p is clustered or not. Performing EXPLAIN C0ST statement for q 
with p clustered, we get an I/0 cost Cq(p) , for access and record maintenance, and an 
I/O cost Uq(p, p), for updating the index. The only possible index for the optimizer is 
the brute force scan p, so Uq(p, p) = U'q(P) is the cost of maintaining the index p 
following an ordered scan. Similarly the configuration with p being a non-clustered 
index, gives us the cost U" q(p) of the unordered scan53 . Similar considerations can be 
applied for DELETE and I NSERT statements. 

5.1 .4. P lausible Attributes for Index Solution 

53 We assume here that the 1/0 cost of updating an index following an unordered scan is always 
the same, no matter what other index is chosen. In reality this is not always true, but we think it a 
reasonable approximation. 
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Estimating and/or performing opt1m1zer cost calculations for atomic 
configurations reduces the set of cost estimations to entail. The following section 
describes an additional technique to reduce the set of cost estimations. 

In general, the number of index candidates on a table equals twice the number of 
attributes on that table, because indexes may be clustered or non-clustered. However, 
not all attributes are plausible candidates for indexing. Attributes that appear in 
statements in ways that support the use of indexes are called plausible attributes, for 
the given statement. Other attributes belong to the set of n on-plausible attributes. 
The consideration which allows us to determine the set of plausible attributes for 
each statement is optimizer dependent. The critical assumption is that, for the 
statement, non-plausible attributes must have the same costs for indexes, no matter 
what other indexes exist. For a relational system the considerations include the 
following: 
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� First, an attribute belong to the set of plausible attributes if there is a predicate 
on it and the system is able to use it to process the statement. This happens 
when the predicate, section 2. 1.6. 1., is ANDed to the rest of the WHERE clause, 
and it is usable as a search criterion to retrieve records through an indexed 
access. Let us recall a general form of the predicates that include plausible 
attributes. This happens when the predicate is of form attribute e X, where e is a 
comparison or range operator (>,  >=, = ; =<,  Between, l n), and X is a constant, a 
program variable, or a referenced attribute in an other table. 

Let us illustrate this by using an example. We take the following table defining 
products: 
Prad (Prodno, Descrip, Suppno, Quality, Price, Qonord, Qonhand . . .  ) 

an the fo llowing statement 
SELECT Prodno, Descrip 
FROM Prad 
WHERE Suppno = 274 
AND (Quality = 'H igh' or Price > 1 0000) 
AND Qonord = Qohand + 50 

For this statement, Suppno is a plausible attribute, whereas Quality and Price are 
not-plausible. Qonord is also non-plausible, because it is compared with the 
result of an expression. 

� Second, an attribute that is not-plausible for indexing because of the selection 
predicate may however still be a plausible candidate for indexing for other 
reasons. For example, there may be a GROUPE BY or ORDER BY clause on that 
attribute. The optimizer could even decide that an attribute that does not appear 
at all within the statement is plausible. Moreover, an implausible attribute 
(index) might be a better access path than a brute force scan in certain cases. 
Since all indexes on implausible attributes have almost identical costs, a single 
implausible representative can be added to the plausible set of attributes. 

� Third, if a table is not mentioned in a statement, all its attributes are not­
plausible for that statement. 
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It remains, that plausible attributes may be unusable for a particular statement 
because of system constraints. For example, an attribute that is changed by an Update 
statement may not be usable even if it appears in an index-processable predicate. 
This does not mean that all plausible attributes, which are used in an Update 
statement, are to become not-plausible, we must weight the update frequency and the 
query frequency. If the query frequency gives us a higher advantage than the update 
cost than the attribute shall remain in the set of plausible attributes, otherwise it 
should be putted with the non-plausible attributes. 

Limiting access-paths to the plausible access paths greatly reduces the number of 
cost estimations to be done. A configuration is plausible for a statement if all indexes 
in it are plausible for that statement. We will use the following criterion to limit the 
number of I/0 cost estimations. 

Costs are obtained for each statement only for plausible atomic configurations for 
a given statement. 

The validity of this criterion is a consequence of proposition 1 and 2 of section 
5. 1.2. and 5. 1.3 .. 

Let us illustrate, the validity of plausibility in reducing the complexity of index­
selection problem, by the following example. Consider, again, the product table, 
PRoo, and an order table, OROER, where each table has 10 attributes. Without the 
technique ofplausibility we would have to consider l O*l 5. 120 configurations for 
each table with one index clustered and the others non-clustered, and 2 1 0  = 1.024 
configurations with all indexes as being non-clustered, for a total of 6. 144 
configurations. For the two tables together, there are a total of 6. 1442 = 37.748.736 
configurations. Plausibility allows us to drastically reduce the number of 
configurations. Consider the following statement: 

SELECT P. Prodno, P. Descrip 
FR0M PROD P, OROER 0 
WHERE P . Prodno = O .Prodno 
AND O.Suppno = 274 
AND P.Qual ity = 'H igh'  
AND P .Price BEîWEEN 1 0.000 AND 40.000 

Of the 20 attributes PRoo and OROER, only 5 are plausible for the given statement: 
Prodno, Quality and Price for PROD, and Prodno, Suppno for ORDERS. Hence, there are 
160 plausible configurations on the two tables, and only 35 of them are atomic 
plausible configurations. Suppose that another statement in the same workload is 
defined: 

04.09.1996 

SELECT * 
FR0M PROD P, OROER 0 
WHERE P . Prodno = O .Prodno 
AND O. Date = 1 9961 506 
AND P.Price < 30.000 
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All the attributes in PR0D and OROER, appear in the select list, but only four are 
plausible. For this statement there are 64 plausible configurations, of which 25 are 
atomic plausible configurations. 15 of those are also atomic plausible configurations 
for the preceding statement. The total number of different atomic plausible 
configurations for both statements is 45. In practical workloads many attributes in the 
database are not referenced, and some attributes are only referenced in the SELECT list 
and never in the WHERE clause. The plausible configurations for joins often intersect 
considerably; it is particularly common for several statements to have the same join 
attributes, because of hierarchical and network relationships that exist in the data 
tables. Furthermore, as we previously indicated, not all attributes referenced in the 
WHERE clause are plausible. Hence, performing index selection on the basis of the 
plausible configurations can be of help. 

5.1 .5.  Atomic Costs Computation 

In order to obtain solutions for index selection problem, the database designer 
needs to compute the costs of the statements for plausible atomic configurations. 

We will say that an index c onfigurati o n  is c overed by an other, for a given 
statement q, when both configurations have the same indexes for all tables referenced 
in q. Same, a set of c o nfigurati ons is said t o  c overs an other, for statement q, when 
each configuration in the second set is covered for q by a configurations in the first 
set. A set of c o nfigurati ons is minimal, for a workload when it contains no 
configuration that is covered by the other configurations, for every statement in the 
workload. Since, the cost of a statement is independent of the indexes on tables that 
are not referenced by the statement. To determine all plausible atomic costs it is 
enough to simulate a (minimal) set of atomic configurations, that covers the set of 
plausible atomic configurations for the given workload. 

Remember that we might get statistics and cost estimation out of database catalog 
tables. We must note, that during computation and simulations of index 
configurations the catalog updates can be very time consuming. Let us consider a 
statement on a single table. Since the same index may be plausible for more than one 
statement, the number of system catalog updates necessary to simulate the 
configurations equals the total number of different indexes that are plausible for at 
least one statement. Brute force scan must be counted once for each table. For a 
single table statement, catalog updates could be done efficiently on a table by table 
basis. 

For a workload that includes joins, the number of catalog updates may be very 
high, since the number of atomic configurations to be simulated grows exponentially 
with the number of tables joined. We want to reduce the number of catalog updates 
by never simulating a configuration more than once, by simulating a minimal set of 
configurations for a workload, and by simulating configurations in sequence that 
reduces the number of catalog updates. In this section we briefly describe a simple 
procedure to enumerate, a cover for, the plausible atomic configurations so that the 
database designer obtains the plausible atomic costs for all statements in the 
workload. 
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For a statement q involving tq tables, let NAiq be the number of plausible indexes to 
the r table of the statement. The number of different atomic configurations to be 
simulated is 

Using Gray coding54 we are able to enumerate atomic configurations, with table t 
as the highest order, the least frequently changing, attribute and table 1 as the lowest 
order, the most frequently changing, attribute. With regard to this the number of 
catalog updates becomes: 

\jlq is minimized by permuting the tables so that the NAiq values are monotonically 
increased. Different tables may be used for different statements. \jf = Lq \jlq catalog 
updates are enough to compute costs for all statements. According to [Finkelstein 
1988], in many cases the plausible configurations for joins intersect considerably 
with one each other. Thus performing the cost estimations independently for each 
join, risks to create identical configurations more than once. To avoid this situation, 
and hence reduce the number of catalog updates, whenever we simulate an atomic 
configuration, we compute the cost of each statement for which that configuration is 
plausible. More generally, the database designer estimates the cost for each statement 
such that the simulated configuration covers a plausible configuration. Ordering the 
statements, so that the ones with the largest number of tables are processed first, also 
reduces the number of possible configurations, since a join involving many tables 
may enumerate configurations needed by simpler statements. 

Join cost computation rule 

� The list of join statements is ordered in decreasing order, by the number of 
tables referenced; 

� For each join q, all plausible atomic configurations are enumerated, using for 
example Gray coding55, with the tables permuted so that the NAiq values are 
increasing. A configuration is simulated only if the cost of q for that 
configuration has not yet been estimated. 

� For each simulated configuration, a I/O cost estimation is performed for every 
join, after the current join in the join list, such that the simulated configuration 
covers an atomic configuration that is plausible for that join. 

54 According to [Baudoin- 1 984] a Gray code of order n is a pennutation of 211 words of n bits 
ordered a way that the i th bit divers from the i- 1 th in one position only, the whole in a a cyclic way, 
taking i modulo n. The following is an example of order 3 Gray code: 

000 00 1 0 1 1  0 1 0  1 1 0 1 1 1  1 0 1  1 00 
55 Any other enumeration technic generating each configuration once is acceptable. 

04.09. 1 996 Database Performance Tuning 1 1 8/ 1 62 



5.2.  Index El imination 

Above here we described the notion of plausible attributes for indexation. The 
plausibility of an attribute is based on its appearance in a statement, not on the I/O 
cost of the index as access path. Plausibility is a valid criterion for restricting the I/O 
cost evaluations. If we assume, that the solution generation procedure of section 5.3. 
is used, then all configurations are considered, and the optimal index configurations 
are found. Assuming that the estimated costs are the actual execution costs. 
Analyzing all possible atomic configurations, may be impractical when the workload 
includes joins on many tables, where a large number of attributes are plausible. As 
we already discussed in chapter 1, finding the optimal configuration is not required, 
as statistics provide an incomplete and approximate description of the database 
workload, as well as the cost estimations of chapter 4 and/or the optimizer cost 
computations provide us a rude approximation of real time I/O costs. 

In what follows, we concentrate on some heuristics which will help us to decide 
on which plausible indexes are likely to be chosen as access paths by the optimizer 
when other indexes exist within the database. These criteria, based on access costs, 
can reduce the set of configurations. First we describe the problem of index 
indecision between index performance estimations and brute force performance 
estimation, then we describe an heuristic for index elimination on single table 
statements, after what we enlarge our considerations to multi table statements. 

5.2. 1 . Index l ndecision Problem 

In section 4.2. we defined an optimistic and a pessimistic I/O cost estimation for 
B-Tree index accesses and we have seen the problem of the index indecision 
problem. In section 4. 1. we defined a cost estimation for brute force table scans. 
During this section we will give a graphical interpretation (figure 5.2.) of the 
different cost relations and see how they led us to a heuristic on index selection. 

First, recall the three cost relations for the B-Tree and the brute force table scan 
accesses. Note that, in this section, we abstract the relations from the time fractions, 
R, S, L, used to value the access cost in terms of time. 

MAXcosr11o(B-TREENc) = I (Logfo(Ndv) - 1 )  + (k / Nrid) l+ L kNdv / foJ + k 

MINCosr11o(B-TREENc) = I (Logfo(Nrdv - 1 )  + (k / Nrid) l + L kNdv / foJ + K 

Cosr1,o(BRUTE FORCE) = Np/2 
where 
fo: Fanout of index node pages 
Np: number of pages 
Ndv: number of distinct records for the indexed attribute 
Nrid: number of RID pointer hold in a page of indirection (rude approximation 254) 
k: number of records to be retrieved 
kNdv: number of distinct records values to be retrieved 

K: number of pages to be accessed 

Second, let us draw all three cost relations on a graphical figure, figure 5.2., and 
describe their intersections (See annexes 7 . 1. 1. ). 
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Recall that the parameters involved m our cost estimations are valued as it 
follows : 
• number of records 
• records size 
• indexed attribute size 
• page size 
• fill rate 
• number of records per page 
• number of pages 

Nr: 1 0000 records 
Rs: 1 00 bytes 
As: 1 0  bytes (page pointer size included) 
Ps: 2000 bytes (header size already subtracted) 
fr: 70% 
Nrp: 1 4  records 
Np:  7 1 4  pages 

• fanout fo: 70 records (index page size and data page size are identica/) 
• number of index levels 
• number of R ID pointers 

per indirection page 

Access Cost 

1 200 T 

d:  3 levels 

Nrid: 254 pointers 

lndecision Zone 

0 
0--� � - �Î��-,1 ....... ---,2�-� - Î -- -- ----

-
- 0.1 

8-Tree Pesimistic 

8-Tree Optimistic 

Index better than Brut Force Index worse than Brut Force Filter Factor (*100=%) 

figure 5.2. : Index Jndecision Problem Representation 

Analyzing the graph, we figure out that the three cost relations cross within two 
points. 

The first intersection takes place at when 1 1 %  of the records are qualified by the 
query. Meaning that when the query qualifies less than / 1 *Nr records the I/O cost 
using an index is always better than executing a brute force table scan. 

The second intersection, arises when the query qualifies 12% of the records. 
Meaning that when the query predicate, qualified more than /2*Nr records the access 
costs using a B-Tree index is always worse than performing a brute force table scan. 

The section between those two points, 1 1  and 12, is called the Indecision Zone. 
Meaning that when the predicate values a filter factor of ff ( 1 1  � ff ;:::  12) , the designer 
might not be able to state that the I/O costs using an index are better or worse than 
executing a brute force table scan. 

Above here we, defined three zones that guide the search for index placement, 
elimination, but what happens when the different input parameters vary in value. We 
can distinct between to kind of parameters ; the one that are fix to the cost estimation 
and the one that are not. 
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Fixed parameters to the indecision problem, are for example the number of 
records, the records size and/or the indexed attribute size. They are said to be fix, 
because the designer has no control over their values. Given a query and data objects 
as well as their values, he has to decide whether the index placement makes sense or 
not. 

Variable parameters to the indecision problem, are for example the page size 
and/or the fill rate. The designer might, choose according to the system and to its pre 
analyses to increase or decrease their values. 

In annexes 7 . 1.2. and 7 . 1.3 ., we valued and represented variations of the page size 
and the fill rate. As we would expect, the higher we set the page size, the lower are 
the 1/0 costs for both index retrieval and brute force table scan. What might be 
surprising is that the higher we set the page size, the earlier cornes the break point, in 
terms of filter rate, where the index search is always worse than the brute force table 
scan, and the smaller is the indecision zone. Same for variations of the fill rate, the 
higher we set the fill rate, the more records can be hold within a page, the less access 
have to be performed for data retrieval. What might be surprising, in this case, is that 
the higher we set the fill rate, the better becomes the brute force scan over the index. 
The fact is, when the fill rate varies the amplitudes in brute force scan costs are 
bigger than in B-Tree cost estimations, which influence highly the cost break point 
valuation. 

Out of these variations we can learn that a lower page size or/and fill rates are 
beneficiary for indexes selection. However it is Jolly to think that a minimum page 
size and fill rate gives an optimal 1/0 cost for a given index. The designer should not 
think of tuning the page size and/or the fill rate given an index and a query. But to 
question himself, on the problem, if an index makes sense, or not, for a given page 
size, fill rate and query. The aim of this section was to show that an index can be 
more or less interesting for a given query depending on the pre-defined page size 
and/or fill rate. 

5.2.2. I ndex El imination for Single Table Statements 

Assume that all considered statements involve one and only one table, hence, all 
atomic configurations have no more than one index. Index elimination is not usually 
necessary in this case, since the number of plausible atomic configurations is quiet 
small. However, to help motivate the technique used for index elimination in multi­
table statement cases, we should begin with a single table statement case. 

The database designer figures out all possible configurations, for clustered and 
non-clustered indexes, for all table attributes. Index elimination is carried out by 
comparing every index choice with every other index choice, as well as with the 
brute force table scan. A set of elimination criteria is valid if the criteria never 
eliminate an index that appears in the optimal solution. The elimination heuristics, 
describe later on, are only valid for single-table queries. When the workload also 
contains maintenance statements and joins, the heuristic may not be valid. The 
problems associated with the maintenance and join costs will be shortly inspected at 
the end of this section. 
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Let CosTiU) be the cost of query qi associate with an index j. If COSTlk) < CosTiU), 
then, if both indexes exist in the design, the optimizer will prefer k to j .  We should 
also consider storage cost, si, for each index j, which is defined to be the number of 
pages needed for the index multiplied by a storage weight cr , supplied by the 
designer to trade off page costs versus execution costs in computing total 
configuration costs. If CosTi(k) s CosTiÜ), for all qi, then the optimizer will never take j 
if k is in the database design. If this consideration holds, k is a better index choice 
than j, and we can eliminate j from consideration, unless the storage cost required for 
index k is higher that the one of index j, sk > si. 

The above consideration let us to the following definition. 

Given two indexes j and k, if sk s sj and, for all qj E W, Cosr/k) s Cosr;U), 

then index j is dominated, as an index choice, by index k. If equality holds 
for al! qj and s, then j and k are said to be equivalent. 

In case where indexes are equivalent, all but one can validly be eliminated. The 
configuration, with no indexes is represented by a vector R(p) of costs CosTi(P) that 
corresponds to the brute force table scan. In general, the optimizer never returns a 
cost CosTiU) > CosTi(P ), so any index access cost equivalent to the brute force table 
scan cost can be validly eliminated. 

Let us consider CLUST to be the set of plausible clustered indexes over all the 
queries, qi, and NoNCLUST to be the set of plausible non-clustered index over the same 
queries. The following four heuristics, based on the above definition, can be used to 
eliminate indexes from CLUST and NoNCLUST. Note, that after that an index has been 
eliminated it cannot eliminate any other index. 

Hl: lfj , k  E Cwsr and index k dominates index j, then eliminate j fi·om CwsT. 

H2: If j E Cwsr is equivalent to k E NoNCwsr and index k and j are defined on the 
same table attribute(s), then eliminate j from CwsT. 

H3: lf j E NoNCwsr is equivalent to p, then eliminate j from NoNCwsr. 

H4: If j , k  E NoNCwsr and index k dominates index j, then eliminate j from 
NoNCLUST. 

Each of these heuristics is valid because we assumed earlier that the optimizer 
uses only one access path per table and there is only one table. Heuristic H l  and H2 
should be applied in that fixed order before H3 and H4, since otherwise we may 
eliminate an index before it has the chance to eliminate others. Heuristic H3 and H4 
may be applied in either order. Heuristic H l  and H4 eliminate dominated indexes and 
keep only one among equivalent indexes. Heuristic H2 eliminates any clustered 
index that is equivalent to the non-clustered index on the same attributes, because 
there is no advantage in keeping the records ordered on those attribute values. In H3, 
non-clustered indexes are compared to the configuration with no indexes and 
eliminated if equivalent. If the corresponding clustered indexes are equivalent to the 
brute force scan, p, they are eliminated by heuristic H2, since no non-clustered index 
can be better than a clustered index on the same attribute(s). After the application of 
the above heuristics, CLUST and NoNCLUST contain only the indexes that are 
comparatively useful for at least one query, or have small storage costs. 
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Clustered Indexes Non-Clustered Indexes No Index 

1c 2c 3c 4c 5c 6c 1n 2n 3n 4n 5n 6n p 

q1 1 00 1 00 50 100 90 100 100 1 00 50 100 1 00 100 100 

q2 1 50 1 0  50 35 40 1 50 1 50 20 50 1 50 40 1 50 1 50 

q3 5 1 0  1 0  1 0  1 0  5 5 1 0  1 0  1 0  1 0  1 0  1 0  

q4 1 00 60 1 00 200 1 00 200 1 00 1 40 200 200 1 30 200 200 

figure 5.2.: Cast Matrix for Index Elimination Problem 

To illustrate these heuristics, let us consider a small example. Figure 5.2., gives us 
costs for a table Ti with a set of 6 plausible attributes for index selection and 4 
queries. Normally, different attributes might be plausible for different queries. The 
single index atomic costs are arranged in a matrix with 4 rows, representing the 
queries, and 13 columns, 6 for costs of clustered indexes, 6 for the non-clustered ones 
and 1 for the brute force scan. Ignoring storage costs for simplicity, the results of 
index elimination is : 

Results of heuristic index elimination : 

� H 1 :  1 c eliminates 6c, 2c eliminates 4c. 
� H2: ln eliminates l e. 
� H3: p eliminates 4n and 6n. 
� H4: no elimination. 

Further elimination heuristics may be applied to CLUST and NoNCLUST if they still 
contain many elements. Other indexes can be eliminated if they are 'almost' 
dominated by some other index. If the strict domination criterion is used, indexes 
may survive the elimination process because they are slightly better than other for a 
small set of queries, even though they are worse for most queries. Therefore, 
heuristic elimination may be preferable to strict domination. Let the maximum 
advantage of k over j for all q i be 

and let E be an elimination coefficient specified between O and 1. Heuristics 
elimination can be based on the following domination definition: 

An index k i::-dominates an index j if 

Ma. k � i::Mak . 
J, ,J 

and for storage costs 

cr(sk - s i ) �  EMak,i 
where cr is the storage weight supplied by the designer. 
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Index k r,-dominates an index j if the maximum advantage of j over k, over both I/O 
cost estimations and storage costs, is less or equal to a fraction of the maximum 
advantage of k over j. Note that zero-domination is identical to the first domination 
definition, so index elimination is the same as index elimination with 8 = O. r,­
domination can be defined in other ways, for example by comparing total advantages 
or by comparing maximum advantage to total advantage. In here we prefer to 
compare maximum advantages, since this comparison means that eliminated indexes 
are comparatively unimportant. 

Domination increases monotonously as r, increases ; that is, if j r, 1-dominates k, then j 
f.rdominates k for 8 1 < 82 . Assuming storage costs are equal, for any pair of indexes j 
and k there is a smallest r, between 0 and 1 such that one index 8-dominates the other, 
based on the ration of their maximum advantages. Note that if both maximum 
advantages are 0, the indexes are equivalent. 8-domination is not a transitive operand, 
so the order in which elimination is applied may change the set of eliminated 
indexes. 

If the clustered index were chosen on a table, further index elimination could be clone 
based on that choice. This motivates an additional elimination heuristic criterion. Fix 
a specific table. Let G0 contain all surviving indexes on that table in NoNCLUST. For 
each clustered index k on the given table that survived index elimination, let Gk 
contain clustered index k as well as the non-clustered survivors. Elimination is 
performed within each group Gk by applying a domination criterion using the 
clustered index within the group: 

HS: For each group Gk, if k E CWST8-dominates an index j E NoNCWST, ifj and k are 
indexes on  the same attribute(s), then eliminate j from Gk, but n ot /rom any other 
group. 

Heuristic, H5, eliminates the non-clustered index on the clustered attribute, which is 
always dominated by the corresponding clustered index, and eliminates other indexes 
that are dominated by the clustered index. Elimination using H5 can be done only 
group by group and n ot gl obally on NoNCLUST, since non-clustered indexes 
dominated by some clustered choices may be useful for other clustered choices. The 
result of applying H5 to the groups are called by [Finkelstein 1988] the basic groups 
for the tables. 

We previously showed index e limination for figure 5.2., which is the same as index 
elimination with 8 = O. Index elimination using the r,-domination definition for 8 = 1

/3 

yields the following results: 

Results of heuristic index elimination with 8 = 1
/3: 

� H l: 1 c eliminates 6c, 2c eliminates 4c, 3c eliminates Sc. 
� H2: ln  eliminates l e. 
� H3: p eliminates 4n and 6n. 
� H4: 2n eliminates ln. 
� H5: In basic group for 2c: 2c eliminates 2n and Sn. 
� H5: In basic group for 3c: 3c eliminates 3n and Sn. 
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Basic groups after elimination with i:: = 1
/3: 

� (2c, 3n) 
� (3c, 2n) and 
� (2n, 3n, Sn) 

For maintenance statements as well as queries, costs are compared only for atomic 
configurations. Since the rest of the solution is not determined, the designer cannot 
include the cost of maintaining other indexes in its cost comparisons during the index 
elimination phase. Hence, the elimination heuristics may not be valid when there are 
maintenance statements in the database workload. 

5.2.3. I ndex El imination for Multi-Table Statements 

Most approaches to the index selection problem are restricted to single table 
statements. Approximate solutions are obtained by performing the index selection 
separately table by table. Most commercial systems have join methods performing 
table joins, using nested loop and/or merge scan as well as hybrid join methods. The 
optimizer chooses the sequence in which tables are joined, and the index used for 
accessing each table. For an n-way join, it can use two methods in any appropriated 
sequence of 2-way joins. In each join, the choice of table order, the join method, and 
the index on tables cannot be clone independently. 

According to [Finkelstein 1 988] the single table heuristics from section 5 .2. 1 .  also 
hold, although not necessarily valid, for multi-table index elimination, when 
following assumptions are made : 

A l :  Indexes can only eliminate other indexes on the same table. 

A2: Clustered indexes on join attributes can never be eliminated. 

A3: Indexes on join attributes can never eliminate any other indexes. 

Assumption, A 1, arises because indexes are single table access paths. Assumption, 
A2, arises because merge scan is often a very efficient join method when both join 
attributes are clustered. This can seldom be detected from single index atomic costs. 
Consider again, for example, the two tables Prad and Orcier and the following SQL 
query : 

04.09.1 996 

SELECT O.Suppna, P .Qanard 
FR0M Prad p I Orcier 0 
WHERE O.ProdNa = P .PradNa 
AND O.SuppNa = 1 5  
AND P .Qahand BE1WEEN 1 00 AND 1 50 
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Assume that we made the decision to cluster the Prod table on attribute Descrip and 
that a non-clustering index on ProdNo exists for Prod . Given this, the best clustered 
index for Order is probably on SupNo. This allows a quick retrieval of the records 
from Order that have SupNo = 1 5 . For each of these records, the corresponding records 
in Prod, having the same ProdNo, can be located using the index on ProdNo in a 
nested-loop join method. The best choice of clustered index for Order would be 
entirely different had the choice for clustered index on Prod been ProdNo. In that case, 
clustering Order on ProdNo enables an even faster processing of the above statement. 
The join predicate would be resolved by performing one pass over each table via the 
clustered index, by using the technique of the merge join. This example shows us, 
that the selection of a clustered index cannot be done independently for each table. 

Assumption, A3, arises because some very good solutions would be ignored if 
indexes on join attributes were allowed to eliminate indexes on non-join attributes. 
Without considering assumption, A3, two negative results might occur. Again, 
suppose that our workload contains the above query. Now apply index elimination to 
non-clustered indexes on attributes SupNo and ProdNo of the Order table. Let us just 
consider the costs of the nested-loop join. As seen in section 2. 1.8. 1. one table must 
be the outer table, whereas the other is the inner table. For each qualifying record in 
the outer table, satisfying predicates on this table, matching records are found in the 
inner table, satisfying the join predicate and the other predicates on the inner table. 
Let kx be the expected number of records that satisfy predicates on the outer table X, 

which gives us the number of times the inner table is scanned, let Pv be the cost of 
the brute force scan of table Y, let C( ai) be the cost of accessing the outer table using 
the index on attribute j, and let C'(ai) be the access cost to retrieve records matching 
an outer record using the index on attribute j of the inner table. The optimizer cost 
estimation are as follows : 

For the index on attribute O.SuppNo, the minimum of Acc1 and Acc2 are : 

using Prod as the outer table : 

Acc1 = PProd + kProd C'(O.SuppNo) 

and using Order as the outer table : 

Acc2 = C(O.SuppNo) + korder PProd 
For the index on attribute O.ProdNo, the minimum of Acc3 and Acc4 are : 

using Prod as the outer table : 

Acc3 = PProd + kProd C'(O. PartNo) 

and using Order as the outer table : 

Acc4 = Porder + korder PProd 
Let us make the assumption that each index has I/O access costs that are less than 

the brute force scan and that Acc3 is less than both Acc1 and Acc2 (Acc3 < Acc1 , Acc3 < 
Acc2). During index elimination we would eliminate the index on O.SuppNo. But, if 
we put an index on attribute P.Qonhand, the I/O cost of accessing Prod might bee 
significantly reduced. Let us define Acc1 ' and Acc3' by substituting C(P.Qonhand) to 
PProd in relation Acc1 and Acc3. Similarly we define Acc2' and Acc4' by replacing 
C'(P.Qonhand) to PProd in relation Acc2 and Acc4. 
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Acc1 ' = C(O.Qanhand) + kProd C'(O.SuppNa) 

Acc2' = C(O.SuppNa) + korder C'(O.Qanhand) 

Acc3' = C(O.Qanhand) + kProd C'(O. PartNa) 

Acc4' = Porder + korder C'(O.Qanhand) 

The cost reduction we obtain from Acc2 to Acc2' ,  is korder times greater than the 
cost reduction from Acc3 to Acc3'. If the value of korder is large, then the value for Acc2 
will now be much less than the value of Acc3. Thus, the decision to eliminate the 
index on O.SuppNa was poor. 

A second outcome that produces even worse results might occur if we do not 
consider assumption, A2. Again we will use the above statement as an example. The 
non-clustered index on O. PradNa could eliminate all other non-clustered indexes on 
Orcier, since the cost Acc3 with Orcier, as inner table, is small. Similarly P. PradNa 
could eliminate all other non-clustered indexes on Prad, because executing a nested 
loop join with Prad, as inner table, might be cheaper than the alternatives. These 
indexes would not be used for a nested-loop execution of the considered statement, 
since one of them would be on the outer table and there is no non-join predicate on 
either attribute. An index can be used to scan all the records in a table, but this is 
typically not profitable. Thus, the optimizer is forced to choose brute force scan on 
one of the two tables, and consequently one of the indexes will be useless for the 
considered statement. 

However, the database designer is allowed to undertake some non-clustered index 
elimination on join attributes by other indexes. In case where Acc3 is bigger than 
Acc1 or Acc2. If we define an index on one of the attributes of Prad then Acc3 remains 
bigger than Acc1 or Acc2. This is true of Acc4 as well as Acc3, and non-clustered 
indexes are poor choices for merger-scan joins. Bence, the non-clustered index on 
join attribute O.PradNa can safely be eliminated when it is dominated by another non­
clustered index. 

Our discussion of restrictions A2 and A3 shows that solutions for single-table 
cases do not extend, by combining all the individual solutions for each table, to the 
multi-table cases in a trivial way. According to [Finkelstein 1988] index elimination 
is a good heuristic when assumptions Al ,  A2 and A3 are followed . 
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5.3 .  Solution Generation 

For the last step in the design process we will, explain how [Finkelstein 1988]s 
database design tool, DBDSGN deals with the generation of an index solution. The 
index solution step is a controlled search of the space of subsets of the survivor 
indexes in CLUST and NoNCLUST to find good solutions to the index selection problem. 

Solutions, which are index configurations, are annotated with the I/O costs, 
maintenance costs, and indexes used for each statement in the workload and the total 
cost. The total cost can also depend on the total storage and the storage weight cr if 
the designer wants to balance execution time versus the cost of storage. However we 
will ignore the storage cost in this section. 

The indexes in CLUST and NoNCLUST are stored in a list, the survivor list, where the 
clustered indexes proceed the non-clustered ones. The search in this list is clone 
through a tree expansion that enumerates the configurations so that no configuration 
appears twice in the tree. The ordering of the survivor list is important, however it 
will be described later on in this section. 

Before we start the tree expansion, we should give the tool whether there is an 
index storage limit or not, if there is, the designer has to supply the maximum 
number of pages available for an index configuration in the data base. 

Table 

Survivors 

Basic Groups 

Survivor List 

2c 3c 2n 3n 5n 7c 9n 

2c 3n 7c 9n 

3c 2n 5n 9n 

2n 3n 5n 

2c 7c 3c 9n 2n 5n 3n 
figure 5.3.: Example of a Survivor 's List and Basic Groups 

The root of the tree represents the solution with no indexes at all. A node's 
children always have one additional index, so the nodes at level n have exactly n 
indexes. Adding a node's children to the tree is referred to as expanding the node. 
The tree expands according to the following rules: 
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Tree expansi on  rules 

� The root is expanded with one child for each index on the survivor list. These 
nodes represent solutions having only one index in the database. 

� For each node, expansion is done with indexes that appear later in the survivor 
list than any index already in the node. 

� A node can be expanded only with indexes that belong to the basic groups of 
the clustered indexes already present in the solution represented by that node. 

� If a node has no clustered index for a table, any clustered index on that table 
can be added, but only non-clustered indexes in the all-non-clustered basic 
solution for that table can be added to the node. Recall that clustered indexes 
precede non-clustered indexes in the survivor list. 

� Any node that exceeds the index storage limit specified by the designer is 
pruned. 

To explain how the tree grows let us take an example. Suppose that the design is 
for table T1 and T2, whose survivor list and basic groups are show in figure 5.3 .. 

Figure 5.4. shows the first expansion of the tree with solutions having only one 
index on the database. In this figure the root has no index. 

2c 7c 3c 9n 2n Sn 3n 
figure 5.4.: First Tree Expansion 

In figure 5. 5. the tree is expanded from the first lev el to the second, and the 
application of the expansion rules take place. For example, the solution represented 
by 7c is not expanded with 2c ; the solution (2c, 7c) is already present and equivalent 
to (7c, 2c). No expansion takes place for the solution 3n, which is the last index in 
the survivor 's list, but all possible combinations of 3n with other indexes appear 
elsewhere in the tree. Furthermore, 2c is not expanded with 3c or 5n because they do 
not belong to the same group, and 3c is not expanded with 3n. 

2c 

ffi 
7c 3c 

� ffi 
9n 

ffi 
2n Sn 

/\ 1 
7c 9n 3n 3c 9n 2n Sn 3n 9n 2n Sn 2n Sn 3n Sn 3n 3n 

figure 5.5.: Second Tree Expansion 
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For each node the total cost is estimated during expansion. This total cost is the 
weighted sum of all costs of the statements, access and maintenance costs, when the 
database has the set of indexes represented by that node. Let ISET be the set of 
indexes in a given node. The total cost of the solution represented by the node is: 

TotalCost(ISET] = L wqCOST(ISET] 
q 

where CosTq[lsET] is the cost of statement q as defined in section 5. 1.2. for the 
queries and in section 5 . 1. 3. for maintenance statements. 

The solution in a node can be worse than the parent solution. Assume we start 
from a node having ISET as a solution and add index a. The access advantage of a 
solution ISET' = ISET u {a}  is 

Adv= TotalCos{ISET] - TotalCos{ISET] 

Adv = L wqCOST(ISET] -L wqCOST(ISEr] 
q q 

CosTq[lsET'] can be efficiently computed using atomic costs as the minimum of 

• CosTq[lsET] and 
• the minimum value of CoSTq[ASET] , taken over atomic subsets of ISET that 

contain a. 

If a is used for q in configuration ISET', then the access paths for q correspond to 
those in some ASET containing a. Adv cannot be negative. If Adv is 0, no atomic cost 
including a is better than those without a, so a is not used as an access path in any 
statement for configuration ISET'. If Adv is positive, the disadvantage in maintenance 
cost must be considered: 

The difference inside the square brackets, [], is not simply z: uq (P, APq (ISET)) , the 
additional maintenance cost for index a, because the maintenance costs of other 
indexes may have changed, based on the change of some index choices. Thus, to 
correctly evaluate maintenance costs, the tool has to keep track of actual access paths 
for each statement. ISET' has a better total cost than ISET only if Adv is greater than D. 

Furthermore, knowing the actual indexes allow us to detect wasteful solutions. 
There are solutions that contain one or more indexes that are never taken in account. 
ln the index elimination phase, we ensure that no index is dominated by any other 
single index. At level of solution generation we want to ensure that no index is 
wasted because it is overpowered by a set of other indexes. Wasteful solutions can 
arise in two ways: 

The most recently added index a is not used in any statement. In this case ISET 
overpowers a. 

When a is added to ISET, some index � in ISET is no longer in an access path for 
any statement. In this case ISET u {a} - {� }  overpowers �-
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If a wasted index is plausible for some Jom, future additions of indexes on 
different tables may make it useful for that join. If that index is not plausible for a 
join, or if all plausible indexes for the tables in the same join are already in the 
solution, then that index will always be wasted, no matter how the solution is 
expanded. In that case, the node can be pruned from the tree. 

At the end of expansion, the tool displays the S solution having the smallest I/O 
cost, where S is a parameter specified by the designer. Wasteful solutions are never 
displayed, so they may be dropped as soon as they have been expanded. In figure 5.6. 
we show the full expansion of the tree. Recall that no index storage limit has been 
considered during expansion. The bordered nodes indicate the best solution (S=3). 
Sorne nodes are pruned because the tool detects wasteful solutions. When 
maintenance statements are present in the workload, the best solutions are not 
necessarily at leaves of the tree. 

0 

2c 7c 3c 9n 2n 5n 

A � A A /\ 1 
7c 9n 3n 3c 9n 2n 5n 3n 9n 2n 5n 2n 5n 3n 5n 3n 3n 

/\ \ /\ A �� \ /\ \ 1 
9n 3n 3n 9n 2n 2n 5n 3n 5n 3n 3n 2n 5n 3n 3n 3n 

� � � \n 
\ / 
3n 3n 

� 

figure 5. 6.: Full Tree Expansion 

Exploring all the solution in the tree is very time consuming when there are many 
tables in the database with a large number of surviving indexes. Thus, we allow a 
controlled partial expansion of the tree, using breath-first search with heuristics 
pruning. The search is conducted by expanding all solutions with no more than L 
indexes and keeping only the best N, where N and L are parameters specified by the 
designer, with N :::: S. Each of these N solutions is then expanded by at most L 
additional indexes, assuming they were at the frontier of the previous expansion. This 
process continues until no further expansion is possible. 

Because of this pruning rule, each different ordering of the survivor list 
determines a different tree, even though the set of solutions examined during the first 
L index expansion is always the same. This is because the survivor list imposes a 
discipline on a node's descendants, denying them certain indexes. We want 
'influential' indexes to be early in the survivor list, so that other indexes can still be 
added, despite pruning. If the first index in the list was good only for some low­
frequency statements, it might be pruned completely after the first L index 
expansions. The order of the survivor list is determined by two rules: 
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� The clustered indexes are stored before the non-clustered ones. Clustering 
indexes are, in general, the most influential. Thus, they should be considered 
before the non-clustered ones. They also allow the identification of the basic 
groups. 

� The indexes in each set, clustered and non-clustered, are ordered according to 
their total costs, computed on the basis of their weighted total single index 
atomic cost: Lq wq CosTq(a) . Indexes with higher total single costs are usually 
less influential than indexes with lower total single costs. 

This ordering for the survivor list is likely to be one of the best among the 
possible permutations of indexes. 

In figure 5.7. - 5.9., the expansion of the same tree as in figure 5.4. - 5.6., is shown 
with N = 3 and L = 1 .  We assume the order of the survivor list is the same as for 
figures 5.4. - 5.6 .. The bordered nodes indicate the best solutions found at each level 
of expansion. The best solution obtained with pruning need not be the same as for 
full expansion. In this example, however, the number of nodes searched dropped 
from 48 to 27. If we set L = 1 ,  we visit a number of nodes proportional to the number 
of surviving indexes. In general, the number of nodes grows exponentially in L. If we 
make L the number of surviving indexes, we visit the entire tree. The trade off, is that 
some of the low cost solutions appearing in the unrestricted tree may not appear in 
the restricted tree, so some of the best solutions may be missed. By controlling these 
two parameters, a designer can get a good set of choices rather quickly. The Tool 
allows the designer to pursue different choices of N, L, and the index storage limit in 
the same run. According to [Finkelstein 1988] choosing L = 1 usually allows the tool 
to find the best solution. 

3n 

figure 5. 7. : First Tree Expansion with N = 3 and L = 1. 

0 

figure 5. 8. : Second Tree Expansion with N = 3 and L = 1. 
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figure 5.6.: Full Tree Expansion with N = 3 and L = 1. 
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Chapter 6 :  Case Study 

Throughout this document, we have seen many theoretical aspects and guidelines 
for physical database tuning. It is true that we concentrated on how indexes should be 
placed to gain maximum access performances. All this together can bee confusing. 
This chapter should bring some order into all this. Using as input a simplified version 
of a case study made by [Hainaut 1989], we will show how index tuning can take 
place in real world. 

Before we start the phase of physical tuning, we consider that the logical database 
schema has been optimized according to the study made by [Mathon 1994]. Consider 
also that the queries are optimized according to the DBMSs optimizer considerations. 
Note that each DBMS documentation gives an explicit description of the query 
optimization. 

In this chapter we will not consider the different aspects of buffer, page size, fill 
rate tuning, as they are strongly depending on database management system 
(ORACLE, SYBASE, INGRES, DB2, ... ) and the operation system (UNIX, VMS, 
MVS, ... ) under which the database will be implemented. We assume that the 
database designer completed the pre-job of tuning those parameters to their optimum. 
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6.1. Logical Schema 

Figure 6. 1. illustrates our case study logical schema. It represents the information 
stored within a small library. There are books having a set of keywords and being 
written by only one principal writer. Each book exists only one time within our 
library and can only be borrowed to one person. For each book the library stores the 
title, the publisher, the publishing year, the writer's identification, the borrower's 
identification, the date of borrowing and the foreseen date of return. For each writer 
the database holds information on its name and its nationality. Similarly, for each 
borrower the library stores the name and the address. To each book can bee associate 
0 or 12 key words. 

As already mentioned, the physical tuning uses as input the logical schema. For 
example the one in figure 6. 1., representing our library database. 

BORROWER BOOK 

ld-Num N8 ld-Num N6 --
A35 7d-Wï'ffier N6 Name 

Street A30 Id-Barr N8 
CP A7 Tite! A35 
Town A30 Pub-Year A8 
Country A30 Publisher A45 

Location A15 
Date-Barr AB 
Date-Rel A8 

figure 6.1.: Logical Schema for Case Study 

WRITER 

ld-Num N6 
Name A35 
Nation A35 

KEY-WORD 

Id-Book N6 
Key-Ward A20 

The schema would not be entire without the following referential constraints and 
integrity constraints. 
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lb- BOOK. ld-Writer in WRITTER. ld-Num 
lb- BOOK. Id-Barr in BORROWER. ld-Num 
lb- KEY-WORD. ld-Baak in  BOOK. ld-Num 

lb- BOOK.Date-Ret � BOOK. Date-Barr 

Database Performance Tuning 1 35/ 162 



6 .2 .  Requirements Col lection 

6 . .  2 . 1 . Data Statistics 

During requirements collection the following statistics have been gathered. 

� The system uses data pages of 2Kb. For simplicity, we consider that the page 
size is equal to 2.000 bytes, reserving 48 bytes for the page header. 

� The database is poor in insert and/or deletes and there are no record 
enlargements. The database designer determined a fill rate of 70% for the entire 
database. 

� He estimated 10.000 persons that are allowed to borrow books. 
� There are 50.000 books to be stored in the database. 
� On the average the database designer identified 10 keywords per book. 
� On the average a writer writes 3 books, thus there are 16.667 writers to be 

stored in the database. 

Table Name Nr  Rs 
Nrp = l p�:fr 

j Np = r� 1 Nrp 

BORROWER 1 00.000 records 1 40 bytes 1 0  records/page 1 .000 pages 
BOOK 50.000 records 1 39 bytes 1 0  records/page 5.000 pages 
WRITER 1 6.667 records 76 bytes 1 8  records/page 926 pages 
KEY-WORD 500.000 records 26 bytes 53 records/page 9.434 pages 

6.2.2. Queries 

At the same moment, the database designer identifies a set of data operations. 
Already classified into query types (see section 2. 1.8.). 
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Point queries : 
Q1 :  SELECT * 

FROM BORROWER 
WHERE ld-Num = #x 

Q2: SELECT Title, Pub-Year, Publ isher, Location 
FROM BOOK 
WHERE ld-Num = #x AND Date-Borr NOT NULL 

Multipoint queries: 
Q3: SELECT * 

FROM BORROWER 
WHERE Name = #y 

Q4: SELECT ld-Num, Title, Pub-Year, Publisher, Location 
FROM BOOK 
WHERE Date-Ret <= #today 
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Range queries: 
Q5: SELECT ld-Num, Tittle, Pub-Year, Publisher, Location 

FROM BOOK 
WHERE Pub-Year BETWEEN #date1 AND #date2 

Ordering queries: 
Q6: SELECT Name, Nation 

FROM WRITER 
OROER BY Nation ,  Name 

Join queries :  
07: SELECT B. ld-num, B .Title, B .Publisher, B. Pub-Year, W.Name 

FROM BOOK B, WRITER W 
WHERE BOOK. ld-Writer = WRITER. ld-Num 

Q8: SELECT B1 . ld-Num, B1 . Name, B2.Title 
FROM BORROWER B 1 ,  BOOK B2 
WHERE B2. ld-Borr = B 1 . ld-num AND B2.Publisher = #x 

Update operation : 
U 1 : U PADTE BOOK 

SET Date-Borr = NULL, Date-Ret = Nu ll 
WH ERE ld-Borr = #y 

U2: UPADTE BOOK 
SET Date-Borr = #today, Date-Ret = #returnday 
WHERE ld-Borr = #y 

6.2.3. Query Statistics 
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After identifying the data operations, the designer identified the number of 
activation for each query and the number of records qualified during their 
activation. 

� Query Q I  is requested on the average 5 times a day. As its predicate is defined 
upon a key attribute, it qualified only one record per activation. Thus the 
predicate has a good filter factor. 

� Query Q2 is on the average activated 20 times a day. As one third of the books 
are borrowed and as the predicate l d-Num = #x involves a key attribute, the 
query qualifies on the average 1,5 records. 

� Query Q3 is initiated 0.5 times a day. Consider that the predicate filter factor is 
equal to 2%, as there are on the average 20 persons with the same name. Thus 
the query retrieves 5.000 records. 

� Query Q4 becomes active once a day. Selecting 2 records out of 1/3 of the 
records, as on the average 5 books out of the 30% of borrowed books are not 
returned in time. 

� Query Q5 is on the average activated 0,5 times a day. Requirement collection 
identified that on the average 100 records are qualified. 
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� Query Q6 is initiated once a month, thus 0.05 times a day . It qualifies all, 
16.667, records, as it establishes a report for all the writers, ordered by nation 
and name. 

� Query Q7 is activated once a week, thus 0.2 times a day . As each book has a 
writer, it generates 50.000 records . 

� Query Q8 becomes active once a day . Consider that there are 1 .000 publishers 
and that the books are uniformly distributed among those publishers . 

� Update operation U 1 is initiated 100 times a day . Consider that a persons 
borrows on the average 2 books at the same time and that he returns them also 
on the same date . Then the operation qualifies 2 book records per day . 

� Update operation U2 is activated 120 times a day . When a person borrows on 
the average 2 books at each visit, 2 records are concerned per day . 

Let us consolidate the above valuation into a spreadsheet . 
Data Number of Number of Number of 
Operations activation per records qual ified records qualified 

day for one for one day 
(Na/d) activation (k/d) 

(k) 

Q1 5 1 5 

Q2 20 1 ,5 30 

Q3 0,5 5000 2.500 

Q4 1 5 5 

Q5 0,5 1 00 50 

Q6 0,05 1 6.667 834 

Q7 0,2 50.000 1 0.000 

Q8 20 2 40 

U 1  1 00 2 200 

U2 1 20 2 240 

6.2.4. First Set of Plausible Indexes 

As we identified the various data access operations upon the database, we can 
define a first set of plausible indexes for each table according to the following 
guidelines . 

� lnclude ail the table identifiers. 
� lnclude ail attributes used in a reference constraint. 
� lnclude ail attributes used in the WHERE clause, in other words referenced by 

a select predicate. 
� lnclude ail attributes used in the ORDER BY clause. 
� lnclude ail attributes used in the GROUP BY clause. 
� lnclude ail attributes used in the HA VJNG clause. 

Table Name Plausible indexes 
BORROWER ld-Num, Name 
BOOK ld-Num, ld-Borr, ld-Writer, Date-Borr, Date-Ret, Pub-Year, Publisher 
WRITER ld-Num, Nation, Name 
KEY-WORD Id-Book, Key-Word 
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Beside the definition of the first set of plausible indexes, it is helpful to see which 
table is concerned by which query. 

Table Name Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 U1  

BORROWER X X X 

BOOK X X X X X X 

WRITER X X 

KEY-WORD 

6.2.5. Fi lter Factors 

Let us determine the filter factors for the various predicates. 
0 1 :  fftd-Num = #x = 1 /1 00.000 = 0.00001 

02: ff1d-Num = #x = 1 /1 00.000 = 0.00001 

ffoate-Borr NOT NULL = 33.334/1 00.000 = 0.33 

03: ffName = #x = 20/1 00.000 = 0.0002 

04: ff oate-Ret < #today = 5/16 .667 = 0.0003 

Q5: ff Pub-Date-Ret BETWEEN #date1 AND #datez = S88 later 

06: ff06 = 1 
Q7: ffsooK.ld-Writer = #X = see later 

ffwRITER.ld-Num = #X = see later 
Q8: ffs1 .1d-Borr = #x = see later 

ff s2.1d-Num = #X = see later 

ffs2.Publisher = #x = 50/50.000 = 0.001 

6.2.6. Assumptions 

U2 

X 

Throughout our inquiry we will consider each table separately. For each table and 
each query we determine the set of plausible non-clustered and clustered indexes, 
using I/O costs from chapter 4. 

Consider that an index page is 2Kb long and a record pointer is 8 bytes long. A 
page of indirection for an index defined on a non-key attribute, can hold up to 256 
RID pointers. Same as for data pages we define a fill rate of 70%. We consider that 
the root level of the index is always located in the buffer. 
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6.3. Table KEY-WORD 
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Throughout the analysis of the requirement collection, we could not identify any 
data operation using table KEY-WORD. That does not mean that table KEY-WORD 
is never referenced. Suppose, that there exists a hide transaction, which lists all the 
book for a given keyword. Then it would be beneficiary to have a composite index 
defined upon attribute Key-Ward and Id-Book. However, this index is not at all 
beneficiary for a transaction that lists all the keywords of a given book. In this 
case a composite index on Id-Book and Key-Ward would be beneficiary. 
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6.4. Table BORROWER 

Table BORROWER is accessed by data operations, Q 1, Q3 and Q8. Note that query 
Q8 is a Join query and implies also table BOOK. 

6.4.1 . Query Q3: I ndex on Name? 

Let us calculate the fanout for the index on attribute Name. 

fo = l
2.000 * 0.7

J = 32 
35 + 8 

Knowing that on an average there are 20 persons with the same name, we deduce 
that there are 5.000 distinct values for attribute Name. Now let us calculate the depth 
of the tree. 

For a non-clustered index: 
For a clustered index: 

d = flog32 5.000l = 3 

d = flog32 1.000l = 2 

Let us determine the fil ter factor of predicate Name = #y. We know that the query 
retrieves daily 5.000 records, thus the daily filter factor is equal to 0,05. Using 
relation 4.6., we estimate that the 5.000 records are located within : 

K = 1 (1 - (1 - 0.05) 10 ) * 1.000 l = 401 

Non-Clustered Index I/O Costs. 

As attribute Name is a non-key attribute, we use relation 4.23.a. to determine the 
I/O costs incurred by a search throughout a non-clustered B-Tree. Knowing the 
daily activation, we deduce the average number of I/Os, the query processes per 
day. 

COSTs-Tree = f 2 + ( 5���
0

) l + l 3: J  + 401 = 423 1/0s per activation 

<==> an average of 423*0 ,5 "" 2 1 2  1/0s per day 

Clustered Index I/O Costs. 

Similarly, using relation 4.23.b., the costs incurred, using a clustered B-Tree are 
equal to: 

COST 8_ Tree = 2 + l 
5·�io j = 502 1/0s per activation 

<==> an average of 502*0,5 "" 251 1/0s per day 

Brute Force Table Scan I/O Costs. 
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Estimating costs for the brute force table scan, using relation 4.8 .. We access half 
of the pages to answer the query. 

COST Brute Force = 1.oio = 500 1/0s 1/0s per activation 

<==> an average of 500*0 ,5 "" 250 1/0s per day 
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It is obvious, that an index on attribute Name speeds up access performances for 
query Q3. We also see that the non-clustered index gives better performances than a 
clustered index or a brute force scan. Nevertheless, as the table is involved in other 
queries, we cannot decide, at this point, if a primary or secondary index is best for the 
overall performance. 

6.4.2. Query Q1 : I ndex on ld-Num? 

Let us calculate the fanout for the index on attribute Name. 

fo = l 2.000 * o. 7 J = 1 00 
6 + 8  

We know that attribute Id-Num is a key attribute and that query Q I  is a point 
query, hence we can use a simplified version of the I/O cost determination. 

For a non-clustered index: 
For a clustered index: 

Non-Clustered Index I/O Costs. 

d = 1109100 1 00.0007 = 3 
d = jlo91 00 1.0007 = 2 

As attribute ld-Num is a key attribute, we use relation 4.22.a., to determine the I/O 
costs incurred by a search throughout a non-clustered index. Knowing the daily 
activation, we deduce the average number of l/Os the query processes per day. 

COST 8_ Tree = 3 1/Os per activation 

� an average of 3*5 = 1 5  1/Os per day 

Clustered Index I/O Costs. 

Similarly, using relation 4.22.b., the costs incurred using a clustered B-Tree are 
equal to : 

COST 8_ Tree = 2 1/Os per activation 

� an average of 2*5 = 1 0  1/Os per day 

Brute Force Table Scan I/O Costs. 

COST BruteForce = 1.000 = 500 1/Os 1/Os per activation 
2 

� an average of 500*5 = 2.500 1/Os per day 

Comparing the various costs for query Q 1, we see that an index on attribute ld­

Num highly improves I/O costs. Hence, we retain attribute ld-Num as a plausible 
candidate for indexation. 

04.09.1996 Database Performance Tuning 142/162 



6.4.3. Query Q8 : I ndex on ld�Num? 

Recall that query Q8 is a Join query. It joins table BOOK and BORROWER., on 
attribute ld-Num. Hence ld-Num is a plausible index choice for our configuration. 
However, we have to foreseen the evaluation plan of the optimizer to determine, 
whether ld-Num is a good index choice or not. Assume that the optimizer uses the 
Nested Loop Join technique to join both table. It is clear that there are other 
techniques to join a table, we therefore reference the reader to section 2. 1.8 .. 

The number of records in BOOK is smaller than the number of records in 
BORROWER. We can assume that the optimizer uses BOOK as being the outer 
table and BORROWER the inner table. Consider that predicate B2. Publ isher = #x is 
not present. In this case, BORROWER is accessed 50.000 times throughout 
attribute Id-Num, hence a cost of 3 * 50.000 = 1 5 0.000 I/Os using a non-clustered 
index and a cost of 1 00.000 I/Os using a clustered index. Now, consider that 
predicate B2. Publisher = #x exists. Hence, the optimizer first accesses the BOOK 

throughout attribute Publisher, and reduces the number of records to lookup in 
table BORROWER to 50.  

Thus the costs of accessing table BORROWER are: 

Non-Clustered Index I/O Costs. 
COST B-Tree = 50 * 3 = 1 50 I/Os per activation 

<:=? an average of 1 50*2 = 300 I/Os per day 

Clustered Index I/O Costs. 
COST B-Tree = 50 * 2 = 1 00 I/Os per activation 

<:=? an average of 1 00*2 = 200 I/Os per day 

Brute Force Table Scan I/O Costs. 

COST Brute Force = 50 * ( 1.oio) = 25.00 I/Os I/Os per activation 

<:=? an average of 25.000*2 = 50.000 I/Os per day 

Note, that there is a high variation in performance between an index access and a 
brute force table scan. Thus it is recommended to define an index upon attribute ld­

Num.  

6.4.4. C lustered or Non-Clustered I ndexes ? 

For simplicity, we note, C id-Num, the clustered index on l d-Num, and, CName, the 
clustered index on Name. Similarly, we note, 1 1d-Num, the non-clustered index on Id­
Num, and, IName, the non-clustered index on Name. In our tabulation we represent the 
brute force table scan by the symbol, p. 
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04.09.1 996 

C1d-Num CName l 1d-Num IName p 

Q1 10  15  2 .500 

Q3 251 2 1 2  250 

Q8 200 300 50.000 

Using the heuristics described in section 5.2.2., we can say that C id-Num dominates 
CName• Thus we define a clustered index on ld-Num. As we define a clustered index on 
ld-Num, we remove index 1 1d-Num from the set of non-clustered indexes. Leaving index 
IName as the only non-clustered index. 

To resume index solution on table BORROWER, we define a clustered B-Tree 
index on attribute ld-Num and a non-clustered B-Tree index on attribute Name. 
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6 .5. Table WRITER 

We use a similar reasoning as the one for table BORROWER. Table WRITER is 
referenced by query Q6 and Q7. Query Q6 involves attribute Nation and Name, to 
create an ordered list of all the writers by nationality and name. However, query Q6 
does not include any predicate. At a first glance, we would think of a clustered index 
on Nation and Name, to be beneficiary, as it orders the table physically in the 
requested sequence. 

6.5. 1 . Query QG : I ndex or not? 

As already mentioned, we are likely to go for a cluster, as the query involves an 
OROER BY clause (see section 3.2.3.). However, the query does not include a 
restricting predicate (no WHERE clause), therefore it qualifies all the records within 
the table. During the query evaluation the optimizer might encounter two situations. 
First, the table is not ordered by nationality and/or name, then the system accesses all 
pages an performs an internai sort, which is CPU consuming. Second, the table is 
ordered by nationality and name, in this case there is no need to perform a sort, thus 
the only cost encountered by the system is the sequential access cost of 926 pages. 
Note that in both situations we access all pages. 

But, as the query is executed only once a month, it is not critical to performance. 
Moreover, the CPU time needed to perform the sort is relatively low compared to the 
costs encountered by inserting and/or deleting records in the table. On the other hand, 
there are only a few inserts and/or deletes upon table WRITER. 

Let us go further in our reasoning and think of a new possible query. Consider that 
we add a predicate to the query, restricting the target list to a set of two g1ven 
nationalities. 

Q6a: SELECT Name, Nation 
FROM WRITER 
WH ERE Nation = #x OR Nation = #y 
OROER BY Nation,  Name 

Consider that there are 20 nationalities and that the writers are uniformly 
distributed among them. In this case, predicate Nation = #y qualified 16.667 /20 = 834 
records, thus a filter factor of 0,05. Moreover, consider that the query is initiated 
once a day. 
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1. Putting a clustered index on non-key attribute Nation speeds up retrieval. What 
might be surprising, is that accessing the table throughout a non-clustered 
index is more I/O consuming than using the brute table force scan. 

Non-Clustered index: 

COST B-Tree = 2 * ff O + �!: l + l 3� j + 559) = 1.1 26 1/0s per activation 

<=> an average of 1 . 1 1 26 1/0s per day 
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Clustered index: 

COST 8_ Tree = 2 * (f 2 + 8/8
4

] = 98 1/0s per activation 

<=> an average of 98 1/0s per day 

Brute Force Table Scan : 

COST BruteForce = 2 * ( 9�
6) = 926 1/0s 

<=> an average of 926 1/0s per day 

2. Putting a non-clustered index on composite key attribute Nation, Name, is highly 
beneficiary as the index answers the query. This is somehow a similar situation 
then the clustered index on attribute Nation. Except that, we reproduce the 
records at index leaf level. We gain in performance, because all the retrieved 
records are already in sorted order. However, this situation is space consuming 
as we reproduce exactly the data already held in the table. 

6.5.2. Query Q7: I ndex on ld-Num? 

Again, we encounter the situation where a query references two tables. Query Q7 
joins tables BOOK and WRITER on attribute ld-Num. 

Same as for query Q8, we consider that the optimizer uses the Nester Loop Join to 
join the tables. As WRITER holds the fewest records, the optimizer might consider 
this table as the outer table. Bence, BOOK is the inner table. 

If we consider this there is no need to put an index on attribute ld-Num, as all its 
records are accessed. 

Note however, that defining an index on ld-Num allows the system to check 
quickly for duplicate keys, while records are added. Therefore, it might be 
beneficiary to define an index on attribute ld-Num. 
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6.6. Table BOOK 

Observe that table BOOK is used by six data access operations, Q2, Q4, Q5, Q7 
and Q8, as well as by two data update operations, U l  and U2. Throughout the 
preceding sections, we have already seen some aspects of the queries Q7 and Q8. 

6.6.1 . Query Q2: I ndex on ld-Num and/or Date-Borr? 

In query Q2, we can identify two predicates, ld-Num = #x, and, Date-Barr NOT 
NULL. 

Using the optimizer principles from section 5. 1. 2. and the fact that the optimizer is 
likely to use the predicate with the best fil ter factor jirst during query evaluation 
(see section . 2. 1. 5.) 

Hence, we define an index on attribute ld-Num and not on Date-Barr. As the filter 
factor of predicate ld-Num = #x is better than the filter factor of predicate Date-Barr 
NOT N ULL. 

We also see that operation U l  and U2 are executed quite often. Because they 
update the values of attribute Date-Barr, this might generate a lot of dynamic 
reorganization within the index. Therefore, it is not beneficiary to define an index on 
attribute Date-Barr. 

Using the same reasoning as for the other tables we determine the following I/0 
costs for the index on key attribute ld-Num. 

Non-Clustered: 
COST 8_ Tree = 3 1/0s per activation 

<=> an average of 20*3 = 60 1/0s per day 

Clustered index: 
COST 8_ Tree = 2 1/0s per activation 

<=> an average of 20*2 = 40 1/0s per day 

Brute Force Table Scan: 
5.000 COST 8ruteForce = -2- = 2.500 1/0s 

<=> an average of 20*2.500 = 50.000 1/0s per day 

6.6.2. Query Q4: I ndex on Date-Ret? 

It is not a good solution to define an index on attribute Date-Ret, as it is used only 
twice a day, to retrieve the books that are not returned within time. Whereas, it is 
updated 120 times a day, making it volati le. 

As we already mentioned in the preceding section it, is not beneficiary to define 
an index upon attribute, whose values are often updated. Hence, we eliminate the 
index from the set of plausible indexes. 
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6.6.3. Query QS: Index on Pub-Date. 

For query Q5, we have not been able to a fix filter factor, since the range changes 
dynamically at query activation time. Let us see how we can use the filter factor 
growth and changes to determine index elimination. 

The following sampling outlines the I/O access costs for a non-clustered index and 
a brute force table scan. 

ff k K Brut Force 8-Tree Pessimistic B-Tree Optimistic 
0 0 0 0 2 1 

0.01 00 500 481 2500 506 487 

0.0200 1 000 921 2500 1 01 1 931 

0.0300 1 500 1 321 2500 1 5 16  1 336 

0.0400 2000 1 686 2500 2020 1 706 

0.0500 2500 201 7 2500 2525 2042 

0.0600 3000 231 9 2500 3030 2349 

0.0700 3500 2593 2500 3535 2627 

0.0800 4000 2841 2500 4040 2881 

0.0900 4500 3066 2500 4544 31 1 0  

0.1 000 5000 3270 2500 5049 331 9  

Using the graphical representation of the outlined costs, we may say, that an index 
on Pub-Date is beneficiary as long as the query retrieves less than 0.05*50.000 = 
2.500 records. Similarly we may say, that the index is not at all beneficiary, when 
more than 0.065*50.000 = 3.250 records are qualified. For the quantity of qualified 
records which lies in between, we cannot decide on the advantages or disadvantages 
of an index over a brute force table scan evaluation. 

Index lndecision Problem 
Access Costs 
6000 

4800 

3600 

2400 

1 200 

0 

8-Tree Pesimistic 

8-Tree Optimistic 

Brute Force 

Filter Factor (*100=%) 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0  

Since the index values are not updated and since there are a small number of 
inserts and/or deletes upon BOOK, we might express that it is always beneficiary to 
define an index on Pub-Date, as long as the filter factor does not exceed 0.05 .  
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Consider that on an average, the query retrieves 2.500 records uniformly 
distributed among 30 years. We determine the succeeding 1/0 costs for query Q5 
using non-clustered, clustered indexes or a brute force table scan to retrieve the target 
records. 

Non-Clustered: 

COST B-Tree = r 2 + 
3
���0 l + l 130� J + 2.44 7 = 2462 1/0s per activation 

<=> an average of 0 .5*2.46 = 1 .231 1/0s per day 

Clustered index : 

COST B-Tree = 2 + l 3·�io J = 327 1/0s per activation 

<=> an average of 0 .5*327 "" 1 64 1/0s per day 

Brute Force Table Scan: 
5.000 COSTsruteForce = -2- = 2.500 1/0s 

<=> an average of 0. 5*2.500 = 1 .250 1/0s per day 

It is obvious that we will put an index to attribute ld-Writer, as the index yields 
much better performance consideration than the brute force table scan. 

6.6.4. Query Q7 : Index on ld-Num? 

Analyzing query Q7 for table WRITER, we considered that WRITER is the outer 
table and BOOK is the inner table of the Nested Loop Join. Therefore, we access table 
BOOK using attribute ld-Num, at least 16.667 times. Each access qualifies one and 
only one record, as ld-Num is a key attribute. 

Non-Clustered: 
COST B-Tree = 1 6.667 * 2 = 33.334 1/0s per activation 

<=> an average of 0 .2*33.334 "" 6.667 1/0s per day 

Clustered index: 
COST B-Tree = 1 6.667 * 2 = 33 . .  334 1/0s per activation 

<=> an average of 6.667 1/0s per day 

Brute Force Table Scan: 

COST BruteForce = 1 6.667 * ( 5-�00
) = 41.666.500 1/0s 

<=> an average of 0 ,2*41 .666.500 = 8.333.500 1/0s per day 

Comparing the cost, it is obvious to see that an index 1mproves access 
performances. 

6.6.5. Query Q8 : Index on ld-Borr or Publisher? 
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As already considered for table BORROWER, we consider that the optimizer 
performs a Nested Loop Join. It uses BOOK as the outer table and BORROWER as the 
inner table. Further, we considered that the optimizer uses first attribute Publisher to 
qualify a restricted set of records, since it has a good filter factor. Defining an index 
on attribute Publisher is beneficiary for record lookup. 

N on-Clustered: 

COST 8 Tree = f 2 + 50 l + l-1 J + 248 = 248 1/Os per activation - 256 27 

� an average of 2*248 = 496 1/Os per day 

Clustered index: 

COST B-Tree = 2 + l �� J = 7 1/Os per activation 

� an average of 2*7 = 1 4  1/Os per day 

Brute Force Table Scan: 
5.000 COST BruteForce = -2- = 2.500 1/Os 

� an average of 2*5.000 = 1 0.000 1/Os per day 

Comparing the 1/0 costs, we deduce that it is beneficiary to define an index upon 
attribute Publisher. 

As we use BOOK, as the outer table, and as we use Publisher to restrict the set of 
records to qualify records in BORROWER, we do not need to define an index on 
attribute ld-Borr. 

6.6.6. C lustered of Non-Clustered I ndexes ? 

As only one single clustered index can exist for one table, we must still determine 
which of the plausible indexes to cluster. According to what we have seen throughout 
the preceding lines, we are able to define the following set of plausible indexes. 

04.09. 1 996 

{ ld-Num, Pub-Date, Publisher} 

Let us represent the clustered and non-clustered indexes as follows: 

Cid-Num the clustered index on ld-Num 
CPub-date the clustered index on Pub-Date 
CPublisher the clustered index on Publisher 
l id-Num the non-clustered index on ld-Num 
IPub-date the non-clustered index on Pub-Date 
IPublisher the non-clustered index on Publisher 
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In our tabulation we represent the brute force table scan by the symbol, p. 

C1d-Num CPub-date CPublisher l 1d-Num I Pub-date I Publisher p 

Q2 40 60 2.500 
Q5 1 64 1 231  1 250 
Q7 6.667 6.667 496 8 .33.500 
Q8 1 4  1 .250 

Using the heuristics described in section 5.2.2., we can say that CPublisher dominates 
CPub-date, and C id-Num, therefore we define a clustered index on Publ isher. Thus removing 
I Publisher from the set of non-clustered indexes. All other indexes are better in access 
than brute force table scan, hence we define indexes on all attributes referenced in the 
set of non-clustered indexes. 
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6 .  7 .  Index Solution 

Let us abstract, the above lines into a synthesis of the indexes to define, to 
accomplish an overall good access performance. 

For table BORROWER, we retained the following indexes: 

. a clustered index on attribute Name, and 

. a non-clustered index on attribute ld-Num. 

For table BOOK, we registered the following indexes: 

. a clustered index on attribute Publisher, 

. a non-clustered index on attribute ld-Num, and 

. a non-clustered index on attribute Pub-Date. 

For table WRITER, we registered the following indexes: 

. a clustered index on attribute Nation. 

For table KEY-WORD, we retained no index at all. 

Note, that due to our restricted set of queries, the solution excludes all plausible 
indexes on foreign key attributes, as there is no query which makes, per se, use of it. 
However, it is a good reasoning to define indexes on foreign key attributes, as 
normally there are queries using the foreign key attributes to retrieve data. 

Further, our solution excludes nearly all plausible indexes on key attributes. In 
real world this is generally not the case, as there are various possibilities of inserts 
and/or deletes upon the database. Defining an index on a key attribute, enables quick 
verification of duplicates. 
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Chapter 7 :  Annexes 
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7. 1 .  Index lndecision Examples 

7 .1 . 1 .  Example 1 :  Basic Data 

7. 1 . 1 . 1 . Input Parameters 
Nr 1 0000 
As 20 
fr 0.70 
Np 714 
d 3 

Rs 

Ps 
Nrp 
fo 
N rid 

7. 1 . 1 .2. Cost Estimations 
ff s k K 
0 1 .00 0 0 
0.0 1 00 0.99 1 00 94 
0.0200 0.98 200 1 76 
0.03 0.97 300 248 
0.0400 0.96 400 311 

0.0500 0.95 500 366 

0.06 0.94 600 4 14  
0.0700 0.93 700 456 
0.0800 0.92 800 492 
0.09 0.91 900 524 
0.1  0.90 1 000 551 

1 00 
2000 
14  
70 
254 

Brute Force 
0 

357 
357 
357 
357 

357 

357 
357 
357 
357 
357 

7.1 . 1 .3. Graphical Representation 

B-Tree Pessimistic 
2 

1 04 
206 
308 
410 

512 

6 1 3  
7 1 5  
8 1 7  
9 1 9  

1 021  

B-Tree Optimistic 
2 

98 
1 82 
256 
321 

378 

427 
471 
509 
542 
572 

Index lndecision Problem 
Access Costs 

B-Tree Pesimistic 

B-Tree Optimistic 

Brute Force 

Fi lter Factor (*1 00=%) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0  
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7 . 1 .2. Example 2 :  Varying pages size 

7.1 .2. 1 .  Input Parameters 
a) Nr 1 0000 Rs 1 00 

As 20 Ps 4000 
fr 0.70 N rp 1 4  

N p  7 14  fo 70 

d 3 N rid 254 

b) Nr 1 0000 Rs 1 00 

As 20 Ps 1 000 
fr 0.70 N rp 14  

Np 714 fo 70 

d 3 N rid 254 

7.1 .2.2. Cost Estimations 

a) 
ff s k K Brute B-Tree B-Tree Optimistic 

Force Pessimistic 
0.00 1 .00 0 0 0 2 2 

0.01 0.99 1 00 88 1 79 1 03 90 

0.02 0.98 200 154 179 203 158 

0.03 0.97 300 205 1 79 304 209 

0.04 0.96 400 243 1 79 405 248 

0.05 0.95 500 272 1 79 506 278 

0.06 0.94 600 294 1 79 606 300 

0.07 0.93 700 31 0 1 79 707 3 17  

0.08 0.92 800 323 1 79 808 330 

0.09 0.91 900 332 1 79 909 340 

0. 1 0  0.90 1 000 338 1 79 1 009 348 

b) 
ff s k K Brute B-Tree B-Tree Optimistic 

Force Pessimistic 
0.00 1 .00 0 0 0 4 4 

0.01 0.99 1 00 97 714 1 06 1 03 

0.02 0.98 200 1 88 7 14  207 1 96 

0.03 0.97 300 274 7 14  309 284 

0.04 0.96 400 355 714 41 1 366 

0.05 0.95 500 431 714 51 3 444 

0.06 0.94 600 502 714 615 517 

0.07 0.93 700 569 714 716 585 

0.08 0.92 800 632 7 14  8 18  650 

0.09 0.91 900 690 714 920 714 

0 . 10 0.90 1 000 745 714 1 022 767 
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7.1 .2.3. Graphical Representation 

a) 

Index lndecision Problem 
Access Costs 

1 01 8  

8 1 5  

6 1 1  

407 

204 

0 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

b) 
Index lndecision Problem 

Access Costs 
1 222 

1 01 8  

8 1 5  

61 1 

407 

204 

0 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 
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B-Tree Pesimistic 

B-Tree Optimistic 

Brute Force 

Fi lter Factor (*1 00=%) 

0.09 0. 1 0  

B-Tree Pesimistic 

B-Tree Optimistic 
Brute Force 

Filter Factor (*1 00=%) 
0.09 0. 1 0  
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7.1 .3. Example 3 :  Varying Fi l l  Rate 

7.1.3. 1 .  Input Parameters 
a) Nr 1 0000 Rs 1 00 

As 20 Ps 2000 

fr 0.50 Nrp 1 4  

Np 714  fo 70 

d 3 Nrid 254 

b) Nr 1 0000 Rs 1 00 

As 20 Ps 1 000 

fr 0.95 Nrp 1 4  

Np  7 14  fo 70 

d 3 Nrid 254 

7.1.3.2. Cost Estimations 

a) 

ff s k K Brute B-Tree B-Tree Optimistic 
Force Pessimistic 

0.00 1 .00 0 0 0 3 3 

0.01 0.99 1 00 96 500 1 04 1 00 

0.02 0.98 200 1 83 500 206 1 89 

0.03 0.97 300 263 500 307 270 

0.04 0.96 400 335 500 409 344 

0.05 0.95 500 401 500 5 10  41 1 

0.06 0.94 600 461 500 61 1 473 

0.07 0.93 700 5 16  500 713 529 

0.08 0.92 800 566 500 81 4 580 

0.09 0.91 900 61 1 500 91 6 626 

0. 1 0  0.90 1 000 651 500 10 17  668 

b) 

ff s k K Brute B-Tree B-Tree Optimistic 
Force Pessimistic 

0.00 1 .00 0 0 0 2 2 

0.01 0 .99 1 00 91 263 1 03 95 

0.02 0.98 200 1 68 263 204 1 72 

0.03 0.97 300 231 263 305 236 

0.04 0.96 400 284 263 406 290 

0.05 0.95 500 328 263 507 334 

0.06 0.94 600 364 263 608 372 

0.07 0.93 700 394 263 709 402 

0.08 0.92 800 41 8 263 809 428 

0.09 0.91 900 439 263 91 0 449 

0. 1 0  0.90 1 000 455 263 10 1 1 467 
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7.1.3.3. Graphical Representation 

a) 

Index lndecision Problem 
Access Costs 
1 01 8  

8 1 5  

61 1 

407 

204 

B-Tree Pesimistic 

B-Tree Optimistic 

Brute Force 

Filter Factor (*100=%) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0  

b) 
Index lndecision Problem 

Access Costs 
1 01 8  B-Tree Pesimistic 

8 1 5  

61 1 

B-Tree Optimistic 
407 

Brute Force 
204 

Fi lter Factor (*1 00=%) 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0  
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