83 research outputs found

    A new hybrid model of dengue incidence rate using negative binomial generalised additive model and fuzzy c-means model: a case study in Selangor

    Get PDF
    Dengue is one of the top reason for illness and mortality in the world with beyond one­third of the world's population living in the risk areas of dengue infection. In this study, there are five stages to achieve the research objectives. Firstly, the verification of predetem1ined variables. Secondly, the identification of new datasets after clustered by district and Fuzzy C-Means Model (FCM). Thirdly, the development of models using the existing dataset and the new datasets which clustered by the two different clustering categories. Then, to assess the models developed by using three measurement methods which are deviance (D), Akaike Jnfonnation Criteria (AIC) and Bayesian Infonnation Criteria (BIC} Lastly, the validation of model developed by comparing the value of D, AIC and BIC between the existing model and the new models developed which used the new datasets. There are two different clustering techniques applied which are clustering the data by district and by FCM. This study proposed a new modelling hybrid framework by using two statistical models which are FCM and negative binomial Generalised Additive Model (GAM). This study successfully presents the significant difference in the climatic and non-climatic factors that influenced dengue incidence rate (DIR) in Selangor, Malaysia. Results show that the climatic factors such as rainfall with current month up to 3 months and number of rainy days with current month up to lag 3 months are significant to DIR. Besides, the interaction between rainfall and number of rainy days also shows strong positive relationship to DIR. Meanwhile, non-climatic vaiiables such as population density, number of locality and lag DIR from I month until 3 months also show significant relationship towards DIR For both clustering techniques, there are two clusters fonned and there are four new models developed in this study. After comparing the values of D, AIC ai1d BIC between the existing model and the new models, this study concluded that four new models recorded lower values compared to the existing model. Therefore, the four new models are selected to present the dengue incidence in Selangor

    Performance evaluation of fixed and variable zero padding length in ultra-wideband receiver design using MB-OFDM based on ECMA-368 standard

    Get PDF
    Advisors: Mansour Tahernezhadi.Committee members: Lichuan Liu; Donald S. Zinger.Traditional OFDM systems use Cyclic Prefix (CP) in front of an OFDM symbol to maintain orthogonality. Ultra Wide Band (UWB) systems use Multiband OFDM approach in implementing applications of Wireless Personal Area Network (WPAN). Federal Communications Commission (FCC) put some regulations on UWB to co-exist with other narrowband and spread spectrum users. MB-OFDM follows OFDM modulation scheme where CP is used but CP introduces a structure into the transmitter due to which the ripples are produced in Power Spectral Density (PSD). Because of this ripples, power back-off is required at the receiver which is as large as 1.5 dB. As an alternative to CP, Zero Padding (ZP) is used where a flat PSD is obtained which requires zero power back-off. Circular convolution in CP is a natural phenomenon but for ZP, Overlap and add method (OLA) is used to ensure circular convolution. The ZP length used for OLA method is fixed and equal to 32 samples according to ECMA-368. If timing synchronization estimation errors occur, fixed ZP length may cause Inter Symbol Interference (ISI). So, a variable ZP length is required to avoid ISI depending upon the current band. Hence, a Multi Band Timing Synchronization algorithm is proposed to achieve variable ZP length based on current band for OLA method. This method benefits large delay spread channels. Improvement in SNR is achieved at particular Bit Error Rate (BER) for large delay spread channels.M.S. (Master of Science

    Low-Complexity Detection/Equalization in Large-Dimension MIMO-ISI Channels Using Graphical Models

    Full text link
    In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov Random Field (MRF) based graphical model with pairwise interaction, in conjunction with {\em message/belief damping}, and 2) use of Factor Graph (FG) based graphical model with {\em Gaussian approximation of interference} (GAI). The per-symbol complexities are O(K2nt2)O(K^2n_t^2) and O(Knt)O(Kn_t) for the MRF and the FG with GAI approaches, respectively, where KK and ntn_t denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large KntKn_t. From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing KntKn_t. Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of MM-QAM symbol detection

    Performance Enhancement of DS-UWB Short Range Communication System Using Equalization Techniques

    Get PDF
    UWB is a major research area in the field of wireless communication. The IEEE 802.15.3a has been assigned the job of standardizing it. It is being considered as a breakthrough technology capable enough to revolutionize short range wireless communication. Ultra wideband communication as its name implies has large absolute bandwidth greater than 500 MHz and operating frequency band is 3.1 GHz- 10.6GHz. It is a rapidly growing technology that plays a very promising role in modern age wireless communication. It finds application in various sectors, for example in medical application to observe the status of patient using wireless health monitoring of life sustaining systems. In vehicular technology it can be used for obstacle avoidance and fast data transmission, and in military application as radar for detection behind walls and other blockages. Since it is based on short pulse carrier less transmission so hardware implementation becomes less complex and cheap. Thesis work has been done to study the BPSK modulation based DS-UWB communication system. Direct sequence spread spectrum (DSSS) technique along with UWB signal and two types of equalization techniques has been incorporated to mitigate the multipath fading effect associated with S-V indoor channel. Rake receiver has been used to utilize the energy of various delayed multipath components to improve the performance of the system. In short range communication process, indoor channel model or UWB channel model has been studied with different transmitter receiver separation, using some fundamental parameters of channel. Inter symbol interference (ISI) is a major problem in frequency selective fading channels, to overcome this problem, RAKE-MMSE equalizer and single carrier frequency domain equalizer (SC-FDE) have been incorporated. Thesis comprises of the system performance study and design done by using the above said equalization techniques for DS-UWB communications system

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Design of tch-type sequences for communications

    Get PDF
    This thesis deals with the design of a class of cyclic codes inspired by TCH codewords. Since TCH codes are linked to finite fields the fundamental concepts and facts about abstract algebra, namely group theory and number theory, constitute the first part of the thesis. By exploring group geometric properties and identifying an equivalence between some operations on codes and the symmetries of the dihedral group we were able to simplify the generation of codewords thus saving on the necessary number of computations. Moreover, we also presented an algebraic method to obtain binary generalized TCH codewords of length N = 2k, k = 1,2, . . . , 16. By exploring Zech logarithm’s properties as well as a group theoretic isomorphism we developed a method that is both faster and less complex than what was proposed before. In addition, it is valid for all relevant cases relating the codeword length N and not only those resulting from N = p

    Efficient channel estimation using TCH codes

    Get PDF
    In this paper, we consider the use of TCH codes to perform channel estimation in an OFDM system, using either data multiplexed pilots or superimposed pilots over the data. TCH codes possess several properties that allow us to use them efficiently in various applications which includes channel estimation, as we address in this paper. With this objective, several performance results were obtained through simulations which allowed the evaluation of the impact of different pilot power levels and modulations, as well as the comparison of TCH against other conventional pilots. In order to cope with the interference between pilots and data, an iterative receiver with interference suppression was employed for the superimposed pilots method.info:eu-repo/semantics/acceptedVersio

    High-rate UWB and 60 GHz communications

    Get PDF
    In this chapter, two technologies for high data-rate communications systems for wireless personal area networks (WPANs) are discussed. Namely, the ultrawideband (UWB) technology that operates in the 3.1-10.6 GHz band and the millimeter wave (MMW) technology (also called 60 GHz radio) that can use the 57-64 GHz band in most parts of the world are considered. First, a generic overview is given and various application scenarios are discussed. Then, the ECMA standard for high-rate UWB systems is studied. Finally, two standards for the 60 GHz MMW radio are investigated.Overview and application scenarios In order to realize high-speed communications systems with low power consumption, signals with very large bandwidths need to be employed. One way of designing such communications systems is to use UWB signals as an underlay technology by utilizing all or part of the frequency spectrum between 3.1 and 10.6 GHz [1-3]. According to the US Federal Communications Commission (FCC), a UWB signal is defined as having an absolute bandwidth of at least 500 MHz or a relative (fractional) bandwidth of larger than 20% [3-4].In order not to cause any adverse effects on other wireless systems in the same frequency band, such as IEEE 802.11a wireless local area networks (WLANs), certain power emission limits are imposed on UWB devices by regulatory authorities, such as the FCC in the USA [3] and the Electronic Communications Committee (ECC) in Europe [5]. © Cambridge University Press 2011
    corecore