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An appearance-based visual compass for mobile robots

J. Sturm a,∗, A. Visser b,∗∗
aLehrstuhl Autonome Intelligente Systeme, Institut für Informatik,

Albert-Ludwigs-Universität Freiburg, Germany
bIntelligent Systems Laboratory Amsterdam, Informatica Instituut,

Universiteit van Amsterdam, the Netherlands

Abstract

Localization is one of the most important basic skills of a mobile robot. Most approaches,
however, still rely either on special sensors or require artificial environments. In this article, a
novel approach is presented that can provide compass information for localization purely based
on the visual appearance of a room. A robot using such a visual compass can quickly learn a
cylindrical map of the environment, consisting of simple statistical features that can be computed
very quickly. The visual compass algorithm is efficient, scalable and can therefore be used in
real-time on almost any contemporary robotic platform. Extensive experiments on a Sony Aibo
robot have validated that the approach works in a vast variety of environments.

Key words: appearance-based, mobile robot localization, active vision, machine learning
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1. Introduction

A central goal of robotics and AI is to be able to deploy a mobile robot that acts
autonomously in the real world [1]. An important prerequisite for this goal is that the
robot can localize itself in the world [2]. Much progress has been made in this field over
the past years [3].
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From the spectrum of possible sensors, laser range scanners have often been used for
robot localization. However, these types of sensors have a number of drawbacks. Laser
range scanners are relatively heavy and their measurements lack – especially in natural
environments (like corridors or similar offices) – sufficient features of distinguishable
quality. Vision has long been advertised as providing a solution to these problems. From
a conceptual perspective, it is more desireable that a robot makes use of the same sensor
modalities as humans do. The real world is full of visual indications that have especially
been installed to facilitate (human) localization, such as public signage, arrows or other
salient landmarks (like high buildings).

Given the continuous progress both in the hardware domain and computer vision
algorithms, we expect to see more approaches on camera-based localization in the near
future. In this paper, we will focus on approaches that have been designed to localize
mobile robots in real-time in natural environments, both indoor and outdoor. The real
world setting requires that the robot is able to adapt to new or unknown scenes, and is
able to cope with potentially dynamic changes in the environment, like walking people
or subtle changes in (daylight) illumination.

Many current publications address the problem of simulatenous localization and map-
ping (SLAM). Here, a robot is deployed into a previously unknown environment, in order
to explore, map and localize itself within this environment. The SLAM problem is consid-
ered to be one of the central problems in mobile robotics, as SLAM is a prerequisite for
most higher-level robot applications. Solving the SLAM problem, however, requires the
successful integration of many underlying techniques (like feature extraction, mapping,
exploration and localization).

Within visual SLAM, different types of camera setups currently co-exist: although
single and stereo vision approaches are clearly the most popular in the literature, also
trifocal systems and multi-camera rigs have proven advantages of their own. In this paper,
we want to focus on monocular (single viewpoint) systems with a limited field-of-view.

In this monocular setting, only the bearing towards objects can be estimated easily. The
absence of depth information makes 3D reconstruction much more difficult as in the stereo
setting. A related problem to SLAM is called visual odometry in robotics, or structure-
from-motion (SFM) in computer vision literature. Here, the goal is to estimate the robot’s
trajectory from recent camera images, without necessarily building (and storing) an
explicit map. Closely related are approaches for visual compassing, where the aim is to
recover the viewing (yaw) angle from the camera images.

In this paper, a novel approach to visual compassing will be described: the incom-
ing images are split into vertical sectors, and a color class transition pattern is derived
statistically by counting. In the training phase, the robot creates a computationally effi-
cient cylindrical (1-dimensional) map of its surroundings – step-wise, by taking multiple
snapshots with its camera in different directions. In the localization phase, the camera
orientation can be estimated by matching the seen color transition pattern with the
stored model using a maximum-likelihood estimator. In real-world experiments, it is ver-
ified that this visual compass is robust to small translations and thus can supply a mobile
robot with valueable information.

Outline This paper is organized as follows: first, related approaches will be described
in Section 2. Our visual compass approach is subsequently introduced in Section 3. As
all necessary operations are computationally extremely efficient, the visual compass has
been implemented on a Sony Aibo robot as described in Section 4. The results of our
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experiments will then be presented in Section 5. Finally, the characteristics of the ap-
proach will be summarized in Section 6 and our results will be discussed in comparison
to other approaches.

2. Related work

The focus of this paper is centered on camera-based approaches that can localize
a mobile robot in real-time in natural environments. Existing approaches have been
evaluated and the following characterizing properties have been identified:
Geometric vs. appearance-based Geometric approaches assume the existence of land-

marks. Their relative bearing, distance and (not necessarily unique) identity can be
estimated and stored in a 3D feature map. Newly perceived features can then be
matched with the stored map in order to derive the robot’s pose. On the other hand,
appearance-based approaches analyze incoming images directly by statistical means.
The extracted data is stored in a topological map. By finding the nearest neighbor to
a newly perceived data sample, the robot can estimate it’s current absolute pose.

Real-time Although many approaches claim the attribute real-time, true video-rate
processing (30Hz) is only achieved by a small fraction of current implementations.
Processing times in the magnitude of 1fps are common.

Odometry Knowing the motor commands or odometry sensors may provide an initial
guess about the robot’s path. Approaches that take advantage of odometry informa-
tion certainly have an advantage over approaches that do not, but in turn they loose
part of their generality. Furthermore, in some applications, it is either not desireable
or not possible to use information from odometry. Many visual odometry approaches
try to derive the odometry information from camera images only, and therefore have
per defintion no access to other odometry sources (like wheel encoders or action com-
mands).

Long-term stability Differential approaches compare a small number of recent images
to determine the relative movement of the robot. Such solutions intrinsically are prone
to long-term drifting, and are opposed to the concept of repeatable localization: to
avoid drifting, the robot has to create a long-term map, that allows absolute localization
(and recovery from kidnaps) even for extended periods of time.

Initialization In particular for single-camera systems, map initialization is for most
approaches a distinguishable issue, in order to find the camera-to-world scale. Either
the robot uses prior knowledge about the shape and size of some objects in the scene,
or it uses its body movements (and odometry) to incrementally estimate the correct
scale of the map.

Environments While a few solutions exist that work in large environments of high com-
plexity (such as buildings or outdoor scenes like a forest), others limit the application
domain to a single room with no or little occlusion.

Accuracy Each localization algorithm can be evaluated in one or more testing envi-
ronments, in order to determine its mean localization error. The estimated pose is
compared to the ground truth, that is typically measured by an external source (like a
laser range scanner or GPS). Depending on the approach, the measured error is then
expressed in the difference of recovered path length or the accumulated distance of the
true pose.

3



Robustness Unfortunately, only a few publications evaluate the robustness of their al-
gorithms towards dynamic changes in the environment. Thinkable are natural changes
in illumination or the reaction of the localization system to walking people in populated
environments.
In the following, a short overview of existing approaches on visual SLAM, visual odom-

etry and visual compassing will be given, and their results will be compared with our
results at the end of this article.

The patented vSLAM algorithm [4] extracts SIFT features from incoming images. The
features of three images taken at 20cm distance from each other are – after a mutual
consistency check – stored as a single 3D landmark percept in a landmark database.
As a single landmark then consists of the 3D points of around 100 SIFT features, each
landmark percept is unique, which eases data association and improves recognition. For
localization, a particle filter is used. Each of its particles additionally contains a Kalman
filter bank in order to estimate the global positions of the stored landmarks relative to
each other.

In the approach of Kaess and Dellaert [5], a robot is equipped with a 8-camera-rig to
obtain high-resolution omni-directional images. Per image, fast Harris corner detection
is applied to find salient feature points. Mutual consistency checks filter out outliers or
bad matches, and the found features are then tracked over time. The feature tracks,
around 70 per image, are then combined to produce a motion hypothesis using RANSAC
that is subsequently integrated with odometry into the robot’s estimated path (using
Levenberg-Marquardt minimization). Due to the relatively short tracking length of the
corner features (4 frames on average), the approach is, however, prone to long-term
drifting. In [6], a very similar approach is described, that in contrast relies on only a
single monocular camera. Here however, as neither vehicle odometry is used nor loop
closure is applied, the motion hypotheses are accumulated over time, which, due to the
dead reckoning of visual odometry, leads to positional drifting over time.

A second geometric approach on visual odometry is given in [7,8]. A Shi and Tomasi
saliency operator is used to extract stable features, that are subsequently stored as land-
marks in the map. For each new feature, a 1D particle filter is initialized in order to
estimate the landmarks depth (typically within 5 frames). As the landmarks are added
persistently to a map, no long-term drift occurs. By the use of an innovation matrix,
the algorithm can also determine how much uncertainty could be eliminated when the
camera would look in a certain direction (active vision).

In the work of Montiel and Davison [9], a feature-based visual compass is described:
here, a hand-held camera tracks distant points, that are ideally located at infinity. The
task is then to recover the 3D rotation of the camera. Features are initialized and deleted
on-the-fly, and their positions are tracked using an extended Kalman filter bank.

More closely related to our work, an appearance-based visual compass is developed in
[10,11]. The robot compares each captured image with the previous one, and computes
the Manhattan distance between the two images. The new image is now rotated pixel-wise
in horizontal direction, in order to find the rotation under which the distance becomes
minimal. This rotation is then reported to the robot as differential compass information.
However, such an approach is computationally expensive and moreover prone to long-
term drifting.

In contrast to the work above, we designed our algorithm in such a way that it can
operate in real-time on-board an autonomous robot. The robot is also be able to initialize
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Fig. 1. Overview of the feature extraction pipeline used by our visual compass. From the incoming

images, simple statistical features are extracted, such that all processing is possible in real-time and

on-board an autonomous system.

its own map, and the final accuracy is measured over the full process of mapping and
localization together. Our visual compass approach extracts simple statistical features
from the images, that can be computed, learned and matched very quickly.

3. Approach

The basic idea behind the visual compass approach is as follows: as the robot should
be able to quickly orient in any given environment, an intuitive approach would be to
store a 360◦ panoramic image of the surroundings and use it subsequently as a cylindrical
map. Then the robot could match every new incoming image with this cylindrical map
to estimate its orientation.

Typical cameras produce – despite their limited field-of-view – an enormous amount
of data that needs to be reduced significantly before it can be used for localization in
real-time on-board a mobile robot. In this work, we develop an appearance-based feature
extractor that is based on counting the transition frequencies between color classes in
the image. Such simple statistical features are fast to compute, and therefore can be
used on robots even with limited processing power in real-world applications. For a quick
overview of our processing pipeline, see Fig. 1.

We have structured this section as follows: first, processing starts with the raw images
acquired from a monocular camera. We define how a color-class transition pattern z
is extracted from an incoming camera image F . Then a histogram filter is constructed
that is able to learn a cylindrical map m̂ of the color-class transition patterns in different
directions. Finally, a localization filter is constructed with which the robot can estimate its
pose x from an incoming camera image F , given a cylindrical map m of the environment.

3.1. Camera model

We use a rotating camera model similar to [9], where the robot is standing at the
origin of the world, with pitch (or elevation) angle φ, roll angle θ and yaw (or heading)
angle ψ. This results in the camera projection matrix C that describes the transform
from homogeneous world coordinates to homogeneous pixel coordinates [12], i.e.,

C =


1 0 0 0

0 1 0 0

0 0
−1
f

0

Rx(ψ)Ry(θ)Rz(φ). (1)

We assume that the robot stands on an even floor, such that the pitch and roll angles
can be computed from the odometry of the robot’s camera. It is now the task of the
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Fig. 2. Overview of the visual compass approach. Left: The robot stands at a certain pose x =< τ, φ >

and captures and image Ft using its single monocular camera with opening angle α. Middle: The
image is scanned from bottom to top for transitions between color classes. Right: These transitions are

counted and the transition frequency pattern z is extracted. This feature vector is then used for mapping

and localization.

visual compass to estimate the yaw angle ψ from the images Ft taken by the camera C
at time step t. As we are primarily interested in pixels originating from distant objects
in the scene (ideally at infinity), we project the ground plane into the camera image
and only take pixels in account that lie above the horizon. We address a single pixel by
Ft [x, y] (with x ∈ {0, 1, . . . , w − 1} and y ∈ {0, 1, . . . , h − 1}), each having a color from
a three-dimensional color space [0, 1]3.

3.2. Color class transition patterns

Our approach on appearance-based localization is based on the idea that the colors in
a natural environment are not uniformly distributed. More specifically, we assume that
the frequency pattern of color class transitions strongly depends on the yaw angle of the
camera. Note that at this point, we treat the whole image as a single measurement of
which we extract a single color class transition pattern along a vertical scanline passing
through the optical center of the camera.

Processing starts with the incoming pixel image Ft taken by the robot’s camera, see
Fig. 1. Of each incoming camera image, simple statistical features z are extracted, i.e.,
the transition frequencies between color classes, see Fig. 2. The frequency pattern corre-
sponding to each image is sampled uniformly from a small number of neighboring pixel
pairs along the scanline. Due to the probabilistic sampling, there is no need to smooth
or de-noise the incoming image, as the probability of a transition between color classes
to be sampled will converge in the limit to the true relative frequency.

3.3. Image feature extraction

We decided to discretize the continuous color space into the n most significant color
classes ‖C‖ = n. By using such a color discretization function g, each color v ∈ [0, 1]3

can be mapped onto its corresponding color class c = g(v) ∈ C. Such a mapping can be
created by a robot autonomously by clustering the color space, for example by using the
Expectation-Maximization algorithm with a Gaussian mixture model [13]. An efficient
and working implementation of this approach has been used by the Dutch Aibo Team
in [14].
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The color class transition frequencies can be counted from an incoming image very
quickly. For visual compassing, we want to count the color class transitions in vertical
direction in the world coordinate frame, as visualized in Fig. 2(middle). This requires
to project the vertical scanline lW (s) (with 0 ≤ s ≤ 1) with heading ψscan in the world
frame to a scanline lC(s) in the camera frame, by computing

lC(s) = C lW (s). (2)

Of course, the valid range ψscan of visible scanlines is limited by the opening angle α of
the camera and the current camera yaw ψ, i.e.,

ψ − α/2 ≤ ψscan ≤ ψ + α/2. (3)

Along such a scanline lC(s), the robot can now simply count the number of transitions
z′ij between every pair of color classes i and j. These absolute frequencies can then be
divided by the total sum of transitions on the line in order to obtain the relative frequency
zij for each pair of color classes, i.e.,

zijt =
1∑

i′,j′∈C
z′i
′j′

t

z′ijt . (4)

Using this technique, the robot can extract zijt by counting the number of color class
transitions in the image.

3.4. Transition patterns

In total, there are n × n transition frequencies between each of the n distinct color
classes defined earlier. We denote the transition frequency pattern z as follows:

z =


z11 · · · z1n

...
. . .

...

zn1 . . . znn

 . (5)

This transition frequency pattern is the feature vector that we use for mapping and
localization.

Each time the robot captures an image, it will extract a slightly different frequency
measurement due to camera noise, indicated by the series (. . . , zt, zt+1, . . .).

We will now assume that this measurement series is generated by an underlying dis-
tribution Z. For our approach, we have chosen to model each of the elements Zij of the
transition pattern Z by means of an individual histogram distribution H, defined by the
absolute frequencies of k logarithmically scaled bins mij

(1), . . . ,m
ij
(k).

Zij ∼ H
[
mij

(1), . . . ,m
ij
(k)

]
= H

[
mij

(1:k),
]

(6)

This histogram distribution is defined by the following probability distribution:
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p
(
zij
∣∣mij

)
=

1
n∑
k=1

mij
(k)


mij

(1) if 2−1 < zij ≤ 20

...
...

mij
(k) if zij ≤ 2−(k−1)

(7)

When the robot now starts to move (or to turn its head), the camera yaw angle ψ will
change, and because the robot will then see a different part of the scene, we now add
this angular dependency to all previously introduced variables like the observed feature
vector z(ψ), the generating distribution Z(ψ), which is defined by the currently seen part
of the map m(ψ). Note that this map is cylindrical and therefore has 2π periodicity.

3.5. Mapping

During mapping, we need to estimate the generating distributions Z(ψ) for all yaw
angles ψ from the measurement series (< z1, ψ1 >,< z2, ψ2 >, . . .). As initially no map
is available, one solution to estimate ψt is to trust completely on camera odometry
information of the robot. As soon as the first part of the map is initialized, this can
already be used to support this potentially inaccurate camera yaw ψ (see section 4). For
the moment however, we can assume that the camera yaw ψ is known during learning.

The robot can learn the cylindrical map by estimating the parameters {m̂ij
(1:k)(ψ)} con-

stituting the individual histograms, and finally of the complete estimate of the cylindrical
map m̂.

Fortunately, histogram distributions are particularly computationally inexpensive to
estimate. Their parameters m̂ij

(1:k)(ψ) are direct estimators, as they actually represent the
absolute frequencies of the corresponding bin. Each time, a measurement zij(ψ) falls into
a certain bin k∗, its corresponding counter m̂ij

(k∗) of the cylindrical map can be increased
by 1.

For a single direction, the evaluation complexity of this expression is linear in the
number of histogram bins k, i.e., p

(
zij
∣∣mij(ψ)

)
∈ O (k).

3.6. Localization

After the map has been filled in sufficiently, the robot can use it to estimate the yaw
angle ψ of it camera. If the robot now extracts a feature vector z with unknown ψ, it can
compute the likelihood that this observation was made under a particular camera yaw
angle ψ – given the cylindrical map m – by computing the likelihood distribution over
all ψ, i.e.,

p
(
ψ
∣∣z,m) =

p
(
z
∣∣ψ,m) p(ψ)
p(z)

∝ p
(
z
∣∣ψ,m) , (8)

using (7) and Bayes rule.
Given a feature vector z extracted from a camera image, the robot can compute

p
(
ψ
∣∣z,m) – expressing the likelihood that the camera yaw angle was ψ while observing

z. Hereby, we assume that all feature vectors Zij(ψ) are mutually independent. Clearly,
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this assumption is an approximation which is only valid as long as the selected color
classes are sufficiently different. In this case, we obtain:

p
(
z
∣∣ψ,m) =

n∏
i,j∈C

p
(
zij
∣∣ψ,mij

)
(9)

For a one-shot localization, one could select the camera yaw ψ with the maximum
likelihood by computing

ψ̂ML = argmax
ψ

p
(
zt
∣∣ψ,m) . (10)

However, the likelihood distribution will potentially contain multiple (local) maxima,
induced by ambiguity present in the environment. The same pattern could match with
several parts of the map, like for example a series of windows on a building. Although
a single transition pattern does not have to be unique, a sequence of transition patterns
is likely to contain more information to resolve the ambiguity. Such a larger sequence of
local transition patterns can already be extracted from a single image by sampling the
field of view horizontally by using multiple scanlines at a certain scanning resolution σ,
as being described in the next subsection.

The evaluation complexity of the likelihood distribution grows quadratically with the
number of color classes n and linear with the number of histogram bins k, i.e., p

(
z
∣∣m) ∈

O
(
n2 · k

)
.

3.7. Multiple scanlines

Much of the ambiguity in the localization process can be removed when the robot
scans along multiple scanlines through the image at yaw angles ψscan ∈ Ψ.

A horizontal scanning resolution of σ induces a set of vertical scanlines at yaw angles

Ψscan = [ψ − α/2, ψ + α/2] ∩ (σN) . (11)

This implies that now – within the camera image Ft(ψ) – a sequence of α/σ feature
vectors

{
zt(ψscan)

∣∣ψscan ∈ Ψscan

}
to be extracted. Evaluating a sequence rather than a

single transition pattern greatly reduces the ambiguity during localization. If the mea-
surements lie substantially far away from each other, these measurements can be assumed
to be independent, leading to the following equation:

p
(
Ft
∣∣ψ,m)= p

({
zt(ψscan)

∣∣ψscan ∈ Ψscan(ψ)
} ∣∣∣ψscan,m) (12)

=
∏

ψscan∈Ψscan(ψ)

p
(
z(ψscan)

∣∣m) . (13)

Given a limited field-of-view camera, the robot can only perceive a limited part of its
surroundings from a single image. Active vision can be used to increase its perceptive field:
if the robot has a turnable camera, it can scan its surroundings to remove ambiguities
very quickly. Additionally, mobile robots can turn their whole body to see other parts
of the scene, allowing them both to learn the full cylindrical map m and to improve
localization.
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So far, from an algorithmical point of view, the evaluation complexity of (13) is recip-
rocal in the angular resolution σ, or in total, the computational cost is now in the order
of magnitude of p

(
Ft
∣∣ψ,m) ∈ O (n2 · 1

σ

)
.

3.8. Localization filter

Robot localization [15] aims at improving the estimation of the pose xt at time t,
taking into account the movements of the robot (u1, . . . ,ut) and the observations of the
environment taken by the robot (z1, . . . , zt). This is typically modelled by a Markov
process that goes through the sequence x0

u1−→ (x1, z1) u2−→ · · · ut−→ (xt, zt). The Markov
assumption states that the current robot’s pose only depends on the previous state xt−1,
the current action ut, and the current observation zt.

We model the robot’s current belief about its pose by the belief distribution bel(xt).
Using the Bayes Filter [3], this belief distribution is updated in each time step according
to

bel(xt) =
∫
p(xt|ut,xt−1) bel(xt)dxt−1 (14)

bel(xt) = η p(zt|xt) bel(xt), (15)

where p(xt|ut,xt−1) is called the motion model and p(zt|xt) is called the sensor model.
(14) and (15) define a recursive system for estimating the position of the robot. Both

the continous representation and the integral are difficult to implement and are therefore
typically approximated, for example using a probability grid, a Kalman filter or Monte-
Carlo sampling methods like particle filters.

In the following two subsections, the required motion and sensor models will be con-
structed. Subsequently, a localization filter that estimates the robot’s heading using these
models will be presented.

3.8.1. Motion model
We assume that odometry feedback ut is available in each time step. This odometry

can either be measured directly (from the wheels), or can be derived from the issued
action commands. We assume an additive noise component ξ ∼ N (0,Σ) arising from
slippage and other uncontrollable effects of the environment that is normally distributed.

xt = xt−1 + ut + ξt (16)

or equivalently, by splitting the pose x =< ψ, τ > in its rotational ψ and translational τ
components

< ψt, τt >=< ψt−1, τt−1 > + < uψt , u
τ
t > + < ξψt , ξ

τ
t > (17)

=< ψt−1 + uψt + ξψt , τt−1 + uτt + ξτt > . (18)

3.8.2. Sensor model
The posterior probability distribution that a compass sensor (given a cylindrical map

m) estimates when supplied with a measurement zt is given in (19). This distribution
can directly be used as the sensor model:
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p
(
zt
∣∣xt,m) = p

(
zt
∣∣ < ψ, τ >,m

)
' p

(
zt
∣∣ψ,m) . (19)

Note here we make the assumption, that the posterior is only depending on the cam-
era yaw ψ, and not on the translational component τ . In section 3.10, this sensitivity
on the translation is again incorporated. Here, we assume basically that the perceived
color transition patterns originate from very distant objects, ideally at infinity, such that
translational component of the camera can safely be neglegted.

The posterior stated in (19) forms the sensor model of the visual compass, by relating
the measure feature vectors zt to the world state xt, given a cylindrical map m.

3.9. Orientational belief filter

Note that for robot localization, we use two different techniques: we will first explain
how the robot can estimate its heading belψ(x) over time, and then extend the method
to allow to estimate the translational component belτ (x).

The orientational filter has to track the orientational belief belψ(x) of the robot. As
our visual compass only measures the 1D rotational yaw component of x, it is sufficient
to filter it on a 1D circular grid, at a resolution comparable to the resolution σ of the
sensor measurements z.

At each time step, the belief belψ(xt
∣∣ut, zt,m) are updated according to the motion

and sensor model, using the update rules from the Bayes filter and a mixing constant λ:

bel
ψ

t (xt) =
∫
p(xt|ut,xt−1) belψ(xt)dxt−1 (20)

belψt (xt) = λ p
(
zt
∣∣x,m) + (1− λ)bel

ψ

t (xt
∣∣uψt , zt,m) (21)

In Fig. 3, this filter process on a circular grid is sketched graphically.

Fig. 3. Visualization of the Bayesian filtering process. In the first step, the belief distribution belψt−1(x)

is updated according to the motion model (odometry correction). In the second step, the sensor model

is applied and a new belief distribution belψt (x) becomes available.

This belief distribution may in principle have any arbitrary shape. In order to extract
an expedient single yaw estimate that the robot can use for example for planning and
navigation, we approximate the belief distribution belψ(x) with a Gaussian distribution
centered at µ̂ψt and with variance σ̂ψt , i.e.,

belψt (x) = N (µ̂ψt , σ̂
ψ
t ), (22)

The evaluation complexity of both belief updates is reciprocally linear in the angular
resolution σ, i.e., belψt (xt‖xt−1,ut, zt) ∈ O (1/σ).
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3.10. Four-spot sensor model

With the sensor model as constructed in (19), it is possible to estimate the robot’s
yaw angle ψ by learning the cylindrical map m̂ only at a single training spot. Under the
assumption that the transition frequency patterns are produced by objects at infinite
distance, it is clearly not possible to estimate the translational component. However, if
we weaken this assumption and assume that the perceived panorama has a reasonable
distance to the robot, then the resulting projective distortions can be used to estimate
additionally the robot’s translation on the map. Imagine a room with some posters on
the wall. Such a room would still allow a robot to robustly estimate of the robot’s head-
ing, while the matching quality expressed by the measurement likelihood will decrease
substantially the farther the robot moves away from its original training spot.

In order to additionally estimate the translational component of the robot’s pose in
two dimenstions, more than one training spot is required: from now on, the the global
map is extended to consist of q spots m(1:q) =

(
m(1), . . . ,m(q)

)T
learned at the training

spots T (1), . . . , T (q).
Then for each spot, the likelihood response of the sensor model, i.e., the maximal like-

lihood, can be used as an indicator for the goodness of the match between the current
image with the training spot. We found in several experiments, that the likelihood re-
sponse is strongly related to the distance of the robot from the training spot. In most
indoor environments, the likelihood function even decreases strongly monotoneously, for
an example see Fig. 8(left) of measurements obtained in our robot lab.

A single goodness-of-fit indicator can thus be computed by extracting the maximal
likelihood L

(i)
t from corresponding posterior distribution p

(
zt
∣∣ψ,m(i)

)
:

L
(i)
t = max

ψ
p
(
zt
∣∣ψ,m(i)

)
(23)

From the combined sensor readings z(1:q)
t consisting of the indicators of all q compass

sensors

z(1:q)
t =< L

(1)
t , . . . , L

(q)
t >, (24)

we propose to compute the translation directly by computing the weighted sum of the
training spots T (1), . . . , T (q) according to the corresponding likelihoods z(1:q)

t ,

τ̂
(
z(1:q)
t ,m(1:q)

)
=

1∑q
i=1 L̂

i
t

q∑
i=1

L̂itT
i. (25)

For this translational interpolation technique to work, the likelihood of each individual
training spots needs to drop linearly with increasing distance. For arbitrary environments,
this approximation will not hold in general. From our indoor experiments however, we see
that this assumption is justified in typical office and home environments. In such rooms,
the reported likelihood will be high in the vicinity of the training spot, and drop the
more the robot moves away, as projective distortions reduce the likelihood of the match
increasingly. For a visualization of the likelihood surface, consult Fig. 8 in Section 5.

The evaluation complexity of the multi-spot sensor additionally is linear in the number
of training spots q used, i.e., τ̂

(
z(1:q)
t ,m(1:q)

)
∈ O

(
q · c2 · n · 1

∆φfilter

)
.
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Fig. 4. Visualization of the individual processing steps of our visual compass. Left: The RGB camera

images from the robot’s camera are discretized into m = 10 color classes. Middle: The robot divides the
image in vertical stripes of σ = 4.5◦, and extracts the transition frequency pattern of each stripe. The

dominant color class transitions are displayed below each stripe. Right: Visualization of a cylindrical

map learned at the UvA Robolab. Per stripe, only the most frequent color class transition is displayed.

3.11. Translational belief filter

The sensor model described in (25) can directly be used by a Bayesian filter. In each
time step, the translational belief belτ (xt) is updated first by the motion model as defined
in (16) and subsequently by the sensor model as constructed in (25), using a mixing
constant λ:

bel
τ

t (xt) =
∫
p(xt|ut,xt−1) belτ (xt)dxt−1 (26)

belτt (xt) = λ p(z(1:q)
t ‖m(1:q)) + (1− λ)bel

τ

t (xt
∣∣uτt , zt,m) (27)

The algorithmic complexity of the translational filter is again linear in the number q
of acquired training spots, so belτt (xt) ∈ O (q).

At each time step t, the translational belief distribution belτt (τt) is assumed to be
normally distributed with mean µτ and variance στ , i.e.,

belτt (xτ ) = N (µ̂τt , σ̂
τ
t ), (28)

From both the rotational and the translational filter, a full pose estimate is now avail-
able for higher-level functions such as planning and navigation:

x̂ =< x̂ψ, x̂τ > (29)

4. Implementation

The Sony Aibo is an entertainment robot used by many institutes as a robust research
platform: it has a turnable head with a camera, four 3-DOF legs, and an internal 64bit
MIPSEL processor running at 567MHz. A particular problem of the CMOS camera in
the robot’s head is, that it cannot be assumed that the scanning grid is orthogonal.
The angle between the horizontal and the vertical depends on the velocity of the head
movements because of the distortion introduced by the rolling shutter of the built-in
CMOS camera, see Fig. 4.
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4.1. Sensor model

An angular resolution of ∆φsensor = 4.5◦ was chosen for the cylindrical map and
the sensor model. As the robot’s head is attached to 3-DOF motorized neck, there is
some variance in the control of the corresponding motors, such that smaller (optical)
angular resolutions are not reasonable. The number of m = 10 color classes was chosen,
the equivalent to the number of (artificial) color classes on a RoboCup soccer field.
Parameter studies revealed that this number can be reduced significantly while still
yielding comparable results. Further, a scanning grid evaluates by default 25% of the
pixels of each incoming camera image [16].

4.2. Localization filters

The circular belief grid of the orientational filter operates at an angular resolution of
∆φfilter = 1◦, and the mixing constant λ was chosen so that half of the belief mass is
replaced after 0.3s.

The translational filter uses a pattern of 4 training spots to estimate the robot’s po-
sition. Due to the limited processing power of the Aibo, it was decided to evaluate per
frame only a single sensor model p

(
ft
∣∣φ, m̂(j)

)
, and leaving the estimates of the others

as they were. Note that this still results in a update rate of 7.5fps. The filter updates its
belief distribution with the same mixing rate λ as the orientational filter.

4.3. Behaviors

Several behaviors have been implemented as finite state machines that allow the robot
to calibrate and learn natural environments autonomously.

When learning a new map, the robot trusts initially completely on its odometry. As
walking on four legs is extremely prone to slip, the Aibo learns the first part of the map
only by turning its head. Thereby, the Aibo can already initialize more than half of the
map. Subsequently, the robot has to turn its body on the spot. To increase stability, the
robot already uses the partial map for estimating its orientation during turning. The
learning behavior allows the robot to learn a full circle in 8 steps of 45◦. Per default, the
learning time in each direction is 5s. Note, that after the Aibo has turned for approx-
imately 180◦, one end of the partially learned map becomes again visible on the other
side. This implicitely leads to a loop closure of the cylindrical map.

Additionally, two localization behaviors were created that can be used to measure and
demonstrate the capabilities of the visual compass approach. The measurement behavior
makes the Aibo look around for 5s and stores its heading estimate for later evaluation.
The homing behavior uses the localization estimate to guide the robot back to the center,
while heading forward.

A simple button interface was implemented that allows the user to activate the most
important functions. All computations were executed in real-time directly on-board the
robot.
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Fig. 5. Experiment conducted in a ordinary, but brightly lit living room at a private home. The robot

was rotated manually in steps of 5◦. The robot’s heading estimates have been plotted against the true
orientation.

5. Results

We conducted a large number of indoor and outdoor experiments to verify the validity
of our approach. In section 5.1, we will first analyze the performance of the compass
filter in large number of different environments, such as a living room, a outdoor soccer
field and a lab room. It will be shown, that the accuracy of the visual compass is very
high when the robot stands at the initial training spot, and diminishes gracefully with
increasing distance. In section 5.2, we will then show that the likelihoods reported by the
compass sensor can be used to estimate qualitatively the distance from the training spots.
This was experimentally verified by a visual homing experiment in our robot lab. Further
experiments have been conducted to evaluate the robustness, validate its applicability
in several natural environments, measure the actual computation times and evaluate the
initial choice of parameters.

5.1. Orientational filter

In a first experiment, a robot was trained in the center of an ordinary, but brightly lit
living room as shown in Fig. 5(left). After training was complete, the robot was turned
manually in steps of 5◦, and the robot recorded its estimated yaw angle. As it can be
seen from the plot in Fig. 5(right), the estimates match very closely the real orientation
of the robot.

Then we conducted a more detailled experiment in our robot lab, a room of approx-
imately 7x7 meters. On one side of the room, there are tables, chairs and computers.
At the other side of the room there is an open space, with a RoboCup soccer field. We
trained the robot in the middle of the field, and moved it then across a grid composed
of 10x10 cells with a side length of 33cm per cell, in order to study the degradation in
terms of localization accuracy. In Fig. 6(left), the estimated angular error and variance
are plotted as a function of the distance from the training spot. Close to the training
spot, the error is less than 5◦, but increases quickly with a growing distance from the
training spot. After 2 meters, the orientational error is already above 45◦. Interestingly,
there is a systematic drift in the heading estimates reported by our visual compass, as
displayed in Fig. 6(right): depending on the heading of the robot, which seems to be
induced from the projective distortions in the room. Note that no explicit use is made of
the coloured landmarks that surround our RoboCup soccer field.
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Fig. 6. Exhaustive compass experiment conducted at the UvA Robolab. Left: Quantitative results of

orientation filter experiments. True error and variance plotted versus the distance from the training

spot. Right: Detailled view on the reported heading estimates. Close to the training spot, the variance
is relatively small, but increases steadily the further the robot is moved away. The projective distortions

in the room induce a systematic error of the compass towards the center of the robot’s orientation during

training.

Finally, we repeated this experiment on a outdoor human soccer field of 60x100 meters,
where we obtained similar results, see Fig. 7(left). On the field, the robot could mainly
see the border advertisements around the field, the podium for the audience and several
larger trees. Note that also the sky (inluding a few clouds and the sun) was visible to
the robot. As it can be seen from the evaluation in Fig. 7(right), the robot shows (up to
scale) a similar accuracy of compass estimates, compared to the indoor experiments.

Fig. 7. Experiment conducted at the Zeeburgia outdoor soccer field in Watergraafsmeer, Amsterdam.

The robot was moved across the whole field on its primary axes. The arrows display the reported heading,
while the blue arcs around the arrow visualize the reported variance. The heading estimates point nicely

in direction of the opponent goal.

5.2. Translational filter

If the robot stands exactly at the training spot, the measured color class transition
frequencies will perfectly match the stored ones in the map, thus yielding a high likelihood
p
(
z
∣∣ψ,m). If however, the robot is moved away, projective distortions and variations in

illumination will lead to a different panoramic view and thus to reduced likelihoods. To
verify this assumption, we trained the robot on a single spot, and measured the reported
likelihoods when the robot was moved across a grid of 2x2 meters around the training
spot. Fig. 8(left) shows the results. It can be seen that the normalized log-likelihoods
drop monotonously with increasing distance. This observation initially gave rise to the
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idea to use the 4 linearly independent training spots to estimate the robot’s position in
between, as described before in Section 3.10.

We then carried out the visual homing experiment 1 : The kickoff circle of the RoboCup
field was chosen as the center spot, and the robot learned the panorama of four adja-
cent spots in the distance of 1 meter from the center autonomously. Although the robot
walked to the training spots autonomously, using its learned cylindrical map as in its ori-
entational filter to support odometry, the robot sometimes got a bit astray and then had
to be aligned manually, before the cylindrical map learning on the next spot was started.
Finally, the robot walked back to the target spot in order to perform a normalization
of the individual likelihoods (so that unity likelihoods L(i)

t = 1 were reported from all
compass sensors at the target spot).

After learning was complete, the robot was kidnapped and placed somewhere ran-
domly on the field (with random orientation). From there, the robot had to walk back
to the center using both the translational filter as a navigation function, as visualized
in Fig. 8(middle). We then recorded the position τt where the robot stopped (for longer
than 5 seconds). In total, 33 kidnappings have been executed and the reached positions
have been measured, see Fig. 8(right).

In most cases the robot stopped close to the target spot. However, it can also be seen
that the robot walked (in average) to a spot slightly behind and right to the center spot.
Finally, because not visible in the graph, it has to be stated that the robot never left the
field or stopped on a point outside the displayed area.

We found, that the average position where the robot stopped was found was located
at mean τt = (−22cm + 12cm)T with a variance of var τt = (17cm 15cm)T .

The systematic deviation to the bottom right can be interpreted in such a way that the
likelihoods of the individual sensor models (or cylindrical maps) do not decrease equally
fast; the likelihood normalization on only a single spot does not seem to be sufficient.

A standard deviation in this magnitude is acceptable when compared to other tech-
niques. The Dutch Aibo Team [17] for example reports a standard deviation of 13.5cm,
making use of an explicit model of a RoboCup soccer field. It should be noted however,
that the Dutch Aibo team could localize any arbitrary position on the field. With the
translational filter, visual homing is only possible to a single learned spot.

In order to be able to get more than a qualitative estimate on the current position even
for other spots than the center, it would be necessary to gain more insight in the kind
of shape of the likelihood decay when the robot is moved away from the training spot.
Considering these results, it can be concluded that the visual compass approach can in
principle be used for translational localization. Several aspects however remain subject
to future research.

5.3. Further experiments

Several more experiments have been conducted that validated other important prop-
erties [16]:
– By modifying the illuminiation, it could be shown that the algorithm still performs well

with only half of the illumination as during the learning, which is quite remarkable.

1 The video is available online: http://www.informatik.uni-freiburg.de/~sturm/sturm08ras.html
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Fig. 8. Experiments of translational filtering. Left: Likelihoods measured by the visual compass, while
to robot is moved across a 2x2m grid. The robot was trained on spot (100, 0). The likelihood values

almost drop monotonously with the distance from the training spot. Middle: The robot can use the

reported likelihoods as a navigation function. The four training spots are marked with a yellow cross.
Right: Measured end positions in a visual homing experiment. The blue dots correspond to the positions

where the robot stopped.

– Parameter studies revealed that three color classes are sufficient for accurate compass-
ing. Moreover, the pixel coverage of the scanning grid could be reduced to less than
1% of the camera image without substantial impact on the prediction accuracy.

– With runtime experiments, the approach could be proven to be particularly efficient:
with the original set of parameters, a single camera frame can be processed in less than
4ms for learning and 13ms for localization. This is fast enough to allow processing at
the full frame rate of the Aibo, i.e., 30fps.

6. Discussion and conclusions

The most important results of this work can be summarized as follows:
(i) The visual compass approach can supply a mobile robot with accurate heading

information.
(ii) Robots using visual compassing can learn quickly to orientate in new environments.

(iii) Multiple learned spots together can be used for navigation for visual homing.
(iv) The visual compass algorithm is efficient and economic; it can be executed in real-

time on-board a mobile robot, and works well even with low-quality cameras.
Further experiments [18] have demonstrated that our approach is applicable in a vast

variety of different environments and robust to environmental changes.
The characteristics of the visual compass can be compared to several existing ap-

proaches. A natural comparison is the localization module as used in the RoboCup Soc-
cer competition. Of course, these methods are based on completely different principles,
relying on the recognition of a number of artificial landmarks that were placed around
the field to facilitate localization. However, the resulting performance turns out to be
comparable: UT Austin [19] did an extensive study on optimizing the localization on the
field and reported final accuracies of comparable magnitude.

As the visual compass described in [10,11] only compares the latest two images, and
therefore small errors in estimation add up over time, making their results difficult to
compare.
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Other approaches (such as [4]) estimate maps of landmarks. The resulting localization
is more stable over time, but the necessity for unique feature extraction (like SIFT) is
computationally expensive, resulting in framerates of around 1fps.

The approach on visual odometry from [6] is one of the fastest in this comparison;
features are tracked as long as they are visible, and a global motion vector is estimated
from all feature tracks that enjoys the largest support. Although their implementation is
quite accurate, it suffers again from long term drift as no global map is constructed.

We conclude that our Visual Compass is a light-weight alternative to classical geomet-
ric localization. The Visual Compass can be used on almost any camera-based mobile
robot due to its good scalability and extreme efficiency, and therefore has a wide field of
potential application.
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