1,054 research outputs found

    Visual Servoing of Quadrotors for Perching by Hanging From Cylindrical Objects

    Get PDF
    This paper addresses vision-based localization and servoing for quadrotors to enable autonomous perching by hanging from cylindrical structures using only a monocular camera. We focus on the problems of relative pose estimation, control, and trajectory planning for maneuvering a robot relative to cylinders with unknown orientations. We first develop a geometric model that describes the pose of the robot relative to a cylinder. Then, we derive the dynamics of the system, expressed in terms of the image features. Based on the dynamics, we present a controller which guarantees asymptotic convergence to the desired image space coordinates. Finally, we develop an effective method to plan dynamically-feasible trajectories in the image space, and we provide experimental results to demonstrate the proposed method under different operating conditions such as hovering, trajectory tracking, and perching

    Vision-guided gripping of a cylinder

    Get PDF
    The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd
    corecore