73 research outputs found

    An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment

    Get PDF
    peer reviewedThe Internet of Things (IoT) is constantly evolving. The variety of IoT applications has caused new demands to emerge on users’ part and competition between computing service providers. On the one hand, an IoT application may exhibit several important criteria, such as deadline and runtime simultaneously, and it is confronted with resource limitations and high energy consumption on the other hand. This has turned to adopting a computing environment and scheduling as a fundamental challenge. To resolve the issue, IoT applications are considered in this paper as a workflow composed of a series of interdependent tasks. The tasks in the same workflow (at the same level) are subject to priorities and deadlines for execution, making the problem far more complex and closer to the real world. In this paper, a hybrid Particle Swarm Optimization and Simulated Annealing algorithm (PSO–SA) is used for prioritizing tasks and improving fitness function. Our proposed method managed the task allocation and optimized energy consumption and makespan at the fog-cloud environment nodes. The simulation results indicated that the PSO–SA enhanced energy and makespan by 5% and 9% respectively on average compared with the baseline algorithm (IKH-EFT)

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Personal mobile grids with a honeybee inspired resource scheduler

    Get PDF
    The overall aim of the thesis has been to introduce Personal Mobile Grids (PMGrids) as a novel paradigm in grid computing that scales grid infrastructures to mobile devices and extends grid entities to individual personal users. In this thesis, architectural designs as well as simulation models for PM-Grids are developed. The core of any grid system is its resource scheduler. However, virtually all current conventional grid schedulers do not address the non-clairvoyant scheduling problem, where job information is not available before the end of execution. Therefore, this thesis proposes a honeybee inspired resource scheduling heuristic for PM-Grids (HoPe) incorporating a radical approach to grid resource scheduling to tackle this problem. A detailed design and implementation of HoPe with a decentralised self-management and adaptive policy are initiated. Among the other main contributions are a comprehensive taxonomy of grid systems as well as a detailed analysis of the honeybee colony and its nectar acquisition process (NAP), from the resource scheduling perspective, which have not been presented in any previous work, to the best of our knowledge. PM-Grid designs and HoPe implementation were evaluated thoroughly through a strictly controlled empirical evaluation framework with a well-established heuristic in high throughput computing, the opportunistic scheduling heuristic (OSH), as a benchmark algorithm. Comparisons with optimal values and worst bounds are conducted to gain a clear insight into HoPe behaviour, in terms of stability, throughput, turnaround time and speedup, under different running conditions of number of jobs and grid scales. Experimental results demonstrate the superiority of HoPe performance where it has successfully maintained optimum stability and throughput in more than 95% of the experiments, with HoPe achieving three times better than the OSH under extremely heavy loads. Regarding the turnaround time and speedup, HoPe has effectively achieved less than 50% of the turnaround time incurred by the OSH, while doubling its speedup in more than 60% of the experiments. These results indicate the potential of both PM-Grids and HoPe in realising futuristic grid visions. Therefore considering the deployment of PM-Grids in real life scenarios and the utilisation of HoPe in other parallel processing and high throughput computing systems are recommended.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners

    Optimization Methods Applied to Power Systems â…ˇ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems
    • …
    corecore