
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER EN SCIENCES INFORMATIQUES

Database performance tuning or the quest for indexes

Ferber, Guy

Award date:
1996

Awarding institution:
Universite de Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/fr/studentthesis/database-performance-tuning-or-the-quest-for-indexes(b0611bcd-45fc-4cc3-825e-53a9168dcb5b).html

Database Performance Tuning.

or

The Quest for Indexes.

Written by: Guy FERBER

Directed by: Jean-Luc HAINAUT

Year: 1996

Database Performance Tuning

IMITATION

A DARK 11nfatho111ed tide
Of inter111inable pride -
A mystery, and a drea111,
Should Ill)' early life seem;
I say that dream was fraught
With a wild and waking thought
Of beings that have been,
Which my spirit hath no/ seen,
Had Ilet them pass 111e by,
With a dreaming eye !
Let none of earth inherit
Thal vision of 111y spirit;
Those thoughts I would con/roi,
As a spe/1 upon my soul:
For that bright hope at last
And the light ti111e have past,
And 111y worldly rest hath gone
With a sigh as if passed on:
Icare no/ though if perish
With a thought I then did cherish.

Edgar Allan Poe

Acknowledgment

�.
'Y

t,,.
':, "

b ./

At this stage, I would like to express rny gratitude to all the
people who were contributing actively or passively to this
rnaster thesis.

l'rn thinking in particular of Mr. Jean-Luc Hainaut and his
tearn, who have been directing and supporting me during the
whole process. I also appreciated the warrn welcorne and
assistance of Mr. Jean-Marc Zeippens, director of the training,
and his colleagues at OBLOG Software in Lisbon.

Thank you to rny fiancé and Mr. Romain Nilles, who have
been helping me in editing and correcting of this piece of work.

Thank you to Jean-Noel Mathon, who has been a great partner.

Thank you also to rny parents, who have been giving me the
opportunity of studying at the 'Facultés Universitaires Notre­
Darne de la Paix'.

Database Performance Tuning

Abstract

This document is not meant to reinvent the wheel, it mostly is a compilation
of database tuning concepts, howevere with a persona! touch. It is based
upon considerations made by various writers, such as [Hainaut 1986],
[O'Neill 1994], [Date 1990], [Finkelstein 1988] and [Elmasri 1994]. It gives
an overview of possible parameters aimed to physically tune a database.
Moreover, it concerns with the problem of index selection.

Chapter 1, introduces the process of physical database tuning within the
process of data modeling. It reveals the pitfalls of selecting the appropriated
indexes.
Chapter 2, describes the data operations and deals with execution methods
for queries and joining tables. It abstracts the data access operations into a
small set of easy to understand and to analyze query types.
Chapter 3, deals with physical data allocation parameters and access
structures. It lists a set of parameters that might be helpful during database
allocation. It describes and evaluates various data access structures, such as
B-Trees, Clusters and Hash indexes.
Chapter 4, tries to consolidate chapter 2 and chapter 3 into a small set of I/0
cost relations. It lists a set of relation that might be used to determine rapidly
I/0 costs for a given query type and access structure.
Chapter 5, is based upon a study made by [Finkelstein 1988] to implement a
physical design tool for relational database. It describes a methodology for
physical database tuning and lists some tuning guidelines and heuristics
used to reduce query execution time.
Chapter 6, gives a practical overview off various considerations that might
arise during the quest for the optimal index solution. However, we will not
pretend the case study to be exhaustive, as we start with a limited set of data
entities, requirements and queries.

This document is aimed to introduce, help and guide the database designer
in its first attempts of database tuning.

Database Performance Tuning

Contents

CONTENTS .. 1

CHAPTER 1. INTRODUCTION ... 4

1.1. DATABASE DESIGN PROCESS ... 5
1.1.1. Requirements Collection and Analysis .. 7

1.1.2. Conceptual Database Design , ... 8
1.1.3. Choice of a Database Management System .. 10
1.1.4. Logical Data Modeling ... 11
1.1.5. Physical Data Modeling .. 13

1.2. PROBLEM OF PHYSICAL DATABASE DESIGN .. 14
1.3. OBJECTIVE OF THE PAPER .. 18

CHAPTER 2. DATA OPERATIONS ... 19

2.1. DATA ACCESS OPERATIONS ... 21
2.1.1. Data Access Processing .. 21
2.1.2. Basic Algorithms for Executing Que,y Operations ... 21
2.1.3. Search Methodsfor Selection .. 22
2.1.4. The Database Optimizer .. 24
2.1.5. Filter Factor, Selectivity and Database Statistics ... 25
2.1.6. Description of SQL Select Statement ... 28

2.1.6.1. Expressions, Predicates and select_filter .. 29
2.1. 7. Two Que,y Classes .. 30
2.1.8. Abstract the Queries into a Few Que,y "Types" ... 31
2.1.9. Methodsfor Joining Tables ... 32

2.1.9.1. Nested Loop Join .. 34
2.1.9.2. Merge Join .. 35
2.1.9.3. Hybrid Join ... 37
2.1.9.4. Example of cost estimation for Nested, Merge and Hybrid Join .. 38

2.1.9.4.1 Estimating 1/0 cost for Nested Join Method .. 38
2.1.9.4.2. Estimating 1/0 cost for Merge Join Method ... 39
2.1.9.4.3. Estimating 1/0 cost for Hybrid Join Method .. 40

2.1.9.5. Multiple Table Joins ... 41
2.1.9.6. Transforming Nested Queries to Joins .. 42

2.2. DATA UPDATE OPERATIONS .. 45
2.2.1. INSERT Operation .. 45
2.2.2. DELETE Operation ... 45
2.2.3. UPDATE Operation .. 46

2.3. DATA MACRO OPERATIONS ... , ... 47

CHAPTER 3. DATA ACCESS STRUCTURES .. 48

3 .1. PHYSICAL DATA ALLOCATION PARAMETERS .. 50
3. 1. 1. Page Oriented Transfer Mode ... 50
3. 1.2. Assumptions about 1/0s ... 50
3.1.3. Page Bu.ffering. .. 51
3.1.4. Tablespaces, Segments and Extents .. 54
3.1.5. Pctji·ee, Pctused and Fil! Rate ... 56

3.1. 6. Data Pages and Record Pointers .. 58
3.1. 7. Disk Contention ... 60

3.2. PHYSICAL DATA ACCESS STRUCTURES ... 62
3.2. 1. The Concept of Jndexing .. 62
3.2.2. B-Tree Index .. 63

3.2.2.1. B-tree Definition ... 65
3.2.2.2. Fanout and Depth of the B-Tree ... 66
3.2.2.3. Index Page Layout and Free Space ... 67
3.2.2.4. Duplicate Key Values in an Index .. 68
3.2.2.5. Dynamic Changes in the B-Tree ... 69

3.2.3. Clusters .. 73
3.2.3.1. Clustered and Non-Clustered Indexes (Primary / Secondary) .. 74
3.2.3.2. Evaluation of Clustered Indexes ... 76
3.2.3.3. Evaluation ofNon-Clustered Indexes ... 77

3.2.4. Hash index ... 79
3.2.4.1. Hash Function and Collisions ... 79
3.2.4.2. Fixed Number of Slots .. 82
3.2.4.3. Collision Chain Length and Page 0verflow ... 82
3.2.4.4. Evaluation ofHash Primary Index .. 85

CHAPTER 4. 1/0 COST ESTIMATIONS ... 88

4.1. BRUTE FORCE 1/0 COST .. 89
4.1. 1. Brute Force 1/0 Cast Estimation ... 90
4.1.2. Brute Force 1/0 Cast Estimation and Query Types ... 92

4.2. INDEX I/O COST ... 94
4.2. 1. B-Tree I/O Cast Estimations .. 94

4.2.1.1. Internàl Page 1/0 Cost Estimation .. 95
4.2.1.2. Leaf Page 1/0 Cost Estimation .. 96
4.2.1.3. Data Page 1/0 Cost Estimation ... 97
4.2.1.4. Global B-Tree 1/0 Cost Estimation ... 98

4.2.2. B-Tree 1/0 Cast Estimation and Query Types ... 99
4.2.3. Hash index 1/0 Cast estimations ... 102

CHAPTER 5. INDEX SELECTION .. 106

5.1. SETTING UP A COST MODEL ... l 09
5.1. 1. Workload Mode! .. 109
5.1.2. Atomic Costs .. 1 JO
5.1. 3. Update, Maintenance Costs ... 112
5.1.4. Plausible Attributes for Index Solution ... 114
5. 1. 5. Atomic Costs Computation .. 117

5.2. INDEX ELIMINATION .. 119
5.2.1. Index Indecision Problem .. 119
5.2.2. Index Elimination for Single Table Statements ... 121
5.2.3. Index Elimination for Mufti-Table Statements .. 125

5.3. SOLUTION GENERATION .. 128

CHAPTER 6: CASE STUDY .. 134

6.1. LOGICAL SCHEMA .. 135
6.2. REQUIREMENTS COLLECTION .. 136

6 .. 2. 1. Data Statistics ... 136
6.2.2. Queries .. 136
6. 2. 3. Query Statistics .. 137
6.2.4. First Set of Plausible Indexes .. 138
6.2.5. Fi/ter Factors .. 139
6.2.6. Assumptions ... 139

6.3. TABLE KEY-WORD ··· l40
6.4. TABLE BORROWER ... 141

6.4.1. Query Q3: Index on Name? ... 141
6.4.2. Query QI: Index on Jd-Num? .. 142

04.09.1996 Database Performance Tuning 2/162

6.4.3. Que,y Q8: Index on ld-Num? .. 143
6.4.4. Clustered or Non-Clustered Indexes ? .. 143

6.5. TABLE WRITER .. 145
6.5.1. Query Q6: Index or not? ... 145
6.5.2. Que,y Q7: Index on ld-Num? .. 146

6.6. TABLE BOOK .. 147
6.6.1. Query Q2: Index on ld-Num and/or Date-Borr? ... 147
6.6.2. Query Q4: Index on Date-Ret? ... 147
6.6.3. Que,y Q5: Index on Pub-Date 148
6.6.4. Query Q 7: Index on ld-Num? .. 149
6.6.5. Que,y Q8: Index on Id-Barr or Publisher? ... 149
6.6.6. Clustered of Non-Clustered Indexes ? ... 150

6.7. INDEX SOLUTION··········· .. l 52

CHAPTER 7: ANNEXES .. 153

7 .1. INDEX INDECISION EXAMPLES ... 154
7.1.1. Example 1: Basic Data .. 154

7 .1.1.1. Input Parameters ... 154
7 .1.1.2. Cost Estimations ... 154
7 .1.1.3. Graphical Representation .. 154

7.1.2. Example 2: Varying pages size .. 155
7.1.2.1. Input Parameters ... 155
7.1.2.2. Cost Estimations ... 155
7.1.2.3. Graphical Representation .. 156

7.1.3. Example 3: Vmying Fil/ Rate .. 157
7.1.3.1. Input Parameters ... 157
7.1.3.2. Cost Estimations ... 157
7.1.3.3. Graphical Representation .. 158

CHAPTER 8: REFERENCES .. 159

8.1. FIGURES ... 160
8.2. RELATIONS AND ALGORITHMS .. 161
8.3. BIBLIOGRAPHY .. 162

04.09.1996 Database Performance Tuning 3/162

Chapter 1. Introduction

The following section introduce concepts and basic considerations about physical
data modeling, also known as physical database design. The physical data design is
part of a more global design process, the database design. Anticipating an optimal
database design at the end of data modeling, the physical database design cannot be
considered as a design process on its own. It is constantly interacting with other
processes, getting input and giving feedback. Hence, it is important to keep in mind
that physical data modeling is not a process on its own. Nevertheless, throughout
this document we focus our efforts essentially on the physical data modeling process.

04.09.1996 Database Performance Tuning 4/162

1.1. Database Design Process

First, we introduce, with reference to [Elmasri 1994], the physical data modeling
and its place within the database design process. As mentioned before the physical
design is part of a more global design process, called the database design.

For small databases that internet with few users and little data, database design is
not always a complicated topic. However, when medium-size or large databases are
designed or redesigned for large organizations and information systems, database
design becomes quite complex. This is because the system must satisfy business
objectives, dynamic and often complex by nature. Careful design and testing phases
are imperative to ensure that all these requirements are satisfactorily met. Medium
and large databases are usually used by about 25 to hundreds of users, managing
millions of information entities. They also involve hundreds of queries and
application programs. Such databases are used in government, industry, banks and
large commercial organizations. Service industries such as banking, insurance, travel,
hotel and communication companies are totally reliant on successful around-the­
clock operation of their databases.

Throughout this document we will try to point-out some rules, guidelines and
heuristics that might be helpful, during the search for an optimal data modeling.

We can state the problem of database design as follows:

Design of a /ogical and physica/ structures of one or more databases to
accommodate the information needs, of the users, in an organization for a defined
set of applications [Elmasri 1994].

The objectives of database design are multiple. Satisfy the information
requirements of specified users and applications. Provide a natural and easy-to­
understand structuring of the information. Support processing requirements and
performance objectives such as response time, processing time, and storage
utilization. In real world conditions, these goals are hard to measure and accomplish.
That is why we will list some helpful guidelines.

The problem of optimal design is worsened by the informai and poorly defined
requirements.

The general database design process can be identified throughout six leading
phases:

1. Requirements collection and analysis,

2. Conceptual database design,

3. Choice of a Database Management System,

4. Logical database design,

5. Physical database design,

6. Database system implementation.

04.09.1996 Database Performance Tuning 5/162

The design process consists of two parallel activities, as illustrated in Figure 1. 1 ..
This first, involves the design of data and structures of the databases ; the second is
related to the design of database processing and software applications. These
activities are closely related. For example, we can identify data entities that have to
be stored in database throughout the analysis of database applications. The same
way, physical database design, which allows us to choose data storage structures and
data access paths, depends highly on applications that use or access the data. On the
other hand, the design of database applications is specified by referring to the
database schema, which are defined in the first activity. Clearly these two activities
strongly influence one each other.

The six phases mentioned above do not have to be processed in sequence. In many
cases you may have to modify the design from an earlier phase during a later phase.
These feedback loops among phases, and also within phases, are common during
database design. Figure 1. 1 does not show feedback loops, to avoid complicating the
diagram. Phase 1 is concerned with collecting information about the intended use of
the data, whereas phase 6 is dedicated to implement the database in a given
environment.

� Conceptual Database Design (phase 2). During this phase, we formalize user
requirements into a set of Local Conceptual Schemas. Each dedicated to a
subsystem of the organization. At this stage we consolidate them into a
Conceptual Schema, which is independent of any specific database management
system independent (DBMS). Using a high-level data models, such as Entity­
Relational (ER) models [Bodart 1989]. In addition, we identify all possible and
known database applications and/or transactions that will use the data, using a
formal language, above the specification of any particular DBMS.

� Logical Database Design (phase 4). Throughout this phase we convert the
conceptual schema, into an efficient logical data mode!, corresponding to the
DBMS chosen throughout phase 3. This phase can take place right after we
choose the data model, rather than waiting for the choice of a specific DBMS. For
example, we can start the phase after we decide to use a relational DBMS but have
not yet decided on a particular one. On market we can find various data models.
Based upon hierarchical, relational (DB2, ORACLE, INGRES, SYBASE, etc.), or
object oriented (02, VERSANT) technologies. All these models have specific
design characteristics that will drive our logical data model [Hainaut 1986].

� Physical Database Design (phase 5) . During this phase we change the logical
schema into computer code documents, namely the DMS-DDL global schemes
and the Host-Language code fragments. The first document defines data structures
managed by the DBMS, expressed in its Data Description Language (DDL), while
the second document implements, most often procedurally, the management of
structures, like integrity constraints, that have not been or could not be translated
into DDL. This unfortunate splitting is due to weakness in expressing the contents
of DBMS compliant logical schema and therefore of the conceptual schema. This
phase also includes the design of storage specifications for physical items, such as
memory allocation, record placement, and access paths. The design phase ends up
with an efficient physical schema in terms of response time, space usage and
processing time.

04.09.1996 Database Performance Tuning 6/162

Global Database Design
Correctness
Efficiency
Corporate StandartsRequirements

Phase 1 : Requlrements Collection
and Analyse

Phase 2: Conceptual Analyse
Nonna/ization
Clarity
Minimality
Modeling Standards

Phase 3: Cholce of DBMS

Phase 4: Loglcal Modellng
DBMS Logica/ Mode/
Time Efficiency
Space Efficiency

Phase 5: Physlcal Modellng
DBMS Tuning Features
Time Efficiency
Space Efficiency
Programming Standards
Host Programming Language

Phase 6: lmplementation

figure 1. 1 . : Database Design Phases1

Data Requlrements

Conceptual Si::hema Model
DBMS lridependent

Loglcal Schema Model
DBMS dependent

Physlcal Schema Model

DBMS dependent

DOL Statements

Processlng Requlrements

Transaction Mode!
DBMS lndependent

Frequencies
Perfonnances
Constraints

.Transaction lmplementatlon

In the following subsections we discuss briefly each of the six phases of the
database design process. We will take a deeper look at physical data modeling and its
problems in section 1.2 ..

1 .1 . 1 . Requirements Col lection and Analysis

Before we can start modeling an efficient database, we must know the
expectations of the users and the intended uses of the data in as much details as
possible. We call this process : Requirements Collection and Analysis. To specify the
requirements, we must first identify all the parts that internet with the information
system. This means identifying new and existing users as well as their applications.
The requirements of these users and applications are then collected and analyzed
[Hainaut 1986]. During requirements analysis, the user requirements are documented
in objective hierarchies and events, operations, data, and constraints glossaries.

Typically, the following activities are part of this phase :

1 [Elmasri 1994]

04.09.1996 Database Performance Tuning 7/162

� Jdentify the major application areas and user groups that will use the data. Key
individuals within each group are chosen as the main participants in the
subsequent steps of requirements collection and specification.

� Jnspect existing documentation (policy manuals, forms, reports, and organization
charts) to determine their influences on requirements collection and specification
process.

� Study the current environment and intended use of information. This involves
pointing out all transactions types and their frequencies, as well as the flow of
information within the system. The input and output data for transactions are
documented at this stage.

� Written responses ta a set of questions are collected from the potential data base
users. These questions involve the users priorities and the importance they place
on various applications and queries. Key individuals may be interviewed for
estimating the worth of information and setup transaction priorities.

The requirements collection constitutes a summary, for each table and for each
access module, of all used operations [Hainaut 1986]. For each operation the table
contains:

� the n umber of activations per time unit (day, hour, etc ...), noted as Nact/d
� the average number of records qualified for one activation, noted as Ns
� the number of records treated per time unit, noted as NR/d. It is derived from

the following formula: (Nact/d) * (Ns/a) = Ns/d .

All this summarized information is globalised for the whole application (or set of
applications), after what it can be quantified into a synthesis according to the rules
described in [Hainaut 1986]. The synthesis contains for each table the number of
accesses, updates, deletes and updates.

1 .1 .2. Conceptual Database Design

The second phase of database design process involves two parallel activities. The
first activity, conceptual schema design, examines the data requirements resulting
from phase 1 and produces a conceptual database schema. The second activity,
transaction design, examines the database applications analyzed in phase 1 and
produces high-level specifications for these transactions [Hainaut 1986].

The conceptual schema design results in a DBMS independent high level data
model which cannot be used directly to implement the database. The importance of
such a schema should not be underestimated, for the following reasons :

� The goal of conceptual schema design is a complete and correct understanding of
the database structure, meaning (semantics), interrelationships, and constraints.
This is best archived without relying on specific DBMS. Each DBMS typically
has its own particularities that should not be allowed to interfere with the
conceptual design.

� The conceptual schema is invaluable as a stable description of the database
contents.

04.09.1996 Database Performance Tuning 8/162

'¼ A good understanding of the conceptual schema is crucial for database users and
application designers. Use of high level data models, which are more expressive
and general than a given DBMS data model, is important and helpful.

'¼ The graphical description of the conceptual schema serves as an excellent vehicle
of communication among database users, designers, and analysts [Bodart 1989].

In this design phase it is important to use a high-level data model (e.g. Entity­
Relationship model [Bodart 1989] for example) which respects the following
characteristics :

R:,,- Expressiveness. The data model should be expressive enough to distinguish
different types of data, relationships, and constraints.

R:,,- Simplicity. The model should be simple enough for non-specialist users to
understand and use its concepts.

R:,,- Minimality. The model should have a small number of basic concepts that are
distinct and non-overlapping in meaning.

R:,,- Diagrammatic representation. The model should have a graphical notation
that is easy to understand.

R:,,- Formality. A conceptual schema expressed in the data model must represent a
formal and exact specification of the data. Hence, the model concepts must
be defined accurately and unambiguously.

The purpose of the transaction design is to design the characteristics of known
database transactions in a DBMS independent way. When a database system is
designed, the designers are aware of many known applications and/or transactions
that will run on the future database. An important part of database design is to
specify the functionality of these transactions as soon as possible in the design
process. This ensures that the database schema will include all the facts needed by
these transactions. Further, knowing the relative importance of various transactions
and the expected rates of activation play a crucial part in physical data modeling
(phase 5). As usual, only some of the transactions are known at design time, after the
database system is implemented, new transactions are continuously identified and
added. However, the most important transactions are often known in advance and
should be specified at early stages [Hainaut 1986].

One common technique for specifying transaction at a conceptual level is to
identify their input/output andfunctional behavior [Hainaut 1986]. By specifying the
input data, output data, and internai functional flow of control, designers can specify
a transaction in a conceptual and system-independent way. Transactions usually can
be grouped into three categories : retrieval, update and mixed transactions.

'¼ Retrieval transactions are commonly used to retrieve data for display on screen or
for production reports.

'¼ Update transactions are used to enter data or modify existing data in the database.
'¼ Mixed transactions are used for more complex applications that do some retrieval

and some update.

Both conceptual design activities should go in parallel, using feedback loops for
refinement, until a stable design of schema and transactions is reached.

04.09. 1996 Database Performance Tuning 9/162

1 .1 .3 . Choice of a Database Management System

The choice of a DBMS is governed by a various of factors. Sorne factors are
technical, others are economical, and still others are concerned with the organizations
policy. The technical factors are concerned with the suitability of DBMS for the task
at hand. Issues to consider here are the type of the DBMS (relational, network,
hierarchical, object-oriented, etc ...), the storage structures and access paths that are
supported by the DBMS, the user and programmer interfaces available, the types of
high-level query languages, and so on. The reader can find an overview of the
technical factors relevant to these data models in [Elmasri 1994]. Let us take a look
at the economical and organizational factors which lead the DBMS choice.

The following cost may be considered during DBMS acceptance:

� Software acquisition cost. This is the 'up-front' cost of buying a software,
including language options, different interfaces such as forms and screens,
recovery and backup options, special access methods, and documentation.

� Maintenance cost. This is the recurring cost of receiving standard maintenance
service from the vendor and for keeping the DBMS version up to date.

� Hardware purchase cost. New hardware may be needed, such as additional
memory, terminals, disk units, even up to a new environment.

� Database creation and conversion cost. This is the cost of either creating the
database system from scratch or converting an existing system to the new DBMS
software. In the latter case it is customary to operate the existing system in parallel
with the new system until all new applications are fully implemented and tested.
This cost is hard to project and often underestimated.

� Persona/ cost. Acquisition of DBMS software for the first time by an organization
is often accompanied by reorganization of data-processing. New positions of the
database administrator (DBA) and staff are created in most companies that adopt
DBMSs.

� Training cost. Because DBMSs are often complex systems, employees have to be
trained to use, deal and program with the DBMS.

The benefits of acquiring a DBMS are not so easy to measure and quantify. A
DBMS has several intangible advantages over traditional file systems, such as ease of
use, wider availability of data, and faster access to information. More tangible
benefits include reduced application development cost, reduced redundancy of data,
and better control and security. Based on a cost/benefit analysis, an organization has
to decide when to switch over to a DBMS. This move is generally driven by the
following factors :

� Data complexity. As data relationships grow and become more complex, the need
for a DBMS is felt more strongly.

� Sharing among applications. The greater the sharing among applications, the
more the redundancy among files is present. The more it becomes complex to
keep integrity and coherency among data. Hence, the greater the need for
Database Management System.

04.09.1996 Database Performance Tuning 10/162

� Dynamical/y evolving or growing data. If data changes constantly, it is easier to
cope with these changes using a DBMS, because we reduce redundancy and all
problems that go in hand with redundant data, like coherence and integrity.

� Frequency of ad hoc requests for data. File systems are not at all suitable for ad
hoc data retrieval.

� Data volume and need for control. The sheer volume of data and the need to
control goes for DBMS systems.

Finally, several economical and organizational factors also affect the choice of
one Database Management System over another:

� Structure of the data. If the data to be stored follows a hierarchical structure, a
hierarchical based technology is likely to be suitable. For data with many inter­
relationships, a network or relational system may be more appropriate. For
complex data structures or data types, like Binary Large Objects (BLOBs) or
multi-media objects, an object-oriented system may be suitable. ·

� Familiarity of the staff with the system. If programming staff within the
organization is familiar with a particular DBMS, it may be of benefit to reduce
training cost and learning time.

� Availability of vendor services. The existence of near at hand vendor service
facilities is desirable to assist in solving any problems with the system. Moving
from a non-DBMS to a DBMS driven environment is generally a major
undertaking and requires much vendor assistance at the start.

In some cases it may not be appropriate to use a DBMS; instead, it may be
preferable to develop in-house software for applications. This may be the case if
applications are very well defined and are all known in advance. In such a case, an
in-house custom-designed system may be appropriate to implement the known
application in the most efficient way. In most cases, however, new applications that
were not foreseen at design time corne up after system implementation. This is
precisely why DBMSs have become very popular: they facilitate the incorporation of
new applications without major changes to the existing system.

1 .1 .4. Log ical Data Model ing

The next phase of database design is to create a logical schema in the data model
of a selected DBMS.

During the logical modeling phase, the user' s data and constraints requirements
are represented as a logical data model. In most cases, a straightforward, well­
documented, and normalized entity-relationship model is enough to represent the
users requirements. In some situations, however, we must use extensions to the basic
entity-relationship model, specifically where complex structures and inter­
relationships must be modeled.

04.09.1996 Database Performance Tuning 11/162

Data and operations requirements are also converted into entity-life histories. An
entity-life history is a logical, execution independent model that represents the
interactions between entities and operations. Entity life histories are very useful for
ensuring that sufficient attention has been paid to the life cycle of each entity,
including data archiving and stripping (removing unnecessary data from the
database).

Finally, we map the conceptual schema into a logical one, which includes the
following properties. It is correct, optimal and independent of any existing system.
Correctness is achieved by mapping all semantics (including integrity constraints)
present in the conceptual schema into the logical one, no semantic is added nor
retrieved. In search of the logical data access optimum the schema should only hold
the data accesses which are mandatory for correct and optimal execution of the
required transactions. These data accesses have to be mapped to a data structure
which permits optimal data access. For more detail on logical database optimization
the reader should consult [Hainaut 1986] [Mathon 1994]. Throughout following lines
we only give an overview of a four-level design process.

� Schema simplification. This process transforms the conceptual schema into a
simpler, better suited schema for optimization reasoning. For instance, N-ary
relation types are transformed into binary ones, multivalued attributes are reduced
to single-valued ones, IS-A links are transformed into one-to-one relation types.

� DBMS independent optimization. This process uses transformations through
which the schema can be first optimized according to general rules that can apply
independent of the chosen DBMS. More generally, the schema can be restructured
according to design requirements concerning access time, distribution, data
volume, availability, etc Schema transformation such as vertical and horizontal
splitting or merging, denormalisation or structural redundancy are commonly used
to satisfy these requirements.

� DBMS translation. Transforms the schema into structures in accordance with the
target DBMS data model [Hainaut 1986]. For instance, for relational DB (or
standard files) Many-to-Many relation types are transformed into tables (record
types) while Many-to-One relation types are transformed into foreign key
(reference fields).

� DBMS dependent optimization. This process performs further optimization
transformations according to the specific rules of a particular DBMS.

For this pre-physical database management phase, most CASE tools, today,
provide extensive entity-relationship modeling capabilities, some with dictionaries to
document the models completely and consistently, with cross-references between the
various objects and diagrams. Only a few of the more advanced CASE tools provide
for specialization and generalization hierarchies. Sorne of the more advanced CASE
tools provide proper entity-life history models and these models are cross-checked to
the entity-relationship diagrams. We must be aware, that the more the CASE tools
support such features the more the frontier between conceptual design and logical
modeling becomes hazy, and the more de design process becomes a logical­
conceptual modeling process.

04.09.1996 Database Performance Tuning 12/162

1 . 1 .5. Physical Data Model ing

The logical design results in a schema of a l l mandatory accesses, as well as their
static and dynamic quantification. All this will serve as input to the physical database
design which ends up in a physical schema, labeled as correct, optimal and
executable on a real world system. Correctness implies that the DB structure and/or
the files structure expresses the semantic and the access mechanisms of the
mandatory access schema. The fact that the schema is to be optimal does not mean
that the data structures and the access paths have to end up in an optimum, but that
the schema should achieve an overall good performance for all users and
applications.

The physical design process can be branched into three points. The first branch is
dedicated to the production of the executable schema, the second one is aimed at
generating the user views, while the third is concerned with physical database tuning.

� DBMS-DDL and Host coding. Translates the DBMS compliant specifications
into the DBMS's Data Description Language (DDL). The rejected specifications
are translated into languages, systems and procedures that are out of DBMS
control (host language, user interface-manager and human procedures are some
examples).

� User Views. This branch determines a subset (views) of schemes that concerns
each application and end-user category. The views are translated into executable
code, according to the DBMS and programming standards and habits. The code
may be divided into two sections: the first one is made of DDL text which
translates some of the view structures, while the second one expresses, in host­
language code, structures excluded from the DDL texts.

� Database Physical Tuning. This branch defines the storage and/or access
structures and parameter settings in order to optimize the database with respect to
user requirements. These choices define the optimal physical schema, with respect
to the DBMS. In extention of the DDL schema, for instance, the physical schema
will include the specification of indexes, physical file assignment, disk contention,
device assignment, record type space mapping, page size, free space definition,
clusters, storage nodes, access modes, buffer size and management, etc

The data structure expressed and the access in the physical schema is equivalent to
the semantic in the logical and the conceptual schema.

04.09.1996 Database Performance Tuning 1 3/162

1 .2. Problem of Physical Database Design

During the past decades, DBMSs based on the relational model have moved from
the research laboratory to the business place. One major strength of relational
systems is its ease of use. Users internet with the systems in a natural way using non­
procedural languages that specify what data are required, but do not specify how to
perform the operations to retrieve data. Statements specify which tables should be
accessed as well as conditions restricting which combinations of data from those
tables are desired. They do not specify the access paths (e.g. indexes) to be used, to
retrieve data from the tables, or the sequence in which tables are to be accessed. This
is the job of the so called DBMS optimizer module. Hence relational statements can
be run independent of the set of existing access paths.

There has been controversy about the relational systems (R-DBMSs)
performances compared to other DBMSs. Especial in the transaction-oriented
environment. Critics of relational systems point out that their non-procedural way
prevents users from navigating through data the way they believe to be the most
efficient. Developers of R-DBMSs claim that their system is capable of making the
best decisions on how to execute the user requests based on statistical models of the
database and cost estimating formulas. The system carries out analysis on executing
cost alternatives. A software module, known as the optimizer, makes execution
decisions based on a statistical model of the database. It performs analysis of
alternative execution plans for each statement and choose the one that appears to
have the lowest cost. Optimizer efficiency, in choosing optimal execution plans, is
critical to system response time. Initial studies2 on the behavior of optimizers have
shown that the choices made by the optimizer are among the best possible for the set
of access paths.

The relational database system does not automatically determine an optimal set of
access paths. The access paths must be created by the database designer. Access path
selection is not trivial, since a database designer, more precisely the index designer,
must balance the advantages of access paths for data retrieval versus their
disadvantage in maintenance costs, incurred for database inserts, deletes, and updates
and space utilization. For example, indexing all table attributes is seldom a good
choice. Updates will be very expensive in that design, and moreover, the index will
probably require more total space than the table. A poor choice of physical designs
can result in poor system performance, far below what could be expected if a more
suited set of access paths was available. Hence a design tool and/or guidelines are
needed to help designers selecting the right access paths that support efficient system
performance for a set of applications and users.

Such a design tool would be useful for initial database design and for major
reconfigurations of a database. A design tool might be helpful when:

2 [Finkelstein 1988]

04.09.1996 Database Performance Tuning 14/162

lb- The costs of future database must be evaluated,
lb- the database is to be loaded,
lb- the workload on a database changes substantially,
lb- new tables are added,
lb- the database has been heavily updated, or
\h' DBMS performance has degraded.

In this document we do not pretend to give the solution for such a tool. We only
want the reader to get an overview of the major aspects related to physical database
tuning and how they interact with one another. All recent DBMSs and CASE tools
integrate features that help the database designer to model an efficient database.

Remember, that the major problem during physical design is the definition of an
optimal set of access paths (indexes) according to the user requirements.

Data in a table can be accessed by scanning the entire table (brute force table
scan). The execution of a given statement may be speeded up by using auxiliary
access paths, such as indexes. However, the existence of certain index, although
improving the performance of some statements, may reduce the performance of other
statements (such as updates), since the indexes might be modified when tables are. In
relational systems, some indexes, called clustered index, enforce the ordering of
records in the table they index. All other indexes are called n onclustered index. The
overall performance of the system depends on the set of all existing index, as well as
on the way the tables are stored.

Given a set of tables and a set of statements, together with their expected
frequencies of use and their filter factor or selectivity, the index-selection problem
involves selecting for each table.

� The physical ordering for records (clustered index), and
� a set of secondary access paths (nonclustered index),

To minimize the total processing cost, subject to a limit on total index space.

Defining the total processing cost as, the frequency weighted sum of the expected
costs for executing each statement. Including access, record update, and index
maintenance costs. A weighted index space cost might also be added in.

04.09.1996 Database Performance Tuning 15/162

Clustered indexes often provide excellent performance when they are on attributes
referenced in a given statement. This might indicate that the solution to the design
problem is to have a clustered index on every attribute. Such a solution is not
possible, since records can be ordered only one way. On the other hand, nonclustered
index can exist on all attributes and may help to process some statements. A set of
clustered and nonclustered index on tables in a database is called an index
c onfigurati o n. An index configuration3 is defined as, as set of indexes so that no table
has more than one clustered index and no attributes have at same time clustered and
nonclustered index. We will only be interested in index designs which are
configurations. Let us call index s oluti on the configuration proposed for a particular
index selection problem.

It might seem that finding solutions to the design problem consists of choosing
one attribute from each table as the ordering attribute, putting a clustered index on
that attribute, and putting nonclustered index on all other attributes. This however,
fails for three reasons.

� For each additional index, auxiliary maintenance cost is induced, every time
updates are made upon an indexed attribute (inserting or deleting records,
updating the value of the indexed attribute). Because of the maintenance cost, a
solution with indexes on every attribute of every table usually does not minimize
processing costs.

� Storage costs must also be considered even when there are no updates. According
to [Finkelstein 1988] index use 5 to 20 percent of space used by the table indexes,
so storage costs are not negligible.

� A global solution can not generally be obtained for each table independently. Any
index decision that is made for one table (e.g. which index is clustered) may affect
the best index choices for another table.

These considerations show that the design problem presented at the beginning of
this section has no simple solution. According to [Finkelstein 1988] even a restricted
version of the index-selection problem is in the class of NP-hard problems. Thus,
there appears to be no fast algorithrn that will find the optimal solution. However, we
must question whether the optimal solution is the right goal, since the problem
specifications and the problem the designer actually wants to solve are usually not
identical. Input specifications to the design process are often rude estimation.

Specifications may include:

� Statements, as input to the problem, they usually represent estimations of actual
load, that will be submitted to the system.

� Activation frequencies associated to the statements. They are commonly rude
estimations as well.

� Statistics (dynamic and static) based upon the data, as it exists at a given time, are
estimations that may not reflect future changes.

3 [Finkelstein 1988]

04.09. 1996 Database Performance Tuning 16/162

� Statistical models used by the optimizer to estimate I/O costs. However, it is only
correct for some given data distributions.

For these reasons, instead of striving for the optimal solution in the index design
problem. We would like to get a set of reasonable models, each of which has a
relatively low performance cost. From this set the designer can choose the one he
thinks best, based on considerations that may not have been completely modeled. By
an appropriate use of some heuristics and guidelines, combined with more exact
techniques, the database designer can find rapidly a set of reasonable solutions.

04.09.1996 Database Performance Tuning 17/162

1 .3. Objective of the paper

Remember that an index represents a data structure that allows to increase the
access performances to a set of given records. Therefore, proper index tuning is a
must for performances hungry applications and reasonable query response times.
Improper index definitions may lead to the following mishaps.

t:!:> Index that are maintained but never used.
t:!:> Tables that are entirely scanned in order to return a single record.
t:!:> Joins that take forever.
t:!:> Concurrency bottlenecks.

At the end of this paper the reader should be able to display and analyze an access
plan chosen by the database system for specific queries and specific access
structures. He should also understand what makes up a "good" or "bad" access
structure (index solution). As a result, he will have a much better understanding of
what "tuning" steps he can undertake to improve query execution and I/O costs:
where and which kind of index can be added to improve access performances. Later
on, we will give some guidelines in choosing, maintaining and using the right index
structures for reasonable data access. All hints apply directly to the relational systems
and can in most cases be applied to any commercial relational database system.

04.09. 1 996 Database Performance Tuning 1 8/ 1 62

Chapter 2. Data Operations

'
,..,;. "':,,"

�­
':,

b ,<"

. ' . .

, .-,...,- A
, -

In the chapter 1 we have seen that a major input to physical data modeling and
tuning is based on requirements collection and analysis. Let us go further and say
that physical database tuning used as input analysis and statistics on data requests,
the so called queries. When tuning a database, we should define what tables the
queries access. What are the query types, how many data do they qualify and how
often are they activated?

It seems obvious that the usefulness of a:n index depends on how the queries use
the index. For example, if there is an index on attribute A, but no query ever mentions
A, then the index entails overhead (for maintenance on inserts, deletes and space
usage) without yielding any benefit. This is obviously not correct. Less obvious
misleading sources can result from placing the wrong kind of indexes on wrong
attributes, however, with respect to the queries performed on those attributes. Placing
the right index on the right attributes is not an easy job, because an infinite number of
queries are possible and can be performed on a given database. Therefore, let us
abstract the transactions and the queries into of classes or types.

Data operations, generally expressed in the Data Manipulation Language (DML),
act upon data within the database. Relational DBMSs use Structured Query
Language (SQL) as DML. Using SQL we can execute two major kind of operations,
data requests (SELECT) and data updates (INSERT, UPDATE, DELETE). A third kind,
is possible, the macro operations, they combine queries and updates, and in most
cases are related to the notion of data integrity (protection against incidents,
concurrency regulation, etc ...).

Data operations are based on three major concepts.

� The database. Representing the data. It is a mapping of the conceptual, the logical
and the physical schema into real world. For relational DBMSs, databases are
composed of tables and access structures, like indexes.

� The data object (or table record). Is a description of logical table entities. For
example, it is possible that the object represents a record of a conventional file
system or a table record in a relational system. An object stands also for an
elementary unit of information asked by the user or retrieved by an application. Its
content and composition varies corresponding to the data operation. For example
the object corresponding to the data request "Select al! employees " is the record
type EMPLOYEE itself, whereas the object corresponding to the query "Select al!
employees and their departments " is composed of the record type EMPLOYEE and
DEPARTMENT.

04.09.1996 Database Performance Tuning 19/162

04.09.1996

� The attribute and its value. Attributes are proprieties given to an object, they
define the record type. They have associated values, which are elements of a data
within a data domain. It is possible to access the values of attributes throughout its
associated object. At any time 0, 1 or many values can be attached to one object.
The value is typically a sequence of symbols that can be assigned to application or
user variables. For example the record type EMPLOYEE having the following
attributes EMPID, EMPNAME, EMPADR, EMPDEP, etc A specific object can be
identified by the attribute values : EMPID = 1234, EMPNAME = ' Dupond Jean',

EMPADR =' 14 Place Wiertz, B-5000 Namur' , EMPDEP = 'COM'.

Database Performance Tuning 20/162

2.1. Data Access Operations

To understand the importance of the query classification for the physical database
tuning, we first have to understand the concepts and the basic algorithms that take
place when executing data access operations. We shall define two classes of query
operations, depending on the size of the data object they reference, more precisely
the number of records they qualify. After what we are able to abstract the queries into
significant query "types"4.

2.1 .1 . Data Access Processing

When a database system receives a query, i t goes through a set of query
compilation steps, before it begins execution. In a first phase, we have what we call
the syntax-cltecking. The system analyses the query and checks its syntax, then it
matches elements of the query syntax with views, tables, and attributes listed in the
database system catalog, and performs appropriate query modification. During this
process the system validates that the user has privileges and that the query does not
disobey any relevant integrity constraints. A second phase, called the query
optimization pltase takes care of examining existing statistics for the tables and
attributes. How many rows exist in the tables, how big are the records and how many
records can an I/O block hold. Relevant access structures (indexes) are located
within the database, and memory buffers are scanned for already existing data. After
what, a complex procedure, which we can think of as ''figuring out what to do ",
produces a procedural access plan, the executi on plan. The access plan is then
executed during a third step, the execution pltase, wherein the indexes and tables are
scanned to extract and/or derive the requested data object from the database.

2.1 .2. Basic Algorithms for Executing Query Operations

A relational DBMS with a high-level query language interface (like SQL and
Embedded-SQL) includes algorithms that translate the types of relational operations,
which can appear in a query execution strategy. These strategies include the basic
relational algebra operations (restriction, projection, product, union, intersection,
difference, join, di vide) [Date 1990] [Elmasri 1994] and in many cases combinations
of these operations. The database system must also have algorithms for processing
special operations such as aggregation and grouping fonctions. An algorithm may
apply only to a particular storage structure and/or access path; if so, it can only be
used in case where the tables involved in the operation include these specific storage
and/or access structures.

4Keeping in mind that there exists an infinite number of query types.

04.09. 1 996 Database Performance Tuning 2 1/ 162

There are many options for executing a SELECT statement. They depend on the
table access paths and may apply only to certain types of select predicates. The
database optimizer chooses the best execution plan during the query optimization
phase depending on database statistics and on the data structures. The next sub­
section will present some of the typical algorithms used by the database system to
implement a SELECT statements.

2.1 .3. Search Methods for Selection

Numerous search algorithms are possible for qualifying records within a table.
One of the simplest is known as brute force table scan, it scans all the records in the
table to search and retrieve records that satisfy a given predicate. An other one
involves the use of indexes, called the index scan. Literature lists the following
search methods (Ml through MS) to implement the data retrieval. Note that these are
examples, to illustrate some of the major search methods that can be used by any
commercial database system, to implement and execute queries.

M l . Linear search (or brute force). Scans all the data pages to qualify all records that
satisfy the select filter ; hence Np page5 accesses. In case, we have an equality
predicate on a unique key attribute, only half of the data pages are searched on
the average before finding the records, do Np/2 accesses [Baudoin-Meyer 1984].

M2. Binary search. Can only be used if there is a physical ordering constraint on the
data records. It is often used when the filter involves a comparison predicate.
Assuming that the physical data page addresses are available in the file header,
the binary search can be described by algorithm 2. 1.. A binary search usually
accesses log2N p pages, whether the record is found or not. Thus an improvement
over brute force search, where in best case (when the record is found) an average
of N p/2 pages are accessed and in worst case (when the record is not found) all
N p pages are accessed [Date 1990] [Baudoin-Meyer 1984].

left = 1 ; right = Np
middle = L(left+right)t2J

if k < key value of first no
record in middle page >-----�

yes

right = midle - 1 if k > key value of tirs no
record in middle page >--- - �

yes

left = midle + 1
1f exist record with ke

value = k in middle
page

yes

found

algorithm 2. 1. : Binary search on an (unique) ordering key

not found

5 Np is the number of disk pages required to store Nr records. Later one we see how to calculate
the number of pages required for the data file.

04.09.1996 Database Performance Tuning 22/162

M3. Using a primary index6 to retrieve a single record. If the select condition
involves an equality predicate on an attribute with a primary index then the
primary index structure is used to retrieve the record.

M4. Using a prima,y index to retrieve multiple records. If the comparison condition
is <, s;, > or ;::: on a key attribute with primary index7 then the index will be used
to find the records satisfying the condition .

MS. Using a secondary (B+ -tree) index. On an equality predicate, this search can be
used to retrieve a single record, if the indexing attribute has unique values (is a
key) or to retrieve multiple records, if the indexed attribute is not a key. In
addition, it can be used to retrieve records on conditions involving <, s;, > or ;:::.

Method Ml applies on all kind of tables, whereas all other methods depend on the
attribute access path involved in the select_filter. Methods M4 and MS can also be
used to retrieve records in a certain range. For example:

SELECT Name
FROM Employee
WH ERE Salary > 30000 AND Salary < 50000.

If the condition of a SELECT operation is a conjunctive condition; that is when it is
made up of several simple predicates connected with the logical operator AND, then
the DBMS can use one of the following additional methods to evaluate the operation:

M6. Conjunctive selection. If on of the predicates involves an indexed attribute, the
DBMS chooses first this predicate to access the table records using one of the
above described methods. After retrieving the qualified records the DBMS
checks the remaining predicates on those records.

M7. Conjunctive selection using a composite index. If many attributes are used by on
of the connected predicates and a composite composite index, or hash structure
exists on the concerned attributes, then the DBMS uses the index directly. For
example in case where the index was defined on the composite index (Id , Name)
of table .

M8. Conjunctive selection by intersection of record pointers. This method may be
used when secondary indexes are available on all (or some of) the attributes
involved in on of the connected predicates and when the indexes uses record
pointers rather than block pointers8 . Each index can be used to retrieve the record
pointers that satisfy the individual predicates, then the intersection of the sets of
qualified record pointers is used to retrieve the qualified records. Note that if
only part of the predicates have secondary indexes, each retrieved record 1s
further tested to determine whether it satisfies the remaining predicates .

6 A primary index is an index in which the record placement in the table is determined by the
index values. Examples of primary indexes are clustered B-tree, ISAM indexes [O'Neill- 1 994] and
hash index.

7 Excluding the hash index.
8 Note that, it is not necessary that the index uses record pointers it also work with page pointers.

However, the retrived pages still has to be scanned for the records satifying ail predicates, as the set of
qualifed pages includes ail pages that satisfy at least on of the predicates.

04.09. 1 996 Database Performance Tuning 23/1 62

Whenever a single predicate specifies the selection, we can only check whether an
access structure exists for the attribute involved in the predicate. If an access path
exists, one of the access path methods is used, otherwise the brute force table scan
method is used.

In all recent DBMSs, a module known as optimizer chooses the query execution
plan based on the access structures, to retrieve data in the most efficient way.
Therefore, during physica l tuning, we need the notion of predicate filter factor,
selectivity to helpful in the search for the right indexes. It allows us to foresee and to
estimate approximations of the query I/O cost.

2.1 .4. The Database Optimizer

T o get a better understanding on data access costs, we have to shed some light on
the database optimizer module. We already know that the optimizer cornes into play
during the query optimization phase. Out of this phase there are normally a large
number of competing access plans, that can be executed to fulfill a given query, just
as there are large number of ways to play a chess game with the object of winning (or
at least not losing). The system query optimizer tries to choose an access plan with a
minimal access cost plan, based on minimizing run time as well as various other
resources, such as CPU time, number of disk I/Os, and so on. The optimizer uses a
set of information and statistics that human programmers typically do not have or of
which they only have rude approximations. The optimizer uses statistical
information, such as the cardinality of each attribute domain, the cardinality of each
table, the number of values for each attribute, the number oftimes each value occurs
for each attribute, and so on. This information is kept in the system catalog [Date
1990]. Nevertheless, the query optimizer will probably not choose the optimal
execution plan for complex queries, no more than a chess player plays the perfect
game.

The query optimizer attempts to minimize the use of certain resources by choosing
the best query execution plans. The resources are CPU time and physical accesses
(the number of I/O required to execute the query). Though computer memory is an
important resource, memory capacity for various purposes is not taken into account
here, because normally buffer size is determined at system initialization by the DBA.
Since the optimizer can have no affect on this feature, it usually reacts in a relatively
simple way by choosing different types of behavior in query plans at various
thresholds of memory availability.

The CPU and I/O resources are under control of the optimizer. For each
alternative execution plan there is an associated CP U cost, noted COST cpu(PLAN),
and an J/O cost, noted COST110(PLAN) . Whenever, there are two incomparable costs it
is possible that two query plans, PLAN 1 and PLAN2, will be incomparable in resource
usage. See figure 2. 1..

04.09.1996 Database Performance Tuning 24/162

PLAN2

Costcpu

9.2 CPU sec 1 03 1/Os

1 .7 CPU sec 890 1/0s

figure 2. 1. : Two execution plans with incomparable CPU and 1/0 cost pairs9

Clearly PLAN 1 is superior to PLAN2 in terms of CPU costs, but PLAN 1 is superior in
terms of I/O costs. To provide a single measure that can be minimized
unambiguously, the optimizer defines the total c ost of execution plans, COST(PLAN),
as the weighted sum of 1/0 costs and CPU costs.

COST(PLAN) = W1 * COST1,o(PLAN) + Wz * COST cpu(PLAN)

Where W1 and W2 are positive numbers, weighting the relative importance of each
measure within the total cost.

The optimizer chooses the lowest COST(PLAN) value within all alternative
execution plans that can answer the query. In chapter 4 we discuss how to analyze
alternative àccess plans to derive relatively accurate associated 1/0 costs. It is not
easy from a theoretical point of view to determine the associated CPU usage, as this
feature depends strongly on details of CPU instructions, the efficiency of database
system implementation and OS features. Of course, the optimizer for a specific
DBMS an OS is able to compute CPU costs, using CPU statistics measured for
internal fonctions. As a rule of thumb, we assume that CP U c osts do n ot vary as
much .from one access plan ta an other. Note that in many situations CPU costs are
linked to I/Os, so we can assume with no great harm that minimizing I/Os minimizes
CPU as well. Thus implying that situation, for I/O and CPU costs, like the one in
figure 2. 1. are quiet unusual.

2.1 .5. F i lter Factor, Selectivity and Database Statistics

To define the selectivity let us use the definition made by [ORACLE 7.0]:

'Selectivity is the percentage of rec ords in a table that the query selects. Queries
that select a small percentage of a table 's rec ords have go od selectivity, white a
query that selects a large percentage of rec ords has po or selectivity.

Throughout this document we assimilate to the notion of selectivity, s, the term of
filter factor, ff.

Before we can give estimations of the filter factor we have to make the following
assumptions.

� Uniform distribution of individual attribute
� Independent join distribution of values from any two unallied attributes.

To determine the filter factor of a query predicate the optimizer uses the following
sources of information.

9 [O'Neil 1994]

04.09.1996 Database Performance Tuning 25/162

� Operators used in the WHERE clause.
� Key and non-key attributes uses in the WHERE clause.
� Table and data statistics.

Let us go through some examples, to paint out how to estimate the filter factor for
different predicates.

Consider an attribute A1 , with 100.000 distinct values, noted CARD(A1) = 1 00.000.
Assuming that all A1 values are equally distributed within table T1 (the uniform
distribution assumption), we estimate the filter factor for the equality predicate, A 1 =
5, to:

ffT 1 .A1 = 5 = 1 /1 00.000 = 0 .00001

Making the same considerations, we are able to estimate the filter factor of a
between predicate, A1 between 5 and 505 :

ffA1 between 5 and 505 = 501 * (1 /1 00.000) = 0.005

Similarly consider the key attribute A2, having 100 distinct values CARD(A2) = 1 00.
And the predicate, A2 = 20, having a filter factor of:

ffA2 = 20 = 1 /1 00 = 0 .01

Let us assume that the join distribution of values from two unallied attributes is
independent, meaning that the filter factor for compound AND predicates multiply, so:

ffA2 = 20 And A1 between 5 and 505 = (1 /1 00) * (500/1 00.000) = 0.00005

Note that we borrowed the filter factor terminology from DB2 and [O'Neil- 1 994] ,
which base there optimizer filter factor estimations on statistics gathered by the DB2
RUNSTATS utility.

Figure 2.2. lists some of the statistics given by the RUNSTATS utility 1 0 • For each
statistic we list its name, the DB2 catalog table and the attribute which holds it. Each
of these statistics have default values in case where RUNSTATS has not been run.

Catalog Name Statistic Name
SYSTABLES CARO

SYSCOLUMNS

SYSINDEX

NPAGES

COLCARD
HIGH2KEY
LOW2KEY

NLEVELS
NLEAF
FIRSTKEY-CARD

FULLKEY-CARD

CLUSTERED­
RATIO

Default Value
1 0.000
Ceil(1 +CARD/20)

25
N.A.
N .A.

0
CARD/300
25

25

0% if non-clustered
95% if clustered

Description
Number of records in the table
Number of data pages that contain rows
of the table

Number of distinct values for this attribute
Second highest value for the attribute
Second lowest value for the attribute

Number of levels of the index
Number of leaf pages
Number of distinct values in the first
attribute, A 1 , of the key
Number of distinct values in the full key,
(A1 ,A2,A3)
Percentage of records of the table that
are clustered by the index values

figure 2.2.: Statistics given by R UNSTATS utility for Access Plan Determination

IO Similar statistics can be gather by similar statements for different database system, for example
the EXPLAIN statement in ORACLE 7.

04.09. 1 996 Database Performance Tuning 26/ 1 62

Note that these statistics can only be used on existing databases, however, they
give us reference of what we have to consider when estimating the filter factor and
I/O costs.

Considering the above statistics, DB2 considerations and our reference to [O'Neil
1 994], we can give a list, in relation 2. 1., of different predicates and their
corresponding relations for filter factor estimations.

Predicate Type Filter Factor Notes
Attr = const 1 /COLCARD 'Attr <> const' is equal to 'Not(Attr = const)'

Attr 0 const Interpolation relation 0 is a comparison predicate other than equality.

Attr < const or (const - LOW2KEY) LOW2KEY and H IGH2KEY are estimations for
Attr > const extreme points of range of Attr values

(HIGH2KEY - LOW2KEY)

Attr BETWEEN (const2 - const 1) 'Attr NOT BETWEEN const1 AND const2' i s equal to
const1 AND const2 (HIGH2KEY - LOW2KEY) 'NoT(Attr BETWEEN const1 AND const2)'

Attr in list size(liste) / COLCARD 'Attr NOT in list' is equal to 'NoT(Attr in list)'

Attr is Null 1 /COLCARD 'Attr is NOT Null' is equal to 'NoT(Attr is Null)'

Attr like 'patern' Interpolation relation Based on the alphabet

Pred1 and Pred2 ff Pred1 * f f Pred2 As in probabil ity

Pred1 or Pred2 (ff Pred1 + f f Pred2) - (ff Pred1 * As in probability
ff Pred2)

NoT Pred1 1 - ffpred1 As in probability

relation 2.1.: Fi/ter Factor relations for Various Predicate Types

Knowing the estimation of the filter factor, for a given SQL query predicate, we
are able to estimate, per se, the average number of records qualified by the predicate,
k, by multiplying the filter factor and the number of records in the table.

k = ff * Nr
where
ff: Filter Factor for predicate P
Nr: Number of records in table
relation 2.2.: Number of Records Qualijied knowing the Fi/ter Factor

It is obvious that the lower the value of the filter factor is the fewer records the
predicate qualifies. It is also true that the lower the filter factor is the higher is the
probability that the predicate will be used first during query execution.

04.09.1996 Database Performance Tuning 27/162

At the beginning of the section we made the assurnption of uniforrn distribution,
however, this assurnption is not always valid. For exarnple, take an extrerne situation
where we have a sex attribute in a table containing all residents at a boy school.
Although there are occasional residents with sex = 'F', staff and faculty rnernbers for
exarnple, it is clear that a filter factor estirnated in terrns of 1 /CARD(sex) = 1 /2 is
rnisleading. A query optirnizer that uses this assurnption rnay very well rnake
incorrect decisions. For this reason, D82 and a nurnber of other database systems,
such as INGRES, provide statistics on individual attribute values that deviate
strongly frorn the uniforrn assurnption. It is therefore important to locate and to note
such attributes during the requirernents collection phase.

Note that for the rest of the paper we assume that all attribute values are uniforrnly
distributed arnong the data pages. Note also that it is easy to imagine that exact
estimations of the filter factor for all predicates are not available per se. They are
often kept in the DBMS catalog tables. Thus, for databases at conceptual level,
estimations have to be perforrned. The database designer uses its requirernent
collection to foresee the query predicate filter factors.

2.1 .6. Description of SQL Select Statement

Before we start classifying the query data operations into classes, we should
examine the structures and the possibilities of the SQL Select staternent. Figure 2.3,
gives a general forrn of the Select staternent, and we will develop its syntactic
elernents within the following lines.
Subselect Statement
SELECT [ail ! distinct] expression {, expression}
FROM tablename [corr_name] {, tablename [corr_name}
[WHERE select_filter]
[GROUP BY column {, column}]
[HAVING select_fi lter]

Ful l Select Statement
SUBSELECT
[UNION [ALL] SUBSELECT]
[OROER BY result_column [asc I desc] {, result_column [asc I desc]}

The OROER Bv clause allows us to place qualified records in order by one or more
result_colurnn values appearing in the target list. The [asc I desc] choice enables us to
place records in ascending or descending order ; asc is the default and rneans that
srnaller values are placed before higher values.

Note, that the UNION clause cornes before the OROER BY clause. The order of clauses
within the Select staternent allows us to define a conceptual order of query
evaluation. Rernind that the following order of evaluation rnight be different frorn the
actual order chosen by a DBMS optirnizer.

04.09.1996

Step 1: First the Cartesian product of all tables in the Frorn clause is forrned.
Step 2 : Frorn this, records not satisfying the Where condition are elirninated.
Step 3: The rernaining records are grouped according to the Group By clause.
Step 4 : Groups not satisfying the Having clause are then elirninated.
Step 5 : The expressions of the Select clause are evaluated.

Database Performance Tuning 28/162

Step 6 : If the key word Distinct is present, duplicate records are eliminated.
Step 7 : The Union is taken after each Subselect is evaluated.
Step 8 : Finally, the set ofretrieved records is sorted if an Ortler By is present.

2.1.6. 1 . Expressions, Predicates and select_filter

The select filter is the condition used in the WHERE clause to eliminate records
and in the HAVING clause to eliminate groups : records are retained in step 2 and
groups in step 4 when the corresponding select_ filter evaluates to TRUE.

Let us start, by describing the syntax element known as an expression (expr); that
is either an arithmetic or a character expression (expr = aexpr I cexpr). An expression
occurs in a select_filter, for example, when we compare an attribute value to a
constant : T1 .A1 > 1 00 : both T1 .A1 and 1 00 are simple expressions. Note, that
expressions, as we define them here, can also appear in the target list of the select
statement.

An aexpr is an arithmetic expression, made up of constants, table attributes,
arithmetic operators, built-in arithmetic fonctions, and/or set of fonctions. Figure 2.4.
gives the definition of an arithmetic expression.

aexpr Examples
constant 6, 7.00

column_name Dollars, Price, Percent

qualifier.column_name Orders.Dollars, P.Price

aexpr arith_op aexpr 7.00 + Product.Price

(aexpr) (7.00 + Price)

function(aexpr) sqrt(?.00 + Price)

set_function(aexpr) sum(Price)

figure 2.4.: Recursive Dejinition of the Arithmetic Expression (aexpr)

Similarly as for the arithmetic expression figure 2.5. gives the definition of a
character expression, cexpr:

04.09. 1 996

cexpr
constant

column_name

qualifier.column_name

cexpr op cexpr

(cexpr)

function(cexpr)

set_function(cexpr)

Examples
'Namur', 'Dupond'

Id, Salary, City

Employee. ld , City

Employee. ld + 'Namur'

(Employee. ld + 'Namur') l 'I

right ('Namur',4) 12

count(distinct Employee.Salary)

1 1 concatenate two strings with a + operator
12 result = 'amur'

Database Performance Tuning 29/ 1 62

figure 2. 5.: Recursive Definition of a Character Expression (cexpr)

Out of the SQL standards we can group (figure 2.6) seven kinds of predicates,
which is the simplest form of logical statements.

Predicates Form Examples
comparison predicate expr1 0 13 (expr2 1 SUBSELECT) Employee.Salary > (SUBSELECT)

between predicate expr1 [not] between expre2 and expr3 Salary between 40000 and 70000

quantified predicate expr 0 [all I any] (SUBSELECT) Salary >= ail (SUBSELECT)

in predicate expr [not] in (SUBSELECT) Id in (SUBSELECT)

expr [not] in (val (, val)) City in ('Namur', ' Liège')

exists predicate [not] exists (SUBSELECT) exists ((SUBSELECT)

is nul l predicate column_name is [not] null disent is nul l

l ike predicate column_name [not] like 'pattern' Employee.Name like 'A%'

figure 2.6. Predicate of Standard SQL

Given these predicates, we define the select_filter as it is in figure 2.7. :

select filter Examples
predicate Employee. ld = 1 2345, exists (SUBSELECT)

(search condition) (Employee. ld = 1 2345)

not select_filter not exists (SUBSELECT)

select_filter and select_filter not (Employee. ld = 1 2345) and Dep = 'C001 '

select_filter or select_filter not (Employee. Id = 1 2345) or Dep = 'C00 1 '

figure 2. 7.: Recursive Definition Select _Fi/ter

2.1 .7. Two Query Classes

Now that we have defined and described the Select statement, and its aspects of
referencing data objects (records) within the database, we will classify the query
operations.

The access is often only part of a general step which leads to data extraction or
data modification. In general the data access operation can be defined as the access to
abjects of a sequence. All possible and imaginable data accesses can be based upon
this definition.

Note that we point the data access definition on the notion of sequence. A
sequence of records can be defined as a set of records following a logical ordering.
However the ordering is not mandatory. The set of qualified records is defined by a
select_filter, predicate within the WHERE clause. The ordering of the records is often
the natural ordering of the database (the order of a table or the order of an access
key). But it can also be explicitly specified in the Select statement using the 0RDER
BY clause. On a more common way, the user can specify an implicit or explicit
ordering of the qualified set of articles.

1 3 The comparison operator belongs to the following set of operators {=, <>, >, >=, <, <=}

04.09.1996 Database Performance Tuning 30/162

A set of qualified records is defined by a group expression, a select condition, a
predicate. The set of records can be qualified using an access mechanism, like index
or hash structures, or by afilter, like "brute force" table scans. Both mechanisms and
there respective cost estimations will help us to understand and solve the index
selection problem.

In practice we encounter two kind of access classes:

� First kind, is the access to a set of records: this operation gives access to a set (or
sequence) of records. The requested set of records can be ordered in an implicit or
explicit way.

� Second kind, is the access to one record: this operation gives access to one and
only one record of a given set of records. The access is specified by a sequence,
embodying the questioned record, and a position of the record.

2.1 .8. Abstract the Queries into a Few Query "Types"

The preceding sections have revealed that there exists an infinite number of
queries that can be constructed using predicates as building blocks. Therefore, it is
helpful to abstract the queries into the 8 most used query types [Shasha 1992]. Later
on, we will examine the strengths and the possibilities of each kind with regard to the
diff erent data access structure that we will encounter.

1. Point query. The query returns at most one qualified record (or part of a record),
based on an equality comparison predicate (=). If we assume that attribute A1 is a
key (uniqueness of values) then the following query is a Point Query :

SELECT A 1 , A2
FROM T1
WHERE A1 = 5

2. Multipoint query. The query returns a list of qualified records based on an equality
predicate. The list of records can be order depending on an implicit or explicit
ordering logic. If we assume that attribute A2 is not a key (non-uniqueness of
values) then the following query is a Multipoint Query:

SELECT A 1 , A2
FROM T1
WHERE A2 = 20

3. Range query or Between query. The query returns a set of qualified records where
A2 values lie within an interval or half-interval. Assuming that attribute A2 is not a
key the following queries are Range Queries :

SELECT A 1 , A2
FROM T1
WHERE A2 BETWEEN 20 AND 60

SELECT A 1 , A2
FROM T1
WHERE A2 >= 20

4. Preftx match query. The query returns a set of qualified records based on a set of
attributes, A, by specifying a prefix on A. For example, consider the sequence of
attributes A3, A4, A5 (with respect to the ordering). The following are prefix match
predicates for the set of attributes:
A3 = 'Gates',

04.09.1996 Database Performance Tuning 31/162

A3 = 'Gates' AND A4 = 'Bil l '
A3 = 'Gates' AND A4 LIKE 'Bi%'

5. Extrema! query: the query returns a list of qualified records (or parts of records)
whose attribute values (or set of attributes values) are a minimum or maximum.
SELECT A 1 , A2
FR0M T1
WHERE A2 = MAX(SELECT A2 FR0M T1)

6. Ordering query. The query includes the OROER Bv clause, it returns a set of
qualified records in ascending or descending order (asc I desc) of a set of specified
attribute.
SELECT A 1 , A2
FR0M T1
ÜRDER BY A2

7. Grouping query. The query uses the GR0UP Bv clause, it partitions the results of a
query into groups. This kind of queries is often used during report generation and
applies many cases a fonction to each set of grouped values, records. For example,
find out the average salary for each department.
SELECT A1 , AVG(A2), A3
FR0M T1
GR0UP BV A1 , A3

8. Join Query or Query involving one ore multiple Subselect(s). The query links
two or more tables. Loosely spoken, the query retrieves data from more than one
table. The evaluation of join queries is explained during a future section. Note that
join queries represent one of the most powerful features of the relational system.

If the predicates linking the table are based on an equality comparison predicate,
the join query is called an equijoin query.

SELECT T1 .*, T2.*
FR0M T1 , T2
WHERE T1 .A 1 = T2.A7

The result of this query is said to be a join of table T1 and T2 over matching
attributes T 1 .A1 and T2.A7 values. The equijoin by definition must produce a result
containing two identical attributes, if one of those two attributes is eliminated we
speak about natural Join.

There is no need that the comparison predicate within a join condition is an
equality comparison predicate, though, in most cases it will be .

Many additional predicates can exist in concordance with a join predicate. The
following query is an example: join table T1 and T2 with over attribute T1 .A 1 and
T2.A7, but omitting all T1 records with A2 = 20.

SELECT T1 .* , T2 .*
FR0M T1 , T2
WHERE T1 .A1 = T2.A7
AND T1 .A2 <> 20

2.1 .9. Methods for Join ing Tables

04.09.1996 Database Performance Tuning 32/162

The join query is one of the most powerful features of relational systems.
Therefore, it is important to study the meaning of joining and the algorithms 1 4 for
joining two tables. First, let us give an accurate definition [O'Neil 1 994] of the Join
operati on.

We define a join oftwo tables to be a process in which we combine records of one
table with records of another to answer a request. In the following definition we
represent the join operation by the symbol EB.

Consider the table R and S, defined as
T1 = A1 . . . An B1 . . . Bk
T2 = B1 . . . Bk C1 . . . Cm
where n, k ,m 2: O. Note that B 1 . . . Bk is the complete subset of attributes shared by

the two tables 1 5 . The join of the table R and S is the table represented as R E9 S,
defined as

T1 E9 T2 = A1 . . . An B 1 . . . Bk C1 . . . Cm,
A record is in the joined table, if and only ifthere are two records u in R and v in S,

such that u[Bvl = v[Bul for all v, 1 s v s k; then attribute values on the record t are
defined as follows:

t[Aj] = u[Aj] for 1 s i s n,
t[B j] = u[B j] for 1 s i s k,

and t[C j] = u[C j] for 1 s i s m.

When the record u in T1 and v in T2 gives rise to a record t in T1 E9 T2, the two
records are said to bejoinable.

By this definition, a join occurs whenever two or more tables appear in the FR0M
clause of a Select statement . Even if we are taking a simple cartesian product of
records from two tables (a table product); we refer to it as a join. As we will see, a
Select statement with a single table in the FR0M clause, and a WHERE clause that
contains a SUBSELECT from a different table, is often converted by the query
optimizer to an equivalent query statement that joins tables.

Now that we have seen a definition of joining tables, let us examine three
algorithms used to join tables. The algorithms are known as nested loop join, merge
scan join, and hybrid join [O'Neil 1 994] . Each of these methods has performance
advantages in a certain class of situations that can arise during join query evaluation.
Other methods have been developed for performing joins 1 6, they surely have
performance advantages in special circumstances, but we will restrict our attention to
the three denoted join methods.

To begin with, we consider the situation where exactly two tables appear in the
FR0M clause.

04.09. 1 996

14 We concentrate on three algorithms used by DB2.
1 5 This subset may be empty ifk = O.
16 A special method for example is the hash join.

Database Performance Tuning 33/ 162

A join of two tables usually occurs in two steps. During the first step, only one
table is accessed; this is referred to as the outer table. In the second step, records of
the second, inner table are combined with records of the first, outer table. Other
predicates, involving attributes of the two tables that have not been retrieved through
an access structure, are used to qualify records as they are scanned. As a result of all
this, a composite table is generated that contains all the qualified records of the join.
If a join with a third table is now necessary, the composite table becomes the outer
table for the succeeding join step. Otherwise, specified attributes of the composite
table provide the result of a join being fully materialized in a disk work file, it is
important to realize that we may be able to avoid such wasteful materialization. For
example, if the user is only likely to look at the first 20 or 30 records of the resulting
output, in this case it would be terribly inefficient to put to disk all records of the
composite table. Thus in Embedded SQL, when a cursor on a join query is first
opened and the first record is retrieved, we avoid materializing tables whenever
possible.

2.1.9.1 . Nested Loop Join

Consider the following query:
SELECT T1 .A 1 , T1 .A2, T2.A3, T2.A4
FROM T1 , T2
WH ERE T1 .A 1 = 5 AND T1 .A2 = T2.A3

In a nested loop join, the table referred to as the outer table corresponds to the
'outer loop ' in a nested pair ofloops, as we see in figure 2. 7 .. Assuming that table T1
is the outer table, the first step of the nested join determines records in T1 that verify
predicate T1 .A1 = 5. We are able to retrieve the requested records from table T1 using
one of the search methods seen in section 2. 1.3 ..

Now that the records of the outer table have been qualified (note that they have
not actually been extracted), a loop is performed to retrieve each of these records. For
each qualified record of the outer table, a request is performed on the second table,
T2, and all records that satisfy the join predicate, T1 .A2 = T2.A3, are retrieved.

Note that because the record of T1 is fixed for this request, we can treat the value
T1 .A 1 as if it were a constant, K. Therefore, the records retrieved from T2 are exactly
those that satisfy a predicate of the form, T2.A3 = K, and an index on attribute T2.A3
would probably make the retrieval more efficient.

R1 : FIND ALL RECORDS T1 .* IN THE OUTER TABLE T1 WHERE A1 = 5;

FOR EACH RECORD T1 .* FOUND IN THE OUTER TABLE;

R2: FIND ALL RECORD T2.* IN THE INNER TABLE WHERE T1 .A2 = T2.A3

FOR EACH RECORD T2.* FOUND IN THE INNER TABLE

RETRIEVE: T1 .A 1 , T1 .A2, T2.A3, T2.A4

END-FOR;

END-FOR;
algorithm 2. 2.: Algorithm for Nested Loop Join

04.09. 1 996 Database Performance Tuning 34/162

Note that label R1 and R2, in algorithm 2.2., designated retrievals in join
processing. Additional predicates limiting the records of either table can be added to
the relevant retrieval. Either retrieval can be performed using an index scan or a table
scan. The outer table has only one retrieval, while the inner table has a number of
retrievals equal to the number of qualifying records in the outer table. The I/O cost of
the join operation is therefore given by relation 2.4 ..

C0ST110 (NESTED L00P JOIN} = C0ST 110 (OUTER TABLE RETRIEVAL} +

NUMBER OF ÜUALIFYING RECORDS IN OUTER TABLE *

C0ST 110 (INNER TABLE RETRIEVAL)
relation 2. 4. : Cast estimation for Nested Loop Join

Figure 2.8. illustrates the method of nested loop join for the above query using
table T1 and T2.

OUTER TABLE
T1

A l A2

5 1 9

5 1 3
5 1 5
5 1 7

5 1 2

5 1 9
5 1 8

- -

,._

--

,.__
·····-··-·-l

INNER TABLE
T2

A3 A4

1 7 22

1 9 24
1 5 28

1 9 27

1 2 29

1 4 3 1
1 3 25

COMPOSIT {JOIN)
TABLE

Al A2 A3 A4

� 5 1 9 1 9 24
5 1 9 1 9 27
5 1 3 1 3 25
5 1 5 1 5 28
5 1 7 1 7 22
5 1 2 1 2 29
5 1 9 1 9 24
5 1 9 1 9 27

figure 2. 8. : Illustration of Nested Loop Join

To speed up the execution of the nested loop join it is helpful to define an index
on the matching attributes of the inner table. Nested loop join is particularly efficient
when only a small number of rows qualify from the outer table after the limiting
predicates are applied. This means that the predicate on the outer table should have a
small filter factor or a large selectivity, or when the inner table is small enough so
that the entire index and data disk blocks could be held in memory buffers after they
have been accessed once during the join.

2.1 .9.2. Merge Join

To examine the merge join method, let us consider the following query :

04.09.1996

SELECT T1 .A 1 , T1 .A2, T2.A3, T2.A4
FR0M T1 , T2
WHERE T1 .A1 = 5 AND T2.A4 = 6 and T1 .A2 = T2.A3

Database Performance Tuning 35/162

The merge join scans the two tables, T1 , T2, only once, in the order of their join
attributes . The execution plan starts by applying the two non-join predicates and
creating two intermediate tables, IT1 , IT2 . In the execution plan, we first evaluate
'SELECT A 1 , A2 FROM T1 WHERE A 1 = 5 OROER BY A2', placing the requested records in
the intermediate table IT1 with attributes A1 and A2, and in sorted order of A2. Then
we evaluate 'SELECT A3, A4 FROM T2 WHERE A4 = 6 OROER BY A3', to get the
intermediate table IT2 with attributes A3 and A4, and sorted on A3'. Note that these
intermediate tables are usually written to disk work files as temporary tables, as they
are generally too large to be hold in memory buffer .

Now that we have two smaller tables, than the original tables, we are prepared to
perform the merge join. To perform the merge join on IT1 and IT2, we associate a
pointer to the first records for each intermediate table . As the algorithm proceeds, the
two pointers move forward in a way that any matching (A2, A3) values for records in
both tables are detected . Except for cases where multiple A2 identical values in IT1
match multiple A3 identical values in IT2, both pointers move steadily forward
through the records of both tables, and detect all matchings, IT1 .A2 = IT2.C3, that
exist. The pseudo-code of algorithm 2 .3. describes the execution algorithm of the
merge join method, the A2 value of record in table IT1 pointed to by pointer P1 1s
represented by of P1 ➔ A2, and similarly for P2 ➔ A3 in table IT2 .

CREATE ÎABLE ITL As: SELECT A 1, A2 FROM TL WHERE A 1 = 5 OROER B Y A2;
CREATE TABLE IT2 As: SELECT A3, A4 FROM T2 WHERE A4 = 6 OROER BY A3;
SET P1 POINTER TO FIRST RECORD OF lî1 ;
SET P2 POINTER TO FIRST RECORD OF lî2;

I" OUTER TABLE
I" INNER TABLE

*/
*/

MJ: WHILE (TRUE) { /* LOOP UNT/L EXIT MJ LOOP */

WHILE (P1 ➔ A2 > P2 ➔ A3) {
SET P2 TO NEXT RECORD IN lî2;
IF (P2 PAST LAST RECORD) EXIT MJ LOOP;

}

WHILE (P1 ➔ A2 < P2 ➔ A3) {
SET PL TO NEXT RECORD IN lî1 :
IF (PL PAST LAST RECORD) EXIT MJ Loop;

}

IF (P1 ➔ A2 == P2 ➔ A3) {
MEMP = P2;

}

WHILE (P1 ➔ A2 == P2 ➔ A3) {

}

RETRIEVE: ITL.AL, ITL.A2, IT2.A3, IT2.A4;
SET P2 TO NEXT RECORD IN 1 î2;

I" IF P2 NEEDS TO ADVANCE */
I" ADVANCE IT */
I" OUT OF ROWS, EXIT */

I" IF P1 NEEDS TO ADVANCE */
I" ADVANCE IT */
I" OUT OF ROWS, EXIT */

I" FOUND MATCH ON JOIN */
I" REMEMBER P2 START POINT */
I" LOOP */

I" ADVANCE P2 */
I" LOOP CONTINUES IF P1 ➔ A2 */
I" UNCHANGED */

I" DONE WITH JOIN MATCH */

I" SINGE FELL THROUGH, P2 ➔ A3 IS NEW OR BEYOND END OF TABLE */
SET PL TO NEXT RECORD IN ITL; I" ADVANCE PL */
IF (PAST LAST RECORD) EXIT MJ Loop; I" OUT OF ROWS, EXIT */
IF (P1 ➔ A2 == MEMP ➔ A3) I" IF NEXT P1 ➔ A2 IS SAME */

P2 = MEMP; I" START OVER WITH P2 */

/* END OF MJ LOOP */
algorithm 2. 3.: Algorithm for the Merge Join Method

04.09. 1 996 Database Performance Tuning 36/ 162

Once a match has been found during execution, we keep P1 fixed and advance P2
through all duplicate values. Then we advance P 1 ; if we find a duplicate, this is the
only situation in which a pointer moves backward, we set P2 = MEMP to run through
all duplicates of P2 again. Clearly if there are a lot of occurrences where A2 and A3
have the same values, a large number of records will be joined. However, it is more
common that there will be a small number of records in one table matching more
than one record with another, since we normally do not perform joins on attributes
with a large number of duplicate values. In any event, the query optimizer can
determine the likely number of duplicates facing each other using statistics, and it is
likely that most computer resources will be used in finding any match at all.

Note that it is not always necessary to extract the records from table T1 or T2 into
intermediate tables. If for example, there was an index on attribute A 1 of table T1 ,
which allows us to qualify the records with predicate 'T1 .A 1 = 5', the execution plan
would use an intermediate table as it can access the qualified records in order by
T1 .A 1 . This would be possible, for our Select statement, if T1 had an index on (A 1 ,
A2): the matching scan through the index with the given predicate would provide all
records of T1 in order by A2. The same consideration holds for table T2.

2.1 .9.3. Hybrid Join

The hybrid join method is used less frequently than both other join methods, and
to avoid confusing the reader the reader we shall give only a short description of the
method.

The hybrid join uses also an outer table and an inner table as the nested loop and
the merge join. The first step is the same as that of merge join for the outer table. The
table is scanned once according to the join attribute order, either through an index or
after extracting a set of records, qualified by a predicate, into an intermediate table
IT1 . As records of the outer table are being scanned in the join attribute order,
matching join attribute values of the inner table are looked up through an index on
the join attribute. The records of the inner table are not accessed yet, however;
instead the records from the outer table, with an additional attribute giving the RIO
value of each matching join record in the inner table, are written to an intermediate
table IT2. Records of IT2 are stored in record pointer (RIO) order, and the technique of
list prefetch can be used to retrieve records from the inner table to join with the outer
table records.

The advantage gained over the nested loop join arises from the fact that all records
from the inner table can be performed using list prefetch I/0 with large I/0 pages.

04.09.1996 Database Performance Tuning 37/162

2.1.9.4. Example17 of cost estimation for Nested, Merge and Hybrid Join

Assume that we have two tables T1 with attributes A 1 and A2, and table T2 with
attributes A3 and A4, each with a cardinality of 1.000.000 records of 200 bytes each.
We are going to estimate the I/0 cost of the query, in figure 2.9 and 2. 10. for all three
join methods. We will measure the estimations in terms of elapsed time in seconds
and pages requested, broken clown into random (R), sequential (S) and list prefetch
I/Os (L) l 8.

SELECT T1 .A 1 , T1 .A2, T2.A3, T2 .A4
FROM T1 , T2
WHERE T1 .A1 = 5 AND T2.A4 = 6 AND T1 .A2 = T2.C3

figure 2.9.: Query used ta Estimate 1/0 Cast for Nested Loop, Merge Join

Let us make some assumptions on the tables. We assume that a non-clustering
index A 1 X exists on attribute A 1 of table T1, and an index A3X and A4X on table T2
respectively on attribute A3 and A4. Assume that the fil ter factors for these predicates
are given as follows :

th- ffA1 = const = ffA4 = const = 1 / 1 00;
th- ffA2 = const = 1 /250.000; and
th- ffA3 = const = 1 /500.000.
We will estimate the I/0 cost in terms of elapsed time for a nested loop, a merge

and an hybrid join plan to answer the query, where the outer table is T1 and the inner
table is T2.

2. 1 .9.4. 1 Estimating 1/0 cost for Nested Join Method

For the merge join plan we consider the following three steps 1 9 :

(1). Using index A1X, retrieve all records from table T1 which verify predicate
T1 .A1 = 5.

(2). Think of T1 .A2 as being a constant, K. For each record retrieved from the outer
table T1 all records using index A3X from the inner table T2 such that T2.A3 =
K. As the records from this index scan are retrieved, further restrict the
records using predicate T2.A4 = 6.

(3). Print out T1 .A1 and T1 .A2 from outer table record and T2.A3 and T2.A4 for the
qualified inner table record.

1 7 [O'Neil 19994]
1 8 Rules of thumb for I/ rates, Random I/0 40 pages/sec, Sequential I/0 400 pages/sec, List

prefetch I/0 1 00 pages/sec
19 [O'Neil 19994]

04.09. 1996 Database Performance Tuning 38/ 1 62

Using the filter factor and the number of records in Tl, we are able to estimate the
number of records retrieved from table Tl in step (1) : (1 /1 00) * 1 .000.000 = 1 0. 000
records, likely to be all on different pages (because of the non-clustering
assumption). We can assume that the optimizer will use a list prefetch20 to retrieve
the qualified records. The index I/O cost for this retrieval is assumed to be
insignificant next to the data page I/O cost. We therefore assume that COST110(OUTER
TABLE RETRIEVAL) = 1 0. 000 L, where L is the fraction of time need to perform a list
prefetch read2 1 . Thus the elapsed time is equal to 10.000/100 seconds.

For each outer table record qualified, we assume that the value T1 .A2 is in the
range of values for attribute T2.A3. Since f(A3 = const.) = 1 /500.000, we expect to
retrieve 2 records out of a table with CARD(T2) = 1 .000.000 records. This requires for
each new value of T2.A3 one random I/O to the leaf level of index C3X, assuming that
upper-level nodes are in memory buffers. Plus two I/Os, on average, to retrieve the
two pages containing the two qualified records. Thus, the I/O cost for the 10.000
different inner loop steps is 1 0. 000 * (1 R + 2R), where R is the fraction of time need to
proceed a random read22 . We would normally perform a list prefetch I/O to retrieve
the data pages in this situation, but recall that it is quiet misleading to think of a list
prefetch of two pages as taking place in 2/100 seconds, since there are too few pages
retrieved to amortize the retrieval as equivalent to 2R, and therefore the elapsed time
for inner loop is calculated from 1 0 .000 * 3R, or 30.000/40 = 750 seconds. An
approximation of the elapsed time is 100 sec + 750 sec = 850 seconds.

Now to determine how many records are retrieved in the query, we see that there
are 10.000 records retrieved from T1 and for each qualified records in T1 there are
two records joined to it, on the average, from table T2. Therefore, there are about
20.000 records retrieved at this point, after which a qualification test takes place to
see if predicate T2.A4 = 6 is verified. With a filter factor of 1/100, the final number of
records retrieved is (1 / 1 00)*20.000 = 200 records.

2.1 .9.4.2. Estimating 1/0 cost for Merge Join Method

We consider the same assumptions than for the nested join example. The strategy
for answering the query in figure 2.9. with a merge join consists of following steps.

(1). Using index A1X, retrieve all records from table T1 which verify predicate
T1 .A1 = 5. Again, there will be 10.000 records retrieved. Output the A1 and A2
values to an intermediate table IT1, and sort the result by A2 values.

(2). Using the index A4X, retrieve all records from T2 where predicate T2.A4 = 6 is
verified, there are 10.000 qualified records, output the resulting A3 and A4
values to intermediate table IT2, and sort them by A3 values.

Now that two intermediate tables have been created, the merge join step may take
place, following algorithm 2.3.

20 Note that the list prefetch is an access techniques used to speed up data retrieval. It wil l be
given a deeper look in section 3 . 1 .2 ..

04.09. 1 996

21 In section 3 . 1 .2 . we see that the a list prefetch fraction, L, is valuated to 1/ 1 00.
22 See section 3 . 1 .2 . .

Database Performance Tuning 39/ 162

As for the nested loop join, step (1) requires a read of 10.000 entries from the
T1 .A 1 index leaf level, which we treat as insignificant, followed by an I/O cost of
10.000 accesses to retrieve the indexed records in the different data pages. If we
assume that each of the A 1 and A2 values extract requires 10 bytes , the materialized
table IT1 requires 200.000 bytes, or about 50 data pages. Without no great harm we
can think of performing the sort in memory, so the total I/O cost of step (1) is equal
to 1 0.000L. The same considerations apply to step (2). The total cost for the plan is
therefore 20.000L, with an elapsed time of 200 seconds, an improvement over the
nested loop join, which required 850 seconds. The advantage cornes from using the
index A4X in the merge join for more efficient batch retrieval from table T2.

We saw that in this case the merge join is better in I/O performance than the
nested loop join. However consider the query in figure 2. 10. where predicate T2.A4. =
6 does not exist.

SELECT T1 .AS, T1 .A2, T2.*
FROM T1 , T2
WHERE T1 .A5 = 5 and T1 .A2 = T2.C3

figure 2. 1 O. : Que,y used ta Estimate 1/0 Cast for Nested Loop, Merge and Hybrid Join

We assume that indexes, A2X, A3X and ASX exist on the corresponding attributes
of table T1 and T2. The filter factors are the same than the preceding ones, plus a new
filter factor ffT1 .A5 = const = 1/1 000.

The I/O cost for a nested loop join with T1 as the outer table can be calculated as
follows. With 1000 records to look up in table T1 verifying predicate T1 .AS = 5, we
have an index look up cost of I R access for the index and l000L accesses for the
data pages. For each record in the outer table T1 , we set T1 .A2 = K, then look up
records in the inner table T2 having T2.A3 = K, about two records, requiring I R access
for the index leaf entry look up and 2R accesses for the record retrieval. The I/O cost
for the inner loop is calculated as 1 000*3 = 3000R accesses. Thus the total nested loop
join cost is 3001 R + 1 000L, with elapsed time of 3001 /40 + 1 000/1 00, or approximately
85 seconds.

For the merge join, we calculate costs as follows. We can easily calculate that the
extraction of IT1 requires 10 seconds for I/O, but as we will see, this is insignificant
in comparison to the elapsed time for the nested loop join. Since there were no
independent limiting predicate on T2, such as T2.A4. = 6, we have the choice between
accessing the records from T2 in order by the index A3X to perform the merge, or
materializing and sorting the entire table T2 as an intermediate table IT2. In the first
case, we would access all records of T2 through an non-clustering index, at a cost for
data page access alone of 1.000.000R, clearly a folly strategy. In the second case, we
need to materialize a table IT2 with 1 million records of 200 bytes each and sort the
resulting records by A3. We defer consideration of disk sort, but it is reasonable to
point out that a disk sort of these records would probably require two passes through
disk pages, writing out the results of the first pass and then reading in these results
for the second pass, an I/O cost of over 1 00,000S, with an elapsed time of 1 00,000/400

= 250 seconds. Clearly the nested loop strategy is superior in this case.

2.1 .9.4.3. Estimating 1/0 cost for Hybrid Join Method

04.09.1996 Database Performance Tuning 40/162

Consider a gain the query in figure 2 . 10. and the assumptions on indexes and filter
factors of the last example. The I/O cost for the hybrid join with table T1 as the outer
table can be estimated as follows. With 1000 records to look up in T1 having T1 .A5 =
5, we see an index look up cost of 1 R, for the index, and 1 000L, for the data pages.
We only need to extract A2 and A5 from T l for each of these 1000 records and write
them into an intermediate table IT1 , of about 800 bytes big, and sort it by A2. For
each record in the outer table IT1 , we set T1 .A2 = K, then look up index entries in the
A3X index for T2.A3 = K, requiring l R of index leaf I/O for each entry, at a cost of
l000R.

As we perform this look up, we create records of the form (T l.A2, T l .CS, RID) in
the intermediate table IT2. This table will contain about 2000 records of 12 bytes
each, about 24.000 bytes or buffer space for six disk pages, so once again we assume
that no I/O is needed for creating IT2 and following sort by RID values. Finally, we
pass through the records of IT2, using the sorted RID values in IT2 as a kind of RID
list to retrieve the records from the inner table T2, and matching the AS and A2
values of T l with all attributes of T2 to generate the target list records. We are
retrieving 2000 records from T2, likely all to be on separate pages, at an I/O cost of
2000L. Therefore, the total I/O cost for this method is 1 000L, extracting records from
T l, and 1 000R , index entries from index A3X, and 2000L, extracting records from
T2. The elapsed time is (1000 + 2000)/100 + 1000/40 = 55 seconds, an improvement
over the nested loop join calculated some lines up here.

2.1.9.5. Multiple Table Joins

In most database systems, joins of three or more tables are performed by joining
two tables at a time; the composite result of the first two joins is written to an
intermediate table and then joined with the third table. The resulting composite may
be joined with a fourth table, and so on, the order of joins is not determined by the
SQL Select statement, but is left to the query optimizer. The proper choice is very
important.

Consider a three table join of the form :
SELECT T1 .A 1 , T1 .A2, T2.A3, T2.A4, T2.A5, T3.A6, T3.A7
FROM T1 , T2 , T3
WHERE T1 .A1 = 20 AND T1 .A2 = T2.C3

AND T2.A4 = 40 AND T2.A5 = T3.A6
AND T3.A7 = 60

The execution plan available for such a join has different degrees of freedom. We
can start by performing either of the joins T1 EB T2 or T2 œ T3. Assuming that we start
with T1 œ T2, we can use a nested loop join or hybrid join with either T l or T2 in the
outer loop , or a merge join. Once the intermediate table T4 := T1 œ T2 has been
created, we need to perform the join T4 œ T2, once again using one of the join
strategies. The query optimizer needs to consider all such plans to find out the most
efficient one, and it is here that efficient algorithms for query optimization begin to
become important. For joins involving multiple tables, query optimization can
require a great deal of computational effort.

04.09.1996 Database Performance Tuning 41/162

Note that in the plan just mentioned, joining T1 and T2 to create T4 then joining
T 4 to T3, if the query optimizer decides to perform the join T 4 EB T3 by a nested loop
algorithm, the intermediate table T4 := T1 EB T2 does not need to be physically
materialized before starting the final join step. As each record of T4 is generated from
T1 EB T2, the next iteration of the nested loop join T4 EB T3 can be immediately
performed. The technique whereby successive record output from one step of an
access plan can be fed as input into the next step of the plan is known as pipelining.
Pipelining minimizes the physical disk space needed for materialization. Even more
important, in cases where only small fractions of initial records are required, because
for example the terminal user ceases scrolling through the list of qualified records,
minimal materialization by pipelining often saves great deal of effort. However,
pipelining is not always possible: if the query optimizer chooses a merge join to
evaluate T4 EB T3, where the T4 EB T3 join attributes dictate a different sort order than
the join before the initial sort of the next join step can be performed.

2.1.9.6. Transforming Nested Queries to Joins

It is possible to transform most nested queries into equivalent queries involving
only table joins. This is an important technique for the query optimizer.

To illustrate the query transformation technique, let us start by considering an
example of a Select statement using a nested subque,y

Consider the query:
SELECT * FROM T1
WHERE A 1 = 5 AND A2 in (SELECT A3 FROM T2 WH ERE A4 = 6)
We can think of the query as being executed in two steps. First, we evaluate the

subquery, extracting a set of values for the A3 target list into an intermediate table
IT1. Second the outer query, 'SELECT * FROM T1 WH ERE A 1 = 5 And A2 in IT1 ', is
evaluated with regard that the values of A2 are within the list of values of IT1. The
most efficient way to do this, given that there is no index created on IT1, is probably
as a merge join: ' SELECT * FROM T1 WHERE A1 = 5', is extracted into an intermediate
table IT2, the records are ordered by the T1 .A1 values, and then the merge join process
is performed between IT2 and IT1. Possible duplicate records must still be removed
from the final list. This procedure reminds us much of the following query join form:

SELECT * FROM T1 ,T2
WHERE T1 .A 1 = 5 AND T2.A4 = 6 AND T1 .A2= T2.A3
The subquery at the beginning and this join query give identical results and the

equivalent join form allows the query optimizer to use other algorithms that are not
obvious in the nested form. For example, it is now possible to perform a nested loop
join with table T2 as the outer table.

04.09. 1 996 Database Performance Tuning 42/ 1 62

The need for the DISTINCT keyword in transforming nested query into a join is due
to the following observation. If a records r1 of T1 obeys the predicate of the join
query, then r1 .A 1 = 5 and there must exist a record r2 in T2 so that r2.A4 = 6 and r1 .A2 =
r2.A3. But nothing is said about the attributes A3 and A4 forming a relational key of
T2, so it is perfectly possible that there is a second record r3 in T2 that has the same
values for A3 and A4 as r2 . Then in the target list of the join query without a DISTINCT
keyword, the record r1 would appear twice. This would clearly not happen in the
original nested form of the query, since each single record of T1 is conceptually
considered only once and qualified or not by the predicate A2 = 5 and A2 in IT1 . Thus
the DISTINCT keyword in the join form merely casts out duplicates that would not
appear in the nested form.

The aim of a transformation such as the one described is that it reduces the
number of different types of predicates the query optimizer needs to consider to get
optimal efficacy. Once the nested query has been rewritten as an equivalent join
query, it is reduced to a problem previously solved, and the query optimizer can use
any of the join strategies we have introduced. To complete our analysis on query
transformation for ef:ficacy purposes, let us consider an other example. We consider
the case of a correlated subquery.

Consider the query :
SELECT * FROM T1
WHERE A 1 = 5 AND A2 i n (SELECT A4 FROM T2 WHERE AS = 6 AND A6 > T1 .A3)

As this nested form contains a correlated subquery, it is not possible to evaluate
the subquery until the outer records are fixed so that T l .A3 can be evaluated. From
this consideration, it seems that the only valid approach is to start by looping on
records of T 1, then for each records in T 1 find all records in T2 through an index on
A4, where T2.A4 is equal to the outer T l .A2, and then resolve the predicate clause
T2.A6 > T l.A3. Now, notice that the nested query above gives the same result as the
following join query:

SELECT * FROM T1 , T2
WHERE A 1 = 5 AND T1 .A2 = T2.A4 AND T2.A5 = 6 AND T2.A6 > T1 .A3

It is much easier to picture the strategy of performing a merge join with the query
in this form. Extract records from T l where T l.A l = 5 into an intermediate table IT l ,
and sort it by T l .A2 values. Then sort T2 in order by attribute A4 into an
intermediate table IT2. Now merge join IT l and IT2 on matching values for T l.A l
and T2.A4, casting out duplicates, and qualify records matched by verifying
predicate T2.A6 > T l.A3. This strategy might be superior to the nested loop join that
seemed most natural for the query in nested form.

Out of both examples we are able to define the following theorem.

04.09.1996 Database Performance Tuning 43/162

The following two query forms give equivalent results:

SELECT T1 . C 1 FROM T1
WHERE [SET A OF PREDICATES ON T1 AND]

T1 .A2 IN (SELECT T2.A3 FROM T2 [WHERE SET 8 OF PREDICATES ON T2, T 1])

is equivalent in result to
SELECT DISTINCT T1 .C1 FROM T1 , T2
WHERE T1 .A 1 = T2.A3 [AND SET A OF PREDICATES ON T 1]

[AND SET 8 O F PREDICATES O N T2, T1]

Note that SET A of predicates can be empty, as well as SET B. Note also, that if no
predicate is in SET B from the nested query referring to table T1 in the outer query, the
entire nested query is non correlated.

DBMSs perform this kind of transformation only under certain conditions,
including the following.

� The subquery target list is a single attribute, guaranteed by a unique index to
have unique values.

� The comparison operator connecting the outer query to the subquery is either IN
or = ANY (with the same meaning).

Therefore all nested queries involving the not exist predicate are not transformed
into join predicates. But most nested queries have equivalent join forms, ant it turns
out that the query optimizer usually finds a more efficient execution plan if the query
is posed in the join form. This is true even if the transformation into a join plan
doesn't take place under DBMS rules of transformation and implies that the person
writing queries should make some effort to create a join form rather than the
equivalent nested form query if possible. Given that a nested form query is used, it is
possible in nearby all DBMSs to tell from the output of the EXPLAIN command if
transformation into join form has been performed by the query optimizer.

04.09.1996 Database Performance Tuning 44/162

2.2. Data Update Operations

Three SQL statements, INSERT, DELETE and UPDATE, are used to modify data
upon table data. The Insert statement is used to insert new record(s) into a table.
Whereas the Delete statement is used to delete records from a table. The Update
statement is used to change the values of some attributes. These three statements are
often referred under the name of update operations, since they all serve to update
table data. There is some risk of confusion here, because the Update statement is the
specific name of one of these three operations, and we need to take care to
differentiate the two.

Whenever update operations are applied, the integrity constraints specified on the
database schema should not be violated. Therefore the update operations have the
property of atomicity, that is that the operations are executed entirely or not at all
leaving the database in a consistent state.

2.2. 1 . INSERT Operation

As for the Select statement, let us see the general syntax of the I NSERT statement.
I NSERT INTO tablename [column {, column}]
[VALUES (expression {, expression}] 1 [SUBSELECT]

The insert statement inserts records into a given table. One of both form must be
used: either the values form, where a single records is inserted with given values, or
the Subselect form, where all records that result from the Subselect are inserted.

The ability to use a Subselect to create input to an Insert statement adds a great
deal of power. Only one table receives new records in an Insert statement, but the
Subselect can be on any number of tables, as long as it produces the right number of
attributes of the right type to serve as new input record.

The insert operation provides a list of attribute values for a new record r that is to
be inserted into table T1 . Inserts can violate any of the four types of constraints
[Elmasri 1994]. Domain constraints can be violated if an attribute value is given that
does not appear in the corresponding domain. Key constraints can be violated if a key
value in the new record already exists in another record in table T1 . Entity integrity
can be violated if the primary key of the new record r is null. Referential integrity can
be violated if the value of any foreign key in record r refers to a record that does not
exist in the referenced table.

2.2.2. DELETE Operation

The syntax of the Delete statement is :
DELETE FROM tablename
[WHERE search_condition]

04.09.1996 Database Performance Tuning 45/162

The delete statement removes record(s) from a table and makes them inaccessible.
There are two types of delete operations: delete without condition and delete with
condition. The delete with out any delete c onditi on deletes all records from a table,
whereas the delete with conditi o n deletes a set of qualified records from the table. In
the second type we see that a delete operation includes a data access operation to
locate the records to be removed. This makes the delete statement more expensive in
terms of I/O costs than the select statement, because it needs a search for the records
before it can remove them.

Delete operations can violate referential integrity, this happens when the record to
delete is referenced by foreign keys. Three options are available, to keep atomicity,
when a delete causes a violation. The first option is to reject the deleti on. The second
option is to attempt t o cascade (or propagate) the deletion by deleting records that
reference the record that is being deleted. A third option is to m odifj; the referencing
attribute values that cause the violation; each such value is either set to null or
changed to reference another valid record. Note that, if a referencing attribute that
causes a violation is part of the primary key, it cannot be set to null ; otherwise, it
would violate entity integrity.

2.2.3. UPDATE Operation

As for both other update operations we give the Update statement syntax.
UPDATE tablename
SET column = {expression I nu l l} { , column = {expression I nu l l}}
[WHERE search_condition]

The update operation changes information in existing records of a given table. It
replaces the values of the specified attributes with the values of the specified
expression for all records of the table that satisfy the search _ condition.

Modifying the values of an attribute that is neither a primary nor a foreign key
usually causes no problems; the DBMS need only to check that the new value is of
the correct data type and domain. Modifying a primary key value is similar to a
delete operation followed by an insert operation, because we use the primary key to
identify the records. Hence, the issues discussed under both Insert and Delete corne
into play. If a foreign key attribute is modified, the DBMS must make sure that the
new value refers to an existing record in the referenced table.

Note, that only one table can be object of the Update statement. The limitation of
the Update statement, compared with Insert statements, is that we can not compute
values using references to other tables.

04.09.1996 Database Performance Tuning 46/162

2.3. Data Macro Operations

Transactions, also known as macro operations are contain a sequence of data
access and/or update operations. Their execution reflects also the property of
atomicity, such as if the database had been in a consistent state before execution, it
still is after execution. However it is possible that within the sequence of operations
integrity constraints are violated. This mechanism allows us to create high level
operations, insuring the respect of integrity constraints. The macro operations play
also the role of integrity operations in case of-incident and/or concurrency.

As macro operations are composed of various data operations, we might split
them into their elements without great effect on our future reasoning. Within the
scope of this paper we shall not examine in more details data macro operations.

04.09.1996 Database Performance Tuning 47/162

Chapter 3. Data Access Structures

Computers have been getting faster and cheaper during the last decades. A
relatively inexpensive computer today can execute program logic with CPU at a rate
of 25 million instructions per second (25 MIPS). Of course different instructions take
different execution delays, but this rate is a rough measure of the average speed for a
"standard" mix instruction set.

The data structures of a database often influences the way the data and access
structures are stored upon physical devices. There exists a wide range of direct access
devices, like magnetic hard disks, drums and/or optical disks. For simplicity, we use
the term disk to denote all those devices and assume that the whole database fits on a
single disk.

Disk access speed, though an extremely important aspect of database system
performance, has not kept pace with the enormous improvements in CPU execution
speed. A disk is a rotating magnetic recording device, with several platters stacked
one above the other moving at the speed of 60 rotations23 per second (rps), and a disk
arm that moves in and out like an old-style record player arm. The disk arm
terminates in a set of read-write heads that sit on the surfaces of the various platters.
As the arm moves through its range of positions, the heads all move together to
address successive concentric cylinders of data, made up of circles or tracks on the
stacked set of surfaces. A track is broken up into a sequence of blocks. In order to
read or write data on disk, the arm must first move in or out to the appropriate
cylinder position, then wait for the disk to rotate until the appropriate block is just
about to pass under the read-write head. At this point the disk head reads the data
from a sequence of blocks. A disk access cost usually includes three phases, based on
its physical components:

� Seek time. The disk arm moves in or out to the right cylinder position.
� R otati onal latency. As the disk rotates the read-write head has to wait until the

right block of data passes by.
� Transfer time. The disk arm reads or writes the data on the right disk surface.

Because disk accesses require physical actions, the time needed to read in a
random piece of data is important, about 1/40 of a second. This is usually divided
into the three phases as follows.

04.09. 1 996

Seek time:
Rotational time:
Transfer time:

0 ,01 6 seconds
0,008 seconds
0,001 seconds

23 A new rotation speed of 90 rps is becoming the standard, but we assume 60 rps in what follows.

Database Performance Tuning 48/162

The seek time is highly variable, depending on the starting position of the disk
arm and how far the arm has to move to the corresponding cylinder . If two
successive reads from disk are physically close to one each other, the seek time might
be very small . The average seek time of 0,0 16 sec is based on a model where
successively accessed pieces of data occur with equal likelihood at any cylinder
position between the two extreme disk arm positions . The average rotational latency
time takes about half a disk rotation time at 60 rps. This average value assumes that
the start sector can be anywhere on the track after the disk arm seek is completed.

Once the data has been brought into memory, it can be accessed by an instruction
in 0,04µs by a machine with a speed of 25 MIPS. The disparity between time for
memory access and disk access is enormous: we can perform about 650.000
instructions in the time it takes to read or write a disk page. Clearly we want ta avoid
performing more disk reads than are absolutely necessary.

As the disk represents the latent cost in the search for data it is helpful to
understand how the database designer can model, tune or use data allocation
parameters and data access structures to speed up data retrieval.

04.09.1996 Database Performance Tuning 49/162

3.1 . Physical Data Al location Parameters

3.1 .1 . Page Oriented Transfer Mode

Considering the overhead time for each disk seek, the data read should be of a
certain size. It takes very little time for each additional byte retrieved, because most
of disk access time was spent by moving the arm on the right position. Once the arm
is on the right place, the transfer rate is millions of bytes per second. As a result, we
see that all disk accesses are "page-oriented ", a page I/O is a long contiguous
sequence of bytes : 2 Kb, is the standard page size for database systems running on
UNIX, while 4 Kb is the standard on IBM mainframes.

3.1 .2. Assumptions about I/0s

Recall that a random disk access on a normal disk takes an expected elapsed time
of approximately 0,025 seconds (1/40 of a second). But that does not mean
necessarily that N successive (1 4.000R) random page I/Os require a total elapsed time
of N/40 (14 .000R/40 = 350 seconds) seconds. It is quite possible that these N (1 4.000)
pages could be spread out over separate disks (say 1 0) and the system could then
enlist the service of all disk arms moving concurrently, so that each disk reads only
uses a fraction of all pages (1 400R pages per d isk), in a fraction of the elapsed time (35
seconds). This approach of multiple disk arm acting simultaneously in an execution
plan of a query is known as I/0 parallelism.

The feature of I/O parallelism is nowadays offered by a number of database
systems. Technologies such as stripping offer the faculty of stripping data pages
across several disks. For example, page 1 on disk 1, page 2 on disk 2, ... , page 1 1 on
disk 1, page 12 on disk 2, and so on, with the N th page lying on disk ((N- 1) MOD 1 0) +

1 . When stripping the pages this way, the system reading successive pages from a
table can make multiple I/O reads and thus keeping all involved disk arms busy most
of the time. Since we can easily predict future tablespace page requests when
performing a table scan, we merely need an architecture that supports stripping,
translating logical page addresses into disk addresses on multiple disks and passing
I/O requests to the appropriate device. This is pretty easy to implement, since
allocated extents in such a stripping architecture must span multiple disks in a well­
defined way.

Note that disk stripping does actually not reduce the number of disk accesses, we
require the same total number of random 1/0, even though the workload is splited
upon separate disk devices. With parallelism we surely obtain better response times
for query, they reducing wasted time and turnover caused by the frustration of
waiting for the query responses. Despite, I/O parallelism still gains in importance in
database systems, we generally assume that we are dealing with sequential I/Os.
Where one I/O request must be completed before a second request is made during
query execution.

04.09.1996 Database Performance Tuning 50/162

Sequential I/Os has many tricks to offer, like the mutli-b/ock access, that will
actually save a large amount of disk accesses during query execution. We will have a
look at multi block access in chapter 4.

Next to the mutli-block access there exists another kind of access technique,
known as the list prefetch, in which the disk controller is given a list of pages,
usually 32, that need to be read into memory buffers. However the pages are not
necessarily in contiguous sequential order as with mutli-block access. With the
technique of list prefetch, the disk arm is programmed in advance with the most
efficient way to perform successive reads, so that the I/Os occur in a much more
efficient way than they would with random I/0 requests. The elapsed time for a list
prefetch access can not be smaller than the elapsed time for a mutli-block access, as
this represents the optimum for disk accesses. The actual speed, for a list prefetch, is
determined by how far apart the pages are on disk, but as a rule of thumb we can
assume that the list prefetch proceeds at 100 I/Os per second. For future I/0 cost
estimations we use the approximate time rates given in figure 3 . 1. Although these are
rather rough figures, they usually give reasonable good cost estimations.

Random 110 Mut/i-b/ock access //0

40 pages/sec 400 pages/sec
figure 3. 1 . : Ru/es ofThumbfor 1/0 Rates24

3.1 .3. Page Buffering

List Prefetch 110

1 00 pages/sec

As disk access is very slow compared to memory access. It is worth, after bringing
in a disk page to memory buffers, to make every attempt to keep it there in the hope
that it will be referenced again in the near future. Once the page is in the buffer we
will save disk I/Os.

24 [O'Neil 19994]

04.09.1996 Database Performance Tuning 51/162

To support buffering, the system uses an approach known as lookaside, which
allows the system responding to a disk page read request to first try to hash to an
entry for the page in the l o okaside table [O'Neil 1 994]. The technique of lookaside
works as follows: The system reads disk pages through an interface which provides
the disk page address, dp, and brings the data page into memory buffers. The dp
values might be a logical succession of integers or a construction from the device
number, cylinder, surface and starting sector position of the page on disk. Each page
that is read in has its disk page address hashed, h(dp), into small entries of the hash
lookaside table, which points to the buffer slot where the page is located (see figure
3.2.). From this point pn, every time a new page is to be read we start by hashing the
disk address and look in the hash lookaside table to see if the desired page is located
in the buffer. If it is so then the system skips the disk access. The pages we want to
keep in the buffer are the ones that are the most 'popular'. This can be accomplished
with a method known as Least Recently Used, LRU, buffering. The idea is that
database pages that have been read from disk into the buffer will remain there until a
new read page requires the space and all buffer pages are occupied. At this point, the
pages that have not been referenced for the longest time are dropped from buffer to
free some space.

Hash Lookaside Table

h(dp) __

Memory Buffer (page size slots)

- --+----+- -[�
�l· Tl-

figure 3.2. : Disk Page Buffering and Lookaside Hash Table25

Just as we want to keep pages in memory to be read over and over by different
data access operations, we do not want to write back pages to disk every time it is
updated by some operation. If it is a popular page for update, containing a set of
records with bank branch balances for example, we might be able to allow hundreds,
or even thousands, of updates without writing back to disk the page in question.
Instead we generally allow popular pages to remain in buffer until either they become
less popular and drift out of buffer on their own because LRU needs their buffer
place, or else we force them to be written back to disk after some period of time has
passed.

Most systems allow you to define buffer sizes during system initiation, therefore
the buffer size is a helpful tuning parameter.

25 [O'Neil 1994]

04.09.1996 Database Performance Tuning 52/162

As mentioned, the purpose of the buffers is to reduce the number of physical
accesses to disk. The impact of the buffers on the number of physical page 1/0s
(physical accesses) depends on three major parameters26.

� Logical read and writes. These are the pages that the system accesses via
system read and write commands. Sorne of these pages will be found in the
buffer, while others will initiate physical reads or/and writes.

� Data base system page replacement strategy. These are the physical accesses to
a disk, when a page must be brought into the buffer and there is no free page.
You ensure that the page replacement occurs rarely, by increasing the number
of asynchronous paging daemons which write committed pages to disk [Shasha
1992].

� Operating system paging. These are physical accesses to disk (swap disk) that
occur when part of the buffer space lies outside random access memory. Y ou
should ensure that such swapping occurs rarely.

Assuming that swapping and page replacements occur rarely, the important
question is how many logical disk 1/0s become physical disk !/Os when I access
data? We call this the hit ratio, defined by the following relation :

H IT RATIO = (Nal - Nap) / Nap
where

Nal: number of logical accesses
Nap: number of physical accesses
relation 2. 5.: Hit ratio

The hit ratio is the number of logically accessed pages found in the buffer divided
by the total number of logically accessed pages.

By varying the buffer size you can directly influence the number of pages that can
be hold in the buffer, the hit ratio varies therefore in correspondence with the buffer
size, hence the number of physical I/Os varies also.

According to [Shasha 1992], increasing the buffer size is beneficiary to access
pe1formances, as long as the buffer can be hold entirely in central memory.

The best strategy, in buffer tuning, is to increase the buffer size until the hit ratio
flattens out, while making sure that page replacement and swapping are low. Sorne
systems, like ORACLE, offer utilities that will help you to find out what the hit ratio
would be when varying the buffer size.

Other systems, like DB2, give the possibility to dedicate a database buffer to some
application X and a second one to other application Y. This feature is surely
interesting in case where application X has higher response time requirements, than
the application Y. And when both access different sets of data. However, if all
applications have basically the same requirements, a rule of thumb is to use only a
single memory buffer.

26 [Shsha 1992]

04.09.1996 Database Performance Tuning 53/162

Note, that the buffer technique has dangers. As memory buffer is volatile, imagine
the sudden loss of power or a system crash. Sorne of the pages on disk might be
terribly out of date, because they were so popular that they have not been written out
from buffer during the last thousand updates that took place. If all those updates
existed only in memory, then it would seem they are now totally lost. How can we
handle this problem, and be able to recover these lost updates, without going back to
the approach of writing out every update as soon as it is committed?

The answer is that all systems use redo log entries, each time an update occurs,
the system writes a note to itself into a memory area known as the redo log buffer.
The log entries contain information about updates to remind the system how to
perform the update once again, or to reverse the updates if the operation involved
needs to be aborted (atomicity of update operations). At appropriate times the log
buffer is written out to disk, into a sequential file known as the redo log file, that
contains all the log entries created for some interval of time into the past. In this
way, if memory is lost at some point, the recovery process will be able to use the
sequential log file to recover updates of records that are out of date on disk. One
reason that this log method is preferable to writing out each update, as it happens, is
that it is more efficient, the system only needs to write the log buffer out to disk at
infrequent intervals, it is usually able to batch together a large number of page
updates and thus save disk I/Os.

3.1 .4. Tablespaces, Segments and Extents

Although we will not the internai details of data resource allocation, we try to
give an idea of aspects and considerations that can arise, based upon [ORACLE 7.0].
Most commercial database systems deal with data allocation in similar way, even
though the details can be different.

04.09.1996 Database Performance Tuning 54/162

Before creating a database, you might start by allocating a large number of
operating system (OS) files on disk, with names like fname1 , fname2, and so on.
These are ordinary sequential files, such as those that you encounter when you edit
text. Various OSs give you the ability to specify the size of the file in bytes and the
disk device on which the file is allocated. Note that we consider disk storage as being
contiguous when it consists of sectors on disk that are as close together as possible27 .

Keeping disk space contiguous minimizes seek time, and most systems try to allocate
space to file in long contiguous chunks. At the same time, most OS files do not have
the flexibility to span disk devices. Given these files, you might use a system
command to create tablespaces. A tablespace is the basic allocation device of
ORACLE database, out of which tables and indexes, as well as other elements
requiring disk space, receive their allocations. A tablespace corresponds to one or
more files and can span over one or more disks. Many ORACLE databases contain
several tablespaces, including the SYSTEM tablespace, which is automatically built
when the database is created. The system tablespace contains the data dictionary and
may also be used to provide disk space for user defined indexes, as well as other
elements. It is up to the database administrator to decide whether to create multiple
tablespaces or not. The advantage of multiple ones on large systems is to have a
better control over which devices are used for what purposes, and the ability to take
some disk space off line without bringing clown the whole database.

When a table or and index is created by the DBA, you have the possibility to
name the tablespace, otherwise a default tablespace is used. When a table is created,
its tablespace allocation is identified with a data segment, in case of an index, it is
identified with an index segment. When a data or index segment is first created, it is
allocated to an initial extend. Each time a data segment cornes close to running out
of space, it is given additional allocation of space, known as a next extent. Figure 3.3.
gives a graphical representation of the logical structures just explained above.

figure 3. 3. : Data base Storage Structure28

Database

Tablespaces
made out of
OS files

Tables, indexes, etc . . .

Segments

Extends

An extend must consist of contiguous disk space, and is therefore usually within a
single file making up a tablespace. The creation of a tablespace allows you to specify
default parameters, governing how space allocation of disk extents is to be handled
by the database system. Here below is a short description of these parameters.

27 Successive sectors on successive surfaces of a cylinder within a succession of adjoining
cylinders.

28 [ORACLE 7.0]

04.09. 1 996 Database Performance Tuning 55/ 1 62

� initial n. The integer n specifies the size in bytes of the initial extent to be
assigned.

� next n. The integer n specifies the size in bytes of the next extent numbered 1 ;
the size of subsequent next extents may increase (but not decrease) if a positive
pct-increase value is specified.

� maxextents n. Specifies the maximum number of extents, including the initial
extend, that can ever be allocated.

� minextent n. Specifies the number of extents to be allocated initially when the
segment is created.

� pctincrease n. Specifies the percentage by which each successive next extent
grows over the previous one. IA value of 0 means that there is no increase,
whereas a value of 50 causes successive next extents to grow by a factor of one
and a half over the preceding one.

In case many queries tend to scan (large) portions of a table, it seems reasonable
to specify sector-sized or larger-sized extents for good read performances . Write
performance can also be improved by using extents. For example, redo logs and
history files will benefit significantly from the use of extents. If access to files is
completely random, then small extents are better, because small extents give better
space utilization, due to contiguous space allocation.

3.1 .5. Pctfree, Pctused and Fi l l Rate

The CREAT table command allows us to specify two more data allocation
parameters, the pctfree and pctused parameters [ORACLE 7.0]. The pctfree and
pctused clauses together determine how much space within each page can be used for
new record inserts.

The pctfi·ee value must be an integer from 0 to 99, where a value of 0 means that
all space can be used for new inserts. A default value of 10, means that new inserts in
the page stop when 90% of the page is full. The remaining 10% of space are used for
future record size expansions.

The pctused value, is an integer from 1 to 99, specifies where new inserts to a
page will start again if the amount of space used by stored records falls below a
certain percentage to the total. The default value is 40.
Data Page

pctused

Space used for record size expansions
of existing records
�----� �--►

pctfree

- - - - -� -- - - �
New inserts until used space
reaches (100 - pctfree)

'-clc-----
New inserts start again alter
used spaces fall under pctused

figure 3.4.: Illustration of pctfree and pctused29

29 [ORACLE 7.0]

04.09.1996 Database Performance Tuning 56/162

Note that the sum of pctfree and pctused values can not exceed 100. Together they
determine a range in which the behavior with respect to inserts on the disk page
remains stable, depending on the last percentage value encountered. Figure 3.4.
illustrates the concept of pctfree and pctused.

In some other systems, like INGRES, there are no parameters such as pctfree and
pctused. They have a parameter called the Jill rate or Jill factor. It is comparable to
the pctfree parameter in ORACLE, except that where pctfree gives the percentage of
space that should remain unused during initial creation of the table, the fill rate
defines the percentage of space that should be filled. For the rest of the paper we will
refer to the fill rate of data pages.

Using the fill rate, we are able to define the number of records that can be hold in
a page. It is a direct fonction of the page size, the record size and the fill rate. For
purpose of simplicity we consider that the record length is fix30 .

where

Nrp: Number of records per page
Ps: Page size
Hs: Page header size
fr: fill rate
Rs: Record size
relation 2. 6.: Number of Records per Page

Assumed that a page only contains data abjects of the same type. System like
ORACLE, however allow multiple data object types per page. Relation 2.7.
generalize relation 2.6. according to the different object types and the balanced
average record size for all objects. Relation 2.7. brings into play the proportion of
place used by the set of different data abjects.

Nrp = l_N_a *_Rs_ JPs - Hs) * fr 1

� Nai * Rs Rs
j

where

i E{data object types present in the page}
Nrp: Number of records per page
Na: Number of records of a certain type
Ps: Page size
Hs: Page header size
fr: fill rate
Rs: Balanced Average Record size
relation 2. 7.: Number of Records per Page for Multiple data abjects

Note that if all data abjects within the page are of the same kind then relation 2.7.
simplifies into relation 2.6 ..

30 If the lenght is variable, we take the average length of the records.

04.09. 1 996 Database Performance Tuning 57/ 1 62

3.1 .6. Data Pages and Record Pointers

Once a table has been created and the initial extend of disk storage allocated, we
are ready to load or insert data into the table. In a typical data architecture for record
placement, records are simply inserted one after another on the first page of the first
extent. After the first page is all used up the next collocated page is used. When the
initial allocated set of pages gets full, the DBMS allocates a new extent and
continues its process until the maximum number of extend is reached.

Figure 3.5. gives a graphical representation of a typical data storage page layout
for N records . The header info section might contain fields to show what type of disk
page it is, the number of the page within the database file, and so on. Each record is a
contiguous sequence of bytes, starting at a specific byte offset within the page3 1 .
Entries in the record directory point the record within a page and give the page offset
to where each record begins .

We assume that newly inserted records are placed right to left in the page, and
directory entries from left to right, leaving free space for future inserts in the space
between . This implies that if a record is deleted from disk page and its space is
reclaimed, then the remaining records are shifted to the right and the directory entries
to the left, so that all free space remains in between. However, systems like
ORACLE can defer shifts, reorganizations ofthis kind .

Free Space �H d
J

i Reco

•

rd Di
.
rec

..

tory
1 ea er r11--1---i -7 , lnfo _ � _1 _ � . _ :._ 1_N_ 1
·�----�

figure 3.5. : Record Layout on a Disk Page

Data Records
l Row N '.,· Row N-1l

------�--,---�

A record in the database table can be uniquely identified by its rec ord p ointer
(RI D), this specifies the data page on which the record appears and the slot number of
the record within the page. This is how indexes will use references to point the
records that correspond to a given index attribute value. It turns out that we gain
flexibility by pointing to a record using l ogical slot numbers within pages, because of
the information hiding that takes place. If RID pointers use record byte offsets the
system needs to change the index RID pointers in case where records are moved
during reorganization. Therefore using logical slot numbers in record pointers,
implies that external index references to records remain unchanged during
reorganization.

Note that the concept of record pointers is not part of any standard, however the
general form explained up here is very common [O'Neil 1 994] .

3 1 Note that because ofvarchar(n) datatypes, the records might have different lengths.

04.09.1996 Database Performance Tuning 58/162

In DB2 and INGRES32, the record pointers encode the table page number and slot
number into a 4 byte integer. Successive pages allocated to a table are assigned a
page number, P, ranging from 0 to 223- 1, requiring 23 bit positions, a maximum of
8.388.608 pages. We allow at most 5 12 records per page, so that a slot number, S,
ranging from 0 to 5 1 1 can fit on 9 bits. A record pointer is computed from the page
number, P, and the slot number, S, for the particular record using the following rule :
RIO = 5 1 2 * P + S

For example, the RIO value for a record with slot number S = 4 on page P = 2 a
RIO value equal to 2 * 5 1 2 + 4 = 1 028. The slot number within a page is not permitted
to exceed the value 5 1 1, so the relation for a RIO is always unique for records on
different pages. The slot number fits in 9 bits and the page number in 23, so the RIO
always fits in 32 bits, a 4 byte unsigned integer.

In ORACLE33 , a record pointer34 specifies the page (block) number on which the
record falls, the slot number within the page, and the number of the file within which
the page exists. Multiple blocks can have the same page number within different files
making up a tablespace. A record pointer requires 6 bytes of storage in a unique
index. The record pointer can be displayed as a string of three hexadecimal numbers,
like : BBBB.SSSS. FFFF. Where BBBBBB represents the page number within the file,
SSSS the slot number, and FFFF the file number.

Until here we assumed that a record can not extend over several pages, but we
know that different systems use different rules about whether records can extend over
pages. In DB2, the maximum record size is limited to the largest page possible, and
each record lies entirely in a single page. Pages and buffer sizes of 4Kb and 32Kb are
possible, although the 4 Kb size is much more common. INGRES allows a record
size up to 2.000 bytes and each record lies on a single 2Kb page. However, ORACLE
allows records to split between pages. If a record on a page grows to a point where
no free space remains, then the record is splited. lts record pointer remains the same
and it leaves a record fragment in the original slot position on its original page, but a
pointer at the end of that fragment points to the RIO of the continuation fragment. The
continuation part is placed, just as a record is placed, on a new page with a slot
position and a record pointer.

04.09.1996

32 According to [O'Neil 1994]
33 According to [O'Neil 1994]
34 A record pointer is called ROWID in ORACLE database system.

Database Performance Tuning 59/162

Clearly, we would like to avoid fragmentation of records whenever possible . In
ORACLE we minimize fragmentation by leaving extra free space on each page with
the pctfree parameter to handle most record enlargements . However, since ORACLE
permits records that cannot fit on a single page, extra free space on a page is not a
general solution . When in DB2 and INGRES a record grows to a point that it can not
fit anymore in its original slot together with neighboring records on the same page, it
is moved entirely to a new page . A certain kind of fragmentation exists in at this
point. A RIO forwarding pointer must be left on the original page, because we don't
want to change all index entry RIO pointers to the new record position . Fragmentation
arising from forwarding pointers often results in performance degradation and
database reorganization.

3.1 .7. Disk Contention

Let us first explain the concept of disk contention. Disk contention occurs when
multiple processes try to access the same disk space simultaneously . Most disks do
have limits on both the number of accesses and the amount of data they are able to
transfer per second. When these limits are reached, processes may have to wait to
access the disk space .

To reduce the activity on an overloaded disk, we can move one or more of its
heavily accessed files to a less active disk . This principal of distributing I/O over
disks can be applied until all disks have roughly the same number of I/Os .

Within the scope of this paper we shall not explain in more details the concepts of
distributing I/O. We will nevertheless give some guidelines for distributing I/O
among several disks [ORACLE 7.0].

04.09. 1 996

� Separate data files and redo log files on different disks. The DBMS
constantly accesses data files and redo log files . If it happens that these files are
located on the same disk, there is a potential for disk contention .
It is helpful to place each data file on a separate disk, so multiple processes can
access concurrently different files without disk contention .
Note that the redo log files are sequentially written each time a transaction is
committed. The sequential writing can take place much more faster if the redo
log files are located on separate disks with no concurrent activity. According to
[ORACLE 7.0] mirroring the redo log files, or maintaining multiple copies of
the files does not considerably slow clown the writes, as they are clone in
parallel to each disk and that the system waits until the parallel write is
completed. However, dedicating separate disks and mirroring the redo log files
considerably increased the security. The same way, dedicating separate disks to
data and redo log files ensures that both files cannot be lost in a single disk
failure .

� Stripping table data on different disks. Stripping is the practice of dividing a
large table into small data sets and storing them on different disks . This permits
multiple processes to access different portions of the table concurrently without
disk contention. Stripping is particularly helpful in optimizing random access
to tables with many records.

Database Performance Tuning 60/ 1 62

04.09. 1 996

� Separate tables and indexes on different disks. When knowing which of the
database structures are often accessed, it is helpful to place these database
structures on different files on different disks. This separation distributes the
I/O to the table and the index across separate disks.

� Reduce disk 1/0 not related to the DBMS. If possible, the database
administrator should eliminate disk I/O not related to DBMSs on disks that
contain the database. This action is helpful in optimizing access to redo log
files.

Database Performance Tuning 6 1 / 1 62

3.2. Physical Data Access Structures

When an SQL query, like those that we have seen in chapter 2, is submitted to a
database system, a software module known as the optimizer analyses the non­
procedural prescription of the query to determine an efficient step-by-step method to
retrieve the qualified records. Throughout this section we give the foundation of
index tuning, by learning how indexes are structured and how query effectiveness
depends on the existing indexes.

3.2.1 . The Concept of l ndexing

An index is a data access structure whose purpose i t is to improve the efficiency
of data retrieval by using a keyed access retrieval method. The indexes we are going
to talk about have some familiarity with memory-resident structures that support look
ups, such as the binary tree, 2-3 tree, and hash tables. The difference, however, is that
our indexes reside on disk and are only made memory resident when they are
accessed.

An index consists of a sequence of index entries that are stored on disk, one index
entry for each indexed attribute value. The indexed attribute(s) value(s) and a record
pointer(s) (RIO) compose the index record. The index entries are placed on disk, in
sorted order by index key values (although hashed access is also possible), and are
used by the system to speed up certain Select statements. Standard look ups using
indexes, locate a set of index entries for a given key value or range of key values.
And follows the RIO pointers to its associated data records. The fact that the index
normally resides on disk has an important effect on index structures as we will see.

Y ou can best picture out an index to a table by analogy to a card catalog in a
library, indexing the books on the shelves in various categories. One set of cards in
the catalog might be placed in alphabetical order by subject name (several subjects
are possible) another set of cards might be placed in alphabetical order by author
name. Each card in the catalog contains a call number to locate the book indexed, so
that once we find a catalog entry for a book with the title "Database Tuning: A
Principal Approach", we can immediately locate the book on the shelves. Now,
returning to the discussion about indexes, let us try to figure out what might happen
when the system receives the following query.

SELECT *
FROM T1
WHERE A1 = 'Namur' AND A2 > 1 2 AND A2 < 1 4;

The query optimizer has now to decide how to access the requested records from
table T1. One alternative that always exists is to perform a table scan, in which we
successively accesses all records and discards the ones that do not satisfy predicate
A1 = 'Namur' AND A2 > 1 2 AND A2 < 1 4. Sequential examination of the records is rather
quick when we have a small sized table, or when selectivity is poor. This will be
examined later on, when we describe the problem of index indecision.

04.09 . 1 996 Database Performance Tuning 62/1 62

However, consider that we have a large sized table T1, a good filter factor of
predicate A1 = 'Namur' and that there is an index A1 X defined upon attribute A2. In this
case, we probably decide first to locate records with predicate A 1 = 'Namur' , using the
index A1 X. We can presume that the total number of records accessed is greatly
reduced while limiting the query to the records having A1 = 'Namur' . However, we
still have to check the retrieved records for the remaining predicate A2 > 1 2 AND A2 <

14. All in one we can consider that the index reduced our search for the qualified
records.

3.2.2. B-Tree I ndex

Almost all commercial products support the index structure known as B-Tree. It is
the only index structure available in DB2, and it was the only one provided by
ORACLE until release 7, when a facility known as hash cluster was added. INGRES,
on the other hand, has offered a wide set of different tree index structures for some
time. It should be said that B-Tree provides a good deal of flexibility for different
types of indexed access, and systems like DB2 implemented special features, such as
mutli-block access I/O, that make the B-Tree competitive in performance for many
types of queries.

A B-Tree is a multilevel keyed index structure, with a root page at the top and the
leafpages at the bottom, like in figure 3.6 .. We refer to all nodes above the leaf level,
including the root, as index n odes. Index nodes below the root are sometimes called
interna! n odes of the tree. The root node is also known as level 1 of the B-Tree, and
successively lower levels are given successively larger numbers, with the leaf nodes
at the highest level (level 3 in figure 3.6.). The total number of levels is called the
deptlt of the B-Tree. Using this structure we can find our way down to any leaf level
entry by first reading in the root page, then finding our way to successive internai
pages, which ultimately directs us to the appropriate leaf page. We then examine the
leaf page to find the leaf level entry we want, assuming that it exists. In figure 3.6.,
this means that we require a maximum of three I/Os to access the desired index entry,
much fewer than a binary search as we will see. The leaf nodes are usually linked
together to provide ordered access, on the indexed attribute, to the records.

Note that a binary search requires I Log2 n 7 to access the requested data, where n is
the number of index nodes at leaflevel. Assume that we have 1.000.000 entries at the
leaf level, each entry has a size of 8 bytes (4 bytes for the RID and 4 bytes for the key
value35). Ignoring pages overhead, the number of entries that can fit on a page is at
most L2.048/8J = 256. So we get a total of 11.000.000/256 7 = 3.907 leaf page. The
cost for the binary search is I Log2 3. 907 7 = 1 2 accesses, whereas the number of
accesses throughout the B-Tree is three.

35 This size is appropriate for an integer key value, however it could be much more for a character
string index or for a composed index.

04.09.1996 Database Performance Tuning 63/162

Raat Level Nade

Level 2 Nades

Leaf Level Nades

Data File

figure 3. 6.: Illustration of a Three level B-tree structure

The relative I/0 efficiency of a B-Tree over a binary search results frorn the fact
that the B-Tree is structured in a way that gets out the rnost of every page access .
Each index entries references a lower-level node page. For our exarnple sorne 256
low-level pages can be referenced, whereas during binary search only two nodes are
referenced. If we look at the tree of page accesses resulting frorn a binary search, we
notice that the B-Tree is bushy, whereas the binary search tree is sparse . The B-Tree
is flatter as a result, because we can reach as rnany as 2563 leaf pages in a three level
tree. The B-Tree is said to have fanout of 256, cornpared to the fanout of 2 for binary
search. The leaf pages have their own fanout, with 256 entry RIO pointer values
painting down to index records. The records of the table can be pictured as another
level lying below the leaf level of a B-Tree .

If we assume a B-Tree with a fanout of f, we can reference N entries at leaf lev el in
1 Logf N l probes. Thus with the fanout of 256 we have been assurning, we can access 1
million leaf level entries in I Log256 1 . 000.000 l = 3 probes cornpared to the 12 due to
binary search . It is likely that frequently used nodes will rernain in rnernory buffer, as
a rule of thurnb we can say that the root node always stays in memory buffers, this
reduces the nurnber of probes to two. It can happen that even the second level, with
its 16 nodes, rernains in rnernory, after all the proportion of space used is quiet srnall
cornpared to the 3 .907 nodes for the leaf level, this would reduce the nurnber of
accesses to one . But problerns occur when a lot of indexes corne into play, than it is
possible that space usage could increase a lot.

A nurnber of other access structures, such as hashing, also offer performance
advantages for certain SQL queries . However, the B-Tree is the rnost cornrnonly used
index type in database today . What we call B-Tree in this paper is precisely known as
B+ -tree, and represents a more recent variation on the original published B-Tree
structure . The difference between both is, that in B-Tree, every value of the indexed
attribute appears once at sorne level in the tree, along with the RIO pointer [Elrnasri
1994]. On the other hand, in B+-tree, record pointers are stored only at the leaf nodes,
hence the structure of the leaf nodes is different to the one of interna! nodes. The leaf
nodes, in case of a key attribute, have an entry for every value of the indexed
attribute . For a nonkey or a seconda,y key attribute, the RIO pointer points to a page
containing the record pointers (RIO), thus creating an extra level of indirection .

04.09.1996 Database Performance Tuning 64/162

3.2.2.1 . B-tree Definition

This section gives a formal definition of the B-Tree structure [Date 1990] :

The internai B-Tree page structure of order p is defined as:
1 . Each internai page is structured l ike:

<P1 , K1 , P2, K2 , . . . , Pfo-1 , Kfo-1 ,Pfo,>

where
Pi is a po inter to an internai index page
Ki is a indexed attribute value
fo is the possible number of entries on an internai page.

2 . With in each internai node
K1 < K2 < . . . < Kfo-1 or K1 > K2 > . . . > Kfo-1
depend ing on the order defined du ring index creation.

3. For al l search field values X in the sub-tree pointed at by P i , we have Ki-1 < X � Ki for
1 < i < fo, X � Ki for i = 1 , Ki_1 < X for i = fo. 36

4. Each internai page has at most p index page po inters.
5. Each internai page , except the root, has at least lfo/27 index page po inters. The root

page has at least two po inters if it is an internai page.
6. An internai page with fo pointers, has fo-1 search field values.

The B-Tree Leaf Page Structure of order p, is defined as:
1 . Each leaf page has the fol low ing structure

< <K1 , R ID1 > , <K2, R ID2> , . . . , <Kfo-1 , R IDto-1 > , Pnext>

where
R ID i is a record pointer
P next po ints to the next leaf page of the B-Tree
fo is the possible number of entries on an leaf page

2. Within each internai node
K1 < K2 < . . . < Kfo-1 or K1 > K2 > . . . > Kfo-1
depend ing on the order defined during index creation.

3. Each RI D i is a record pointer that points to the record whose search field value is Ki or
to a fi le page cèntain ing the record_ in case of where the indexed attribute is a key.
Otherwise, when the index attribute is not a key then the pointer references a page or
RIDi pointers.

4. Each leaf page has at least Lfo/2J values.
5. all leaf nodes are at the same level.

Figure 3.7. gives a graphical representation of the B-Tree structure.

36 The definition follows the one give by Knuth. One can define the B-tree differently by
exchanging the < and � symbols (Ki- 1 � X < Kj, X < Ki, Kj. } � X), but the principal remains the
same.

04.09. 1 996 Database Performance Tuning 65/ 1 62

Internai Page

index pointer

X

Leaf Page

1 Header r P 7 i 1 � . . . RID 7 l lnfo L next.Ul_ 1 J
1

_ � , ___ __ -r - i-
" l'

pointer to next record
leaf page in B-Tree pointer

I
�� ·--, !_-__ -l_- -__ -1 -- ·· - ��o-: T_ F_r;e-- ···- ­l_� _l�� - - .-_L

K
_, _L�R'-�-; : _ _ ._L

__
r_c:J_-�l�:"�c�

-
-- -�

l l l
record
pointer

record
pointer

record
pointer

figure 3. 7.: The pages of a B+-tree of order p: Internai node and leaf node representation3 7

3.2.2.2. Fan out and Depth of the B-Tree

The depth of a B-Tree bears close relationship to the number of disk I/Os used to
reach the leaf-level page, where record pointers are kept. It is common to estimate the
fanout at each level, where the fanout, fo, represents the expected number of records
that can appear in each node. Assuming that there are fo entries for each index page,
the number of possible entries at the second level is equal to fo2 , the possible number
of entries for the third level is equal to fo3 , and so on. For a tree of depth d, the
number of possible leaf page entries is tod, when we assume that all index pages can
hold up to fo entries. Putting this a different way, if we want to build a B-Tree with
entries for N r attribute values, we need to have an index of d levels:

d = 1Logto(N r)l
with
fo: Fanout of index node pages
Nr: Number of values to be indexed
relation 3.1.: Depth of a B-Tree

The depth of the tree bears a logarithmic relationship to the number of values to
be indexed. The depth d is then taken to be the number of I/Os, that must be
performed to locate an attribute value entry at leaf page level. However, it turns out
that both of these statements are misleading, because of buffering. It is common to
consider that an active B-Tree of depth three has the root page buffered, so the
effective number of I/Os to locate an entry is two, rather than three.

37 [O'Neill 1 994]

04.09. 1 996 Database Performance Tuning 66/ 1 62

Note, that when creating an index, it is usually more efficient to first load the table
with the initial set of records and then to create the index. This is advantageous
because the creation process first extracts the index entries, then sorts them by key
values, and finally loads them into the leaf pages. This process is extremely efficient
compared to the dynamic reorganization of the B-Trees structure. The nodes of the
B-Tree are loaded in a left to right fashion, so that successive inserts normally occur
on the same leaf page, held constantly in the buffer. When the leaf page node splits,
the successive leaf page is allocated from the next disk page of the allocated extent.
Nocle splits at every level occur in a controlled way and allow us to leave just the
right amount of free space on each page. On the other hand, as records are inserted
after the initial index creation, this normally results in B-Tree entries that are inserted
to random leaf-level nodes, requiring much more I/Os (because the leaf page affected
is often not in memory buffer) and random page splits.

3.2.2.3. Index Page Layout and Free Space

An index page has a relatively simple structure. Figure 3. 7. gives a graphical
representation of a possible leaf page layout, with unique key values. The layout for
an internal page is similar, except that record pointers are replaced by page pointers
and that there is no next page pointer (P nexD·

A B-Tree leaf page can have up to fo1eaf index records of structure <Ki , R ID j> which
we assume to fit on a single page. To determine the number of records a leaf page
can hold, we use the following relation 3.2.:

Let us illustrate this throughout an example. The fanout is sometimes referenced
as the order of the tree. Consider an indexed attribute, As, of 9 bytes long, a page size
Ps, equal to 2Kb (2.048 bytes), a record pointer, Rps, equal to 6 bytes and a page
pointer, Pps, equal to 6 bytes. Consider also that the page header, Hs, is 24 bytes long
and that the fill rate, fr, is equal to 70%, Relation 3.2. defines the fanout for a leaf
page.

to,eat * (Rps + As) :C:: (Ps -Hs) * fr ⇒ fo,eaf = l_(P_s_-_H_s_)_* f_rj Rps + As
where
foieaf Number of records that can be hold in a leaf page
Ps: Page size
Hs: Header size, we assume that the header contains the pointer to the next leaf page
fr: Fill rate
As: l ndexed attribute size
Rps: Record pointer size
relation 3. 2. : Fanout of a Leaf Index Page

Similarly an internai B-Tree page can have up to fo page pointers and fo-1 search
field values, which also have to fit in a single page. To determine the number of
records an internal page can hold, we use the relation 3.3.:

04.09.1996 Database Performance Tuning 67/162

* * * l ((Ps - Hs) * fr) + Asj (fe inter - 1) As + fo Pps :::; (Ps -Hs) fr <=:> fe inter = Pps + As
where
folea(Number of records that can be hold in an internai page
Ps: Page size
Hs: Header size
Pps: Page pointers size
fr: Fill rate
As: l ndexed attribute size
relation 3.3.: Fanout of an Internai Index Page

We see that both relations are different, however, we will assume without no great
harm that an internal page contains as much pointers as search fields, and that the
size of a record pointer is the same than the page pointer size. Relation 3.4. defines a
simplified relation for estimating the fanout.

fo = l (Ps - Hs) * fr j Pps + As
with
Ps: Page size
Hs: Header size
Pps: Page pointers size
fr: Fill rate
As: lndexed attribute size
relation 3.4.: Fanout of an Index Node Page

For example, let us see how we can compute the number of index records an index
page can hold (internal and leaf pages). Consider an index entry size of 8 bytes and a
node page size of 2048 bytes. We allow 48 bytes for the header and assume that the
average nodes below the root level is only 70% full. This implies 1400 bytes of
entries per page, and 1400/8 = 175 index entries per index page.

Assume that we have 1.000.000 entries at the leaf level, this means we will
require at least 11.000.000/1757 = 5.715 leaf node pages. With 5.715 entries at the
next-higher directory level, we will have 15.7 15/175 7 = 33 pages on that level. Thus
we have 33 entries at the root level, and therefore have a B-Tree of depth three. In
general, we encourage rather rough calculations in sizing of this kind ; a Header size
of 48 bytes is probably incorrect for any particular product, but this gives us a round
number for our calculations, and does not harm any of the principals.

3.2.2.4. Duplicate Key Values in an Index

Until now, we assumed uniqueness of the index attribute values, but to be
accurate it often happens that we define an index on a non-unique attribute. The
problem is than to determine how the system organizes its index leaf pages. We
already mentioned that an extra level of indirection is needed to handle the multiple
pointers.

04.09.1996 Database Performance Tuning 68/162

In case the same key value is repeated for a large number of records, it is possible
to list the key value only once with a pointer to a list of RIO values. The entry in a
leaf page is of structure <Ki , P j > where the pointer Pi points to a block of record
pointers (RI Os) . Each RIO itself points to one record with key value Kj . If some value
Kj occurs in too many records, so that their pointers cannot fit in a single page, a
linked list of blocks is used. This technique is illustrated in figure 3.8 ..

As the key value is often a relatively lengthy character string and the RIO is
usually quite short (4 to 6 bytes), this represents a large space saving. It is obvious
that access performances are better, than in case where each occurrence entails an
entry at leaf level of the B-Tree, because more entries can fit in a leaf page. However
retrieval via the index requires at least an additional disk access, because of the extra
level of indirection in the index.

r �:
d

�T
-

�� J
�
�J =�-�: 1 pi J ----� �-

-
� � - � l_K:�-13;1 G:

e

ce -�-------�1 -- -
,- - ,- t - - -

r-R ID._ jR1q r- y� r
1 -R ID

11J' l _ ____tc,,_11_ __ _ o,2 ! fo,n

figure 3.8.: Leafpage layout with non-unique key values38

Leal Page

Extra Level of lndirection

In most database systems the number of RIO values in a block has an upper limit
of 254, but clearly it is possible to create a list of blocks. Note that each additional
block entails an disk I/O during access. The calculation of the fanout remains the
same as in the section 3.2.2.3 ..

3.2.2.5. Dynamic Changes in the B-Tree

Let us consider the problem of insert, deletes and indexed value updates. Note that
we will not explain the concept of the indexed value updates, we can consider these
updates as a deletion followed by an insert.

For inserts, note that a normal sorted list of entries on disk can always be
reconstructed when a new entry is added. Only by moving all successive entries one
position to the right, so to create space for the new insert, implying !/Os for about
half the pages. Note that when there are frequent inserts such a technique is much to
inefficient for large indexes.

38 [O'Neill 1994]

04.09.1996 Database Performance Tuning 69/162

We will explain, the means by which a B-Tree is kept ordered and balanced as
new entries are added, using an example illustrated in figure 3.8. [O'Neil 1 994]. Let
us assume that free space is left in the pages so that inserts are often possible to pages
at any level without new disk space being required. When a new entry is to be added
in the index, we follow the index structure down to the leaf page as if we were simply
l o oking it up (search like for a query), so that after the insert, the index structure
channels us to the leaf level for the new added record. But occasionally the leaf page
is to o full to simply accept the new entry. In this case, for additional space the leaf
page is split into two pages (the entries are kept in order, lower key values to the left
split page and higher ones to the right). This means that the higher level index page
must be modified so that a new separator exists, along with a new pointer to the new
page (the other page has simply been reused). Occasionally, the modification of
adding a new separator and pointer to the next higher level of index will exceed the
space available on that index page. In that case the index page is split, in the same
way than the leaf level, with possible resulting changes at the next higher level.
Eventually an additional entry may be placed at root level. If the root splits, then a
new root page is created at a higher level, having as its children the splited pages
resulting from the former root.

Now take a look at figure 3.8., we assume that the B-Tree leaf page accepts at
maximum up to three entries39 , the leaf level is of order Pieaf = 2 . We also assume
that internai pages have room for a maximum oftwo page pointers, so fo = 2.

The B-Tree starts out empty. As the first two en tries (5 and 8) are inserted into the
B-Tree, we have a simple structure, a leaf page that is also the root. No higher level
index entries are needed, since all entries fit on that single page. As soon as more
than one level is created, the tree is divided into its set of internai pages and leaf
pages. Notice that every value must exist at leaf level, because all data pointers are at
leaf level. However, only some values exist in internai pages to guide the search.
Notice also that every value appearing in an internai page, appears also as the
rightm ost value in the sub-tree pointed.

When a leaf page is full and a new entry is inserted there, the page overflows and
must be split. The first j = l(fo + 1) / 27 entries in the original page are kept there, and
the remaining entries are moved to a new leaf page. The jth search value is replicated
in the parent internai page, and an extra pointer to the new page is created in the
parent. They must be inserted in the parent page in their ordered sequence. If the
parent internai page is full, the new value will cause it to overflow also, so it must be
split. The entries in the internai page up to Pj , ,the jth pointer after inserting the new
value and pointer, where j = l(fo + 1) / 2J, are kept, while the jth search value is moved
to the parent, not replicated. A new internai node will hold the entries from Pj+1 to
the end of the entries in the page. This splitting can propagate all way up to create a
new root page and hence a new level for the B-Tree.

39 This is much smaller than is realistic for a disk page, but keeping it small simplifies example.

04.09. 1 996 Database Performance Tuning 70/162

Note in particular that the only way in which the depth of a B-Tree can increase is
when the root page splits. Immediately after a root split, all leaf nodes increase their
depth by one, and it is clear that there is no way in which two leaf pages can ever
become to be of different depth down from the root in a growing B-Tree. That is why
the B-Tree remains totally balanced.

ln sert Sequence: 8, 5, 1, 7, 3, 12, 9, 6

�] record pointer (RIO)

GJ tree page pointer

0 nu11 pointer

� � � 7 Jnsert 1: overflow (new level) L ���IJ .__/

�r�n1

/liJjLl. L� •p
�C3EJlt{��(7lf�1@I}1 � _Jt@EJ@EJ

figure 3. 8. : Jnserts in a B-Tree 40

Now, what happens when entries are deleted from the B-Tree in response to rows
being deleted or attribute values updated in the indexed table? Figure 3.9. [O'Neil
1 994] illustrates deletion from a B-Tree.

4o [O'Neill 1994]

04.09.1996 Database Performance Tuning 71/162

When an entry is deleted, it is always removed from the leaf level. If it happens to
occur in an internal page, it must also be removed from there. In the latter case, the
value to its left within the leaf page must replace it in the internal page. Because that
page is now the right most entry in the sub-tree. Deletion may cause underjlow by
reducing the number of entries in the leaf page to below the minimum required. In
this case the system tries to find a qualified leaf page, a leaf page directly to the left
or the right of the page with underflow. And redistribute the entries among the page
and its sibling page so that at least both are hall full; otherwise, the page is merged
with its sibling and the number of leaf pages is reduced. A common method is to try
redistributing with the left sibling; if this is not possible, an attempt to redistribute
with the right sibling is made. If this is not possible either, the three pages are merged
into two leaf pages. In such a case, underflow may propagate to internal pages
because one fewer tree pointer and search value are needed. This can propagate and
reduce the tree depth.

Deletion Sequence: 6, 12, 9

�j recorù pointer (RIO)

� tree page pointer

,
] nu11 pointer - -- �•] ;��- l

�T1 l 1Ls_l� f �LîJl
l�Ef ��[} f�10Jf�;] � [7_�r TJ -fITI�-�!}rt�--= î l

"'--- oe1ete 6
(update internai page)

'F7T:T7 �:-�7 1:bl.(
_ � /ff •rH�> _

7
11� Nl

1 ŒEJ l:H �J �J}t��n-fITÊJ l •l-•� __ _JJ
Delete 9: undertlow 7
(merge wtt.h left, still underflow, collapse levels)

�1�0�
r�- -L

l}-
-��� L; J�� al

�EJ . 1 [sEJ __D 1 ��!J
figure 3.9. : Deletionfrom a B-Tree41

41 [O'Neill 1994]

04.09.1996 Database Performance Tuning 72/162

An algorithm that performs the actions just outlined when entries are deleted from
a B-Tree, could be used to keep a shrinking B-Tree balanced and all pages higher
than the root at least half full. However, very few commercial database systems
implement this algorithm, because they use to much disk I/Os. The logic to merge
pages is somewhat more complicated, and requires extra I/0 to keep pages well
populated. Since disk space is cheap, most systems architects have decided to allow
pages to become depopulated without automatic reorganization. The major reason
for concern with a sparsely populated index is not the disk space, but the extra disk
I/Os entailed in a range search for some number of entries that are spread on an
unusually large number of leaf nodes. To respond to such inefficacy, the various
database systems provide utilities to reorganize B-Trees. Such utilities duplicate the
work of the original index creation and result in a clean new copy of it, with efficient
disk utilization.

3.2.3. C lusters

Throughout this section we are going to describe the aspect of table clusters based
upon [ORACLE 7.0]. ORACLE 7.0 offers the possibility of clustering tables, it is an
optional method of storing table data. In fact a cluster can be seen as a group of
tables that share the same data pages, because they share common attributes and are
often used together. For example, the EMP and DEPT table share the DEPTNO
attribute. As we define a cluster on the EMP and DEPT table (see figure 3. 10.), all
records for each department from both EMP and DEPT tables are physically stored in
the same data page.

CLUSTER f
:

STER KEY

PTNO
DNAME LOG
Sales Namur
EMPNO ENAME
1000 Dupond
1321 Ferber
1541 Mathon

20 DNAME LOG
Admin Arton
EMPNO ENAME
932 Hainaut
1500 Smith
1491 Dubois

Clustered Tables
Related data is stored
together more efficently

figure 3.1 O.: Clustered Tables42

42 [ORACLE 7.0]

EMP TABLE

EMPNO ENAME DEPTNO--...
--1

932 Hainaut 20 .. .
1000 Dupond 10 .. .
1321 Ferber 10

�

··
1491 Dubois 20 .. .
1541 Mathon 10 .. .
1500 Smith 20 .. .

� , , DEPT TABLE \ \

\ \
1 DEPTNO DNAME LOG

\ \ 10 Sales Namur
\ \ 20 Admin Arton
\ '
\ \
1 \
\ 1 1 \
1 \ 1 \ 1 1 1 1 1 \ 1 ' 1 \ 1 \ 1 \ 1 \ \ 1 1 \ 1 ' 1 1

Unclustered Tables
Related data is stored apart
taking up more space

04.09. 1 996 Database Performance Tuning 73/162

Two primary benefits can be brought to light when storing related records of
different tables together in the same data page:

� Disk 1/0 costs are reduced and access time improves for joins of clustered tables.

� In a cluster, there is a key cluster value, which is the value of the cluster key
attributes for a particular record. Each cluster key value is stored only once, each
in the cluster and the cluster index, no matter how many records of different tables
contain the value. Thus, less storage might be required ta store related tables than
in a non-clustered table format. For example, notice that each cluster key (each
DEPTNO in figure 3. 10.) is stored just once for multiple records that contain the
same value in the EMP and DEPT tables.

We already revealed two primary benefits of table clusters, but there are more
performance considerations as we will see.

It is obvious that clusters can reduce the performance of update statements
(INSERT, DELETE, UPDATE) as compared to storing a table apart with its own index.
As multiple table have data in each page, more pages are used to store a clustered
table than if that table where stored non-clustered. Thus the performance
disadvantage is related to the use of more space and the higher number of pages that
have to be accessed to scan a table.

To identify cluster tables, the designer must look for tables that are related via
referential integrity constraints and tables that are often accessed together in a
SELECT statement, which joins two or more tables. If we cluster tables on the join
attributes, we reduce the number of data pages that must be accessed when execution
the query, as all records needed for the join lie on the same page. Thus performance
for joins is improved. Similarly, it might be useful to cluster an individual table as we
are going to see later on. For example, the EMP table can be clustered on the DEPTNO
to group the records for employees of a same department. This is obviously an
advantage if data operation commonly process records department by department.

For more details about Cluster we refer the reader to [ORACLE 7.0], however we
give some guidelines for creating clusters.

Choose Appropriate Tables ta Cluster: Use clusters to store table that are
primarily queried (not predominantly I NSERT, DELETE, UPDATE), and for which
queries frequently join data of many tables in the cluster or retrieve related data from
a single table.

Choose Appropriate Attributes for the Cluster Key: A good cluster key has
enough unique values so that the group of qualified records to each value fills
approximately one page. Not enough records per cluster value can waste space and
result in bad performances. Cluster keys that are so specific, that only few records
share a common values, can cause wasted space in pages, unless a small page size
was specified at cluster creation time. Similarly, too many records per value can
cause extra page accesses to qualify records for the given key. Cluster keys on values
that have not enough cardinality (for example: male and female) result in excessive
searching and can result in worse I/0 costs than with non-clustered.

3.2.3.1. Clustered and Non-Clustered Indexes (Primary / Secondary)

04.09.1996 Database Performance Tuning 74/162

As we already mentioned, a cluster can be defined on a single table . During this
section we are going to see the implications of a clustered and non-clustered index
defined upon a single table .

Placing records on disk ordered by some common index key value, is called
clustering. An index with referenced records in the same order as its key values, is
known as a clustered index, in some writings it is also referred to as a clustering
index. A slightly more general concept is a primary index for a table, which
determines the placement of the records, not necessarily the ordering, since there is
no ordering in a hash index. The advantage of a clustered index is that certain query
types are more efficiently answered, when the qualified records lie close to one each
other. We think here about Range, Multipoint, Prefix match, Ordering, Grouping and
Join queries .

In case where records with common index key values are clustered together and
we read in the page containing one of the records with the given value, other records
with the same value are likely to reside on the same page . Thus in accessing those
records, we don't have to repeat the disk I/Os required to access the next record. Even
if our database access method is relatively simple and accesses records only one at a
time, on the basis of their RIO values, we find that the second and successive records
reside on the same page, already in the buffer .

Clustering indexes are sparse in some systems; like SYBASE, and dense in
others, like DB2 and ORACLE. In other systems, like INGRES, the clustering index
is sparse if based on an ISAM or hash structure and dense if based on B-Tree [O'Neil
1994] . Sparse clustering indexes hold pointers at leaflevel for every page of the table
being indexed . Whereas dense indexes hold RIO pointers for every distinct attribute
value . So sparse clustering indexes will often have fewer levels than dense ones .
According to [Shasha 1992] sparse clustering indexes can reduce respond time by a
factor of two or more.

Notice, that because a clustering index implies a certain physical file organization
and the data file can only be organized one way at a time, there can be at most one
clustering index per table .

A non-clustering index, sometimes called secondary index, is an index on an
attribute (or set of attributes) that puts no constraint on the table organization . They
do not have the advantages of data proximity like the clustered once . Successive
entries of a non-clustered index reference records on disk pages that are likely to be
far apart, so there is no saving from one record to another .

Let us make sure, we have well understood the distinction between both index
organizations . In a library, books may be clustered by access number, for example
the ISBN number . The access number is the book's address in the library . Books with
close related access numbers tend to be physically close one to another . In addition,
there may be several nonclustering indexes represented by use of card catalogues.
These are non-clustering, because two books with the same index entry may be
physically far apart. For example, the same author may write a book about database
tuning and another about a mathematical detective, both of the books will most
probably not be placed near each other .

04.09.1996 Database Performance Tuning 75/162

3.2.3.2. Evaluation of Clustered Indexes

We have seen the structure of the clustering index, know it is time to examine the
advantages and disadvantages of clustered indexes in relation with the query types.

04.09.1996

A clustered index offers the following benefits compared with non-clustering one:

!:!::> If the clustered index is sparse, then it will store fewer pointers than a dense
index. Note that a non-clustering index is always dense. This can save disk
access as more index entries can fit in a leaf page.

!:!::> A clustered index is good for Multipoint queries. For example, equality
predicate on a non-key attribute. A clustering index is useful for looking up
names in a telephone book, because all people with the same last name are on
consecutive pages. By contrast, a non-clustering index on the first three digits
of subscribers phone number would be worse than useless for Multipoint
queries. A query to find all subscribers in the 497 exchange might require an
access to nearly every page.
For the same reason, a clustering index will help perform an equality join on an
attribute with few distinct values. For example, consider the equality join query
on first names :
SELECT Employee.ssnum, Student.course
FR0M Employee, Student
WHERE Employee.firstname = Student.firstname

If the table Employee has a clustered index on firstname, then for each Student
record, all corresponding Employee records will be packed onto consecutive
pages.
If the Employee and Student tables both have clustering index in firstname, then
the database system will often use a processing strategy called a merge-jo in.
Such a strategy reads both relations in sorted order, thus minimizing the
number of disk accesses required to perform the query43 . This will also work if
both tables have clustered index on first name, based on a hash structure that
uses the same hash fonction.

!:!::> A clustered index based on B-Tree supports range, prefix match, and
ordering queries we/1. The pages of a telephone book provide a good example
of the performance benefits. All names that begin with 'Ge%' will be on
successive pages. The clustering index can also eliminate the need to perform
the sort in an OROER BY query on the indexed attribute.

!:!::> A clustered index on attribute or set of attributes can reduce I ock c ontenti on in
two ways.

R::,, A retrieval of several records with the same value, a prefix match query, or
a range query will access and Iock only a few consecutive pages of the
table. If the table is non-clustered or clustered on some other attribute(s)
then such queries may access many more pages. It can happen that we
have a different page for each record. The fewer pages accessed, the fewer
pages are l ocked in the systems that use page level locking.

43 Each page of each table will be read in once.

Database Performance Tuning 76/162

\t::,- A clustering index can eliminate a c oncurrency c ontra! hot spot in
intensive insert environments. Such environments make a hot spot of the
last page of the heap organization. A clustering index based on a hash
structure will always eliminate this hot spot on the table. A clustering
index based on a B-Tree will also eliminate the hot spot provided the key is
n ot sequential.

The main disadvantage of the clustering index is that its benefits can diminish if
there are a large number of overflow data pages. The reason is that accessing such
pages will usually entail extra disk I/Os. Overflow pages can result from two kinds of
updates.

� Inserts may cause data pages to overflow, and they have to split with all known
consequential effects on the index entries and/or levels.

� Record replacements that increase the size of the record. For example, the
replacement of a NULL value by a long character string, or that change the
indexed key value will also cause overflows and/or underflow of data pages
with effects on the index entries and/or levels.

3.2.3.3. Evaluation of Non-Clustered Indexes

Because non-clustered indexes on a table do not impose any constraints on the
ordering, there can be many n on-clustering indexes o n a given table.

A non-clustering index can eliminate the need to access the table. For example,
consider that there is a non-clustering index on attribute A 1 , A2 and A3 of table T1 .
Then the following query can be answered completely within the index, without
accessing the data pages.

SELECT A2, A3
FROM T1
WHERE A1 = 5;

If your system takes advantage of this possibility, non-clustering indexes will give
better performance than sparse clustering ones. Of course, updates would need to
access the data pages of table T 1 .

Suppose the query must touch the table T 1 through a non-clustering index
based on A1 . Let N r be the number of records retrieved and N p be the number of
pages for T1 . If Nr < N p, then approximately N r pages of T1 will be logically read. The
reason is simple, it is likely that each record will be on a different page. If Nr > Np,
then more than Np pages may be retrieved if the buffer pool is smaller than the table
s1ze.

04.09.1996 Database Performance Tuning 77/162

Thus, non-clustering indexes are good if each que1y retrieves significantly fewer
records than there are pages in the file, in other words if the query has a good
selectivity. For the moment we still use the word 'significant', but later on we see
how the number of record to be retrieved behaves according to access performances.
However the word is well chosen, because a table scan can often save time by
reading many pages at a time, provided, the table is stored contiguously on tracks.
For example, INGRES normally reads 8 pages at a time on a scan. Therefore,
according to [Shasha 1992], even if the scan and the index both read all the pages of
the table, the scan may complete by a factor of 2 to 10 times faster.

Consider a table T1 with 50 byte records and pages of 4Kb long. Assume further
that attribute A1 takes 20 different values, which are evenly distributed among the
records. The question is to know if a clustering index on A 1 a help or a hindrance?

Each Multipoint query on attribute A1 will retrieve approximately 1/20 of the
records. Because each page contains approximately 80 records, nearly every page
will have a record for nearly every value of A 1 . So, using the index will give worse
performance than scanning the entire table.

Consider the same situation, except that each record is 2Kb long. In this case, a
Multipoint query on the non-clustering index will ·touch only every tenth page on the
average, so the index helps at least a little.

We can draw three guidelines from these examples.

� A non-clustering index serves you best if it avoids touching a data page. This is
possible for certain types of queries some Point or Multipoint queries, as well as
Count, Join and Existence queries that depend on the key attributes of the non­
clustering index.

� A non-clustering index is always useful for point queries.
� For Multipoint queries, a non-clustering index may or may not help, depending on

the selectivity. However a good rule of thumb is to use the non-clustering index
whenever the following holds :

number of distinct key values > c * number of records per page,
where c is the number of pages that can be prefetched in one disk read.
This inequality implies that the use of the non-clustering index would entail fewer
disk accesses than scanning all the pages of the table.

There are two situations when you should never use a non-clustering index.

� When the activation frequency of update operations compared to the activation
frequency of data access operations is high. As a rule of thumb [Shasha 1992], at
least one-third as frequent. A update operation is either an insertion, deletion or
update to one of the values of the index attributes. The reasons are, like we have
seen, that modifications entail at least two disk accesses when not more, because
of the dynamic index reorganization.

� When lock escalation occurs. In some systems, a table with many non-clustered
indexes may cause a transaction that does a substantial number of updates to
escalate to table-level locking. Escalation occurs when a transaction acquires more
than a predetermined threshold of locks [Shasha 1992].

04.09. 1996 Database Performance Tuning 78/ 162

3.2.4. Hash index

As already mentioned earlier in this section, the hash index, same as the clustered
index, determines the record placement on disk. We say that the hash index is a
primary index, because the record placement in the table is computed out of the index
values, as we will see.

A hash primary index for a table provides look up by a method that is entirely
different from the B-Tree structure. Note that hashing techniques can be used to
construct the leaf level in an index, however we will not consider this structure in this
paper. With a hash primary index, records inserted in a table are placed in a pseudo­
random data page determined by a hash function applied to the key value, and
retrieved the same way, usually with a single I/0 operation. There is no key value
directory (like the leaf level in B-Tree), so look up depends on proceeding directly to
appropriate pseudo-random data page slots by hashing the key value.

There is no order by key value possible in such a structure. Normally in hashing,
we can only ask for a specific key value, not for the sequent key values, as it is
possible in a B-Tree structure. We would expect two records with successive key
values to be located on entirely uncorrelated data pages, depending on the caprice of
the hash function. As a result, Multipoint query is not well served by a hash index,
because a brute force scan of the table is needed. This is a serious limitation, but the
compensating value of hash indexes lies in rapid access to records in large tables by
point queries. The ability to access a desired record with single I/0 is a great
advantage when compared with B-Tree, which requires extra I/0 for directory search
in large tables (in numerous cases 2-3 disk accesses)

3.2.4. 1. Hash Function and Collisions

As we noted earlier in this chapter, hash indexes exist in INGRES, and an
alternative hash feature exists in ORACLE version 7, but hashing is not possible in
DB2 at this time44 . We will illustrated the discussion on hash indexes by referencing
the INGRES hash structures tables.

Hashing, or sometimes called hash-addressing is a technique for providing fast
direct access to specific stored records on the basis of a given value for some field.
The field in question is usually, but not necessarily, the primary key of a table. In
outlines the technique works as follows.

Each stored record is placed in the table at a location, a slot, whose address (RID,
or perhaps just page number) is computed as some function, the hash function, of
some set of attributes of that record. So, hashing consists off applying a hash function
H to the key45 values of records and determine this way the location of the record in
the database. A common class of hash fonction can be called "division/remainder".
For reasons that are beyond the scope of this paper, the divisor of such a hash
fonction is usually chosen to be a prime number.

44 According to [O'Neill 1 994]
45 As with B-tree, we do not insist on unique key values unless the keyword unique is explicitely

used.

04.09. 1996 Database Performance Tuning 79/ 162

To retrieve the record subsequently given the key value, the database system
performs the same computation as before and fetches the record at the computed
position.

Figure 3. 1 O. illustrates the insertion of data records46 by using a hash fonction.
Note that in the figure we only represent the key values and no the whole records,
this simplifies the figure. Slots for a given key value might be determined in a
number of different ways. One way is to hash a given key value to a given disk page
and then find an empty slot somewhere on the page where the record can be stored.
However, we assume in what follows that the precise slot on any page of the table is
being determined by the hash fonction. If this slot is already in use, a situation known
as hash collision occurs, and collision resolution is performed in some deterministic
way to locate an empty slot.

Hash collisions occur when the hash field value of the new added record hashes
to an address that already contains a different record. In this situation we must insert
the new record in some other slot position, as its hash address is occupied. The
process of finding another position is called collision resolution. There are numerous
methods for collision resolution, including the following:

':!::> Open addressing: simply consist of looking at all other slots on the same page
in some predetermined order until an empty one is found. In open addressing,
eve1y attempt is made to find a new slot on the same page, to minimize the
number of I/Os needed to search through a chain collision. Only if we run out
of space in a page, then a slot on a succeeding page is used47 .

':!::> Chaining: various overflow locations are kept, usually by extending the initial
number of pages with a number of overflow pages and their slots. The collision
is resolved by placing the new added record in an unused overflow slot and
setting a pointer, of the occupied slot, to the address of the overflowing slot. A
linked list of overflow records for each hashed slot is maintained.

':!::> Multiple hashing: the system applies a second hash fonction if the first results
in a collision. If another collision results, the system uses open addressing or
applies a third hash fonction.

Each of the above collision resolution methods requires its own algorithms for
inserts, retrieval and deletion of records. The algorithms for chaining are the
simplest. Deletion algorithms for open addressing are rather tricky, because the
system does not remove the record physically from its position but only lists it as
deleted.

In figure 3. 10. we illustrate the insertion of the record with the given key value 55
in the slot that has been determined by hash fonction, H, and then rehashed. We see,
that the record with key value 55 has collided in slot 66 with a record already stored
there, and then has been rehashed to slot 69.

04.09.1996

46 Note that we used the same values than those in figure 3 .7. for the B-tree
47 [O'Neill 1994]

Database Performance Tuning 80/ 162

H(55) = slot 66 -

Slots Pages

:: :: i� Ji Ill[�t-
=

r f :
36 - 47 l _L 1 ___J 96 , 4

48 - 59 -
1 ,- t 1 -1 7 1 ---�1 5

" n 1/ _]"i _j_ 1 ,� 1 i=t+5 6
n - 83 1-L-�J- �-�t j_ 1-rt � 7

84 - 9
5 L __ l__j�7 i______, __j -- L��] - ____J 8

Rehashing

figure 3. 1 O. : Hash Structure Table. Record Insertion 55 with Collision48.

The goal of a good hashing fonction is to distribute the records uniformly over the
slots so as to minimize collisions, while not leaving many unused slots. Simulations
and analysis have shown that it is usually best to keep a hash table between 70% and
90% full so that the number of collisions remains low and that space is not wasted.
Hence, let us see how the database system determines number of slots and data pages
necessary for a given table. At the time the hash structure is created49, a certain
number of slots, Ns, on a known sequence of pages is set aside for usage. Consider
that there are Nr records in the table, and that we defined a fill rate of fr (an integer
from 1 to 1 00), then the number of slots set aside by the system can be expressed by
the following relation:

Ns = 1(Nr * (1 00/fr)7

For example, if we have 1 00.000 records in the table and a fill rate of 70%, we
would set aside Ns = 11 00.000 * (1 00/70)7 = 1 42.858 record slots.

Next let us calculate the number of pages N p required for the estimated number of
slots. We assume that we can guarantee placing at least Nrp records per page. The
number of pages used will be given by the following relation:

Np = 1 (Ns / Nrp)7

In the above given example with 143.858 slots, consider that 20 records can fit on
a page, then the number of pages required is equal to N p = 1 142.858/207 = 7. 1 43 pages.

04.09. 1 996

48 [O'Neill 1 994]
49 INGRES used a Modify command to give a table a hash structure.

MODIFY tablename I indexname
TO HASH [UNIQUE] [on columnname {, columnname}]
[WITH [LOCATION = . . .]

[MINPAGES = n] [, MAXPAGES = n]
[FILLFACTOR = n]] ;

Database Performance Tuning 8 1/ 162

3.2.4.2. Fixed Number of Slots

It is important to realize that once the number of slots Ns specified, it cannot be
enlarged, as it can with B-Tree node splitting. The reason for this limitation is that
the hash fonction is a two phases calculation. The first phase generates a pseudo­
random number based on the key value, x = r(keyvalue), where x might be a floating
point number, uniformly distributed in the range of O < x < 1 . Throughout the second
phase the slot number H(keyvalue) resulting from the hash fonction can be generated,
for example with the following relation :

H(keyvalue) = LNs * r(keyvalue)J

The relation results in a random slot number from sequence 0, 1 , . . . , Ns-1 . We
consider this two phases approach because in this way the generic fonction r can
easily lead to a uniform distribution of integers ranging from O to Ns-1 , for any given
value of Ns. However, if the total number of slots was changed, say to Ns', we would
find that the hash fonction
H'(keyvalue) = LNs' * r(keyvalue)J

might give the same slot number for all slot placements previously calculated.

For example, if r(keyvalue) is 0,33334, and Ns is 2, then
H(keyvalue) = L2 * 0, 33334J = 0

However, if Ns is 3 we would have
H'(keyvalue) = L3 * 0 ,33334J = 1 .

This is the reason why we cannot enlarge the number of pages within a hash
organization. It is helpfol and even necessary to reorganize the table completely
when the average length of collision chains begins to enlarge, because performance
decreases rapidly as the pages fill up. Most database systems offer statistics on
collision chains length to aid the DBA in tuning.

3.2.4.3. Collision Chain Length and Page Overflow

The major advantage of the hash structure is that it is usually possible to go
directly to the qualified page, where the qualified records are located. This .is likely if
we can use a lot of disk space to specify a very low fill rate, but there is an enormous
waste of space. In such a situation the occupancy of the pages tends to be low, and
the collision chains short. Therefore, the probability to find each record on its
originally hashed page it high.

Recall that there exists various techniques to solve the problem of hash collisions.
One of the techniques is the known as open addressing, a second is known as
chaining and a third is known as multiple hashing. Figures 3. 1 1 and 3. 12 [Hainaut
1994] show the evolution of the average I/0 cost (number of physical access)
depending on the page's fill rate, fr, and the number of records to be stored, thus on
the number of records within a data page, Nrp, and the number of pages, Np.

04.09.1996 Database Performance Tuning 82/162

Note that these figures confirm the fact that the more a page fills up, the more the
fill rate increases, the more there are hash collisions, thus the higher the I/O cost is.
However, we can also observe that for a small fill rate the more a page can hold
records the better the I/O cost is, but the more space is wasted.

U")
<.O

Open Addressing

Nrp = 20
Np == 500, 1000, 2000, 4000

0 ,-... U")
,-...

0
CO

U")
CO

//

0
en

1/
,I

V

k:
,,

::::; =-'

U")
en

i1v

I
V11

I

,,,.,,.

/
J

J

I
'{vl//
d soo

0
0 ...

figure 3.11. : Average Cast Evolution for Open Addressing.

>--

ll'l <.O

Primary Chaining

Nrp

A 10

B 20
C 30

40

,,,-->-" _.,..
1

0 ,-...

Np
2000
1000
667
500

>->-

LI) ,-...

,,,,.-i.,,-/
--

/

1,,-'/
A /

J.- V
!//

�:.,
1,,-'/ l)

"'
/V

Vi.,,
i.--'

,-V
_,.... �>-

.,....1-,-1-"
1 '

LI) CO

__,i-

-V
1 1

,{
,..

li
.... :., t::t-/ v'

D --
1 1

0 O'l

1
1 1 1 r

li) O'l

�I'

0
0

figure 3.12. : Average Cast Evolution for Chaining.

1 00

1 0

1 .4

1 .3

1 .2

1 . 1

Throughout the next lines we will try to determine the average collision length for
the open addressing, given a fill rate [O'Neil 1994].

First we want to estimate the probability, P, that the last hashed record, as it is
added, encounters a filled slot in its first probe. Consider a given fill rate, fr. The
likelihood that any given hash page is occupied is P = (fr/1 00), assuming that the
records are randomly distributed among the slots. This means that the probability that
the slot is empty is 1 -P, this is also the probability that we will be able to place the
new added record in the first position we corne to. We call this 'a co llisi on chain of
length J ', because only one probe is necessary, and write it as:
Pr(collision chain length 1) = (1 - P)

04.09 . 1 996 Database Performance Tuning 83/ 1 62

On the other hand, in order to have a collision chain of length 2, the first position
hashed to must be full, with probability P, and the second position that we reach in
the rehash sequence must be empty, with probability 1 -P. Using the principle of
multiplication by which we calculate the probability of two or more independent
events happening together :
Pr(coll ision chain length 2) = (1 - P) * P

Now for a collision chain of 3, we must start with full slots in the first two
positions we reach, with probability P * P = P2, and then an empty slot in the third
with probability P. Simple extension of this argument gives:
Pr(coll ision chain length 2) = (1 - P) * P2

Pr(col l ision chain length 2) = (1 - P) * P3

Pr(coll ision chain length 2) = (1 - P) * pK-1

Now the expected length of the collision chain, E(L), is given by the sum of all
these probabilities times the associated lengths :
E(L) = (1 - P) + (1 - P) * P + (1 - P) * P2 + . . . + (1 - P) * pK-1
or factoring :
E(L) = (1 - P) * (1 + 2P + 3p2 + . . . + KpK-1)
where the sum extends to some large number, K, of terms, proportional to the
maximum number of possible collision in the table. Now we would like to be able to
give a simple formula for this sum. To see how to do, start by considering the
fonction f(x) given by the infinite series:
f(x) = x + x2 + x3+ x4 + . . .

This is the well known infinite geometric progression, a + ar + ar2 + ar3+ . . . , with a
and r forming x. The formula for the sum is known from algebra, a/(1 - r), so we can
give a closed firm solution for the infinite series f(x) :
f(x) = x + x2 + x3+ x4 + . . . = x /(1 - x)

Now, taking the derivative of all terms in the equations, we get :
f(x) = 1 + 2x + 3x2 + 4x3 + . . . = 1 /(1 - x)2

Rewriting the relation for the expected length E(L) of collision chain, we see that
we can represent the infinite sum on the right with f(P), replacing x with P in the left
hand equality of equation f(x):
E(L) = (1 - P) * (1 + 2P + 3P2 + 4P3 + . . .) = (1 - P) * (f(P))

Now using the right hand equality of equation f(x), we can replace f(P) with 1 /(1 -
p)2, to get :
E(L) = (1 - P) * (f(P)) = (1 - P) * (1 /(1 - p)2) = 1 /(1 -P)

Thus we see that the expected length of collision chain is the reciprocal of (1 - P).
Recall that P = (f/1 00) and consider a few examples. If the hash structure is 50% full
then P = 0,5, and E(L) = 1 /0,5 = 2. If the table is 90% full, then P = 0,9 and E(L) = 1 O.
The graph of this relationship is given in figure 3 . 12 ..

04.09.1996 Database Performance Tuning 84/162

Average collision
chain length, E(L)

1 ---� ----

0 i_ __ -�- -+----------�---
-

---+----�-�-----� �- i-----------►
20 50 90 100

figure 3.11.: Relationship between E(L) and the fil! rate, fr.
Fillfactor in %, ff

As we would expect, the more full we set the table, the more there will be
collisions and the longer the average collision chain will be. What might be
surprising, is how quickly the chain increases in length once the fill rate cornes close
to 1 00.

Assume that we can fit 20 records on a page and set and load a table half full, fr =
50%, it seems quite unlikely that a collision chain of average length 2 will grow long
enough (L=21) to continue to a successive page. However, if the fill rate is 95%, the
average length of a chain is 20, so about half the collision chains will continue to a
new page, and cause a supplementary page access during retrieval . The point of all
this is to show how important it is to keep the fill rate small relative to 1 00. On the
average, we will be able to find a record associated with a unique key value half-way
through a collision chain, which entails only a single disk access. Significant
overhead, and supplementary disk accesses, start to occur when a significant number
of entries start to hash to position 2 1 or later of the chain.

A hash table containing duplicate key values tends to have longer collision chains,
since equal value records are certain to collide. In our derivation, we assumed
independent random positions for separate hash entries, which is obviously not the
case when duplicate entries exist.

3.2.4.4. Evaluation of Hash Primary Index

To begin with, it should be clear that hash primary index is extremely efficient
with equal predicates in key attribut es (example id = 1 2345), such as Point queries.
AU other query types, like Range, Prefix Match, Extreme, Grouping, Ordering etc . . .
queries, can not be solved efficacy by a hash index. The system falls back on another
access method, such as table scans or B-Tree, to solve these queries . Assume that the
hash index is the only access structure present for a given attribute, and the range
predicate is the only predicate present in the Select statement, then the table scan
seems the appropriate access method. Since slots of a hash table are rather sparsely
filled to restrain collisions, a table scan on a hashed table entails more I/Os than usual
in a sequential structure.

04.09.1996 Database Performance Tuning 85/162

Another disadvantage of the hash primary index is that we have to leave room for
expansion in the initial layout of the table, rather than depending on incremental
expansion for later insert. Given normal uncertainty about table expansion, we
usually tend to overestimate the extra space needed, and therefore waste disk space.

A third point is that if we use non key values (Multipoint queries) in the predicate,
the retrieval routine will need to go through the entire collision chain for a given
value. It should also be clear that if we sometimes have a large number of duplicate
values or a poor selectivity there could be a very long collision chain, which detracts
seriously from the efficacy of the structure. Note that 'NULL' values count as
duplicate values.

Let us see throughout a small example how consideration arise in selecting a hash
index structure or a clustered B-Tree structure. Consider the following two tables

autodeposit

�id� !
1-
-

�. 1_ : 1

1
1 !

employees

! eid_j_ bank

1� ! ----:--
1

•

1

L_ l __ �• -

-------------- --------.--T-- --�---7 acctid j weeksal 1 _ _ _ _ _ _ _ _ _
- ------�-- ---+--�----t

1

• 1 i
1

1

The autodeposit table, is a single-column list of employees (eid) for individuals
who have asked that their weekly checks be automatically deposited. The table
employees is constituted of the employee's number (eid), the deposit bank (bank), the
account number (acctid) and the weekly salary for each employee (weeksal).

A common type of application program, performed once a week, would read the
eid values to access the records of the employees table and make the desired automatic
deposit in the appropriate account.

This appears to be a long sequence of indexed access to the employees table
throughout an index on eid . We might decide to use a primary hash index on eid for
the employees table, since this will give us the most efficient I/0 access to these
records. However, this approach would be a mistake. If instead we give the
employees table a clustered B-Tree index on eid, the resulting table would be
clustered by eid value. Now if we also cluster the records in autodeposit table by eid

values, we would find that the application, looping through the autodeposit records,
makes all accesses to the employees table in order by the clustered key. In general,
successive accesses to the employees table pass clown through index nodes, that
always remain in memory buffer from prior access, and then to a record on a page
that is already in memory buffer.

The total number of employee pages involved in I/0 is equal to the number of
pages in the table. If we assume that a large portion of employees receive
autodeposit, so most employee table data pages will be involved. On the other hand,
in the hash case, as each new record is accessed it lies on a random page, unrelated to
the previous one, even if it was accessed by contiguous key. If there are, say, an
average of 10 records on each hash page, that desire direct deposit, there will be 20
times as many I/Os in the hash primary index case than in the B-Tree clustered index
case. We are between accesses, and that the B-Trees index page are few in number
compared with the data pages, both common assumptions.

04.09.1996 Database Performance Tuning 86/162

Thus we see an example where the hash structure is not as I/O efficient for record
access as another ordered structure. Of course we stacked the deck, since the eid
references are not actually random. On the other hand, this is a common situation,
and one should be aware of how the record order within the table can 1mprove
resource saving in accessing the table.

04.09 . 1 996 Database Performance Tuning 87/ 1 62

Chapter 4. 1/0 Cost Estimations

In chapter 2 we examined the data operations and classified them into a set of
query types, whereas in chapter 3 we described some of the different data structures
that allow us to structure and to access data. We arrived at a point where we have to
combine both features and find out how we can estimate I/O cost estimations for
different types of query, according to different access structures and search
techniques. In this chapter we will see if we can shed some light on the I/O cost
estimations. We will try to estimate the I/O cost, by using some simplified relations.
Note that if we use pessimistic estimations we can assume that in real life, access
performances are generally better than the one we estimate. The fact that real life
performances will surely be better then the one we estimate does not influence our
search for the optimal index solution.

Given the multitude of parameters that influence I/O cost estimations, first it is
helpful to understand the influence of the different parameters upon the cost
estimation, second it is helpful to compare parameters between on each other.
Throughout this section we will see that the filter factor plays an important role
during cost estimation, for this reason we will only compare the filter factor to other
parameters, such as the fill rate, the page size, the number of records and the fan out.

04.09.1996 Database Performance Tuning 88/162

4.1. Brute Force 1/0 Cost

A brute force table scan is an algorithmic step, where all records in the table are
scanned and only the records qualified by the select_filter, WHERE clause, are
retrieved. In many database architectures there are situations in which distinct record
types can be mixed on common extents of a tablespace50. However, in what follows
we assume that all pages referenced in a tablespace contain only one type of record
type.

Recall the relation, from chapter 3, for estimating the number of pages needed to
store all records :

Np
. r l (Ps -!w rc j

1

where
Np: Number of data pages
Nr: Number of records to store
Ps: Page size
Hs: Page header size
fr: fill rate
Rs: Record size

Assume that we are given an Employee table with N r = 200.000 records, each
record is of fixed length Rs = 200 bytes, and data pages have a fill rate fr = 70%. We
assume that each 2-Kb data page uses roughly Hs = 48 bytes of overhead, leaving 2000
bytes, and with data pages loaded 70% we have 1 400 available bytes. So a data page
can hold up to a maximum of N rp = 7 records. Thus, the total number of data pages
needed for storing 200.000 records is equal to N p = 28.572 pages.

Consider the following point query (predicate on a key attribute):
SELECT eid, ename
FROM Employee
WHERE socsecno = 1 23456789;

where we search for the identification number, eid, and the name, ename, of an
employee with a given social security number, socsecno.

Assuming that we do not have an index on attribute socsecno, our only technique
to retrieve the requested employee, is to look at all N p data pages to find the record
that satisfies the predicate. We are calling this technique the brute force table scan or
the sequential table scan. Note, that we might know, at priory, that there is only one
record satisfying the predicate, however the optimizer probably will not, since
socsecno has no index, and statistics usually do not include such details for all
attributes.

For our example, as there are 28.578 data pages that have to be scanned. The I/O
cost is equal to COST110(PLAN) = 28.578 random I/Os. Recall that we do not try to
estimate the time needed by the CPU to execute the query, COSîcpu(PLAN), however
we assume that the total I/O cost is, normally, proportional to the I/O cost.

50 Because of this feature we should speak about tablespace scan and not about table scan.

04.09. 1 996 Database Performance Tuning 89/1 62

4.1 .1 . Brute Force 1/0 Cost Estimation

Following the above example, the COST 110(PLAN) for a brute force table scan,
based on random page accesses, can be estimated by the following relation :

CosT110(PLAN) = Np * R

where
Np: number of data pages
R: fraction of lime necessary to perform a random read (generally 1 /40 seconds)
relation 4.1.: Cast estimation for Brute Force Table Scan

However, as already mentioned, in chapter 3., the table scan has some tricks to
offer, like the mutli-block access 1/0. Until now, we assumed random access and
estimated that 28.578 accesses are needed. Considering that they are performed one
after the other, they require 28. 578 times as long as a single random access.

The idea behind the multi-block prefetch access is that the system speci:fies a large
number of data pages, in sequence, to be accessed, most commonly 32 pages. This
sequence of requests is communicated to the disk controller in a manner that allows
the controller to read successive pages on a track. As a result, the database system is
able to perform 32 page reads in sequence at full rotational transfer rate of the disk.
Therefore at a much lower cost in terms of elapsed time during which the disk arm is
employed. Figure 4. 1. [O'Neil 1994] gives a comparison between a the multi-block
access of 32 disk pages in sequence and 32 random accesses. Assuming that a
random access needs 0,025 second.

Random Access Multi-Block Access
(in seconds) (in seconds)

Seek time 0,01 6 0,016
Rotational latency 0,008 0,008
Transfer time 0,001 0,048 (32 pages)

Total access time 0,025 0,072

Total for 32 pages 0,800 0,072

figure 4.1.: Time Comparison between Mutli-Block and Random Access time of 32 pages

The value of 0,800 sec. for 32 random reads is approximately ten times larger than
the value of 0,072 sec. for a multi-block access of 32 pages. In general, we can use
the rule of thumb that multi-block access proceeds ten times faster than single
random accesses, defining a rate of 1/400 sec. per page access.

We estimated for the above Select statement an 1/0 cost of 28.572 random reads,
which needed 28.572/40 = 7 14,3 seconds. Ifwe assume that we can use the technique
of the multi-block access to access the 28.572 data pages, then the query requires
28.572/400 = 7 1,43 seconds

Given the technique of the multi-block or mutli-block access, we can de:fine the
following relation for a brute force table scan :

04.09.1996 Database Performance Tuning 90/162

CosT11O(PLAN) = Np * S

where
S: fraction of time necessary to perform a mutli-block access (1 /400 sec)
relation 4.2. : Cast estimation for Brute Force Table Scan using Mutli-block access

There exists also another kind of prefetch, known as the list prefetch, which we
already described in section 3 . 1.2 .. Recall that the list prefetch provides a list of
pages (usually 32), to the disk controller, that need to be retrieved from disk. It is
obvious that the list prefetch is more efficient than the random I/O request, because
the disk arm is programmed to retrieve all pages in the most efficient way. However,
the list prefetch is not as efficient as the mutli-block prefetch, which is an
unachievable optimum. The speed of the list prefetch is determined by how far apart
the pages are on disk, but we can consider as a rule of thumb [O'Neil 1994] that the
list prefetch proceeds at 100 I/Os per second. It is obvious that the list prefetch is not
an I/O technique which is used with the brute force table scan, it is more accurate to
use it in an index scan to retrieve that qualified data pages.

If we use the list prefetch to retrieve the qualified pages the I/O cost results in
28.572 list prefetch reads. Based on list prefetch total access time, the query requires
28.572/100 = 258.72 seconds.

Given the technique of list prefetch, the following relation gives us the I/O cost,
in terms of seconds, to retrieve a set of qualified data pages:

CosTI10(PLAN) = Np * L

where
L: fraction of time necessary to perform a list prefetch read (1 /1 00 sec)
relation 4. 3. : Cast estimation for a List Prefetch Read of Np pages

The I/O cost estimations, we just explained do not consider the predicate filter
factor. Recall that the filter factor, of a select_filter is defined as the product of all
predicate fil ter factors that compose the select_ fil ter. The reader finds formulas to
estimate the filter factor in section 2. 1.5 .. However, recall that the average number of
rec ords to be retrieved, k, by an SQL statement is inferred by the filter factor, as
shown by relation 4.4.

k = ff * Card(T)

where
ff: Filter Factor for predicate P
CARD(T): Number of records in table T
relation 4. 4. : Number of qualified records of a given select _Ji/ter

Same as, the number of records to be retrieved, the selectivity, s, is inferred by the
filter factor, as shown by relation 4.5 .. The selectivity defines the percentage of
records that are n ot qualified by the select_filter.

s = (1 - f(P))

where
ff: filter factor of predicate P
relation 4. 5. : Selectivity of a select _Ji/ter

04.09.1996 Database Performance Tuning 91/162

Throughout all our examples and descriptions, we assumed that the k records, are
randomly distributed among a set of Np pages. Making this assumption, we are able
to foresee the number of pages that contain the k records. If we also assume, that the
probability that a record is located within a page is independent of the probability
that another record lies within the same page, then the probability that no record is
located in a page is equal to (1 -ff)Nrp. The probability that a page contains one of the
qualified records is equal to (1 - (1 -ff)Nrp). Multiplying this probability by the number
of pages and rounding it up to the next higher integer we get, per se, the number of
pages that contain all the qualified records.

Consider the above probability and a data page of N rp records. Relation 4.6. gives
a rude approximation of the number of pages, K, that hold the k records:

where
Nrp: number of records per data page
Np: number of data pages
ff : filter rate
relation 4. 6. : Number of Pages that contain the qualified records

Although we know, per se, the number of pages that hold the qualified records, the
DBMS execution plan does not know, per se, which pages contain which records,
qualified or non-qualified ones. Therefore we can not induce, for a brute tables scan,
that the I/O cost is equal to the number of pages that hold the qualified records.

Thus, we should use relation 4. 7. to estima te I/O cost in case of a brute force scan.
Relation 4.7. defines a pessimistic cost estimation, where all data pages have to be
consulted to retrieve all qualified records. In the next section, where we bring the
relation face to face with the query types, we will see that this estimation is too
pessimistic.

COST110(8RUTE FORCE) = N p * p
where
� : time fraction R, L or S, depending on whether we use Random, Multi-block prefetch or Sequential reads
relation 4. 7. : Pessimistic Cost Estimation for Brute Force Table Scan

4.1 .2 . Brute Force 1/0 Cost Estimation and Query Types

First, let us see what happens to the I/O cost estimation when a po int que,y is
committed and we use a brute force table scan. Recall that a point query returns one
and only one record from the table. We can say, without no great harm, that not all
data pages are scanned to find the qualified record, but as a rule of thumb we can say
that on the average half of the pages are scanned. The following relation holds for a
brute force scan related to a point query.

COST110(8RUTE FORCE) = N p/2 * p

where
Np: Number of data pages
� : time fraction R, S or L, depending on whether we use Random, Multi-block prefetch or Sequential reads
relation 4.8. : Cost Estimation for Brute Force Scan ,vith Point Que,y

04.09.1996 Database Performance Tuning 92/162

All other types of queries, like Multipoint, Range, Prefix Match, Extremal,
Ordering, Group by and Join queries, involve more than one record in the list of their
qualified records. Let us group the Multipoint, Range, Prefix Match, Extremal,
Ordering, Group by and Join queries into one single type of queries, named
mutlirecord queries. As mutlirecord queries retrieve more than one record the whole
set of table pages has to be scanned for query evaluation. Relation 4.9. give a
pessimistic estimation of I/O costs for multirecord queries.

COST11o(BRUTE FORCE) = Np * �

where
N p: Number of data pages
� : lime fraction R, S or L, depending on whether we use Random, Multi-block prefetch or Sequential reads
relation 4. 9. : Cost Estimation/or Brute Force Scan with Multirecord Queries

By making the distinction between point queries and multirecord queries we
defined to relation for estimating the I/O cost in case of a brute force tables scan.
However, according to different writings we can say that on the average the DBMS
accesses half of the pages to retrieve the qualified data. So relation 4.8. can be used
as a general form for brute force I/O cost estimation.

We did not group Join queries with the Multirecord queries, as Join queries, in
general, involve more than one table. Recall that the most used techniques to join two
tables are the nested loop join and the merge join. As already defined in section 2. 18.,
the nested l o op Join has the following relation to estimate I/O costs,

COST110 (NESTED LOOP JOIN) = COST 110 (BRUTE FORCE OUTER TABLE) +

(NUMBER OF OUALIFYING RECORDS I N OUTER TABLE *

COST 110 (BRUTE FORCE I NNER TABLE)}
relation 4. 1 O. : Cost Estimation for Nested Loop Join using Brute Force Sc ans

whereas, the merge Jo in has the following I/O cost estimation

COST110 (MERGE JOIN) = COST 110 (BRUTE FORCE OUTER TABLE) +

COST 110 (BRUTE FORCE INNER TABLE)
relation 4. 1 1. : Cost Estimation/or Merge Loop Join using Brute Force Scans

To get better understanding of these two relations, we refer the reader to section
2.8.4., where we give an explicit description of joining techniques and examples of
their cost estimations.

04.09.1996 Database Performance Tuning 93/162

4.2. Index 1/0 Cost

In the preceding section we recalled the relation for estimating the number of
pages needed to hold the data records, Nrp, the notion of filter factor, ff. We also
defined relations for brute force table scan I/O cost estimation related to the different
query types. Knowing, that indexes are used to speed up data retrieval for a given set
of queries, we first have to see how we can estimate I/O costs for the different kind of
indexes, before we can decide if an index speeds up retrieval for a given set of
queries. We will give rude approximations for clustered and non-clustered B-Tree
I/O costs. We will also give a cost relation for Hash index.

4.2.1 . B-Tree 1/0 Cost Estimations

Recall that the structure of a B-Tree index is made of three parts. First, the tree
structure grouping the index interna! pages into a structure, which will guide the
search for the qualified records to be retrieved. Second, the index leaf pages
structure, also known as the index dictionary, which holds the references, R IO
pointers, to the qualified records and/or data pages. Recall that the index dictionary
can be dense or non-dense. As a rule of thumb, we note that the non-clustered B-Tree
index has a dense index dictionary, whereas in a clustered index the dictionary is
non-dense. The third part in the index structure is known as the data pages, which
hold the data records and is organized as in a sequential file. Figure 4.2. gives us a
rude graphical representation of the B-Tree index structure, where we can figure out
the three different parts which make up I/O cost estimation in a B-Tree index.

/ D
/

/
/

/

" k " " "
□ "

D
COST110(1NTERAL PAGES) COST110(LEAF PAGES) COST110(0ATA PAGES) - COST110(B-TREE INDEX)

figure 4.2. : Cast Structure for B-Tree index access

The I/O cost estimation for of B-Tree indexes is given by the following relation:

COST11o(B-TREE I NDEX) = COST11o(INTERNAL PAGES) + COST11o(LEAF PAGES)

+ COST11o(DATA PAGES)

relation 4. 12. : Cast estimation for an B-Tree index scan

04.09.1996 Database Performance Tuning 94/162

In our cost estimation model we assume that the cost estimation for traversing
internai pages, CosT110(1NTERNAL PAGES), does not include the access to the first page
of the index dictionary.

Before we give relations to estimate the I/O cost for the three components of the
B-Tree index scan, we recall the notion offan out and depth of a B-Tree. The fanout
is the expected number of records that appear in an index (nodes) page. In section
3.2 . .2., we already made the assumption that the leaf pages and the internai pages
will share the same structure, therefore they hold the same number of index entities.
The fanout of a B-Tree index is given by the following relation:

fo = l
(Ps - Hs) * fr

j As + Pps

where
Ps:
Hs:
Pps:
fr:

Page size
Header size
Page pointers size
Page fullness rate

As: lndexed attribute size

relation 4.13.: Fanout of an index node page

Knowing the index page fanout and the number of values to be indexed, the
following relation can be used to estimate the depth of a B-Tree index, in other words
the number of index levels needed for a given number of records. Looking back at
the definition of the B-Tree index structure, we assumed that at leaf page level only
holds as much records as their are number of distinct values, Ndv, for the indexed
attribute.

where
fo: Fanout of index node pages
Ndv: Number of distinct records for the indexed attribute

relation 4.14.: Depth of a B-Tree

Recall that the difference between a non-dense (non-clustered index) and a dense
(clustered) index, at leaf page level, is that the non-dense index does not hold all
distinct values for the indexed attribute, but holds only a table reference, RID pointer,
per table page. Thus, the number of distinct attribute values, Ndv, has to be replaced
by the number of data pages, Np.

4.2.1 . 1 . Internai Page 1/0 Cost Estimation

Making the assumption that in the r o o f level is held in m ost cases within the
buffer. Knowing that each traversed index level represents a disk I/O. Recall that the
cost for internai page navigation does not include the access to the index dictionary.
Relation 4. 15. estimates the number of access need for navigating through the
internai pages.

CosT110(1NTERNAL PAGES) = (1Logfo(Ndv)l - 2) * R
where
fo: Fanout of index node pages
Ndv: Number of distinct records for the indexed attribute
R: lime fraction of lime necessary to perform a random read (1 /40 sec)

04.09.1996 Database Performance Tuning 95/162

relation 4. I 5.: Cast estimation for navigating though the Internai Index Levels

4.2.1.2. Leaf Page 1/0 Cost Estimation

The estimation of the I/O costs for navigating within the leaf pages depends on the
number of distinct records values to be retrieved, kNdv, and the fanout, fo, of an index
page. Within the leaf page navigation, we have to differentiate between two types of
leaf page navigation . Thefirst type is where the index is defined on a key attribute, in
other words the attribute values are unique . In different writings the key index is also
referenced as being the primary key . Considering the filter factor and the fanout, the
next relation estimates the I/O cost for this first type of leaf page navigation.

COST11o(LEAF PAGES KEY ATTRIBUTE) = 1 * R + (L kNdv / toJ) * S
where
fo: Fanout of index node pages
kNdv: Number of distinct records values to be retrieved
R: fraction of time necessary to perform a random read (1 /40 sec)
S: fraction of time necessary to perform a mutli-block access read (1 /400 sec)
relation 4. I 6.: Cast estimation for navigating though the Leaf Pages of a Key Index

The second type is where the index is defined on a non-unique attribute, non-key
attribute. In different writings the non-key index is also referenced as being the
secondary key . The multi-valued character of the attribute can be materialized by an
extra level of indirection (section 32 .2 .4 .) . Recall, that the leaf page records refers to
a page which contains all qualified RIO pointers, Nrid, for a given attribute value . Jt is
common to consider, that a page of indirection can hold up to 254 RIO pointers
[O'Neil 1994] . Each page of indirection, which has to be consulted, needs a disk
access. Given these considerations and the fact that kNdv record values are to be
retrieved, relation 4 . 17 . defines the cost estimation for the secondary key leaf page
navigation .

Note that we will use relation 4 . 17 . as a general form of cost estimation for
navigating through index leaf pages, though estimations for primary key indexes is
wrong . Note, that for primary key indexes cost estimation is incorrect up to, a
maximum of 1 random read, due to the second member of the sum, which is
maximized by 1 in case of a key attribute (lk / 2547 = 11 / 2547 = 1).

04.09.1996 Database Performance Tuning 96/162

CosTI10(LEAF PAGES NON-KEY ATTRIBUTE) = 1 * R + LkNdv / foJ * S + 1k / N ridl * R

= (1 + 1k t N ridl) * R + L kNdv / toJ * S

where
Nrid: number of RID pointers hold in a page of indirection (rude approximation 254)
fo: fanout of index node pages
k: number of records to be retrieved
kNctv: number of distinct records values to be retrieved
R: fraction of time necessary to perform a random read (1/40 sec)
S: fraction of time necessary to perform a mutli-block access read (1/400 sec)
relation 4. 1 7. : Cast estimation for navigating though the Leaf Pages of a Non-Key Index

4.2.1.3. Data Page 1/0 Cost Estimation

Until now, we defined relations to estimate I/O cost which are related to the index
navigation, but we still did not estimated the cost for retrieving data from the table.
Thus, we have estimate the number of accesses needed to retrieve the data records, in
other words the number of data pages to be consulted. Recall that relation 4 .6. gives
us an approximation of the number of pages which probably have to be retrieved
from the table. This estimation is based upon probabilities . Let us abstract from the
notion of probability that a data page contains at least one of the qualified records,
and assume that the records are randomly distributed over the set of data pages, the
maximum number of pages to be retrieved is the following.

MAXCosTI10(DATA PAGES) = k * �

where
k: number of records to be retrieved
P : time fraction R or L depending on whether we use Random or List prefetch
relation 4. 18. : Pessimistic Cast Estimation for Data Pages Access

Considering the above named probability, we are able to define a more optimistic
cost relation . Note however, that the best I/O cost is attained, when all qualified
records are collocated on consecutive pages, because at this moment we are able to
perform a multi-block access . The I/O cost, for such situations, is equal to rk/Nrp 7,
where k is the number of records retrieved and N rp defines the number of records per
data page (section 3 . 1 .5). Situations like these are not very common in real world
production, thus we define a more realistic relation, using the above named record
page probability, to estimate the best 1/0 c ost.

M,N CosT110(DATA PAGES) = K * �

with

K = 1(1 - (1 -ff) Nrp) * Np 7

where
Nrp : number of records per data page
Np: number of pages for the table
ff : selectivity
k : number of records to be retrieved
p : time fraction R or L depending on whether we use Random or List prefetch
relation 4. 19. : Optimistic Cast Estimation/or Data Pages Access

Note that for B-Tree cost estimation we defined a pessimistic or worst 1/0 c ost
estimati on, using relation 4 . 1 8, and an optimistic or best 1/0 c ost estimatio n, using
relation 4. 19.

04.09. 1 996 Database Performance Tuning 97/162

4.2.1.4. Global B-Tree 1/0 Cost Estimation

Grouping all three parts of the B-Tree cost estimation, we deduce the two
following relations, one for pessimistic cost estimation and one for optimistic cost
estimation of a non-clustered B-Tree index (B-TREENc) , Relation 4.20. and 4.2 1. will
help us introducing and analyzing the concept of index indecision. The index
indecision problem can be seen as being the zone, during index placement, where we
are not able to state that an index improves performance over a brute force table scan.

MAXCosr11o(B-TREENc) = (r Logfo(Ndv) 7 - 2) * R + (1 + r k / Nrid7) * R + L kNdv / foJ * s + k * p

= (f(Logfo(Ndv) - 1) + (k / Nrid)7) * R + L kNdv / foJ * S + k * P

MINCOST11o(B-TREENc) = (fLogfo(Ndv) 7 - 2) * R + (1 + fk / Nrid7) * R + L kNdv / foJ * s + K * p

= (f (Logfo(Nrdv - 1) + (k / Nrid)7) * R + L kNdv / foJ * S + K * p

where
fo: Fanout of index node pages
Ndv: Number of distinct records for the indexed attribute
Nrid: number of RID pointer hold in a page of indirection (rude approximation 254)
k: number of records to be retrieved
kNdv: number of distinct records values to be retrieved
R: fraction of time necessary to perform a random read (1/40 sec)
S: fraction of time necessary to perform a mutli-block access read (1 /400 sec)
� : time fraction R or L depending on whether we use Random or List prefetch
relation 4.20. : Worst and Best 1/0 Cast estimation using Non-clustered B-Tree

Until here, we considered the situation of a non-clustering index, which implies a
dense index dictionary. During the next lines we will consider the situation where the
index is clustered (B-TREEc). Recall that a clustered index is said to be non-dense or
spare and that it forces a physical order upon the records location within the data
pages. We can look at that data pages as being similar to the index dictionary on a
non-clustered index, all qualified records are collocated within consecutive pages in
the table file. This enables us to use mutli-block access for data page retrieval. As the
index dictionary is non-dense, each leaf page includes only one index record per data
page. This implies that the number of index levels is probably smaller than the
number of index levels in a non-clustered index, but not always the case, because it
depends on the number of data pages and the number of distinct values to be indexed.
However, we can consider, without no great harm, that the access using a secondary
index, costs more than the access using a primary index, because of the extra level of
indirection. Knowing that a clustered index has a similar structure than a non­
clustered and that the number of distinct records values, Ndv, in relation 4.20., is
replaced by the number of data pages, Np, we defined relation 4.2 1. which defines an
optimistic and pessimistic cost estimation for clustered B-Tree indexes.

04.09.1996 Database Performance Tuning 98/162

CosT110(B-TREEc) = (ILogfo(Np)l - 2 + 1) * R + 1 * R + Lk / NrpJ * S

= !Logfo(Np)l * R + Lk / N rpJ * S
where
fo: fanout of index node pages
k: number of records to be retrieved
Np: number of data pages
Nrp: number of records per data page
R: fraction of time necessary to perform a random read (1 /40 sec)
S: fraction of time necessary to perform a mutli-block access read (1 /400 sec)
relation 4.21 . : 1/0 Cast estimation using Clustered B-Tree

Note, that in case of a clustered index, we no more make the difference between
an optimistic and pessimistic cost estimation, as the random or list prefetch access to
the data pages is replaced by a mutli-block access to the data.

4.2.2. 8-Tree 1/0 Cost Estimation and Query Types

Note that we defined relation 4.20 and 4.2 1 by abstracting them to all kind of
query types. However, we made a distinction on the physical ordering of the data
records by defining a relation for a clustered and a non-clustered access structure. As
we apply different query types to these relation, we will see that they simplify.

First, let us se how the relations simplify when they are related to a point que1y.
Recall that a point query qualifies one and only one record, so k = 1, most of the time
this happens when the index is defined on unique values, key attribute(s). As we
assumed that a single record can not split over data page, the number of pages that
hold the single qualified records is equal to K = 1 . Note that there is no more a need to
differentiate between an optimistic and pessimistic cost estimati.on in relation 4.20.
The fact that only one record is retrieved by the query simplifies some of the terms of
relation 4.20; the mutli-block access at index leaf page level becomes LkNdv / foJ = 0
and the fact that most of the time the point query is based on the uniqueness of the
index values, implies that no extra level of indirection is needed to guide the query,
lk / N ridl = O. The relation 4.20 becomes simplified as follows for a non-clustered
index related to a point query:

CosT110(B-TREENc) = (1Logf0(Ndv)l - 2) * R + 1 * R + 0 * S + 1 * R

= llogfo(Ndv)l * R
where
fo: fanout of index node pages
Ndv: number of distinct records for the indexed attribute
S: fraction of time necessary to perform a mutli-block access read (1 /400 sec)
R: fraction of t ime necessary to perform a random read (1 /40 sec)
relation 4.22.a. : 1/0 Cast estimation for Non-clustered B-Tree related to a Point Que,y

For a clustered B-Tree index the above consideration also remains true, except
that the mutli-block access takes place at data page level and not at index leaf page
level, so expression Lk / N rpJ becomes equal to zero, and relation 4.2 1 can be
simplified as follows when related to a point query:

04.09.1996 Database Performance Tuning 99/162

CosTI10(B-îREEc) = (1Logfo(Np)l - 2 + 1) * R + 1 * R + 0 * S

= 1Logfo(Np)l * R

where
fo: fanout of index node pages
Np: number of data pages
S: fraction of lime necessary to perform a mutli-block access read (1/400 sec)
R: fraction of lime necessary to perform a random read (1 /40 sec)
relation 4.22. b. : 1/0 Cast estimation using Clustered B-Tree related to a Point Que,y

Sec ond, let us see how relation 4.20. and 4.2 1. simplify when related to a multi­
rec ord queries. Recall that a multi-record query qualifies more than one record in the
set of data records. The fact that more than one record is qualified by the query
includes the case where the index is defined on non unique values, non-key
attribute(s) and that the qualified records are spread over more than one page.

ln case where the index is defined on n on-key attribute(s), the index navigation
needs an extra level of indirection to access the qualified data pages. The fact that
more than one page can hold the qualified records involves that we fall back in the
situation of an optimistic and pessimistic cost estimation. When putting all these
things together, relation 4.20. gives us simplified estimations for multi-record
retrieval.

MN<COST11o(B-TREENc) = (1 (Logfo(Ndv) - 1) + (k / Nrid) l) * R + L kNdv / foJ * s + k * p

MINCOST11o(B-îREENc) = (1 (Logfo(Ndv) - 1) + (k / N rid) l) * R + L kNdv / foJ * s + K * p
where
fo: Fanout of index node pages
Ndv: Number of distinct records for the indexed attribute
Nrid: number of RIO pointer hold in a page of indireclion (rude approximation 254)
k: number of records to be retrieved
kNdv: number of distinct record values to be retrieved
R: fraction of lime necessary to perform a random read (1 /40 sec)
S: fraction of lime necessary to perform a mutli-block access read (1 /400 sec)
13 : fraction R or L, depending on whether we use random or list prefetch reads
relation 4. 23. a. : 1/0 Cast estimation usingr Non-clustered B-Tree related to a Multirecord Query on a

seconda,y index

In case where the index is defined on a key attribute(s), the navigation through the
extra level of indirection falls apart, 1k / Nridl = O. Again the fact that more than one
page can hold the qualified records involves that the situation of an optimistic and
pessimistic cost estimation. Relation 4.20. in accordance with a Multirecord query
and a primary index simplifies as follows :

04.09.1996 Database Performance Tuning 100/162

MAJ<CosT110(8-TREENc) = (1 (Logfo(Ndv) - 1) l) * R + L kNdv / foJ * S + k * 13

MINCOST11o(B-TREENc) = (1 (Logfo(Ndv) - 1) l) * R + L kNdv / foJ * s + K * 13

where
fo: Fanout of index node pages
Ndv: Number of distinct records for the indexed attribute
k: number of records to be retrieved
kNdv: number of distinct records values to be retrieved
R: fraction of lime necessary to perform a random read (1/40 sec)
S: fraction of time necessary to perform a mutli-block access read (1/400 sec)
� : fraction R or L, depending on whether we use random or list prefetch reads
relation 4.23. b. : 1/0 Cast estimation using Non-clustered B-Tree related ta a Multirecord Que,y on a
primmy index

In case of a clustered index, relation 4.2 1. does not simplify when related to a multi­
record query. Note that it does not matter if we consider a primary or secondary
index key type.

CosT1/0(B-TREE0) = 1Logfo(Np)l * R + Lk / NrpJ * S

where
fo: fanout of index node pages
k: number of records to be retrieved
Np: number of data pages
Nrp: number of records per data page
R: fraction of time necessary to perform a random read (1/40 sec)
S: fraction of lime necessary to perform a mutli-block access read (1 /400 sec)
relation 4.23.c. : 1/0 Cast estimation using Clustered B-Tree related ta a Mufti-record que,y

Third, let us see what happens during Join queries. To evaluate the I/O cost we
have to go back and look at section 2. 1.8. and section 4. 1., where the cost estimation
is clone for the outer and inner table based on one of the above explained relations.

To resume the cost estimations for a query using B-Tree indexes as access
structure we establish the following table resume.

Non-Clustered B-Tree Clustered B-Tree

Point query 1 Logfo (Nr) l * R 1 Logfo (Np) l * R
or
Key attribute(s)

Multi-record query Pessimistic estimatio11 1 Logfo (Np) l * R + Lk l NrpJ * S
on Non-Key attribute Non-Key and Key 1 (Logf0(Ndv) - 1 + (k / Nrid) l * R attribute(s)

+ L kNdv / foJ * S + K * P

Key attribute
l(Logfo (Ndv) - 1)7 * R + L kNdv / foJ * S
+ K * p

Ou_timistic Estimatio11

Non-Key attribute
1 (Logfo(Ndv) - 1 + (k / Nrid) l * R

04.09. 1 996 Database Performance Tuning 1 0 1 / 162

Key attribute

i(Logfo (Ndv) - 1)7 * R + L kNdv / foJ * S

+ k * P

4.2.3. Hash index 1/0 Cost estimations

Based upon a made by [Hainaut 1994] we are able to give a rude approximation
for hashed access costs. As we already seen in section 3 .2. the hash index is
extremely beneficiary for · point queries, for example queries involving equality
predicates, as in most cases the retrieval does not include the search within the
collision chain. It is even more efficient when it is used with a key attribute (unique
values). Thus throughout this section we will not make cost estimations for the
different query types.

Recall that in section 3.2.4 we already described the notion of hash indexes. We
have seen, that there exists multiple techniques to solve the problem of hash
collisions. One of the techniques is the known as open addressing, a second as
chaining and a third as multiple hashing. We also stated that access costs increase the
more a page fills up, as the collision chains get longer. We might be surprising, is
how quickly the collision chains increases in length once the page fill rate cornes
close to its maximum.

Within this section we do not give estimations for all collision chain techniques,
but we will try to define a relation and to illustrate technique of chaining [Hainaut
1994]. Note that in [Hainaut 1994] this technique is referenced as independent zone
chaining. This means, that there exists two types of chaining, the primary zone
chaining and the independent zone chaining. The difference is that the primary zone
chaining tries first to store the new added record within the referenced page, whereas
the independent zone chaining directly goes on a secondary page.

Assume that the records are randomly distributed among the set of data pages, and
that the DBMS uses the technique of independent chaining to solve the problem of
hash collisions.

The probability that a given page holds k records can be Binomial or Poisson.

Binomial: P(k) = ck · (-1)
k

·(1 - �)
Nr-k

Nr Np Np

Poisson:

with
k : Number of qualified records
Nr: Number of records in the table
Np: Number of pages
Nrp: Number of records per page

note: en = N!
N n!(N - n) !

According to these probabilities, we define the number of pages that hold the k
records, n(k), the number of pages that are empty n(O), as well as the number of pages
that are not empty, n(> 1) :

04.09.1996 Database Performance Tuning 1 02/162

n(k) = Np * P(k)

n(O) = Np * P(O)

n(> 1) = Np * (1 - P(O))

The probability that a page overflows, P over, is equal to :
Nr

Paver = L P(k)
k=Nrp+1

Given the probability that a page overflows, we define the number of pages that
have overflows, NPaver, as well as the number of pages that have no overflow, NPno-over:

NPover == Np * Paver

NPno-over == Np * (1 - P over)

To estimate the I/O cost for a hash access, we have to estimate the number of
records within primary pages, Nrprim, and the number of records within independent
pages, Nrindep, ·

Nrprim == Np • ffiprim

Nrindep == Nr - Nrprim

with

Nrp Nr
mprim == L k * P(k) + Nrp * L P(k) : average number of records per primary page

k=1 k=Nrp+1

The probability that a record is within independent pages is equal to

Nrindep
Pindep == Nr ,
and the average length of a the collision chain is given by,

Nrindep Nrp - Nrprim
E(L) == -- == --� .

NPover Paver

The average cost for accessing records, with success, has to be splited into two
terms, one for the access costs within primary pages and a second for access costs
within independent pages :

pnmary pages :

independent pages :

Nr
Cost5ucc (Hash ·) = � * 1R pnm Nr

Costsucc (Hash·) =
Nrindep * (1 + 1 + E(L))R mdep Nr 2

All together the average I/O cost for accessing records using a hash index is
estimated by the following relation :

04.09. 1996 Database Performance Tuning 1 03/ 1 62

Costsucc (Hash) = Costsucc (Hashprim) + Costsucc (Hashindep)

C t succ (H h) - (
N rprim Nrindep * (1 1 + E(L)))R - (1 P· * 1 + E(L))R os as -
Nr + � +-2- - + mdep -2-

where
N rpnm: number of records in primary pages
Nr;ndep: number of records in independent pages
N r: number of records
E(L): average length of the collision chain
P;ndep: probability that a page overflows
R: fraction of time necessary to perform a random read (1/40 sec)
relation 4.24.: 1/0 Cast estimation, with success, for a Hash index using 1ndependent Chaining.

Same as for the access cost, with success, we define the access cost in case were
no record is qualified by the predicate.

pnmary pages: Costno-succ (Hashprim) = (1 - Pover) * 1R

independent pages: Costno-succ (Hashindep) = Pover * (1 + E(L))R

All together, the average I/O cost for accessing records using a hash index is
estimated by the following relation:

Costno-succ (Hash) = Costno-succ (Hashprim) + Costno-succ (Hashindep)

Costno-succ (Hash) = (1 + Pindep * E(L))R
where
E(L): average length of the collision chain
P;ndep: probability that a page overflows
R: fraction of time necessary to perform a random read (1 /40 sec)
relation 4.2 5 .. : 1/0 Cast estimation, with no success, for a Hash index using 1ndependent Chaining.

To illustrate the relations for hash index cost estimation, let us consider a small
example.

Consider the following:
R:-- Number of records NR: 500.000 records
R:-- Record size, RS: 200 bytes
R:-- Page size, PS: 2000 bytes (note that header space is not included)
R:-- Fil l rate, fr: 90%
R:-- Number of qualified records , k: 1 0 records

Assume that the probability that a given page holds the k records is of Poisson.
Assume also that the number of records is fix, thus the fill rate can be considered as
fix.

According to this input we can determine the number of records that can hold
within on page, Nrp, and the number of pages, Np :

Nrp = ---- = 9 records/page l2000 * 0.9j
200

r 500000l Np =
9

= 55.556 pages

Knowing the number of records per page and the number of records qualified, we
determine the probability that the k records are within one page.

04.09.1996

P(k) = 9 1 0 * -1- * e-9 = 0.1 1 85
1 0!

Database Performance Tuning 104/162

Assume that the average number of records per primary page, mprim, tends to 8.
Now we can determine the number of records in primary pages, N rprim, and the
number ofrecords within independent pages, N rindep, are equal to :

Nrprim = 55.556 * 8 = 444.448 records Nrindep = 500.000 - 444.448 = 55.552 records

Thus, the probability that a record is within independent pages is equal to:
55.552 .

Pindep =
500.000

= 0.1 1

We still need to determine the average length the collision chain, to compute an
approximation of the access cost.

The probability that a page overflows tends to:

Pover = 0.41

Given this probability we determine the number of pages that have overflows,
nover, as well as the number of pages that have no overflow, nno-over:

NPover = 55.556 * 0.41 = 22.778 records NPno-over = 55.556 * (1 - 0.41) = 32 .. 778 records

Knowing the number of pages with overflow we determine the average length of
the collisions chain.

E(L) = 55.552
= 2 43

22.778

Thus, the access cost for a success, using a hash index, in terms of l/O is equal to:

Costsucc (Hash) = (1 + Pindep *
1 + E(L)) = (1 + 0.1 1 *

1 + 2.43) = 1.1 8 = 2 accesses
2 2

If we consider that the accesses are random, we can determine the following time
used to access data:

Costsucc (Hash) = 2 / 40 = 0.05 sec

04.09. 1 996 Database Performance Tuning 1 05/ 1 62

Chapter 5. Index Selection

In this chapter, we describe a methodology of index selection based on a study
made by [Finkelstein 1 988]. Methodologies for index selection are based on models of
data retrieval and updates, as the one we defined in preceding chapters. Sorne solve
the problem in an analytic way. Whereas, others use heuristic searches to find a quasi
optimal solution. Since we assumed that the database management system uses an
optimizer to choose an access strategy. It makes sense to use the optimizer itself to
provide the estimated I/O costs given SQL statement, when the database already
exists. However, if we are only at the phase of database conception, then we have to
use the cost relations defined in chapter 4. The estimations use general forms of cost
estimations, independent relational DBMSs, however, it is always a good thing to
certify our index solution by using optimizer cost estimation when the database is
implemented. The optimizer examines the set of access structures that exist and
computes the best expected cost for a statement by evaluating different join orders,
join methods, and access choices.

Using the optimizer, we might guarantee that any retained solution is one the
optimizer might use to its full advantage. Working with an external model, might
result in a solution that has good theoretical performance. However, when the
optimizer is faced with the set of indexes, it may choose an execution plan different
from the one predicated by the model, which may result in poor performance.

To describe the methodology for index selection, we reference to the design tool,
DBDSGN, defined by [Finkelstein 1 988]. This design tool has five principal steps.
Figure 5. 1. represents the steps and the tools major interactions with the database
designer and the DBMS.

The design tool as well as the DBA can internet with the DBMS to collect
information without physically running a statement by using the SQL EXPLAIN
facility. EXPLAIN causes the optimizer to choose an execution plan, including
indexes, for a given statement and stores the information into an interna! tables.
These tables can be accessed and abstracted using ordinary queries.

04.09. 1 996

The EXPLAIN command has four options:

t:!::> EXPLAIN REFERENCE. Identifies the statement type (Query, Update, Delete,
Insert). The tables and the attributes referenced in the statement in ways that
influence their plausibility for indexing.

t:!::> EXPLAIN STRUCTURE. Identifies the structure of the subquery tree in the
statement. The estimated number of record qualified by the statement and its
subqueries. And the estimated number of time the statement and its subqueries
are executed.

Database Performance Tuning 1 06/1 62

� EXPLAIN CosT. Indicates the estimated cost of execution of the statement and
its subqueries in the plan chosen by the optimizer.

� EXPLAIN PLAN. Describes aspects of the access plan chosen by the optimizer.
Including the order in which tables are accessed for executing the statement,
the indexes used, the methods used to perform joins (nested loop, merge or
hybrid), and the sorts performed.

DBMS

Catalogs

logical DB schema

tables and attribute
statistics

Optimizer

EXPLAIN
Reference

Catalog
Lookup

EXPLAIN
Cost

N

Input Expected Workload

Find Referenced Tables and
Plausible Attributes

Collect Statistics on Tables
and Attributes _ __,___ _ _,

Evaluate Atomic Costs DBA

Heuristics

y

Index Elimination

Index Solution

DBDSGN

figure 5.1.: Architecture of [Finkelstein 1988Js DBDSGN Tao!

04.09.1996

� The first step of the methodology involves the identification of referenced
tables and plausible attributes. Based on an analysis of the structure of the
input statements, we should only allow attributes that are 'plausible for
indexing ' to enter the index solution set.

� Second step consists in collecting statistics on tables and attributes. Statistics
are either provided by the database designer or extracted from database
register.

� During the third step 1/0 costs are evaluated using relations defined in chapter
4 and/or the Explain facility.

� Fourth step is called the index elimination. If the problem is large, a heuristic­
based dominance criterion can be invoked to eliminate indexes and to reduce
the search for the solution during last step.

Database Performance Tuning 107/162

04.09.1996

� Fifth step consists in generating an index soluti on. A controlled search of the
set of intermediate index configurations leads to the discovery of a good index
solution. The database designer uses its knowledge to control and to guide the
search.

Database Performance Tuning 108/162

5.1. Setting up a Cost Model

5.1 .1 . Workload Model

When a database designer is asked to supply an index design solution for a given
database, he must determine the workload that is expected for that system over a
specified time period. The expected workload during that time period is characterized
by a set of pairs

W = {(qh wi) , 1 = 1 , 2, . . , q},

where
each q i is an SQL statement and
wi is its assigned weight.

The SQL statements are queries on single tables and multi-table joins as well as
updates, inserts and deletes. The q i are statements that the designer expects to be
relatively important during database implementation and running. The statements in
the workload W may initiate from different sources:

� predictable ad hoc statements that will be issued from terminais,
� old application, or
� new application programs that will be executed during the database live or a

given time period

The weight associated to each of the statements is a fonction of

� the frequency of execution of the statement during a given period, and/or
� the system load when the statement is executed. Statements that can be run off­

line may be given a smaller weight than critical statements which require fast
response time.

Different statements that are treated identically by the optimizer could be
combined, although this requires deep knowledge of the optimizers internai
architecture. For example, consider the query with predicate CLIENTID = 1 23, we are
able to combine this query with the one that uses predicate CUENTID = 456 since they
have the same filter factor, ff. Either query might be included in the workload, with
the sum of the original weights specified. However, a query with predicate CUENTID
BETWEEN 1 23 AND 456, could not be combined with one requesting CUENTID BETWEEN 1 0
AND 20, since they associate different filter factors.

For application programs, the search for the weights is quiet a difficult problem.
In general, frequencies must be approximated. Designers may perhaps know how
often an application will be run, but may find it difficult to predict the frequency of
execution of a statement due to the complexity of the program logic.

04.09.1996 Database Performance Tuning 109/162

5.1 .2. Atomic Costs

This section will give us another glance at the behavior of the database optimizer.
We should be aware that some principles are to be verified to use and/or to predict
the optimizer behavior. It is not our aim in this section to describe how the optimizer
makes its decisions, but to help understand the principles vehiculated by the
optimizer. The basic principles used by the optimizer in executing a given statement
are as follows:

Optimizer principles

� Pl : Exactly one index is used for each appearance of a table in the statement.
� P2 : The costs of all combinations using one index per table appearance are

computed, and the one with the minimal cost is chosen.

Principle, Pl, would not be true of a system that used conjunction of indexes on a
single table, such as RIO intersection, which we do not assume to exist for our
considerations. Principle, P2, might not be true for an optimizer that uses heuristics
to limit its search for the plan with the smallest expected execution cost. We can
slightly relax principle, P2, as it is not necessary for the optimizer to compute all
possible costs, as long as it finds the plan with the smallest expected cost.

The cost of executing a statement can consist of three components: record access
cost, record maintenance, update cost and index maintenance cost. Throughout the
following lines we will only consider access costs, update costs will be aborted in a
next section.

To illustrate the above principles, let us consider a statement on a single table that
has n indexes. The optimizer computes at least n+1 access costs, n using each single
index, and 1 using brute force scan, an chooses the index with the minimal cost. The
access costs are computed independently, since the presence of a given index cannot
influence the cost computation of accessing the records by using another index
(principal, P l , only one index per table can be used).

Now consider a t-table join statement, q, with li a set of indexes on the j'h table. Let
Cq(a1 , a2 , . . . , a1

) be the optimizers best cost execution plan of q when the indexes a1 ,

a2 , . . . , a1 are used, where ai is either one of the indexes in li or the brute force scan p.
The tables may be accessed in many different orders, and many join methods (section
2. 1.8.) are possible even when the indexes are fixed. Considering the optimizer
principles, we can think of the optimizer as if it computes each Cq(a 1 , a2 , . . . , a1)

independently. The choice it selects for execution is one with the minimal estimated
I/O cost, so we define :

04.09.1996 Database Performance Tuning 110/162

CoSTq(I 1 , 12, . . . , 11) represents the minimum I/O cost estimation which can be
computed. Let ISET be a collection of indexes that exist on a set of tables. For this
index configuration ISET, we write COSTq[ISET] to represent COSTq(I 1 , 12, • • • , 11), where li
is the set of indexes in ISET that are on the r table. Indexes in ISET on tables not
referenced in the statement do not affect COSTq[ISET]. For a single table statement
against a table with n attributes, we can build n2n-1 + 2n different index configurations.
There are n clustered choices, and for each of these, there are 2n-1 different non­
clustered sets. If no clustered index is chosen, there are 2n sets of non-clustered
indexes. For a j oin query, the number of configurations is the product of the number
of configurations for each table. Which is exponential in the total number of
attributes in the table.

Configurations with at most one index per table are called atomic configurations,
and their costs are called atomic costs, since costs for all other configurations can be
computed from them5 1 . Atomic configurations for a table(s), are atomic
configurations where indexes are only on that (those) table(s). Atomic configurations
for a given statement are configurations that are atomic for the tables in that
statement.

Proposition 1:

The cost of a query, single table or Join, for a configuration is the minimum of the
costs for that query taken over the atomic configurations that are subsets of the
configuration. More formally,
COSTq[ISET] = min ASET E isEr COSTq[ASET]

where ASETs are atomic configurations
This proposition follows from the definition of CosTq. CosTq[ISET] is the minimum

of the Cq(a 1 , a2 , . . . , a1) values, where the a5 are indexes over appropriate tables, and
any a can be the brute force scan. Similarly COSTq[ASET] replacing by its definition,
Cq(a1 , a2 , . . . , a1) each appears in the right-hand sicle minimum at least once, and the Cq
terms involving brute force scan appear more than once. Since both minimum are
over the same set of Cq terms, they are equal, verifying the proposition.

Performing EXPLAIN CosT only for atomic configurations significantly reduces the
number of cost inquiries that have to be fulfilled. For a query on a table within
attributes, there are 2n+1 atomic configurations, n with 1 clustered index, n with 1
non-clustered index, and the configuration with no index at all, so the number of cost
estimations is reduced from exponential to linear in the number of attributes. For a t­
table join, recall that the number of configurations is exponential in the total number
of attributes in the joined tables. The number of atomic configurations for a join
equals the product of the number of atomic configurations for each single table. That
is, if we let ni be the number of attributes in the /h table of the join, there are Tit

j=l (2ni
+ 1) atomic configurations for the join. Despite this significant reduction, the
computation of all atomic costs may still be impractical for large ni and t. Later on we
describe methods to reduce the number of plausible indexes.

5 1 Configurations with more than one index per table are admitted to evaluate statements with
self-joins, when a table is joined on itself, but for simplicity we omit discussion of this case.

04.09.1996 Database Performance Tuning 111/162

5.1 .3. Update, Maintenance Costs

In section 2.2., we already discussed the problems of I/O cost estimations for
update operations. In here we will not go in much more details, however we will see
how we can integrate the cost estimations in the cost model.

Let us assume that update operations involve only one single table at the time.
However, update statements may have subqueries, but the DBMS handles them
separately from the root of the subquery tree on, just as it does when the root is a
query on its own. During execution the update statements follow tree steps :

� Using some access path(s), the records acted upon are found or the locations
for inserted records are found.

� The records are updated, deleted or inserted.
� If necessary, table indexes are updated.

The cost of index updates may be substantial, so we have to care about these costs
when evaluating a physical design. Furthermore, as mentioned by [Finkelstein 1988],
the update cost can not be considered as a constant for every index, because of two
things.

04.09.1996

� The update cost depends highly on the form of the statement, such as the
predicates in the Where clause, and/or the contents of the Set clause for the
update operations.

� Another distinction in cost estimation, must be made based on the way the
records and indexes to be modified are accessed. In particular, the access path
determines the order in which the records in the data pages are scanned.
Different formulas apply based on whether or not these objects are scanned in
the same order they are stored.

We separate the costs for update operations into two components:

� The cost of accessing and modifying records, and
� the cost of maintaining indexes on attributes that are affected by the statement.

Database Performance Tuning 112/162

The notion of atomic cost holds also for update statements. We will make a
difference between the atomic access costs, which are defined as the sum of the costs
of accessing and updating the qualified records. And the atomic index update costs.
F ortunately, a small set of atomic index update costs determine the costs of update
operations, for any set of indexes in the database. We must estimate the cost of
updating any index, no matter what index is used to access the records. The
important distinction is not which index is used, but whether the access index and
updated index are ordered in the same way. When they are, we call this an ordered
scan, however, when they are not , we call it an unordered scan. For example, for a
clustered index the scan is ordered if the index is either the same, which often occurs
for inserts and/or deletes, or brute force scan52 ; in this case, the modifications follow
the order in which the RIDs are stored at index dictionary level. If the clustered index
is updated following a scan on a non-clustered index instead, the RIDs may be hit in
an unordered way, incurring a higher cost. For updating a non-clustered index, the
only ordered scan is the index itself.

Let us assume that ISET is a set of indexes and q an update operation (Insert,
Delete, Update). Since q can involve only one table, although subqueries can mention
other tables, we assume without loss of generality that ISET is only on the modified
table. Because of the optimizer principles, defined in section 5. 1.2., the optimizer
costs estimated for executing update operation q in configuration ISET is:

COSTq[lSET] = min a E JSET u {Pl [Cq(a) + L JlE ISET Uq(p,a)]
where Cq is the I/O cost of accessing and modifying records using index a, and

Uq(P,a) is the I/O cost of updating index p if index a is used as an access path to the
table.

As with queries, indexes in ISET on tables not referenced in an update operation
do not affect, CoSTq[lSET], I/O cost. The definition of COSTq in the relation above here
is consistent with the definition of CoSTq in section 5. 1.2. for single-table queries.

Let q be a statement on a single table, including updates, deletes, and inserts, as
well as queries on a single table, and let AP q(ASET) be the index chosen by the
optimizer to process statement q in atomic configuration ASET, which is either the
brute force scan p or the one index in ASET that is on the referenced table. The
following proposition decomposes the I/O cost of q for configuration ISET into the
I/O costs Cq and Uq for atomic configurations ASET included in ISET.

Proposition 2:

The cost of a query, single table or Join, for a configuration is the minimum of the
costs for that query taken over the atomic configurations that are subsets of the
configuration. More formally,

CosT 'q [ISET] = min AsEr E 1sEr [cosTq[ISET] + Z: P E 1sEr Uq(p, APq(ASET))]

52 Recall, when an indexed attribute in a given record is updeted, the RID pointer associated with
the record is deleted from the index dictionnary following the old key value and inserted in the
dictionnary of new key values. Accessing the tuples through an index that is currently updated may
lead to hitting the same RID more than once.

04.09 . 1 996 Database Performance Tuning 1 1 3/ 1 62

where ASETs are atomic c onfigurati ons. Then,

C0ST 1q [ISET] = CosTq[ISET]
The above proposition is proved by the following.

Let the n indexes in ISET be a1 , a2, . . . , an . By definition, CoSTq[ISET] 1s the
minimum of the following I/O costs :

c0 = Cq (P) + I:\ = 1 Uq(a;, p) ,

C1 = Cq(a1) + 1:n i = 1 Uq(a;, a1) ,

Cn = Cq(an) + I:n
i = 1 Uq(a;, an).

And CosT 'q [ISET] is the minimum of the following I/0 costs

c'o = COSTq[{ p}] + I: flE 1sET Uq(p, p) = Co

c' 1 = CosTq[{ad] + I: flE ISET - {a1 J Uq (p, APq({ad)) = min(co, c1),

c'n = COSTq[{an}] + L pE ISET - {cm) Uq(p, APq({an})) = min(co, Cn) ­

Hence, CosT 'q [ISET] = min(c0 , c1 , . . . , Cn) , demonstrating the proposition.

As we mentioned earlier in this section, for an index p the maintenance cost Uq(p,
a) depends on whether the access to p is an ordered or an unordered scan and is
otherwise independent of a's attributes . This remains true even if a is p. Thus, there
are only two costs to be computed for p. Let U'q(p) be the cost of updating p if a
determines an ordered scan of p, and let U"q(p) be the cost of updating p if a
determines an unordered scan of p. Then Uq(p, a) is either U 'q(p) or U"q(p).

Performing I/O cost estimations, EXPLAIN CosT, for atomic configurations, we
collect the maintenance cost of a given index for both ordered and unordered scans.
For example, assume q being an UPDATE statement. We want to evaluate the
maintenance cost for index p. The atomic configurations with p that are of interest for
q, depend on whether p is clustered or not. Performing EXPLAIN C0ST statement for q
with p clustered, we get an I/0 cost Cq(p) , for access and record maintenance, and an
I/O cost Uq(p, p), for updating the index. The only possible index for the optimizer is
the brute force scan p, so Uq(p, p) = U'q(P) is the cost of maintaining the index p
following an ordered scan. Similarly the configuration with p being a non-clustered
index, gives us the cost U" q(p) of the unordered scan53 . Similar considerations can be
applied for DELETE and I NSERT statements.

5.1 .4. P lausible Attributes for Index Solution

53 We assume here that the 1/0 cost of updating an index following an unordered scan is always
the same, no matter what other index is chosen. In reality this is not always true, but we think it a
reasonable approximation.

04.09. 1 996 Database Performance Tuning 1 14/1 62

Estimating and/or performing opt1m1zer cost calculations for atomic
configurations reduces the set of cost estimations to entail. The following section
describes an additional technique to reduce the set of cost estimations.

In general, the number of index candidates on a table equals twice the number of
attributes on that table, because indexes may be clustered or non-clustered. However,
not all attributes are plausible candidates for indexing. Attributes that appear in
statements in ways that support the use of indexes are called plausible attributes, for
the given statement. Other attributes belong to the set of n on-plausible attributes.
The consideration which allows us to determine the set of plausible attributes for
each statement is optimizer dependent. The critical assumption is that, for the
statement, non-plausible attributes must have the same costs for indexes, no matter
what other indexes exist. For a relational system the considerations include the
following:

04.09.1996

� First, an attribute belong to the set of plausible attributes if there is a predicate
on it and the system is able to use it to process the statement. This happens
when the predicate, section 2. 1.6. 1., is ANDed to the rest of the WHERE clause,
and it is usable as a search criterion to retrieve records through an indexed
access. Let us recall a general form of the predicates that include plausible
attributes. This happens when the predicate is of form attribute e X, where e is a
comparison or range operator (>, >=, = ; =<, Between, l n), and X is a constant, a
program variable, or a referenced attribute in an other table.

Let us illustrate this by using an example. We take the following table defining
products:
Prad (Prodno, Descrip, Suppno, Quality, Price, Qonord, Qonhand . . .)

an the fo llowing statement
SELECT Prodno, Descrip
FROM Prad
WHERE Suppno = 274
AND (Quality = 'H igh' or Price > 1 0000)
AND Qonord = Qohand + 50

For this statement, Suppno is a plausible attribute, whereas Quality and Price are
not-plausible. Qonord is also non-plausible, because it is compared with the
result of an expression.

� Second, an attribute that is not-plausible for indexing because of the selection
predicate may however still be a plausible candidate for indexing for other
reasons. For example, there may be a GROUPE BY or ORDER BY clause on that
attribute. The optimizer could even decide that an attribute that does not appear
at all within the statement is plausible. Moreover, an implausible attribute
(index) might be a better access path than a brute force scan in certain cases.
Since all indexes on implausible attributes have almost identical costs, a single
implausible representative can be added to the plausible set of attributes.

� Third, if a table is not mentioned in a statement, all its attributes are not­
plausible for that statement.

Database Performance Tuning 115/162

It remains, that plausible attributes may be unusable for a particular statement
because of system constraints. For example, an attribute that is changed by an Update
statement may not be usable even if it appears in an index-processable predicate.
This does not mean that all plausible attributes, which are used in an Update
statement, are to become not-plausible, we must weight the update frequency and the
query frequency. If the query frequency gives us a higher advantage than the update
cost than the attribute shall remain in the set of plausible attributes, otherwise it
should be putted with the non-plausible attributes.

Limiting access-paths to the plausible access paths greatly reduces the number of
cost estimations to be done. A configuration is plausible for a statement if all indexes
in it are plausible for that statement. We will use the following criterion to limit the
number of I/0 cost estimations.

Costs are obtained for each statement only for plausible atomic configurations for
a given statement.

The validity of this criterion is a consequence of proposition 1 and 2 of section
5. 1.2. and 5. 1.3 ..

Let us illustrate, the validity of plausibility in reducing the complexity of index­
selection problem, by the following example. Consider, again, the product table,
PRoo, and an order table, OROER, where each table has 10 attributes. Without the
technique ofplausibility we would have to consider l O*l 5. 120 configurations for
each table with one index clustered and the others non-clustered, and 2 1 0 = 1.024
configurations with all indexes as being non-clustered, for a total of 6. 144
configurations. For the two tables together, there are a total of 6. 1442 = 37.748.736
configurations. Plausibility allows us to drastically reduce the number of
configurations. Consider the following statement:

SELECT P. Prodno, P. Descrip
FR0M PROD P, OROER 0
WHERE P . Prodno = O .Prodno
AND O.Suppno = 274
AND P.Qual ity = 'H igh'
AND P .Price BEîWEEN 1 0.000 AND 40.000

Of the 20 attributes PRoo and OROER, only 5 are plausible for the given statement:
Prodno, Quality and Price for PROD, and Prodno, Suppno for ORDERS. Hence, there are
160 plausible configurations on the two tables, and only 35 of them are atomic
plausible configurations. Suppose that another statement in the same workload is
defined:

04.09.1996

SELECT *
FR0M PROD P, OROER 0
WHERE P . Prodno = O .Prodno
AND O. Date = 1 9961 506
AND P.Price < 30.000

Database Performance Tuning 1 16/162

All the attributes in PR0D and OROER, appear in the select list, but only four are
plausible. For this statement there are 64 plausible configurations, of which 25 are
atomic plausible configurations. 15 of those are also atomic plausible configurations
for the preceding statement. The total number of different atomic plausible
configurations for both statements is 45. In practical workloads many attributes in the
database are not referenced, and some attributes are only referenced in the SELECT list
and never in the WHERE clause. The plausible configurations for joins often intersect
considerably; it is particularly common for several statements to have the same join
attributes, because of hierarchical and network relationships that exist in the data
tables. Furthermore, as we previously indicated, not all attributes referenced in the
WHERE clause are plausible. Hence, performing index selection on the basis of the
plausible configurations can be of help.

5.1 .5. Atomic Costs Computation

In order to obtain solutions for index selection problem, the database designer
needs to compute the costs of the statements for plausible atomic configurations.

We will say that an index c onfigurati o n is c overed by an other, for a given
statement q, when both configurations have the same indexes for all tables referenced
in q. Same, a set of c o nfigurati ons is said t o c overs an other, for statement q, when
each configuration in the second set is covered for q by a configurations in the first
set. A set of c o nfigurati ons is minimal, for a workload when it contains no
configuration that is covered by the other configurations, for every statement in the
workload. Since, the cost of a statement is independent of the indexes on tables that
are not referenced by the statement. To determine all plausible atomic costs it is
enough to simulate a (minimal) set of atomic configurations, that covers the set of
plausible atomic configurations for the given workload.

Remember that we might get statistics and cost estimation out of database catalog
tables. We must note, that during computation and simulations of index
configurations the catalog updates can be very time consuming. Let us consider a
statement on a single table. Since the same index may be plausible for more than one
statement, the number of system catalog updates necessary to simulate the
configurations equals the total number of different indexes that are plausible for at
least one statement. Brute force scan must be counted once for each table. For a
single table statement, catalog updates could be done efficiently on a table by table
basis.

For a workload that includes joins, the number of catalog updates may be very
high, since the number of atomic configurations to be simulated grows exponentially
with the number of tables joined. We want to reduce the number of catalog updates
by never simulating a configuration more than once, by simulating a minimal set of
configurations for a workload, and by simulating configurations in sequence that
reduces the number of catalog updates. In this section we briefly describe a simple
procedure to enumerate, a cover for, the plausible atomic configurations so that the
database designer obtains the plausible atomic costs for all statements in the
workload.

04.09. 1 996 Database Performance Tuning 1 1 7/ 1 62

For a statement q involving tq tables, let NAiq be the number of plausible indexes to
the r table of the statement. The number of different atomic configurations to be
simulated is

Using Gray coding54 we are able to enumerate atomic configurations, with table t
as the highest order, the least frequently changing, attribute and table 1 as the lowest
order, the most frequently changing, attribute. With regard to this the number of
catalog updates becomes:

\jlq is minimized by permuting the tables so that the NAiq values are monotonically
increased. Different tables may be used for different statements. \jf = Lq \jlq catalog
updates are enough to compute costs for all statements. According to [Finkelstein
1988], in many cases the plausible configurations for joins intersect considerably
with one each other. Thus performing the cost estimations independently for each
join, risks to create identical configurations more than once. To avoid this situation,
and hence reduce the number of catalog updates, whenever we simulate an atomic
configuration, we compute the cost of each statement for which that configuration is
plausible. More generally, the database designer estimates the cost for each statement
such that the simulated configuration covers a plausible configuration. Ordering the
statements, so that the ones with the largest number of tables are processed first, also
reduces the number of possible configurations, since a join involving many tables
may enumerate configurations needed by simpler statements.

Join cost computation rule

� The list of join statements is ordered in decreasing order, by the number of
tables referenced;

� For each join q, all plausible atomic configurations are enumerated, using for
example Gray coding55, with the tables permuted so that the NAiq values are
increasing. A configuration is simulated only if the cost of q for that
configuration has not yet been estimated.

� For each simulated configuration, a I/O cost estimation is performed for every
join, after the current join in the join list, such that the simulated configuration
covers an atomic configuration that is plausible for that join.

54 According to [Baudoin- 1 984] a Gray code of order n is a pennutation of 211 words of n bits
ordered a way that the i th bit divers from the i- 1 th in one position only, the whole in a a cyclic way,
taking i modulo n. The following is an example of order 3 Gray code:

000 00 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 00
55 Any other enumeration technic generating each configuration once is acceptable.

04.09. 1 996 Database Performance Tuning 1 1 8/ 1 62

5.2. Index El imination

Above here we described the notion of plausible attributes for indexation. The
plausibility of an attribute is based on its appearance in a statement, not on the I/O
cost of the index as access path. Plausibility is a valid criterion for restricting the I/O
cost evaluations. If we assume, that the solution generation procedure of section 5.3.
is used, then all configurations are considered, and the optimal index configurations
are found. Assuming that the estimated costs are the actual execution costs.
Analyzing all possible atomic configurations, may be impractical when the workload
includes joins on many tables, where a large number of attributes are plausible. As
we already discussed in chapter 1, finding the optimal configuration is not required,
as statistics provide an incomplete and approximate description of the database
workload, as well as the cost estimations of chapter 4 and/or the optimizer cost
computations provide us a rude approximation of real time I/O costs.

In what follows, we concentrate on some heuristics which will help us to decide
on which plausible indexes are likely to be chosen as access paths by the optimizer
when other indexes exist within the database. These criteria, based on access costs,
can reduce the set of configurations. First we describe the problem of index
indecision between index performance estimations and brute force performance
estimation, then we describe an heuristic for index elimination on single table
statements, after what we enlarge our considerations to multi table statements.

5.2. 1 . Index l ndecision Problem

In section 4.2. we defined an optimistic and a pessimistic I/O cost estimation for
B-Tree index accesses and we have seen the problem of the index indecision
problem. In section 4. 1. we defined a cost estimation for brute force table scans.
During this section we will give a graphical interpretation (figure 5.2.) of the
different cost relations and see how they led us to a heuristic on index selection.

First, recall the three cost relations for the B-Tree and the brute force table scan
accesses. Note that, in this section, we abstract the relations from the time fractions,
R, S, L, used to value the access cost in terms of time.

MAXcosr11o(B-TREENc) = I (Logfo(Ndv) - 1) + (k / Nrid) l+ L kNdv / foJ + k

MINCosr11o(B-TREENc) = I (Logfo(Nrdv - 1) + (k / Nrid) l + L kNdv / foJ + K

Cosr1,o(BRUTE FORCE) = Np/2
where
fo: Fanout of index node pages
Np: number of pages
Ndv: number of distinct records for the indexed attribute
Nrid: number of RID pointer hold in a page of indirection (rude approximation 254)
k: number of records to be retrieved
kNdv: number of distinct records values to be retrieved

K: number of pages to be accessed

Second, let us draw all three cost relations on a graphical figure, figure 5.2., and
describe their intersections (See annexes 7 . 1. 1.).

04.09.1996 Database Performance Tuning 119/162

Recall that the parameters involved m our cost estimations are valued as it
follows :
• number of records
• records size
• indexed attribute size
• page size
• fill rate
• number of records per page
• number of pages

Nr: 1 0000 records
Rs: 1 00 bytes
As: 1 0 bytes (page pointer size included)
Ps: 2000 bytes (header size already subtracted)
fr: 70%
Nrp: 1 4 records
Np: 7 1 4 pages

• fanout fo: 70 records (index page size and data page size are identica/)
• number of index levels
• number of R ID pointers

per indirection page

Access Cost

1 200 T

d: 3 levels

Nrid: 254 pointers

lndecision Zone

0
0--� � - �Î��-,1 ---,2�-� - Î -- -- ----

-
- 0.1

8-Tree Pesimistic

8-Tree Optimistic

Index better than Brut Force Index worse than Brut Force Filter Factor (*100=%)

figure 5.2. : Index Jndecision Problem Representation

Analyzing the graph, we figure out that the three cost relations cross within two
points.

The first intersection takes place at when 1 1 % of the records are qualified by the
query. Meaning that when the query qualifies less than / 1 *Nr records the I/O cost
using an index is always better than executing a brute force table scan.

The second intersection, arises when the query qualifies 12% of the records.
Meaning that when the query predicate, qualified more than /2*Nr records the access
costs using a B-Tree index is always worse than performing a brute force table scan.

The section between those two points, 1 1 and 12, is called the Indecision Zone.
Meaning that when the predicate values a filter factor of ff (1 1 � ff ;::: 12) , the designer
might not be able to state that the I/O costs using an index are better or worse than
executing a brute force table scan.

Above here we, defined three zones that guide the search for index placement,
elimination, but what happens when the different input parameters vary in value. We
can distinct between to kind of parameters ; the one that are fix to the cost estimation
and the one that are not.

04.09. 1 996 Database Performance Tuning 1 20/ 1 62

Fixed parameters to the indecision problem, are for example the number of
records, the records size and/or the indexed attribute size. They are said to be fix,
because the designer has no control over their values. Given a query and data objects
as well as their values, he has to decide whether the index placement makes sense or
not.

Variable parameters to the indecision problem, are for example the page size
and/or the fill rate. The designer might, choose according to the system and to its pre
analyses to increase or decrease their values.

In annexes 7 . 1.2. and 7 . 1.3 ., we valued and represented variations of the page size
and the fill rate. As we would expect, the higher we set the page size, the lower are
the 1/0 costs for both index retrieval and brute force table scan. What might be
surprising is that the higher we set the page size, the earlier cornes the break point, in
terms of filter rate, where the index search is always worse than the brute force table
scan, and the smaller is the indecision zone. Same for variations of the fill rate, the
higher we set the fill rate, the more records can be hold within a page, the less access
have to be performed for data retrieval. What might be surprising, in this case, is that
the higher we set the fill rate, the better becomes the brute force scan over the index.
The fact is, when the fill rate varies the amplitudes in brute force scan costs are
bigger than in B-Tree cost estimations, which influence highly the cost break point
valuation.

Out of these variations we can learn that a lower page size or/and fill rates are
beneficiary for indexes selection. However it is Jolly to think that a minimum page
size and fill rate gives an optimal 1/0 cost for a given index. The designer should not
think of tuning the page size and/or the fill rate given an index and a query. But to
question himself, on the problem, if an index makes sense, or not, for a given page
size, fill rate and query. The aim of this section was to show that an index can be
more or less interesting for a given query depending on the pre-defined page size
and/or fill rate.

5.2.2. I ndex El imination for Single Table Statements

Assume that all considered statements involve one and only one table, hence, all
atomic configurations have no more than one index. Index elimination is not usually
necessary in this case, since the number of plausible atomic configurations is quiet
small. However, to help motivate the technique used for index elimination in multi­
table statement cases, we should begin with a single table statement case.

The database designer figures out all possible configurations, for clustered and
non-clustered indexes, for all table attributes. Index elimination is carried out by
comparing every index choice with every other index choice, as well as with the
brute force table scan. A set of elimination criteria is valid if the criteria never
eliminate an index that appears in the optimal solution. The elimination heuristics,
describe later on, are only valid for single-table queries. When the workload also
contains maintenance statements and joins, the heuristic may not be valid. The
problems associated with the maintenance and join costs will be shortly inspected at
the end of this section.

04.09.1996 Database Performance Tuning 121/162

Let CosTiU) be the cost of query qi associate with an index j. If COSTlk) < CosTiU),
then, if both indexes exist in the design, the optimizer will prefer k to j . We should
also consider storage cost, si, for each index j, which is defined to be the number of
pages needed for the index multiplied by a storage weight cr , supplied by the
designer to trade off page costs versus execution costs in computing total
configuration costs. If CosTi(k) s CosTiÜ), for all qi, then the optimizer will never take j
if k is in the database design. If this consideration holds, k is a better index choice
than j, and we can eliminate j from consideration, unless the storage cost required for
index k is higher that the one of index j, sk > si.

The above consideration let us to the following definition.

Given two indexes j and k, if sk s sj and, for all qj E W, Cosr/k) s Cosr;U),

then index j is dominated, as an index choice, by index k. If equality holds
for al! qj and s, then j and k are said to be equivalent.

In case where indexes are equivalent, all but one can validly be eliminated. The
configuration, with no indexes is represented by a vector R(p) of costs CosTi(P) that
corresponds to the brute force table scan. In general, the optimizer never returns a
cost CosTiU) > CosTi(P), so any index access cost equivalent to the brute force table
scan cost can be validly eliminated.

Let us consider CLUST to be the set of plausible clustered indexes over all the
queries, qi, and NoNCLUST to be the set of plausible non-clustered index over the same
queries. The following four heuristics, based on the above definition, can be used to
eliminate indexes from CLUST and NoNCLUST. Note, that after that an index has been
eliminated it cannot eliminate any other index.

Hl: lfj , k E Cwsr and index k dominates index j, then eliminate j fi·om CwsT.

H2: If j E Cwsr is equivalent to k E NoNCwsr and index k and j are defined on the
same table attribute(s), then eliminate j from CwsT.

H3: lf j E NoNCwsr is equivalent to p, then eliminate j from NoNCwsr.

H4: If j , k E NoNCwsr and index k dominates index j, then eliminate j from
NoNCLUST.

Each of these heuristics is valid because we assumed earlier that the optimizer
uses only one access path per table and there is only one table. Heuristic H l and H2
should be applied in that fixed order before H3 and H4, since otherwise we may
eliminate an index before it has the chance to eliminate others. Heuristic H3 and H4
may be applied in either order. Heuristic H l and H4 eliminate dominated indexes and
keep only one among equivalent indexes. Heuristic H2 eliminates any clustered
index that is equivalent to the non-clustered index on the same attributes, because
there is no advantage in keeping the records ordered on those attribute values. In H3,
non-clustered indexes are compared to the configuration with no indexes and
eliminated if equivalent. If the corresponding clustered indexes are equivalent to the
brute force scan, p, they are eliminated by heuristic H2, since no non-clustered index
can be better than a clustered index on the same attribute(s). After the application of
the above heuristics, CLUST and NoNCLUST contain only the indexes that are
comparatively useful for at least one query, or have small storage costs.

04.09. 1 996 Database Performance Tuning 1 22/1 62

Clustered Indexes Non-Clustered Indexes No Index

1c 2c 3c 4c 5c 6c 1n 2n 3n 4n 5n 6n p

q1 1 00 1 00 50 100 90 100 100 1 00 50 100 1 00 100 100

q2 1 50 1 0 50 35 40 1 50 1 50 20 50 1 50 40 1 50 1 50

q3 5 1 0 1 0 1 0 1 0 5 5 1 0 1 0 1 0 1 0 1 0 1 0

q4 1 00 60 1 00 200 1 00 200 1 00 1 40 200 200 1 30 200 200

figure 5.2.: Cast Matrix for Index Elimination Problem

To illustrate these heuristics, let us consider a small example. Figure 5.2., gives us
costs for a table Ti with a set of 6 plausible attributes for index selection and 4
queries. Normally, different attributes might be plausible for different queries. The
single index atomic costs are arranged in a matrix with 4 rows, representing the
queries, and 13 columns, 6 for costs of clustered indexes, 6 for the non-clustered ones
and 1 for the brute force scan. Ignoring storage costs for simplicity, the results of
index elimination is :

Results of heuristic index elimination :

� H 1 : 1 c eliminates 6c, 2c eliminates 4c.
� H2: ln eliminates l e.
� H3: p eliminates 4n and 6n.
� H4: no elimination.

Further elimination heuristics may be applied to CLUST and NoNCLUST if they still
contain many elements. Other indexes can be eliminated if they are 'almost'
dominated by some other index. If the strict domination criterion is used, indexes
may survive the elimination process because they are slightly better than other for a
small set of queries, even though they are worse for most queries. Therefore,
heuristic elimination may be preferable to strict domination. Let the maximum
advantage of k over j for all q i be

and let E be an elimination coefficient specified between O and 1. Heuristics
elimination can be based on the following domination definition:

An index k i::-dominates an index j if

Ma. k � i::Mak .
J, ,J

and for storage costs

cr(sk - s i) � EMak,i
where cr is the storage weight supplied by the designer.

04.09.1996 Database Performance Tuning 123/162

Index k r,-dominates an index j if the maximum advantage of j over k, over both I/O
cost estimations and storage costs, is less or equal to a fraction of the maximum
advantage of k over j. Note that zero-domination is identical to the first domination
definition, so index elimination is the same as index elimination with 8 = O. r,­
domination can be defined in other ways, for example by comparing total advantages
or by comparing maximum advantage to total advantage. In here we prefer to
compare maximum advantages, since this comparison means that eliminated indexes
are comparatively unimportant.

Domination increases monotonously as r, increases ; that is, if j r, 1-dominates k, then j
f.rdominates k for 8 1 < 82 . Assuming storage costs are equal, for any pair of indexes j
and k there is a smallest r, between 0 and 1 such that one index 8-dominates the other,
based on the ration of their maximum advantages. Note that if both maximum
advantages are 0, the indexes are equivalent. 8-domination is not a transitive operand,
so the order in which elimination is applied may change the set of eliminated
indexes.

If the clustered index were chosen on a table, further index elimination could be clone
based on that choice. This motivates an additional elimination heuristic criterion. Fix
a specific table. Let G0 contain all surviving indexes on that table in NoNCLUST. For
each clustered index k on the given table that survived index elimination, let Gk
contain clustered index k as well as the non-clustered survivors. Elimination is
performed within each group Gk by applying a domination criterion using the
clustered index within the group:

HS: For each group Gk, if k E CWST8-dominates an index j E NoNCWST, ifj and k are
indexes on the same attribute(s), then eliminate j from Gk, but n ot /rom any other
group.

Heuristic, H5, eliminates the non-clustered index on the clustered attribute, which is
always dominated by the corresponding clustered index, and eliminates other indexes
that are dominated by the clustered index. Elimination using H5 can be done only
group by group and n ot gl obally on NoNCLUST, since non-clustered indexes
dominated by some clustered choices may be useful for other clustered choices. The
result of applying H5 to the groups are called by [Finkelstein 1988] the basic groups
for the tables.

We previously showed index e limination for figure 5.2., which is the same as index
elimination with 8 = O. Index elimination using the r,-domination definition for 8 = 1

/3

yields the following results:

Results of heuristic index elimination with 8 = 1
/3:

� H l: 1 c eliminates 6c, 2c eliminates 4c, 3c eliminates Sc.
� H2: ln eliminates l e.
� H3: p eliminates 4n and 6n.
� H4: 2n eliminates ln.
� H5: In basic group for 2c: 2c eliminates 2n and Sn.
� H5: In basic group for 3c: 3c eliminates 3n and Sn.

04.09.1996 Database Performance Tuning 124/162

Basic groups after elimination with i:: = 1
/3:

� (2c, 3n)
� (3c, 2n) and
� (2n, 3n, Sn)

For maintenance statements as well as queries, costs are compared only for atomic
configurations. Since the rest of the solution is not determined, the designer cannot
include the cost of maintaining other indexes in its cost comparisons during the index
elimination phase. Hence, the elimination heuristics may not be valid when there are
maintenance statements in the database workload.

5.2.3. I ndex El imination for Multi-Table Statements

Most approaches to the index selection problem are restricted to single table
statements. Approximate solutions are obtained by performing the index selection
separately table by table. Most commercial systems have join methods performing
table joins, using nested loop and/or merge scan as well as hybrid join methods. The
optimizer chooses the sequence in which tables are joined, and the index used for
accessing each table. For an n-way join, it can use two methods in any appropriated
sequence of 2-way joins. In each join, the choice of table order, the join method, and
the index on tables cannot be clone independently.

According to [Finkelstein 1 988] the single table heuristics from section 5 .2. 1 . also
hold, although not necessarily valid, for multi-table index elimination, when
following assumptions are made :

A l : Indexes can only eliminate other indexes on the same table.

A2: Clustered indexes on join attributes can never be eliminated.

A3: Indexes on join attributes can never eliminate any other indexes.

Assumption, A 1, arises because indexes are single table access paths. Assumption,
A2, arises because merge scan is often a very efficient join method when both join
attributes are clustered. This can seldom be detected from single index atomic costs.
Consider again, for example, the two tables Prad and Orcier and the following SQL
query :

04.09.1 996

SELECT O.Suppna, P .Qanard
FR0M Prad p I Orcier 0
WHERE O.ProdNa = P .PradNa
AND O.SuppNa = 1 5
AND P .Qahand BE1WEEN 1 00 AND 1 50

Database Performance Tuning 1 25/ 162

Assume that we made the decision to cluster the Prod table on attribute Descrip and
that a non-clustering index on ProdNo exists for Prod . Given this, the best clustered
index for Order is probably on SupNo. This allows a quick retrieval of the records
from Order that have SupNo = 1 5 . For each of these records, the corresponding records
in Prod, having the same ProdNo, can be located using the index on ProdNo in a
nested-loop join method. The best choice of clustered index for Order would be
entirely different had the choice for clustered index on Prod been ProdNo. In that case,
clustering Order on ProdNo enables an even faster processing of the above statement.
The join predicate would be resolved by performing one pass over each table via the
clustered index, by using the technique of the merge join. This example shows us,
that the selection of a clustered index cannot be done independently for each table.

Assumption, A3, arises because some very good solutions would be ignored if
indexes on join attributes were allowed to eliminate indexes on non-join attributes.
Without considering assumption, A3, two negative results might occur. Again,
suppose that our workload contains the above query. Now apply index elimination to
non-clustered indexes on attributes SupNo and ProdNo of the Order table. Let us just
consider the costs of the nested-loop join. As seen in section 2. 1.8. 1. one table must
be the outer table, whereas the other is the inner table. For each qualifying record in
the outer table, satisfying predicates on this table, matching records are found in the
inner table, satisfying the join predicate and the other predicates on the inner table.
Let kx be the expected number of records that satisfy predicates on the outer table X,

which gives us the number of times the inner table is scanned, let Pv be the cost of
the brute force scan of table Y, let C(ai) be the cost of accessing the outer table using
the index on attribute j, and let C'(ai) be the access cost to retrieve records matching
an outer record using the index on attribute j of the inner table. The optimizer cost
estimation are as follows :

For the index on attribute O.SuppNo, the minimum of Acc1 and Acc2 are :

using Prod as the outer table :

Acc1 = PProd + kProd C'(O.SuppNo)

and using Order as the outer table :

Acc2 = C(O.SuppNo) + korder PProd
For the index on attribute O.ProdNo, the minimum of Acc3 and Acc4 are :

using Prod as the outer table :

Acc3 = PProd + kProd C'(O. PartNo)

and using Order as the outer table :

Acc4 = Porder + korder PProd
Let us make the assumption that each index has I/O access costs that are less than

the brute force scan and that Acc3 is less than both Acc1 and Acc2 (Acc3 < Acc1 , Acc3 <
Acc2). During index elimination we would eliminate the index on O.SuppNo. But, if
we put an index on attribute P.Qonhand, the I/O cost of accessing Prod might bee
significantly reduced. Let us define Acc1 ' and Acc3' by substituting C(P.Qonhand) to
PProd in relation Acc1 and Acc3. Similarly we define Acc2' and Acc4' by replacing
C'(P.Qonhand) to PProd in relation Acc2 and Acc4.

04.09.1996 Database Performance Tuning 126/162

Acc1 ' = C(O.Qanhand) + kProd C'(O.SuppNa)

Acc2' = C(O.SuppNa) + korder C'(O.Qanhand)

Acc3' = C(O.Qanhand) + kProd C'(O. PartNa)

Acc4' = Porder + korder C'(O.Qanhand)

The cost reduction we obtain from Acc2 to Acc2' , is korder times greater than the
cost reduction from Acc3 to Acc3'. If the value of korder is large, then the value for Acc2
will now be much less than the value of Acc3. Thus, the decision to eliminate the
index on O.SuppNa was poor.

A second outcome that produces even worse results might occur if we do not
consider assumption, A2. Again we will use the above statement as an example. The
non-clustered index on O. PradNa could eliminate all other non-clustered indexes on
Orcier, since the cost Acc3 with Orcier, as inner table, is small. Similarly P. PradNa
could eliminate all other non-clustered indexes on Prad, because executing a nested
loop join with Prad, as inner table, might be cheaper than the alternatives. These
indexes would not be used for a nested-loop execution of the considered statement,
since one of them would be on the outer table and there is no non-join predicate on
either attribute. An index can be used to scan all the records in a table, but this is
typically not profitable. Thus, the optimizer is forced to choose brute force scan on
one of the two tables, and consequently one of the indexes will be useless for the
considered statement.

However, the database designer is allowed to undertake some non-clustered index
elimination on join attributes by other indexes. In case where Acc3 is bigger than
Acc1 or Acc2. If we define an index on one of the attributes of Prad then Acc3 remains
bigger than Acc1 or Acc2. This is true of Acc4 as well as Acc3, and non-clustered
indexes are poor choices for merger-scan joins. Bence, the non-clustered index on
join attribute O.PradNa can safely be eliminated when it is dominated by another non­
clustered index.

Our discussion of restrictions A2 and A3 shows that solutions for single-table
cases do not extend, by combining all the individual solutions for each table, to the
multi-table cases in a trivial way. According to [Finkelstein 1988] index elimination
is a good heuristic when assumptions Al , A2 and A3 are followed .

04.09.1996 Database Performance Tuning 127/162

5.3 . Solution Generation

For the last step in the design process we will, explain how [Finkelstein 1988]s
database design tool, DBDSGN deals with the generation of an index solution. The
index solution step is a controlled search of the space of subsets of the survivor
indexes in CLUST and NoNCLUST to find good solutions to the index selection problem.

Solutions, which are index configurations, are annotated with the I/O costs,
maintenance costs, and indexes used for each statement in the workload and the total
cost. The total cost can also depend on the total storage and the storage weight cr if
the designer wants to balance execution time versus the cost of storage. However we
will ignore the storage cost in this section.

The indexes in CLUST and NoNCLUST are stored in a list, the survivor list, where the
clustered indexes proceed the non-clustered ones. The search in this list is clone
through a tree expansion that enumerates the configurations so that no configuration
appears twice in the tree. The ordering of the survivor list is important, however it
will be described later on in this section.

Before we start the tree expansion, we should give the tool whether there is an
index storage limit or not, if there is, the designer has to supply the maximum
number of pages available for an index configuration in the data base.

Table

Survivors

Basic Groups

Survivor List

2c 3c 2n 3n 5n 7c 9n

2c 3n 7c 9n

3c 2n 5n 9n

2n 3n 5n

2c 7c 3c 9n 2n 5n 3n
figure 5.3.: Example of a Survivor 's List and Basic Groups

The root of the tree represents the solution with no indexes at all. A node's
children always have one additional index, so the nodes at level n have exactly n
indexes. Adding a node's children to the tree is referred to as expanding the node.
The tree expands according to the following rules:

04.09.1996 Database Performance Tuning 128/162

Tree expansi on rules

� The root is expanded with one child for each index on the survivor list. These
nodes represent solutions having only one index in the database.

� For each node, expansion is done with indexes that appear later in the survivor
list than any index already in the node.

� A node can be expanded only with indexes that belong to the basic groups of
the clustered indexes already present in the solution represented by that node.

� If a node has no clustered index for a table, any clustered index on that table
can be added, but only non-clustered indexes in the all-non-clustered basic
solution for that table can be added to the node. Recall that clustered indexes
precede non-clustered indexes in the survivor list.

� Any node that exceeds the index storage limit specified by the designer is
pruned.

To explain how the tree grows let us take an example. Suppose that the design is
for table T1 and T2, whose survivor list and basic groups are show in figure 5.3 ..

Figure 5.4. shows the first expansion of the tree with solutions having only one
index on the database. In this figure the root has no index.

2c 7c 3c 9n 2n Sn 3n
figure 5.4.: First Tree Expansion

In figure 5. 5. the tree is expanded from the first lev el to the second, and the
application of the expansion rules take place. For example, the solution represented
by 7c is not expanded with 2c ; the solution (2c, 7c) is already present and equivalent
to (7c, 2c). No expansion takes place for the solution 3n, which is the last index in
the survivor 's list, but all possible combinations of 3n with other indexes appear
elsewhere in the tree. Furthermore, 2c is not expanded with 3c or 5n because they do
not belong to the same group, and 3c is not expanded with 3n.

2c

ffi
7c 3c

� ffi
9n

ffi
2n Sn

/\ 1
7c 9n 3n 3c 9n 2n Sn 3n 9n 2n Sn 2n Sn 3n Sn 3n 3n

figure 5.5.: Second Tree Expansion

04.09. 1 996 Database Performance Tuning 129/1 62

3n

For each node the total cost is estimated during expansion. This total cost is the
weighted sum of all costs of the statements, access and maintenance costs, when the
database has the set of indexes represented by that node. Let ISET be the set of
indexes in a given node. The total cost of the solution represented by the node is:

TotalCost(ISET] = L wqCOST(ISET]
q

where CosTq[lsET] is the cost of statement q as defined in section 5. 1.2. for the
queries and in section 5 . 1. 3. for maintenance statements.

The solution in a node can be worse than the parent solution. Assume we start
from a node having ISET as a solution and add index a. The access advantage of a
solution ISET' = ISET u {a} is

Adv= TotalCos{ISET] - TotalCos{ISET]

Adv = L wqCOST(ISET] -L wqCOST(ISEr]
q q

CosTq[lsET'] can be efficiently computed using atomic costs as the minimum of

• CosTq[lsET] and
• the minimum value of CoSTq[ASET] , taken over atomic subsets of ISET that

contain a.

If a is used for q in configuration ISET', then the access paths for q correspond to
those in some ASET containing a. Adv cannot be negative. If Adv is 0, no atomic cost
including a is better than those without a, so a is not used as an access path in any
statement for configuration ISET'. If Adv is positive, the disadvantage in maintenance
cost must be considered:

The difference inside the square brackets, [], is not simply z: uq (P, APq (ISET)) , the
additional maintenance cost for index a, because the maintenance costs of other
indexes may have changed, based on the change of some index choices. Thus, to
correctly evaluate maintenance costs, the tool has to keep track of actual access paths
for each statement. ISET' has a better total cost than ISET only if Adv is greater than D.

Furthermore, knowing the actual indexes allow us to detect wasteful solutions.
There are solutions that contain one or more indexes that are never taken in account.
ln the index elimination phase, we ensure that no index is dominated by any other
single index. At level of solution generation we want to ensure that no index is
wasted because it is overpowered by a set of other indexes. Wasteful solutions can
arise in two ways:

The most recently added index a is not used in any statement. In this case ISET
overpowers a.

When a is added to ISET, some index � in ISET is no longer in an access path for
any statement. In this case ISET u {a} - {� } overpowers �-

04.09.1996 Database Performance Tuning 130/162

If a wasted index is plausible for some Jom, future additions of indexes on
different tables may make it useful for that join. If that index is not plausible for a
join, or if all plausible indexes for the tables in the same join are already in the
solution, then that index will always be wasted, no matter how the solution is
expanded. In that case, the node can be pruned from the tree.

At the end of expansion, the tool displays the S solution having the smallest I/O
cost, where S is a parameter specified by the designer. Wasteful solutions are never
displayed, so they may be dropped as soon as they have been expanded. In figure 5.6.
we show the full expansion of the tree. Recall that no index storage limit has been
considered during expansion. The bordered nodes indicate the best solution (S=3).
Sorne nodes are pruned because the tool detects wasteful solutions. When
maintenance statements are present in the workload, the best solutions are not
necessarily at leaves of the tree.

0

2c 7c 3c 9n 2n 5n

A � A A /\ 1
7c 9n 3n 3c 9n 2n 5n 3n 9n 2n 5n 2n 5n 3n 5n 3n 3n

/\ \ /\ A �� \ /\ \ 1
9n 3n 3n 9n 2n 2n 5n 3n 5n 3n 3n 2n 5n 3n 3n 3n

� � � \n
\ /
3n 3n

�

figure 5. 6.: Full Tree Expansion

Exploring all the solution in the tree is very time consuming when there are many
tables in the database with a large number of surviving indexes. Thus, we allow a
controlled partial expansion of the tree, using breath-first search with heuristics
pruning. The search is conducted by expanding all solutions with no more than L
indexes and keeping only the best N, where N and L are parameters specified by the
designer, with N :::: S. Each of these N solutions is then expanded by at most L
additional indexes, assuming they were at the frontier of the previous expansion. This
process continues until no further expansion is possible.

Because of this pruning rule, each different ordering of the survivor list
determines a different tree, even though the set of solutions examined during the first
L index expansion is always the same. This is because the survivor list imposes a
discipline on a node's descendants, denying them certain indexes. We want
'influential' indexes to be early in the survivor list, so that other indexes can still be
added, despite pruning. If the first index in the list was good only for some low­
frequency statements, it might be pruned completely after the first L index
expansions. The order of the survivor list is determined by two rules:

04.09.1996 Database Performance Tuning 131/162

3n

� The clustered indexes are stored before the non-clustered ones. Clustering
indexes are, in general, the most influential. Thus, they should be considered
before the non-clustered ones. They also allow the identification of the basic
groups.

� The indexes in each set, clustered and non-clustered, are ordered according to
their total costs, computed on the basis of their weighted total single index
atomic cost: Lq wq CosTq(a) . Indexes with higher total single costs are usually
less influential than indexes with lower total single costs.

This ordering for the survivor list is likely to be one of the best among the
possible permutations of indexes.

In figure 5.7. - 5.9., the expansion of the same tree as in figure 5.4. - 5.6., is shown
with N = 3 and L = 1 . We assume the order of the survivor list is the same as for
figures 5.4. - 5.6 .. The bordered nodes indicate the best solutions found at each level
of expansion. The best solution obtained with pruning need not be the same as for
full expansion. In this example, however, the number of nodes searched dropped
from 48 to 27. If we set L = 1 , we visit a number of nodes proportional to the number
of surviving indexes. In general, the number of nodes grows exponentially in L. If we
make L the number of surviving indexes, we visit the entire tree. The trade off, is that
some of the low cost solutions appearing in the unrestricted tree may not appear in
the restricted tree, so some of the best solutions may be missed. By controlling these
two parameters, a designer can get a good set of choices rather quickly. The Tool
allows the designer to pursue different choices of N, L, and the index storage limit in
the same run. According to [Finkelstein 1988] choosing L = 1 usually allows the tool
to find the best solution.

3n

figure 5. 7. : First Tree Expansion with N = 3 and L = 1.

0

figure 5. 8. : Second Tree Expansion with N = 3 and L = 1.

04.09.1996 Database Performance Tuning 132/162

figure 5.6.: Full Tree Expansion with N = 3 and L = 1.

04.09.1996 Database Performance Tuning 133/162

Chapter 6 : Case Study

Throughout this document, we have seen many theoretical aspects and guidelines
for physical database tuning. It is true that we concentrated on how indexes should be
placed to gain maximum access performances. All this together can bee confusing.
This chapter should bring some order into all this. Using as input a simplified version
of a case study made by [Hainaut 1989], we will show how index tuning can take
place in real world.

Before we start the phase of physical tuning, we consider that the logical database
schema has been optimized according to the study made by [Mathon 1994]. Consider
also that the queries are optimized according to the DBMSs optimizer considerations.
Note that each DBMS documentation gives an explicit description of the query
optimization.

In this chapter we will not consider the different aspects of buffer, page size, fill
rate tuning, as they are strongly depending on database management system
(ORACLE, SYBASE, INGRES, DB2, ...) and the operation system (UNIX, VMS,
MVS, ...) under which the database will be implemented. We assume that the
database designer completed the pre-job of tuning those parameters to their optimum.

04.09.1996 Database Performance Tuning 134/162

6.1. Logical Schema

Figure 6. 1. illustrates our case study logical schema. It represents the information
stored within a small library. There are books having a set of keywords and being
written by only one principal writer. Each book exists only one time within our
library and can only be borrowed to one person. For each book the library stores the
title, the publisher, the publishing year, the writer's identification, the borrower's
identification, the date of borrowing and the foreseen date of return. For each writer
the database holds information on its name and its nationality. Similarly, for each
borrower the library stores the name and the address. To each book can bee associate
0 or 12 key words.

As already mentioned, the physical tuning uses as input the logical schema. For
example the one in figure 6. 1., representing our library database.

BORROWER BOOK

ld-Num N8 ld-Num N6 --
A35 7d-Wï'ffier N6 Name

Street A30 Id-Barr N8
CP A7 Tite! A35
Town A30 Pub-Year A8
Country A30 Publisher A45

Location A15
Date-Barr AB
Date-Rel A8

figure 6.1.: Logical Schema for Case Study

WRITER

ld-Num N6
Name A35
Nation A35

KEY-WORD

Id-Book N6
Key-Ward A20

The schema would not be entire without the following referential constraints and
integrity constraints.

04.09. 1996

lb- BOOK. ld-Writer in WRITTER. ld-Num
lb- BOOK. Id-Barr in BORROWER. ld-Num
lb- KEY-WORD. ld-Baak in BOOK. ld-Num

lb- BOOK.Date-Ret � BOOK. Date-Barr

Database Performance Tuning 1 35/ 162

6 .2 . Requirements Col lection

6 . . 2 . 1 . Data Statistics

During requirements collection the following statistics have been gathered.

� The system uses data pages of 2Kb. For simplicity, we consider that the page
size is equal to 2.000 bytes, reserving 48 bytes for the page header.

� The database is poor in insert and/or deletes and there are no record
enlargements. The database designer determined a fill rate of 70% for the entire
database.

� He estimated 10.000 persons that are allowed to borrow books.
� There are 50.000 books to be stored in the database.
� On the average the database designer identified 10 keywords per book.
� On the average a writer writes 3 books, thus there are 16.667 writers to be

stored in the database.

Table Name Nr Rs
Nrp = l p�:fr

j Np = r� 1 Nrp

BORROWER 1 00.000 records 1 40 bytes 1 0 records/page 1 .000 pages
BOOK 50.000 records 1 39 bytes 1 0 records/page 5.000 pages
WRITER 1 6.667 records 76 bytes 1 8 records/page 926 pages
KEY-WORD 500.000 records 26 bytes 53 records/page 9.434 pages

6.2.2. Queries

At the same moment, the database designer identifies a set of data operations.
Already classified into query types (see section 2. 1.8.).

04.09.1996

Point queries :
Q1 : SELECT *

FROM BORROWER
WHERE ld-Num = #x

Q2: SELECT Title, Pub-Year, Publ isher, Location
FROM BOOK
WHERE ld-Num = #x AND Date-Borr NOT NULL

Multipoint queries:
Q3: SELECT *

FROM BORROWER
WHERE Name = #y

Q4: SELECT ld-Num, Title, Pub-Year, Publisher, Location
FROM BOOK
WHERE Date-Ret <= #today

Database Performance Tuning 136/162

Range queries:
Q5: SELECT ld-Num, Tittle, Pub-Year, Publisher, Location

FROM BOOK
WHERE Pub-Year BETWEEN #date1 AND #date2

Ordering queries:
Q6: SELECT Name, Nation

FROM WRITER
OROER BY Nation , Name

Join queries :
07: SELECT B. ld-num, B .Title, B .Publisher, B. Pub-Year, W.Name

FROM BOOK B, WRITER W
WHERE BOOK. ld-Writer = WRITER. ld-Num

Q8: SELECT B1 . ld-Num, B1 . Name, B2.Title
FROM BORROWER B 1 , BOOK B2
WHERE B2. ld-Borr = B 1 . ld-num AND B2.Publisher = #x

Update operation :
U 1 : U PADTE BOOK

SET Date-Borr = NULL, Date-Ret = Nu ll
WH ERE ld-Borr = #y

U2: UPADTE BOOK
SET Date-Borr = #today, Date-Ret = #returnday
WHERE ld-Borr = #y

6.2.3. Query Statistics

04.09.1996

After identifying the data operations, the designer identified the number of
activation for each query and the number of records qualified during their
activation.

� Query Q I is requested on the average 5 times a day. As its predicate is defined
upon a key attribute, it qualified only one record per activation. Thus the
predicate has a good filter factor.

� Query Q2 is on the average activated 20 times a day. As one third of the books
are borrowed and as the predicate l d-Num = #x involves a key attribute, the
query qualifies on the average 1,5 records.

� Query Q3 is initiated 0.5 times a day. Consider that the predicate filter factor is
equal to 2%, as there are on the average 20 persons with the same name. Thus
the query retrieves 5.000 records.

� Query Q4 becomes active once a day. Selecting 2 records out of 1/3 of the
records, as on the average 5 books out of the 30% of borrowed books are not
returned in time.

� Query Q5 is on the average activated 0,5 times a day. Requirement collection
identified that on the average 100 records are qualified.

Database Performance Tuning 137/162

� Query Q6 is initiated once a month, thus 0.05 times a day . It qualifies all,
16.667, records, as it establishes a report for all the writers, ordered by nation
and name.

� Query Q7 is activated once a week, thus 0.2 times a day . As each book has a
writer, it generates 50.000 records .

� Query Q8 becomes active once a day . Consider that there are 1 .000 publishers
and that the books are uniformly distributed among those publishers .

� Update operation U 1 is initiated 100 times a day . Consider that a persons
borrows on the average 2 books at the same time and that he returns them also
on the same date . Then the operation qualifies 2 book records per day .

� Update operation U2 is activated 120 times a day . When a person borrows on
the average 2 books at each visit, 2 records are concerned per day .

Let us consolidate the above valuation into a spreadsheet .
Data Number of Number of Number of
Operations activation per records qual ified records qualified

day for one for one day
(Na/d) activation (k/d)

(k)

Q1 5 1 5

Q2 20 1 ,5 30

Q3 0,5 5000 2.500

Q4 1 5 5

Q5 0,5 1 00 50

Q6 0,05 1 6.667 834

Q7 0,2 50.000 1 0.000

Q8 20 2 40

U 1 1 00 2 200

U2 1 20 2 240

6.2.4. First Set of Plausible Indexes

As we identified the various data access operations upon the database, we can
define a first set of plausible indexes for each table according to the following
guidelines .

� lnclude ail the table identifiers.
� lnclude ail attributes used in a reference constraint.
� lnclude ail attributes used in the WHERE clause, in other words referenced by

a select predicate.
� lnclude ail attributes used in the ORDER BY clause.
� lnclude ail attributes used in the GROUP BY clause.
� lnclude ail attributes used in the HA VJNG clause.

Table Name Plausible indexes
BORROWER ld-Num, Name
BOOK ld-Num, ld-Borr, ld-Writer, Date-Borr, Date-Ret, Pub-Year, Publisher
WRITER ld-Num, Nation, Name
KEY-WORD Id-Book, Key-Word

04.09 . 1 996 Database Performance Tuning 1 3 8/ 162

Beside the definition of the first set of plausible indexes, it is helpful to see which
table is concerned by which query.

Table Name Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 U1

BORROWER X X X

BOOK X X X X X X

WRITER X X

KEY-WORD

6.2.5. Fi lter Factors

Let us determine the filter factors for the various predicates.
0 1 : fftd-Num = #x = 1 /1 00.000 = 0.00001

02: ff1d-Num = #x = 1 /1 00.000 = 0.00001

ffoate-Borr NOT NULL = 33.334/1 00.000 = 0.33

03: ffName = #x = 20/1 00.000 = 0.0002

04: ff oate-Ret < #today = 5/16 .667 = 0.0003

Q5: ff Pub-Date-Ret BETWEEN #date1 AND #datez = S88 later

06: ff06 = 1
Q7: ffsooK.ld-Writer = #X = see later

ffwRITER.ld-Num = #X = see later
Q8: ffs1 .1d-Borr = #x = see later

ff s2.1d-Num = #X = see later

ffs2.Publisher = #x = 50/50.000 = 0.001

6.2.6. Assumptions

U2

X

Throughout our inquiry we will consider each table separately. For each table and
each query we determine the set of plausible non-clustered and clustered indexes,
using I/O costs from chapter 4.

Consider that an index page is 2Kb long and a record pointer is 8 bytes long. A
page of indirection for an index defined on a non-key attribute, can hold up to 256
RID pointers. Same as for data pages we define a fill rate of 70%. We consider that
the root level of the index is always located in the buffer.

04.09.1996 Database Performance Tuning 139/162

6.3. Table KEY-WORD

04.09.1996

Throughout the analysis of the requirement collection, we could not identify any
data operation using table KEY-WORD. That does not mean that table KEY-WORD
is never referenced. Suppose, that there exists a hide transaction, which lists all the
book for a given keyword. Then it would be beneficiary to have a composite index
defined upon attribute Key-Ward and Id-Book. However, this index is not at all
beneficiary for a transaction that lists all the keywords of a given book. In this
case a composite index on Id-Book and Key-Ward would be beneficiary.

Database Performance Tuning 140/162

6.4. Table BORROWER

Table BORROWER is accessed by data operations, Q 1, Q3 and Q8. Note that query
Q8 is a Join query and implies also table BOOK.

6.4.1 . Query Q3: I ndex on Name?

Let us calculate the fanout for the index on attribute Name.

fo = l
2.000 * 0.7

J = 32
35 + 8

Knowing that on an average there are 20 persons with the same name, we deduce
that there are 5.000 distinct values for attribute Name. Now let us calculate the depth
of the tree.

For a non-clustered index:
For a clustered index:

d = flog32 5.000l = 3

d = flog32 1.000l = 2

Let us determine the fil ter factor of predicate Name = #y. We know that the query
retrieves daily 5.000 records, thus the daily filter factor is equal to 0,05. Using
relation 4.6., we estimate that the 5.000 records are located within :

K = 1 (1 - (1 - 0.05) 10) * 1.000 l = 401

Non-Clustered Index I/O Costs.

As attribute Name is a non-key attribute, we use relation 4.23.a. to determine the
I/O costs incurred by a search throughout a non-clustered B-Tree. Knowing the
daily activation, we deduce the average number of I/Os, the query processes per
day.

COSTs-Tree = f 2 + (5���
0

) l + l 3: J + 401 = 423 1/0s per activation

<==> an average of 423*0 ,5 "" 2 1 2 1/0s per day

Clustered Index I/O Costs.

Similarly, using relation 4.23.b., the costs incurred, using a clustered B-Tree are
equal to:

COST 8_ Tree = 2 + l
5·�io j = 502 1/0s per activation

<==> an average of 502*0,5 "" 251 1/0s per day

Brute Force Table Scan I/O Costs.

04.09. 1 996

Estimating costs for the brute force table scan, using relation 4.8 .. We access half
of the pages to answer the query.

COST Brute Force = 1.oio = 500 1/0s 1/0s per activation

<==> an average of 500*0 ,5 "" 250 1/0s per day

Database Performance Tuning 1 4 1 / 1 62

It is obvious, that an index on attribute Name speeds up access performances for
query Q3. We also see that the non-clustered index gives better performances than a
clustered index or a brute force scan. Nevertheless, as the table is involved in other
queries, we cannot decide, at this point, if a primary or secondary index is best for the
overall performance.

6.4.2. Query Q1 : I ndex on ld-Num?

Let us calculate the fanout for the index on attribute Name.

fo = l 2.000 * o. 7 J = 1 00
6 + 8

We know that attribute Id-Num is a key attribute and that query Q I is a point
query, hence we can use a simplified version of the I/O cost determination.

For a non-clustered index:
For a clustered index:

Non-Clustered Index I/O Costs.

d = 1109100 1 00.0007 = 3
d = jlo91 00 1.0007 = 2

As attribute ld-Num is a key attribute, we use relation 4.22.a., to determine the I/O
costs incurred by a search throughout a non-clustered index. Knowing the daily
activation, we deduce the average number of l/Os the query processes per day.

COST 8_ Tree = 3 1/Os per activation

� an average of 3*5 = 1 5 1/Os per day

Clustered Index I/O Costs.

Similarly, using relation 4.22.b., the costs incurred using a clustered B-Tree are
equal to :

COST 8_ Tree = 2 1/Os per activation

� an average of 2*5 = 1 0 1/Os per day

Brute Force Table Scan I/O Costs.

COST BruteForce = 1.000 = 500 1/Os 1/Os per activation
2

� an average of 500*5 = 2.500 1/Os per day

Comparing the various costs for query Q 1, we see that an index on attribute ld­

Num highly improves I/O costs. Hence, we retain attribute ld-Num as a plausible
candidate for indexation.

04.09.1996 Database Performance Tuning 142/162

6.4.3. Query Q8 : I ndex on ld�Num?

Recall that query Q8 is a Join query. It joins table BOOK and BORROWER., on
attribute ld-Num. Hence ld-Num is a plausible index choice for our configuration.
However, we have to foreseen the evaluation plan of the optimizer to determine,
whether ld-Num is a good index choice or not. Assume that the optimizer uses the
Nested Loop Join technique to join both table. It is clear that there are other
techniques to join a table, we therefore reference the reader to section 2. 1.8 ..

The number of records in BOOK is smaller than the number of records in
BORROWER. We can assume that the optimizer uses BOOK as being the outer
table and BORROWER the inner table. Consider that predicate B2. Publ isher = #x is
not present. In this case, BORROWER is accessed 50.000 times throughout
attribute Id-Num, hence a cost of 3 * 50.000 = 1 5 0.000 I/Os using a non-clustered
index and a cost of 1 00.000 I/Os using a clustered index. Now, consider that
predicate B2. Publisher = #x exists. Hence, the optimizer first accesses the BOOK

throughout attribute Publisher, and reduces the number of records to lookup in
table BORROWER to 50.

Thus the costs of accessing table BORROWER are:

Non-Clustered Index I/O Costs.
COST B-Tree = 50 * 3 = 1 50 I/Os per activation

<:=? an average of 1 50*2 = 300 I/Os per day

Clustered Index I/O Costs.
COST B-Tree = 50 * 2 = 1 00 I/Os per activation

<:=? an average of 1 00*2 = 200 I/Os per day

Brute Force Table Scan I/O Costs.

COST Brute Force = 50 * (1.oio) = 25.00 I/Os I/Os per activation

<:=? an average of 25.000*2 = 50.000 I/Os per day

Note, that there is a high variation in performance between an index access and a
brute force table scan. Thus it is recommended to define an index upon attribute ld­

Num.

6.4.4. C lustered or Non-Clustered I ndexes ?

For simplicity, we note, C id-Num, the clustered index on l d-Num, and, CName, the
clustered index on Name. Similarly, we note, 1 1d-Num, the non-clustered index on Id­
Num, and, IName, the non-clustered index on Name. In our tabulation we represent the
brute force table scan by the symbol, p.

04.09. 1 996 Database Performance Tuning 1 43 / 162

04.09.1 996

C1d-Num CName l 1d-Num IName p

Q1 10 15 2 .500

Q3 251 2 1 2 250

Q8 200 300 50.000

Using the heuristics described in section 5.2.2., we can say that C id-Num dominates
CName• Thus we define a clustered index on ld-Num. As we define a clustered index on
ld-Num, we remove index 1 1d-Num from the set of non-clustered indexes. Leaving index
IName as the only non-clustered index.

To resume index solution on table BORROWER, we define a clustered B-Tree
index on attribute ld-Num and a non-clustered B-Tree index on attribute Name.

Database Performance Tuning 144/162

6 .5. Table WRITER

We use a similar reasoning as the one for table BORROWER. Table WRITER is
referenced by query Q6 and Q7. Query Q6 involves attribute Nation and Name, to
create an ordered list of all the writers by nationality and name. However, query Q6
does not include any predicate. At a first glance, we would think of a clustered index
on Nation and Name, to be beneficiary, as it orders the table physically in the
requested sequence.

6.5. 1 . Query QG : I ndex or not?

As already mentioned, we are likely to go for a cluster, as the query involves an
OROER BY clause (see section 3.2.3.). However, the query does not include a
restricting predicate (no WHERE clause), therefore it qualifies all the records within
the table. During the query evaluation the optimizer might encounter two situations.
First, the table is not ordered by nationality and/or name, then the system accesses all
pages an performs an internai sort, which is CPU consuming. Second, the table is
ordered by nationality and name, in this case there is no need to perform a sort, thus
the only cost encountered by the system is the sequential access cost of 926 pages.
Note that in both situations we access all pages.

But, as the query is executed only once a month, it is not critical to performance.
Moreover, the CPU time needed to perform the sort is relatively low compared to the
costs encountered by inserting and/or deleting records in the table. On the other hand,
there are only a few inserts and/or deletes upon table WRITER.

Let us go further in our reasoning and think of a new possible query. Consider that
we add a predicate to the query, restricting the target list to a set of two g1ven
nationalities.

Q6a: SELECT Name, Nation
FROM WRITER
WH ERE Nation = #x OR Nation = #y
OROER BY Nation, Name

Consider that there are 20 nationalities and that the writers are uniformly
distributed among them. In this case, predicate Nation = #y qualified 16.667 /20 = 834
records, thus a filter factor of 0,05. Moreover, consider that the query is initiated
once a day.

04.09.1996

1. Putting a clustered index on non-key attribute Nation speeds up retrieval. What
might be surprising, is that accessing the table throughout a non-clustered
index is more I/O consuming than using the brute table force scan.

Non-Clustered index:

COST B-Tree = 2 * ff O + �!: l + l 3� j + 559) = 1.1 26 1/0s per activation

<=> an average of 1 . 1 1 26 1/0s per day

Database Performance Tuning 145/162

Clustered index:

COST 8_ Tree = 2 * (f 2 + 8/8
4

] = 98 1/0s per activation

<=> an average of 98 1/0s per day

Brute Force Table Scan :

COST BruteForce = 2 * (9�
6) = 926 1/0s

<=> an average of 926 1/0s per day

2. Putting a non-clustered index on composite key attribute Nation, Name, is highly
beneficiary as the index answers the query. This is somehow a similar situation
then the clustered index on attribute Nation. Except that, we reproduce the
records at index leaf level. We gain in performance, because all the retrieved
records are already in sorted order. However, this situation is space consuming
as we reproduce exactly the data already held in the table.

6.5.2. Query Q7: I ndex on ld-Num?

Again, we encounter the situation where a query references two tables. Query Q7
joins tables BOOK and WRITER on attribute ld-Num.

Same as for query Q8, we consider that the optimizer uses the Nester Loop Join to
join the tables. As WRITER holds the fewest records, the optimizer might consider
this table as the outer table. Bence, BOOK is the inner table.

If we consider this there is no need to put an index on attribute ld-Num, as all its
records are accessed.

Note however, that defining an index on ld-Num allows the system to check
quickly for duplicate keys, while records are added. Therefore, it might be
beneficiary to define an index on attribute ld-Num.

04.09. 1 996 Database Performance Tuning 1 46/ 1 62

6.6. Table BOOK

Observe that table BOOK is used by six data access operations, Q2, Q4, Q5, Q7
and Q8, as well as by two data update operations, U l and U2. Throughout the
preceding sections, we have already seen some aspects of the queries Q7 and Q8.

6.6.1 . Query Q2: I ndex on ld-Num and/or Date-Borr?

In query Q2, we can identify two predicates, ld-Num = #x, and, Date-Barr NOT
NULL.

Using the optimizer principles from section 5. 1. 2. and the fact that the optimizer is
likely to use the predicate with the best fil ter factor jirst during query evaluation
(see section . 2. 1. 5.)

Hence, we define an index on attribute ld-Num and not on Date-Barr. As the filter
factor of predicate ld-Num = #x is better than the filter factor of predicate Date-Barr
NOT N ULL.

We also see that operation U l and U2 are executed quite often. Because they
update the values of attribute Date-Barr, this might generate a lot of dynamic
reorganization within the index. Therefore, it is not beneficiary to define an index on
attribute Date-Barr.

Using the same reasoning as for the other tables we determine the following I/0
costs for the index on key attribute ld-Num.

Non-Clustered:
COST 8_ Tree = 3 1/0s per activation

<=> an average of 20*3 = 60 1/0s per day

Clustered index:
COST 8_ Tree = 2 1/0s per activation

<=> an average of 20*2 = 40 1/0s per day

Brute Force Table Scan:
5.000 COST 8ruteForce = -2- = 2.500 1/0s

<=> an average of 20*2.500 = 50.000 1/0s per day

6.6.2. Query Q4: I ndex on Date-Ret?

It is not a good solution to define an index on attribute Date-Ret, as it is used only
twice a day, to retrieve the books that are not returned within time. Whereas, it is
updated 120 times a day, making it volati le.

As we already mentioned in the preceding section it, is not beneficiary to define
an index upon attribute, whose values are often updated. Hence, we eliminate the
index from the set of plausible indexes.

04.09. 1 996 Database Performance Tuning 1 47/1 62

6.6.3. Query QS: Index on Pub-Date.

For query Q5, we have not been able to a fix filter factor, since the range changes
dynamically at query activation time. Let us see how we can use the filter factor
growth and changes to determine index elimination.

The following sampling outlines the I/O access costs for a non-clustered index and
a brute force table scan.

ff k K Brut Force 8-Tree Pessimistic B-Tree Optimistic
0 0 0 0 2 1

0.01 00 500 481 2500 506 487

0.0200 1 000 921 2500 1 01 1 931

0.0300 1 500 1 321 2500 1 5 16 1 336

0.0400 2000 1 686 2500 2020 1 706

0.0500 2500 201 7 2500 2525 2042

0.0600 3000 231 9 2500 3030 2349

0.0700 3500 2593 2500 3535 2627

0.0800 4000 2841 2500 4040 2881

0.0900 4500 3066 2500 4544 31 1 0

0.1 000 5000 3270 2500 5049 331 9

Using the graphical representation of the outlined costs, we may say, that an index
on Pub-Date is beneficiary as long as the query retrieves less than 0.05*50.000 =
2.500 records. Similarly we may say, that the index is not at all beneficiary, when
more than 0.065*50.000 = 3.250 records are qualified. For the quantity of qualified
records which lies in between, we cannot decide on the advantages or disadvantages
of an index over a brute force table scan evaluation.

Index lndecision Problem
Access Costs
6000

4800

3600

2400

1 200

0

8-Tree Pesimistic

8-Tree Optimistic

Brute Force

Filter Factor (*100=%)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0

Since the index values are not updated and since there are a small number of
inserts and/or deletes upon BOOK, we might express that it is always beneficiary to
define an index on Pub-Date, as long as the filter factor does not exceed 0.05 .

04.09.1996 Database Performance Tuning 148/162

Consider that on an average, the query retrieves 2.500 records uniformly
distributed among 30 years. We determine the succeeding 1/0 costs for query Q5
using non-clustered, clustered indexes or a brute force table scan to retrieve the target
records.

Non-Clustered:

COST B-Tree = r 2 +
3
���0 l + l 130� J + 2.44 7 = 2462 1/0s per activation

<=> an average of 0 .5*2.46 = 1 .231 1/0s per day

Clustered index :

COST B-Tree = 2 + l 3·�io J = 327 1/0s per activation

<=> an average of 0 .5*327 "" 1 64 1/0s per day

Brute Force Table Scan:
5.000 COSTsruteForce = -2- = 2.500 1/0s

<=> an average of 0. 5*2.500 = 1 .250 1/0s per day

It is obvious that we will put an index to attribute ld-Writer, as the index yields
much better performance consideration than the brute force table scan.

6.6.4. Query Q7 : Index on ld-Num?

Analyzing query Q7 for table WRITER, we considered that WRITER is the outer
table and BOOK is the inner table of the Nested Loop Join. Therefore, we access table
BOOK using attribute ld-Num, at least 16.667 times. Each access qualifies one and
only one record, as ld-Num is a key attribute.

Non-Clustered:
COST B-Tree = 1 6.667 * 2 = 33.334 1/0s per activation

<=> an average of 0 .2*33.334 "" 6.667 1/0s per day

Clustered index:
COST B-Tree = 1 6.667 * 2 = 33 . . 334 1/0s per activation

<=> an average of 6.667 1/0s per day

Brute Force Table Scan:

COST BruteForce = 1 6.667 * (5-�00
) = 41.666.500 1/0s

<=> an average of 0 ,2*41 .666.500 = 8.333.500 1/0s per day

Comparing the cost, it is obvious to see that an index 1mproves access
performances.

6.6.5. Query Q8 : Index on ld-Borr or Publisher?

04.09.1996 Database Performance Tuning 149/162

As already considered for table BORROWER, we consider that the optimizer
performs a Nested Loop Join. It uses BOOK as the outer table and BORROWER as the
inner table. Further, we considered that the optimizer uses first attribute Publisher to
qualify a restricted set of records, since it has a good filter factor. Defining an index
on attribute Publisher is beneficiary for record lookup.

N on-Clustered:

COST 8 Tree = f 2 + 50 l + l-1 J + 248 = 248 1/Os per activation - 256 27

� an average of 2*248 = 496 1/Os per day

Clustered index:

COST B-Tree = 2 + l �� J = 7 1/Os per activation

� an average of 2*7 = 1 4 1/Os per day

Brute Force Table Scan:
5.000 COST BruteForce = -2- = 2.500 1/Os

� an average of 2*5.000 = 1 0.000 1/Os per day

Comparing the 1/0 costs, we deduce that it is beneficiary to define an index upon
attribute Publisher.

As we use BOOK, as the outer table, and as we use Publisher to restrict the set of
records to qualify records in BORROWER, we do not need to define an index on
attribute ld-Borr.

6.6.6. C lustered of Non-Clustered I ndexes ?

As only one single clustered index can exist for one table, we must still determine
which of the plausible indexes to cluster. According to what we have seen throughout
the preceding lines, we are able to define the following set of plausible indexes.

04.09. 1 996

{ ld-Num, Pub-Date, Publisher}

Let us represent the clustered and non-clustered indexes as follows:

Cid-Num the clustered index on ld-Num
CPub-date the clustered index on Pub-Date
CPublisher the clustered index on Publisher
l id-Num the non-clustered index on ld-Num
IPub-date the non-clustered index on Pub-Date
IPublisher the non-clustered index on Publisher

Database Performance Tuning 1 50/ 1 62

In our tabulation we represent the brute force table scan by the symbol, p.

C1d-Num CPub-date CPublisher l 1d-Num I Pub-date I Publisher p

Q2 40 60 2.500
Q5 1 64 1 231 1 250
Q7 6.667 6.667 496 8 .33.500
Q8 1 4 1 .250

Using the heuristics described in section 5.2.2., we can say that CPublisher dominates
CPub-date, and C id-Num, therefore we define a clustered index on Publ isher. Thus removing
I Publisher from the set of non-clustered indexes. All other indexes are better in access
than brute force table scan, hence we define indexes on all attributes referenced in the
set of non-clustered indexes.

04.09.1996 Database Performance Tuning 151/162

6 . 7 . Index Solution

Let us abstract, the above lines into a synthesis of the indexes to define, to
accomplish an overall good access performance.

For table BORROWER, we retained the following indexes:

. a clustered index on attribute Name, and

. a non-clustered index on attribute ld-Num.

For table BOOK, we registered the following indexes:

. a clustered index on attribute Publisher,

. a non-clustered index on attribute ld-Num, and

. a non-clustered index on attribute Pub-Date.

For table WRITER, we registered the following indexes:

. a clustered index on attribute Nation.

For table KEY-WORD, we retained no index at all.

Note, that due to our restricted set of queries, the solution excludes all plausible
indexes on foreign key attributes, as there is no query which makes, per se, use of it.
However, it is a good reasoning to define indexes on foreign key attributes, as
normally there are queries using the foreign key attributes to retrieve data.

Further, our solution excludes nearly all plausible indexes on key attributes. In
real world this is generally not the case, as there are various possibilities of inserts
and/or deletes upon the database. Defining an index on a key attribute, enables quick
verification of duplicates.

04.09.1 996 Database Performance Tuning 1 52/162

Chapter 7 : Annexes

04.09.1996 Database Performance Tuning 153/162

7. 1 . Index lndecision Examples

7 .1 . 1 . Example 1 : Basic Data

7. 1 . 1 . 1 . Input Parameters
Nr 1 0000
As 20
fr 0.70
Np 714
d 3

Rs

Ps
Nrp
fo
N rid

7. 1 . 1 .2. Cost Estimations
ff s k K
0 1 .00 0 0
0.0 1 00 0.99 1 00 94
0.0200 0.98 200 1 76
0.03 0.97 300 248
0.0400 0.96 400 311

0.0500 0.95 500 366

0.06 0.94 600 4 14
0.0700 0.93 700 456
0.0800 0.92 800 492
0.09 0.91 900 524
0.1 0.90 1 000 551

1 00
2000
14
70
254

Brute Force
0

357
357
357
357

357

357
357
357
357
357

7.1 . 1 .3. Graphical Representation

B-Tree Pessimistic
2

1 04
206
308
410

512

6 1 3
7 1 5
8 1 7
9 1 9

1 021

B-Tree Optimistic
2

98
1 82
256
321

378

427
471
509
542
572

Index lndecision Problem
Access Costs

B-Tree Pesimistic

B-Tree Optimistic

Brute Force

Fi lter Factor (*1 00=%)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0

04.09.1 996 Database Performance Tuning 154/162

7 . 1 .2. Example 2 : Varying pages size

7.1 .2. 1 . Input Parameters
a) Nr 1 0000 Rs 1 00

As 20 Ps 4000
fr 0.70 N rp 1 4

N p 7 14 fo 70

d 3 N rid 254

b) Nr 1 0000 Rs 1 00

As 20 Ps 1 000
fr 0.70 N rp 14

Np 714 fo 70

d 3 N rid 254

7.1 .2.2. Cost Estimations

a)
ff s k K Brute B-Tree B-Tree Optimistic

Force Pessimistic
0.00 1 .00 0 0 0 2 2

0.01 0.99 1 00 88 1 79 1 03 90

0.02 0.98 200 154 179 203 158

0.03 0.97 300 205 1 79 304 209

0.04 0.96 400 243 1 79 405 248

0.05 0.95 500 272 1 79 506 278

0.06 0.94 600 294 1 79 606 300

0.07 0.93 700 31 0 1 79 707 3 17

0.08 0.92 800 323 1 79 808 330

0.09 0.91 900 332 1 79 909 340

0. 1 0 0.90 1 000 338 1 79 1 009 348

b)
ff s k K Brute B-Tree B-Tree Optimistic

Force Pessimistic
0.00 1 .00 0 0 0 4 4

0.01 0.99 1 00 97 714 1 06 1 03

0.02 0.98 200 1 88 7 14 207 1 96

0.03 0.97 300 274 7 14 309 284

0.04 0.96 400 355 714 41 1 366

0.05 0.95 500 431 714 51 3 444

0.06 0.94 600 502 714 615 517

0.07 0.93 700 569 714 716 585

0.08 0.92 800 632 7 14 8 18 650

0.09 0.91 900 690 714 920 714

0 . 10 0.90 1 000 745 714 1 022 767

04.09.1996 Database Performance Tuning 155/ 162

7.1 .2.3. Graphical Representation

a)

Index lndecision Problem
Access Costs

1 01 8

8 1 5

6 1 1

407

204

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

b)
Index lndecision Problem

Access Costs
1 222

1 01 8

8 1 5

61 1

407

204

0
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

04.09.1996 Database Performance Tuning

B-Tree Pesimistic

B-Tree Optimistic

Brute Force

Fi lter Factor (*1 00=%)

0.09 0. 1 0

B-Tree Pesimistic

B-Tree Optimistic
Brute Force

Filter Factor (*1 00=%)
0.09 0. 1 0

156/162

7.1 .3. Example 3 : Varying Fi l l Rate

7.1.3. 1 . Input Parameters
a) Nr 1 0000 Rs 1 00

As 20 Ps 2000

fr 0.50 Nrp 1 4

Np 714 fo 70

d 3 Nrid 254

b) Nr 1 0000 Rs 1 00

As 20 Ps 1 000

fr 0.95 Nrp 1 4

Np 7 14 fo 70

d 3 Nrid 254

7.1.3.2. Cost Estimations

a)

ff s k K Brute B-Tree B-Tree Optimistic
Force Pessimistic

0.00 1 .00 0 0 0 3 3

0.01 0.99 1 00 96 500 1 04 1 00

0.02 0.98 200 1 83 500 206 1 89

0.03 0.97 300 263 500 307 270

0.04 0.96 400 335 500 409 344

0.05 0.95 500 401 500 5 10 41 1

0.06 0.94 600 461 500 61 1 473

0.07 0.93 700 5 16 500 713 529

0.08 0.92 800 566 500 81 4 580

0.09 0.91 900 61 1 500 91 6 626

0. 1 0 0.90 1 000 651 500 10 17 668

b)

ff s k K Brute B-Tree B-Tree Optimistic
Force Pessimistic

0.00 1 .00 0 0 0 2 2

0.01 0 .99 1 00 91 263 1 03 95

0.02 0.98 200 1 68 263 204 1 72

0.03 0.97 300 231 263 305 236

0.04 0.96 400 284 263 406 290

0.05 0.95 500 328 263 507 334

0.06 0.94 600 364 263 608 372

0.07 0.93 700 394 263 709 402

0.08 0.92 800 41 8 263 809 428

0.09 0.91 900 439 263 91 0 449

0. 1 0 0.90 1 000 455 263 10 1 1 467

04.09.1996 Database Performance Tuning 157/162

7.1.3.3. Graphical Representation

a)

Index lndecision Problem
Access Costs
1 01 8

8 1 5

61 1

407

204

B-Tree Pesimistic

B-Tree Optimistic

Brute Force

Filter Factor (*100=%)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0

b)
Index lndecision Problem

Access Costs
1 01 8 B-Tree Pesimistic

8 1 5

61 1

B-Tree Optimistic
407

Brute Force
204

Fi lter Factor (*1 00=%)
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 0

04.09.1996 Database Performance Tuning 158/ 162

Chapter 8 : References

04.09. 1 996 Database Performance Tuning 1 59/1 62

8 .1 . Figures

figure 1 . 1 . : Database Design Phases . 7

figure 2. 1. : Two execution plans with incomparable CPU and 1/0 cost pairs . 25
figure 2.2. : Statistics given by RUNSTATS utility for Access Plan Determination . 26
figure 2.4. : Recursive Definition of the Arithmetic Expression (aexpr) . 29
figure 2.5. : Recursive Definition of a Character Expression (cexp1� .. 30
figure 2. 6. Predicate of Standard SQL 30
figure 2. 7. : Recursive Definition Select_Filter 30
figure 2. 8. : Illustration of Nested Loop Join 35
figure 2. 9. : Que,y used to Estimate 1/0 Cost for Nested Loop, Merge Join . 38
figure 2. 1 O. : Que,y used to Estimate 1/0 Cost for Nested Loop, Merge and Hybrid Join . 40
figure 3. 1. : Ru/es of Thumb for 1/0 Rates . 51
figure 3.2. : Disk Page Bujfering and Lookaside Hash Table . 52
figure 3.3. : Database Storage Structure . 55
figure 3. 4. : Illustration of pctji·ee and pctused ... 56
figure 3. 5. : Record Layou! on a Disk Page . 58
figure 3. 6. : Illustration of a Three level B-tree structure 64
figure 3. 7. : The pages of a B+-tree of orderp: Internai node and leaf node representation . 66
figure 3. 8. : Leaf page layout ,vith non-unique key values . 69
figure 3. 8. : lnserts in a B-Tree 71
figure 3. 9. : De/etionji-om a B-Tree . 72
figure 3. 1 O. : Clustered Tables . 7 3
figure 3. JO. : Hash Structure Table. Record Insertion 55 with Collision . 81
figure 3. 1 1 . : Average Cos! Evolution for Open Addressing 83
figure 3. 12. : Average Cost Evolution for Chaining 83
figure 3. 1 1 . : Relationship between E(L) and the Jill rate, fi' . 85
figure 4. 1 . : Time Comparison between Mutli-Block and Random Access time of 32 pages . 90
figure 4.2. : Cost Structure for B-Tree index access . 94
figure 5. 1 . : Architecture of [Finkelstein 1988}s DBDSGN Tool 107
figure 5.2. : Index lndecision Problem Representation 120
figure 5.2. : Cost Matrix for Index Elimination Problem 123
figure 5.3. : Example of a Survivor 's List and Basic Groups 128
figure 5.4. : First Tree Expansion . 129
figure 5. 5. : Second Tree Expansion . 129
figure 5. 6. : Full Tree Expansion . 131
figure 5. 7. : First Tree Expansion with N = 3 and L = 1 . 132
figure 5.8. : Second Tree Expansion with N = 3 and L = 1 . 132
figure 5. 6. : Full Tree Expansion with N = 3 and L = l . 133
figure 6. 1 . : Logical Schemafor Case Study 135

04.09.1996 Database Performance Tuning 160/162

8.2. Relations and Algorithms

algorithm 2. 1 . : Binmy search on an (unique) ordering key .. 22
relation 2. 1 . : Fi/ter Factor relations for Various Predicate Types . 2 7
relation 2. 2. : Number of Records Qualified knowing the Filter Factor . 2 7
algorithm 2.2. : Algorithm for Nested Loop Join. ... 34
relation 2. 4. : Cast estimation for Nested Loop Join .. 35
algorithm 2. 3. : Algorithmfor the Merge Join Method . 36
relation 2. 5. : Hit ratio ... 53
relation 2. 6. : Number of Records per Page ... 57
relation 2 . 7. : Number of Records per Page for Multiple data abjects . 57
relation 3. 1 . : Depth of a B-Tree .. 66
relation 3. 2. : Fanout of a Leaf Index Page .. 67
relation 3. 3. : Fanout of an Internai Index Page .. 68
relation 3. 4. : Fanout of an Index Node Page .. 68
relation 4. 1 . : Cast estimation/or Brute Force Table Scan .. 90
relation 4.2. : Cast estimation for Brute Force Table Scan using Mutli-block access . 91
relation 4. 3. : Cast estimation for a List Prefetch Read of Np pages ... 91
relation 4. 4. : Number of qualified records of a given select _Ji/ter . 91
relation 4. 5. : Selectivity of a select _Jiltèr 91
relation 4. 6. : Number of Pages that contain the qualified records . 92
relation 4. 7. : Pessimistic Cast Estimation for Brute Force Table Scan .. 92
relation 4.8. : Cast Estimation for Brute Force Scan with Point Que,y ... 92
relation 4. 9. : Cast Estimation for Brute Force Scan with Multirecord Queries . 93
relation 4. JO. : Cast Estimation for Nested Loop Join using Brute Force Scans ... 93
relation 4. 1 1. : Cast Estimation/or Merge Loop Join using Brute Force Scans . 93
relation 4. 12. : Cast estimation for an B-Tree index scan .. 94
relation 4. 13. : Fanout of an index node page ... 95
relation 4. 14. : Depth of a B-Tree 9 5
relation 4. 15. : Cast estimation for navigating though the Internai Index Levels .. 96
relation 4. 16. : Cast estimation for navigating though the Leaf Pages of a Key Index . 96
relation 4. 1 7. : Cast estimation/or navigating though the Leaf Pages of a Non-Key Index . 97
relation 4. 18. : Pessimistic Cast Estimation for Data Pages Access .. 97
relation 4. 19. : Optimistic Cast Estimation/or Data Pages Access ... 97
relation 4.20. : Worst and Best 1/0 Cast estimation using Non-clustered B-Tree . 98
relation 4.21. : 1/0 Cast estimation using Clustered B-Tree .. 99
relation 4. 22.a. : 1/0 Cast estimation/or Non-clustered B-Tree related to a Point Que,y 99
relation 4.22. b. : 1/0 Cast estimation using Clustered B-Tree related to a Point Que,y . 1 00
relation 4.23. b. : 1/0 Cast estimation using Non-clustered B-Tree related to a Multirecord Que,y on a primmy

index .. 101
relation 4.23.c. : 1/0 Cast estimation using Clustered B-Tree related to a Mufti-record que,y . 101
relation 4. 24. : 1/0 Cast estimation, with success, for a Hash index using lndependent Chaining. 104
relation 4.25 . . : 1/0 Cast estimation, with no success, for a Hash index using Jndependent Chaining 104

04.09.1996 Database Performance Tuning 161/162

8.3. Bibliography

[Baudoin-Meyer 1984] Méthodes de programmation
B. Meyer & C. Baudoin 1984

[Bodart 1989]

[Date 1990]

[Elmasri 1994]

[Finkelstein 1988]

[Hainaut 1986]

[Hainaut 1994]

[Mathon 1994]

[Shasha 1992]

[ORACLE 7.0]

[O'Neil 1 994]

04.09.1996

Eyrolles ISSN 0399-4 198

Conception Assisté des systèmes <l'Information
(Méthode, Modèles, Outils) 2e édition
F. Bodart & Y. Pigneur 1989
Masson ISBN 2-225-8 1807-x

An Introduction To Database Systems
Volumle I (Fifth Edition)
C.J. Date 1990
Addison Wesley ISBN 0-201-52878-9

Fundamentals of Database Systems
Elmasri & N avathe 1994
Benjamin Cummings ISBN 0-8053- 1748-1

Physical Database Design for Relational Databases
S. Finkelstein & M. Schkolnick & P. Tiberio
ACM Transactions on Database Systems
Vol. 13 No. 1 March 1988 Pages 9 1- 128

Conception Assistée des Applications Informatiques
J.L. Hainaut 1986
Masson ISBN 2-225-80730-2

Base de Données - Clés d' Accès Principales
J.L. Hainaut 2/1 1/1994
FUNDP BD/9-1 à 9-57

Database Tuning
J.N. Mathon 1994
Memoire Faculté des Sciences Informatiques

Database Tuning (A Principled Approach)
Dennis E. Shasha 1992
Prentice Hall ISBN 0- 13-205246-6

Oracle 7 Server Documentation

Database - Principles, Programming, Performace
Partick O'Neil 1994
Morgan Kaufmann ISBN 1-55860-2 19-4

Database Performance Tuning 162/162

